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Abstract. We consider Euler equations for a perfect gas in Rd,
where d ≥ 1. We state that global smooth solutions exist under
the hypotheses (H1)-(H3) on the initial data. We choose a small
smooth initial density, and a smooth enough initial velocity which
forces particles to spread out. We also show a result of global in time
uniqueness for these global solutions.

Introduction. We consider Euler equations for a perfect gas:
∂tρ+ div(ρu) = 0,

ρ(∂tu+ (u · ∇)u) +∇p = 0,

∂tS + u · ∇S = 0,

(1)

where t ∈ R+, x ∈ Rd and u : Rd × R+ → Rd stands for the velocity, ρ :
Rd×R+ → R+ for the density, p = (γ−1)ρe for the pressure, with e the internal
energy of the gas and S : Rd×R+ → R+ for the entropy. The adiabatic constant
of the gas is denoted by γ > 1 and d ≥ 1 is the dimension of the space.

We are interested in the existence of global smooth solutions to the Cauchy
problem for (1) with (ρ0, u0, S0) as initial data. There exist few results concerning
this problem, especially when d is strictly larger than one. The choice of initial
data is decisive for this problem and it depends on whether one wants to prove
or to disprove global existence. We aim at finding conditions on (ρ0, u0, S0) as
weak as possible which ensure the existence of a global smooth solution. In [4],
T. Sideris has shown a result of non global existence: the initial density is close to
a constant at infinity—the constant should be different from 0—and some global
quantities have to be large. For d = 1, in the isentropic case, we have a 2 × 2
system. In this case, some results can be proved using P. D. Lax’s works [3]. In
the same case with less restrictive conditions, J. Y. Chemin [2] has also proved
a result of non global existence: the initial velocity has to be smaller than the
initial sound speed in each point—this quantity depends mostly on ρ0—. In [1],
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D. Serre has proved one result of existence in the multi-dimensionnal case, with
γ ≤ 1 + 2/d—which is not a restriction in the realistic case—. One restriction
to this result is that the initial velocity must be close to a linear field. We give
here a global existence result without this particular hypothesis. Note that the
case ρ = 0 does occur, that is to say that there can be vacuum in some area.
This requires some attention as we will notice later.

This article is divided in two main parts. The first one deals with the isen-
tropic case. This is the simplest one and gives the idea of the methods we use.
We give a result of global existence and some estimates on the solution. We
show also a result of uniqueness for all time, under some regularity assumptions
on the solution. We prove also a corollary of the existence result which improves
slightly the hypotheses.

The second part generalizes the previous results to a non-isentropic fluid.
The vector of all the spatial derivatives of order k is denoted by Dk, and ∂k

is one of the component of Dk. The differential with respect to x of u(·, t) will
be denoted by Du. We denote by |.|p the norm of Lp(Rd) where 1 ≤ p ≤ ∞, by
‖.‖0 the one of L2(Rd) and by ‖.‖m the one of Hm(Rd). We also set ‖.‖X the
norm of the space X = {z : Rd × R+ → Rd | Dz ∈ L∞(Rd), D2z ∈ Hm−1(Rd)}.
The transpose of a vector V is denoted by V T .

1. The isentropic case. We first consider Euler equations for an isentropic
perfect gas: {

∂tρ+ div(ρu) = 0,

ρ(∂tu+ (u · ∇)u) +∇p = 0,
(2)

with p = (γ − 1)ργ and the initial data:{
u(x, 0) = u0(x),

ρ(x, 0) = ρ0(x).
(3)

In this part, we prove a result of global existence for this problem. Then we
give a corollary of this result. Finally, we solve the problem of uniqueness. We
now find some conditions on the initial data which ensure the global existence.
We use a result of local existence of smooth solutions and some energy estimates.
Nevertheless, we need to introduce an approximate problem to have a guess of
the behaviour of the velocity in our problem. Then, we compare this approximate
solution and our local solution in order to obtain accurate energy estimates. The
approximate problem is the following:{

∂tū+ (ū · ∇)ū = 0 on Rd × R+,

ū(x, 0) = u0(x) on Rd.
(4)

It is obtained by neglecting ρ in (2). The hypotheses we make on the initial
data ensure that there exists a global solution to this problem, and that this
approximate solution stays close to the solution of (2)-(3).
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1.1. Main result. We state the following result:

Theorem 1. Let m > 1 + d/2 and assume that

(H1) ρ
(γ−1)/2
0 is small enough in Hm(Rd),

(H2) D2u0 ∈ Hm−1(Rd) and Du0 ∈ L∞(Rd), i.e., u0 ∈ X,
(H3) There exists δ > 0 such that for all x ∈ Rd, dist(Sp(Du0(x)),R−) ≥ δ,
(H4) ρ0 has a compact support,

and let ū be the global solution of (4). Then there exists a global smooth solution
to (2)-(3), i.e., (ρ, u) such that

(ρ(γ−1)/2, u− ū) ∈ Cj([0,∞[;Hm−j(Rd)) for j ∈ {0, 1}.

In (H3), dist stands for the distance and Sp for the spectrum. This means
that the spectrum of Du0 is uniformly bounded away from the real negative
numbers. To explain our hypotheses, we first make this simple remark: since
our aim is to found a smooth global solution, we choose a small initial density
and an initial velocity which make particles to spread out. Thus, the choice of u0

gives us the existence of a global solution to the simplified problem (4) close to
(2). The main hypothesis on ρ0 is its smallness. The exponent (γ − 1)/2 comes
from the proof of local existence which is the first step in the proof of Theorem
1. It is introduced by the symmetrisation of the system. (H1) is not equivalent
to ρ0 ∈ Hm(Rd) but these two assumptions can be linked according to the value
of γ. Remark that we accept that ρ0 vanishes in some area. We get rid of (H4)
in the corollary following the uniqueness result.

Note that, although the hypotheses have no direct physical interest, since
most of the physical problems are given in bounded domains, this result em-
phasizes the importance of dispersion in the search of a global smooth solution.
Moreover, one strongly expects that a physical solution asymptotically behaves
like the one obtained here. Our last motivation in studying the Cauchy problem
rather than the initial boundary value problem is that the mathematical theory
of both is rather poor so far, so that it is legitimate to begin with the simplest
one.

The proof is based on local existence of a smooth solution to (2) and energy
estimates. But the classical method does not work here. Thus, we consider a
simplified problem which gives us a global solution ū thanks to our hypothesis
(H2)-(H3). Then, we prove that there exists a local solution of our problem
for (ρ0, u0), satisfying (H1)-(H4). We compare the two problems and we use
properties of the simpler one to improve the classical energy estimates. Our
proof is split in three steps. First, we introduce ū the global smooth solution to
an approximate problem concerning only the velocity. We use a local existence
theorem—cf Chemin [2]—and a local uniqueness property of our problem to
obtain a local solution with (ρ0, u0) as initial data. Then we find some estimates
on ū to precise its behaviour. To conclude, we obtain accurate energy estimates
on a certain spatial norm of the difference between the local solution and the
approximate one. Thus we obtain the following estimates on our global solution:
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Theorem 2.Under the hypotheses (H1)-(H4), the solution of Theorem 1
satisfies:

• ‖DkU(t)‖0 ≤ K(1 + t)−(k+r), for all 1 ≤ k ≤ m, for all t ≥ 0,
• |U |∞(t) ≤ K(1 + t)1−a, for all t ≥ 0,
• |DU |∞(t) ≤ K(1 + t)−a, for all t ≥ 0,

where U = (π, u− ū)T , K depends on δ, ‖u0‖X , ‖ρ(γ−1)/2
0 ‖m,

r =


1−

d

2
if γ ≥ γc = 1 +

2

d
,

γ − 1

2
d−

d

2
if 1 < γ < γc,

and a = 1 + r + d/2 > 1.

Note that, according to the values of k and d, −(k + r) can be positive.

1.1.1. Local existence and approximate problem. We need to suppose
that the density is small to expect a global smooth solution. By neglecting ρ
and ∇(ργ−1), we obtain the approximate problem:{

∂tū+ (ū · ∇)ū = 0 on Rd × R+,

ū(x, 0) = u0(x) on Rd.

In fact, we have neglected ρ(γ−1)/2 in Hm, therefore in C1. Thanks to (H2)-(H3),
there is a global solution ū in Cj([0,∞[;Hm−j(Rd)) for j ∈ {0, 1}, defined by:

ū(X(x0, t), t) = u0(x0), with X(x0, t) = x0 + tu0(x0).

Note that this problem does not take in account any forces. That is why the
choice of u0 is decisive in the global existence of the solution ū. We remark that
Dū ∈ L∞(Rd × R+), as we show in the next section.

We want now to construct a local solution to (2)-(3) such that the difference
between this solution and (0, ū) is in C0(Hm(Rd)) ∩ C1(Hm−1(Rd)). Note first
that, since u0 /∈ Hm(Rd), we can not use directly a general local existence
theorem to obtain a local solution to our problem.

The first step in the proof of local existence consists in the symmetrisation
of the system. The symmetrisation must be cautiously chosen because the case
ρ = 0 can occur. Following T. Makino, S. Ukai, S. Kawashima [6], we take

π =

√
(γ − 1)

4γ
ρ(γ−1)/2

to obtain: {
(∂t + u · ∇)π + C1πdiv(u) = 0,

(∂t + (u · ∇))u+ C1π∇π = 0,
(5)
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where C1 = (γ − 1)/2.
Actually, this system is not equivalent to (2) because of the case ρ = 0, but

we can pass from (5) to (2) by multiplying by ρ. Thus if we find a global smooth
solution to this problem, we obtain one solution for (2) such that ρ(γ−1)/2 is
smooth. But we loose the property of uniqueness of the solution.

We write (5) in the following way:

∂tV +
d∑

α=1

Aα(V )∂αV = 0,(6)

where V = (ρ, u)T , Aα(V ) ∈Md+1(R) is symmetric:

Aα(V ) =



uα 0 . . . C1π . . . 0
0 uα 0
... 0

. . .
...

C1π
...

. . .
...

...
...

. . . 0
0 0 . . . . . . 0 uα


.

We now construct a local solution to this problem with initial data satisfying
(H1)-(H4).

Let R > 0 such that suppρ0 ⊂ B(0, R). Let ϕ ∈ C∞c (Rd) such that ϕ ≡ 1
on B(0, R + 2η), where η is some positive constant. We consider (π0, u0ϕ) as
an initial data for the problem (5) and we use the theorem of local existence
of solution for symmetric hyperbolic systems, since (π0, u0ϕ) ∈ Hm(Rd)—see
in [2]—. Therefore we obtain (πϕ, uϕ) a solution in Cj([0, Tex[;Hm−j(Rd)) for
j ∈ {0, 1}. Note that (0, ū) is a solution to (5) with (0, u0) as initial data.

Let

K = {(x, t) | 0 ≤ t ≤ T, x ∈ B(0, R+ η +Mt)}, with:

M = sup
0≤t≤Tex−ε

(C1|π
ϕ|L∞ + |uϕ|L∞), and

T = min(Tex − ε, η/(2M)− ε) for ε > 0 given.

Now we take

(π, u) =

{
(πϕ, uϕ) in K,

(0, ū) outside K.

We have to show that (π, u) is actually a solution on Rd × [0, T ] of (5) with
(π0, u0) as initial data. In fact, (π, u) is a solution in K and outside K. Thus we
have just to show that it is continuous across ∂K. In order to do this, we show
that (πϕ, uϕ) and (0, ū) are equal on

D = {(x, t) | 0 ≤ t ≤ T, x ∈ B(x0, η −Mt) for x0 ∈ S(0, R+ η)}.



1402 M. Grassin

R R + η

R + 2η

∂K

(0, ū) = (πϕ, uϕ)

(πϕ, uϕ)T

K

(0, ū)

(π0, u0) = (0, u0)
(π0, u0)

Figure 1: Local existence

This is true thanks to a property of local uniqueness of the solutions of the
system (5).

Proposition 1. Let V 1
0 , V 2

0 be two initial data for (5). Assume that V 1
0 ∈

Hm(Rd). Let V 1 = (π, u)T , V 2 be two associated solutions of (5) defined for 0 ≤
t ≤ T0, and let M ≥ sup(x,t)∈Q{(C1|π|+ |u|)(x, t)}, where Q = B(x0, η)× [0, T0].
Suppose that V 1

0 = V 2
0 on B0 = B(x0, η) and take

CT = {(x, t) | 0 ≤ t ≤ T, x ∈ Bt = B(x0, η−Mt)}

for 0 ≤ T ≤ T1 = min(T0, η/M). Suppose moreover that |DV 2|∞ < ∞. Then
V 1 = V 2 on CT1

.

The proof of this proposition is classical. We use the properties of the symmetric
system (5).

We apply this proposition to V 1
0 = (π0, u0ϕ)T , which is in Hm(Rd), and

V 2
0 = (0, u0)T . Then we have V 1 = (πϕ, uϕ)T and V 2 = (0, ū)T . We know

that Dū ∈ L∞(Rd ×R+), and we have chosen M to satisfy the condition in the
proposition. As (π0, u0ϕ) = (0, u0) on each B0 = B(x0, η) for x0 ∈ S(0, R+ η),
we have (πϕ, uϕ) = (0, ū) on D. This implies that (π, u) is smooth across ∂K
since D contains ∂K.
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Thus we have found (π, u) a local solution to our problem such that

(π, u− ū) ∈ Cj([0, T [, Hm−j) for j = 0, 1.

1.1.2. Estimates for the approximate solution.We now precise our
knowledge of ū. We use hypothesis (H3), which requires some uniformity, to ob-
tain estimates on the spatial norm of the derivatives of ū. We have the following
result:

Proposition 2. Suppose (H2), (H3). Let ū be the global smooth solution
of (4). Then:

(i) Dū(x, t) =
1

(1 + t)
I +

1

(1 + t)2
K(x, t), for all x ∈ Rd, all t ∈ R+,

(ii)
∥∥D`ū(·, t)

∥∥
0
≤ K`(1 + t)d/2−(`+1), for 2 ≤ ` ≤ m+ 1,

(iii)
∣∣D2ū(·, t)

∣∣
∞
≤ C(1 + t)−3,

with I = IdRd and K : Rd × R+ → Md(R), |K|L∞(Rd×R+) ≤ M , where M , C,
and K`, for 2 ≤ ` ≤ m + 1, are some positive constants which depend on m, d,
δ, ‖u0‖X .

We remark that the decay in t of the derivatives of ū improves itself with the
order of the derivatives. We will show that V = (π, u)T behaves similarly. We
show that (ii) is true for ` ∈ N, ` ≥ 2, then by interpolation we obtain the result
for all ` ∈ R, ` ≥ 2. Note that since m−1 > d/2, D2u0 and D2ū are in L∞∩C0.

Proof of the proposition.

(i) Let V (x, t) = Dū(x, t) and V0(x0) = Du0(x0). We have

V (X(x0, t), t) = (I + tV0(x0))−1V0(x0).

We write

V (X(x0, t), t) =
1

(1 + t)
I +

1

(1 + t)2
K(x0, t),

where K(x0, t) = (1 + t)2(I + tV0)−1V0 − (1 + t)I. Then K is bounded on every
compact subset of Rd × R+. We now show that K stays bounded for t and x0

large.

Remark 1. Thanks to (H3), we show that:

• there exists a constant K = K(δ, |V0|∞) such that |V −1
0 |∞ ≤ K,

• there exists a constant L = L(δ, |V0|∞) such that |(I+tV0)−1|∞ ≤ L/(1+t).



1404 M. Grassin

To prove that, consider

V −1
0 =

1

det(V0)
(adjV0)T ,

where adjV0 stands for the matrix of the cofactors of V0. With this formula, it
is easy to see that |V −1

0 |∞ ≤ Cδ
−d|V0|d−1

∞ .
For the second point, we notice first that if µ is an eigenvalue of (I + tV0),

then λ = (µ − 1)/t is an eigenvalue of V0, and that |1 + t|/|1 + λt| ≤ C for
λ ∈ SpV0. We write the same formula as in the previous case for (I + tV0)−1 to
conclude.

Then for t large enough, one has ‖t−1V −1
0 (x0)‖ < 1 for all x0, and

K(x0, t) =
(1 + t)2

t
(I + t−1V −1

0 )−1 − (1 + t)I

=
(1 + t)2

t

(
I−

V −1
0

t
+O

(
1

t2

))
− (1 + t)I

=
(1 + t)

t
I−

(1 + t)2

t2
V −1

0 +O

(
1

t

)
.

This is bounded independently of (x0, t). This proves part (i) of Proposition 2.

(ii) We know ū and its derivatives with respect to x0 on the curves X(x0, t).
We just have to deduce from that the expression of the derivatives with respect
to x. Let W (x0, t) = V (X(x0, t), t). By induction, we show that, for k ≥ 1:

Dk
x0
W = (I + tV0(x0))−1Λk(I + tV0(x0))−1,

where Λk is a sum of products of t(I + tV0(x0))−1 and (DjV0), j ∈ {1, . . ., k},
appearing βj times with

∑
j jβj = k.

Then we use:

Dk
x0
W (x0, t) =

k∑
j=1

Dj
xV (X(x0, t), t)

( ∑
1≤ki≤k

Dk1
x0
X ⊗ . . .⊗Dkj

x0
X
)

with
∑j
i=1 ki = k, and

Dx0
X = I + tV0(x0),

D`
x0
X = tD`−1V0(x0), for ` ≥ 2.

By induction, we show that for all j ≥ 1:
IH(j): Dj

xV is a sum of terms which are products in a certain order
of: (I + tV0(x0))−1, tI, or (I + tV0(x0)) and D`V0 appearing β` times, with



Global Smooth Solutions to Euler Equations for a Perfect Gas 1405

∑
` `β` = j. Moreover, the L∞-norm of the terms with t is bounded by a con-

stant times (1 + t)−(j+2), and we have ‖Dj
xV (X(·, t), t)‖0 ≤ C(1 + t)−(j+2), with

C = C(δ, ‖u0‖X).
Suppose IH(k-1), then:

Dk
x0
V (X(x0, t), t) =

(
Dk
x0
W (x0, t)−

k−1∑
j=1

Dj
xV
( ∑

1≤ki≤k−1

Dk1
x0
X ⊗ . . .⊗Dkj

x0
X
))

◦
(

(I + tV0(x0))−1
)⊗k

.

In the right-hand side term, one has the norm of the following terms to estimate:

a) (I + tV0(x0))−1Λk(I + tV0(x0))−(k+1).

b) Dj
xV (I + tV0(x0))j−s

∏
ki 6=1

tDki−1V0(I + tV0(x0))−k,

with
∑
ki 6=1

(ki − 1) = k − j.

This last term correspond to the term where s of the kj are distinct from 1.
Thus, the factor (I + tV0), which corresponds to Dx0

X, appears j − s times.
For each of these terms, we apply first the induction hypothesis and we

consider the L∞-norm in space for the terms with t and we use the remark to
bound it. We use IH(j) for j ≤ k−1 to show that b) is a product of (DjV0(·, t))βj

with
∑
j jβj = k and of tI, (I+ tV0)−1, such that the the L∞-norm of the terms

with t is bounded by a constant times (1 + t)−(k+2). Then we find an upper
bound in L2−norm for ∏

1≤j≤k

(DjV0(·, t))βj

with
∑

j jβj = k, by using Gagliardo-Nirenberg inequality. To conclude, we

obtain the upper bound in IH(k) which depends on δ, |V0|∞, and ‖DkV0‖0 for
1 ≤ k ≤ m, that is to say on δ and ‖u0‖X .

Finally, we have to make a change of variables to obtain:

‖Dj
xV (·, t)‖0 ≤ (1 + t)d/2‖Dj

xV (X(·, t), t)‖0.

This gives (ii) since Dj
xV = D2ū.

(iii) Since m − 1 > d/2, we know that D2u0 ∈ L∞. Thus D2ū ∈ L∞, and
we have:

DxV (X(x0, t), t) = −(I + tV0(x0))−1DV0(x0)(I + tV0(x0))−2.

Using the remark again, we obtain: |DxV (X(x0, t), t)|∞ = O((1 + t)−3).
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1.1.3. Energy estimates. We have now a guess of the behaviour of the
velocity. Therefore, we introduce ū in the equations in order to estimate (π,w =
u− ū). Moreover, we will use the dispersive properties of ū described in Propo-
sition 2 and also the fact that (π, u− ū)(·, t) ∈ Hm(Rd). The system for (π,w)
is: {

(∂t + w · ∇)π + C1πdiv(w) = −ū · ∇π − C1πdiv(ū),

(∂t + (w · ∇))w + C1π∇π = −(ū · ∇)w − (w · ∇)ū,
(7)

We note Ū = (0, ū)T , U = (π,w)T , and U is solution of the following system:

∂tU +

d∑
α=1

Aα(U)∂αU = −B(DŪ, U)−
d∑

α=1

ūα∂αU,(8)

where

B(DŪ, U) =

(
C1πdiv(ū)

(w · ∇)ū

)
.

The right-hand side term in (8) provide more precise estimates thanks to Propo-
sition 2. Before we perform the calculus, we have to choose the spatial norm we
estimate. We consider the semi-norm which appears naturally in the calculus:

Yk(t) =

(∫
Rd
DkU(x, t) ·DkU(x, t) dx

)1/2

.(9)

We expect Yk for k = 0, . . ., m to behave more or less like ‖Dkū‖0(t), that is to
say to decay in time with a rate depending on k. Therefore, instead of using the
classical norm in Hm(Rd), we introduce

Z(t) =

m∑
k=0

(1 + t)γkYk(t),(10)

where γk is chosen such that each term of the sum has the same decay in t. Thus
we will obtain an efficient estimate on Z. We take γk = k + r − a, and

r =


1−

d

2
if γ ≥ γc = 1 +

2

d
,

γ − 1

2
d−

d

2
if 1 < γ < γc.

We will choose a later. It will ensure that our calculus gives us a good estimate.
We emphasize that Z depends on a. Note also that the coefficients γk can be
negative.

We apply Dk on (8) and we take the inner product with DkU . Then we
integrate on Rd to obtain:

1

2

d

dt

∫
Rd
DkU(x, t) ·DkU(x, t) dx =

∫
Rd
Rk(U)(x, t) dx(11)

+

∫
Rd
Sk(U, Ū)(x, t) dx,
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with (dropping x and t):

Rk(U) = −DkU ·
(
Dk
(∑

α

Aα(U)∂αU
)
−
∑
α

Aα(U)∂αD
kU
)

(12)

+
1

2

∑
α

DkU · ∂αA
α(U)DkU,

Sk(U, Ū) = −DkU ·Dk(B(DŪ, U)) +
1

2

(∑
α

∂αūα

)
DkU ·DkU(13)

− DkU ·
(
Dk
(∑

α

ūα∂αU
)
−
∑
α

ūα∂αD
kU
)
.

To obtain this form, we used that, at each time, U has a compact support. We
used also the symmetric form of the system. We now find an upper bound for
the terms in the right-hand side of the inequality. But we first isolate some terms
and estimate them more precisely: we will compute exactly the terms where a
derivative of order one of Ū appears. The main reason is that Dū has not a so
good decay in t, so that we will use the sign of the terms which contain Dū to
control them in the estimate.We show:

Proposition 3. There exist C ∈ R+ depending only on m, d, and C ′ ∈ R+

depending on m, d, δ, ‖u0‖X , such that:∣∣∣∣∫
Rd
Rk(U)(x, t) dx

∣∣∣∣ ≤ C|DU |∞Y 2
k ,(14)

k + r

(1 + t)
Y 2
k +

∫
Rd
Sk(U, Ū)(x, t) dx ≤ C ′YkZ(1 + t)−γk−2.(15)

Before we prove this proposition, we recall some inequalities that we will use
in the calculus.

Lemma 1.[Gagliardo-Nirenberg inequality] Let r > 0, 0 ≤ i ≤ r, and z ∈
L∞ ∩Hr. Then ∂iz ∈ L2r/i and∣∣∂iz∣∣

2r/i
≤ Ci,r

∣∣z∣∣1−i/r
∞

∥∥Drz
∥∥i/r

0
.

For a proof of this lemma, see [7]. We apply this and use Sobolev inequalities
to obtain:

Lemma 2. Let 0 < p < d/2 and 1/q = 1
2 − p/d. There exists C such that

for all z ∈ Hp, we have |z|q ≤ C‖Dpz‖0, with C depending on p, q, d.

We have also thanks to Sobolev inequalities:
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Lemma 3. Let p > d/2 and z ∈ Hp(Rd). Then:∣∣z∣∣
∞
≤ C

∥∥z∥∥1−θ

0

∥∥Dpz
∥∥θ

0
, with θ = d/2p.

We deduce from this:

Lemma 4. Let β = −γ1 − d/2. Since U ∈ Hm(Rd) and m > 1 + d/2, one
has:

(i) |U |∞(t) ≤ C(1 + t)β+1Z(t).

(ii) |DU |∞(t) ≤ C(1 + t)βZ(t).

(iii) If m > 2 + d/2, then |D2U |∞(t) ≤ C(1 + t)β−1Z(t).

Proof of Proposition 3.

(i) Rk is a polynomial function in DU , . . ., DkU homogeneous in weight and
degree. Its weight is 2k+1. Remark thatRk is sum of terms like ∂kU∂`U∂k+1−`U
for 1 ≤ ` ≤ k. Here, ∂kU stands for one particular derivative of order k of one
component of U , for example for (∂kπ)/(∂xk−1

1 ∂x2). If k 6= 0, 1, we apply
Lemma 1 to ∂U , and we obtain:

|∂jU |pj ≤ Cj−1,k−1|DU |
1−2/pj
∞ ‖DkU‖

2/pj
0 , for pj = 2

k − 1

j − 1
.(16)

If ` 6= k, ` 6= 1, since 1/p` + 1/pk−`+1 = 1
2 , we have by Hölder’s inequality:∫

|∂kU∂`U∂k+1−`U | ≤ ‖DkU‖0‖∂
`U∂k+1−`U‖0

≤ ‖DkU‖0|∂
`U |p` |∂

k+1−`U |pk−`+1

≤ C|DU |∞‖D
kU‖20.

The constant C depends only on m. We show the same estimate in the other
cases and we obtain (14).

(ii) We note first that Sk is a sum of terms which are product of two deriva-
tives in U and one in Ū . We split Sk in two terms: S1

k where we put all the
terms with a derivative of order one of Ū , and S2

k where we put the terms with
a derivative of order at least two of Ū . Then we will study precisely S1

k and find
its sign, and we will find an upper bound for S2

k.

1. A precise analysis of S1
k gives this expression:∫

S1
k = I1 + I2 + I3,
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with

I1 = −

∫
Rd
DkU ·B(DŪ,DkU),

I2 =
1

2

∫
Rd

∑
α

∂αūαD
kU ·DkU,

I3 = −

∫
Rd

∑
1≤β1≤...≤βk≤d

(
∂β1...βkU ·

k∑
i=1

∑
α

∂βi ūα∂α∂β1...βi−1βi+1...βkU
)
.

Recall that

B(DŪ,DkU) =

(
C1D

kπdiv(ū)

(Dkw · ∇)ū

)
.

Using the first part of Proposition 2,

Dū(x, t) =
1

(1 + t)
I +

1

(1 + t)2
K(x, t),

we may write:

I1 = −
C1d

1 + t

∫
Dkπ ·Dkπ −

1

1 + t

∫
Dkw ·Dkw +R1,

I2 =
d

2

1

1 + t
Yk

2 +R2,

I3 = −
k

1 + t
Yk

2 +R3.

And the error terms verify:

|Rj | ≤
K̄

(1 + t)2
Yk

2 j = 1, 2, 3,

where K̄ is a constant depending on m, δ, and ‖u0‖X .
Now, we have:∫

S1
k ≤

K̄

(1 + t)2
Yk

2 −
Ak

(1 + t)

∫
Dkw ·Dkw −

Bk
(1 + t)

∫
Dkπ ·Dkπ,

where 
Ak = 1−

d

2
+ k,

Bk =
γ − 1

2
d−

d

2
+ k.

Since Yk ≤ Z(1 + t)−γk , we have

K̄

(1 + t)2
Yk

2 ≤ K̄YkZ(1 + t)−γk−2.
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We use that

Y 2
k =

∫
(Dkπ ·Dkπ +Dkw ·Dkw)

and we choose
r = min(Ak, Bk)− k.

Note that we loose some accuracy in the calculus at this point. We obtain:

k + r

(1 + t)
Y 2
k +

∫
Rd
S1
k(U, Ū)(x, t) dx ≤ C ′YkZ(1 + t)−γk−2.

2. In S2
k, we have terms of the form: Q(U) = ∂kU∂`Ū∂k+1−`U for 1 ≤ k ≤ m

and 2 ≤ ` ≤ k + 1. To estimate these terms, we use the fact that, here, the
derivatives of Ū are at least of order two. Hence we know that these terms have
a good decay in (1 + t) thanks to Proposition 2. When m > 2 + d/2, we just
apply Lemma 1 to obtain an upper bound where the worst terms are |D2Ū |∞
and |D2U |∞. Thanks to part (iii) of Proposition 2, we have a good enough
estimate for the first one. When 1+d/2 < m ≤ 2+d/2, we can not do this since
D2U /∈ L∞. But we manage to make the worst terms in the upper bound to be
‖DnŪ‖0 and ‖DnU‖0 with some n ≥ 2, n ∈ R. Thus we can obtain the same
result.

Case m > 2 + d/2
We state first a result we need in the following. We apply Lemma 1 to obtain:

Lemma 5. Let z ∈ Hm such that D2z ∈ L∞. Then we have for all
k ∈ [4,m], for all i ∈ [2, k], ∂iz ∈ Lp with p = 2(k − 3)/(i− 2) and

|∂iz|p ≤ Ci,k|D
2z|1−2/p
∞ ‖Dk−1z‖2/p0 .

Now we must study different case according to the values of k and `.

(a) k > 3 and 2 ≤ ` ≤ k − 1.
Applying the previous lemma to z = Ū with i = `, then to z = U with

i = k + 1− `, we find that:

|∂`Ū |p ≤ C|D
2Ū |1−2/p
∞ ‖Dk−1Ū‖2/p0 with p = 2

k − 3

`− 2

|∂k+1−`U |q ≤ C|D
2U |1−2/q
∞ ‖Dk−1U‖2/q0 with q = 2

k − 3

k − `− 1
.

Note that 1/q + 1/p = 1
2 . Thus, we obtain:∫ ∣∣Q(U)

∣∣ ≤ ∥∥DkU
∥∥

0

∣∣∂`Ū ∣∣
p

∣∣∂k+1−`U
∣∣
q

≤ CYk
∣∣D2Ū

∣∣1−2/p

∞

∥∥Dk−1Ū
∥∥2/p

0

∣∣D2U
∣∣1−2/q

∞

∥∥Dk−1U
∥∥2/q

0
.
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Using that:

|D2Ū |∞ ≤ C(1 + t)−3,

‖Dk−1Ū‖0 ≤ C(1 + t)d/2−k,

|D2U |∞ ≤ C ′Z(1 + t)β−1,

‖Dk−1U‖0 ≤ C ′Z(1 + t)−γk−1 ,

where C depends on m, d, ‖u0‖X , δ, and C ′ depends on m, d, we deduce that:∫
|Q(U)| ≤ CYkZ(1 + t)dk ,

with

dk = −3

(
1−

2

p

)
+

2

p

(
d

2
− k

)
+

(
1−

2

q

)
(β − 1)− γk−1

2

q

= −3
2

q
+

(
1−

2

q

)(
d

2
− k

)
+

(
1−

2

q

)(
−2− (r − a)−

d

2

)
− (γk − 1)

2

q

= −3
2

q
+

(
1−

2

q

)
(−k − (r − a))− 2

(
1−

2

q

)
− γk

2

q
+

2

q

= −γk − 2.

(b) If ` = k and k ≥ 2, ` = k + 1 and k ≥ 1, or k = 3 and ` = 2, an easy
computation gives the same estimate.

Case 1 + d/2 < m ≤ 2 + d/2
Here again, we have to consider several cases.

(a) 2 ≤ ` ≤ k − 1.
Note that 2 ≤ ` ≤ k − 1 ≤ m− 1 occurs only if d ≥ 2. Hence, we suppose in

this case that d ≥ 2.
Let

n =
1

2

(
d

2
+ k + 1

)
.

Remark that n > 2 and n < m. Thus

1

2
≤ n− ` <

d

2
and

1

2
≤ n− (k + 1− `) <

d

2
.

We apply Lemma 2 to z = ∂`Ū with p = n − `, and to z = ∂k+1−`U with
s = n− (k + 1− `). We get:

|∂`Ū |q ≤ C‖DnŪ‖0, with 1/q = 1/2− (n− `)/d,

|∂k+1−`U |s ≤ C‖DnU‖0, with 1/s = 1/2− (n− (k + 1− `))/d .
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We notice that:
1

q
+

1

s
= 1−

(2n− k − 1)

d
=

1

2
.

Finally, we get: ‖∂`Ū∂k+1−`U‖0 ≤ C|∂`Ū |q|∂k+1−`U |s, and∫
Q(U)| ≤

∥∥DkU
∥∥

0

∣∣∂`Ū ∣∣
q

∣∣∂k+1−`U
∣∣
s
≤ CYk

∥∥DnŪ
∥∥

0

∥∥DnU
∥∥

0

≤ CYkZ(1 + t)dk ,

where

dk =

(
d

2
− (n+ 1)

)
− γn

= −2− γk.

We used Proposition 2 with n ≥ 2.

(b) If k ≥ 2 and ` = k, or k ≥ 1 and ` = k + 1, we have easily the same
estimate.

This finishes the proof of the part (ii) of the estimate since one has in every
case: ∣∣∣∣∫ S2

k

∣∣∣∣ ≤ C ′ZYk(1 + t)−γk−2.

with C depending only on m, d, ‖u0‖X , and δ.

1.1.4. Conclusion. Now we have with (11) and Proposition 3:

1

2

d

dt
Yk

2 +
k + r

(1 + t)
Yk

2 ≤ C|DU |∞Yk
2 + C ′YkZ(1 + t)−γk−2.(17)

We simplify by Yk, multiply by (1 + t)γk , and sum over k to obtain:

dZ

dt
(t) +

a

(1 + t)
Z(t) ≤ C|DU |∞Z(t) +

C ′

(1 + t)2
Z(t).(18)

The constants C, C ′ are positive, C depends only on γ, m, d, and C ′ depends
on γ, m, d, δ, ‖u0‖X . Since |DU |∞ ≤ C(1 + t)βZ, we choose β = 0 to obtain a
good estimate, and this leads to

a = 1 + r +
d

2
> 1.

Thus:
dZ

dt
(t) +

a

(1 + t)
Z(t) ≤ C(Z(t))2 +

C ′

(1 + t)2
Z(t).(19)

To conclude, we use the following simple result:



Global Smooth Solutions to Euler Equations for a Perfect Gas 1413

Proposition 4. Since a > 1, there exists Λ = Λ(a,m, d, δ, ‖u0‖X) > 0 such
that the Cauchy problem:

dẐ

dt
+

a

(1 + t)
Ẑ = CẐ2 +

C ′

(1 + t)2
Ẑ,

Ẑ(0) = Ẑ0 < Λ,

(20)

has a global solution for t ≥ 0.

Proof. We claim that the solution of this differential equation is:

Ẑ(t) =

(1 + t)−a exp

(
C ′
(

1−
1

1 + t

))
(

1

Ẑ0

−

∫ t

0

C(1 + τ )−aeC
′(1−1/(1+τ))dτ

) .
Thus, Ẑ is defined for t ≥ 0 if and only if:

0 < Ẑ0 < Λ =
1∫ ∞

0

C(1 + τ )−aeC
′

e−C
′1/(1+τ)dτ

.

This condition can be filled only if the integral converges, that is to say only if
a > 1. Note that if a ≤ 1, there is no global solution to the differential equation
we consider. In our case, it suffices to choose Ẑ(0) small enough to satisfies
the condition. Then we have a global solution Ẑ which moreover satisfies the
estimate:

Ẑ(t) ≤ K(1 + t)−a for all t ≥ 0,

where K depends only on m, d, δ, ‖u0‖X , Ẑ0.

Finally, if Z(0) is small enough, Z(t) is less than the global solution Ẑ given
by Proposition 4. The condition on Z(0) is: Z(0) < Λ. This corresponds to
hypothesis (H1) since we have:

Z(0) =

m∑
k=0

∥∥Dk(ρ
(γ−1)/2
0 )

∥∥
0

=
∥∥ρ(γ−1)/2

0

∥∥
m
.

We have obtained the estimate:

Z(t) ≤ K(1 + t)−a for all t ≥ 0,

where K depends only on m, d, ‖u0‖X , δ, and ‖ρ(γ−1)/2
0 ‖m. Then, we deduce

that
Yk(t) ≤ K(1 + t)−(k+r) for all t ≥ 0.

These estimates lead to Theorem 2.
We can conclude that the solution is global since the L2-norm of its derivatives

are bounded by functions of t which never blow up.
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1.2. Global in time uniqueness. In this part, we state a result of local
in space and global in time uniqueness. Then, we prove a corollary of Theorem
1 in which we get rid of hypothesis (H4).

We now show a result of global uniqueness in time. We compare the global
solution of Theorem 1 and another solution with enough regularity.

We note π0 = ρ
(γ−1)/2
0 .

Proposition 5. Let (ρ0, u0) satisfy (H1)-(H4). Let U = (π, u)T be the
global solution of (5) given by Theorem 1 and ū be the solution of (4). Consider V
a global solution of (5) such that DV ∈ L∞(Rd×R+). Then, for all ν ∈ ]2−a, 1[,
for all R0 > 0, there exists T0 > 0 such that, if U(·, T0) = V (·, T0) on B(0, R0),
then U and V are equal on the domain {(x, t) : |x−x(t)| ≤ R(t), for all t ≥ T0},
where x(t) is the solution of x′(t) = u(x(t), t), x(T0) = 0, and R(t) = R0(1+ t)ν .

x(t)

BT

D

BT0

Figure 2: Domain D

We note Bt = B(x(t), R(t)). For a T0 given big enough, we show now that
if U(·, T0) = V (·, T0) on B(0, R0), then U(·, t) = V (·, t) on Bt with R(t) =
R0(1 + t)ν , ν < 1, for all t ≥ T0. The choice of T0 depends on ν, R0, a, ‖u0‖X ,

δ and ‖ρ(γ−1)/2
0 ‖m.



Global Smooth Solutions to Euler Equations for a Perfect Gas 1415

We prove now that there exists T0, x(t) and R(t) such that U = (π, u)T and
V = (π̃, v)T solutions of (5) satisfy U = V on D = {(x, t)/|x− x(t)| ≤ R(t), for
all t ≥ T0}. For that, we consider T > T0 and we evaluate the norm:

|U − V |2BT =

∫
BT

(U − V ) · (U − V )(x, T ) dx.

We write the equation satisfied by U − V on D:

∂t(U − V ) +

d∑
α=1

(Aα(U)∂αU −A
α(V )∂αV ) = 0.

It is also:

∂t(U − V ) +

d∑
α=1

Aα(U)(∂αU − ∂αV ) = −
d∑

α=1

(Aα(U)−Aα(V ))∂αV.

Then, we take the inner product with U − V and integrate over

DT = {(x, t) : |x− x(t)| ≤ R(t), T0 ≤ t ≤ T} :

∫
DT

1

2
∂t(|U − V |

2) +
1

2

d∑
α=1

∂α((U − V ) ·Aα(U)(U − V ))

=

∫
DT

1

2

d∑
α=1

(U − V ) · ∂α(Aα(U))(U − V )

−

∫
DT

d∑
α=1

(U − V ) · (Aα(U)−Aα(V ))∂αV .

By Stokes’ formula, we get:

1

2

∫
∂DT

|U − V |2nt +

d∑
α=1

(U − V ) ·Aα(U)(U − V )nα

=
1

2

∫
DT

d∑
α=1

(U − V ) · ∂α(Aα(U))(U − V )

−

∫
DT

d∑
α=1

(U − V ) · (Aα(U)−Aα(V ))∂αV ,

where n = (nt, n1, . . . , nd) is the normal vector to DT .
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This gives:

1

2

∫
∂DT

|U − V |2nt +
d∑

α=1

(U − V ) ·Aα(U)(U − V )nα

≤ C

∫ T

T0

(
|DU |L∞(D) + |DV |L∞(D)

)∣∣U − V ∣∣2
Bt
.

To express the first term, we need to precise n and ∂DT . We have:

∂DT = ({T0} ×BT0
) ∪ ({T} ×BT ) ∪M

where

M = {(t, x) | x = γ(t) = x(t) +R(t)y, for y ∈ S(0, 1) and T0 ≤ t ≤ T}.

On {T0}×BT0
we have n = (−1, 0, . . . , 0), on {T}×BT we have n = (1, 0, . . . , 0),

and on M,

n =
1√

1 +
∣∣∣y · ∂γ∂t ∣∣∣2

(
−y ·

∂γ

∂t
, y1, . . . , yd

)
.

We deduce from that the expression of the left-hand side term:

1

2

∫
∂DT

|U − V |2nt +
d∑

α=1

(U − V ) ·Aα(U)(U − V )nα

=
1

2
(|U − V |2BT − |U − V |

2
BT0

) +
1

2

∫
M

1√
1 +

∣∣∣y · ∂γ∂t ∣∣∣2
(
−|U − V |2y ·

∂γ

∂t

+
d∑

α=1

(U − V ) · Aα(U)(U − V )yα

)
dσ.

We note

Ψ = −|U − V |2y ·
∂γ

∂t
+

d∑
α=1

(U − V ) ·Aα(U)(U − V )yα,

and using the expression of Aα(U), we get:

Ψ = |U − V |2
[
(u(x(t) +R(t)y, t)− x′(t)) · y −R′(t)

]
+ 2C1π(π − π̃)y · (u− v).

We claim that our choice of x and R implies that there exists T0 such that:

Ψ > 0, for all t ≥ T0, for all y ∈ S.
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Indeed, we know that Du(x, t) = Dū(x, t) +Dw(x, t), where

|Dw(·, t)|∞ ≤ K(1 + t)−a,

with K a constant depending on ‖u0‖X , δ, and ‖ρ(γ−1)/2
0 ‖m. Therefore

Du(x, t) =
1

1 + t
I +O((1 + t)−a) .

Using that x′(t) = u(x(t), t), we integrate to obtain:

(u(x(t) +R(t)y, t)− x′(t)) · y =
R(t)

1 + t
+O

(
R(t)

(1 + t)a

)
,

where the notation

O

(
R(t)

(1 + t)a

)
means that this function is bounded for all x by K

(
R(t)/(1 + t)a

)
, where K is

independent of t, x.
We estimate the last term by:

|2C1π(π − π̃)y · (u− v)| ≤ C1|π|∞(|π − π̃|2 + |u− v|2)

≤ K̃C1(1 + t)1−a|U − V |2.

Thus we obtain that:

Ψ = |U − V |2
(
R(t)

1 + t
−R′(t) +O

(
R(t)

(1 + t)a

)
+O

(
(1 + t)1−a

))
.

Thus our claim is true if R(t) = R0(1 + t)ν , for ν < 1, and t big enough. Indeed,
we have then

R(t)

1 + t
−R′(t) = R0(1− ν)(1 + t)ν−1,

K
R(t)

(1 + t)a
= KR0(1 + t)ν−a.

Hence, we choose T0 such that for t ≥ T0, we have:

KR(t)(1 + t)−a + K̃C1(1 + t)1−a <
R(t)

1 + t
−R′(t),

or
K

1− ν
(1 + t)1−a + C1

K̃

R0(1− ν)
(1 + t)2−ν−a < 1.

There exists T0 such that this is true for t ≥ T0 if ν ∈ ]2−a, 1[.
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The size of T0 depends of K(‖u0‖X , δ, ‖ρ
(γ−1)/2
0 ‖m), R0, ν, and a: the smaller

ν is and the bigger a is, the smaller T0 is.
Now we have for this choice of T0, x, and R:

1

2
(|U − V |2BT − |U − V |

2
BT0

) ≤ C

∫ T

T0

(|DU |∞(t) + |DV |∞(t))|U − V |2Btdt.

And we deduce that for all T > T0:

1

2
(|U − V |2BT − |U − V |

2
B0

) ≤ C

∫ T

T0

(|DU |L∞(D) + |DV |L∞(D))|U − V |
2
Bt
dt.

Now we use the fact that |DU |∞(t) ≤ K(1 + t)−1 as we have shown in the first
section. And we use also the hypothesis on DV to conclude that:

1

2
(|U − V |2BT − |U − V |

2
BT0

) ≤ C

∫ T

T0

|U − V |2Btdt,

where C depends on ‖u0‖X , δ, ‖ρ(γ−1)/2
0 ‖m, |DV |∞. Then we conclude easily by

a Gronwall’s inequality, since U(·, T0) = V (·, T0) on BT0
, that U(·, T ) = V (·, T )

in BT for all T > T0.

1.3. A corollary. Now we prove a corollary of Theorem 1 which improves
slightly the hypotheses.

Corollary 1. Let (ρ0, u0) be the initial data for Problem (2). Suppose
(H1)-(H3). Then the result of Theorem 1 is still true.

Proof. We aim at defining a solution for ρ0 satisfying only (H1). For that
we will use the result in the compact support case. We start by introducing a
function ψ ∈ C∞c (Rd,R) such that ψ ≡ 1 on B(0, 1). Then we take: ρk0(x) =
ρ0(x)ψ(x/k) for k ∈ N. We claim that:

• ρk0 ≡ ρ0 on B(0, k) and ρk0 has a compact support.

• πk0 = (ρk0)(γ−1)/2 ∈ Hm(Rd) and ‖πk0‖m ≤ C‖ψ(γ−1)/2‖m‖ρ
(γ−1)/2
0 ‖m,

where C is independent of k.

Thus we can apply Theorem 1 to ρk0 noticing that the smallness of (ρk0)(γ−1)/2

does not depend on k. We obtain Uk = (πk, uk)T , a solution associated to
Uk0 = (πk0 , u0)T . We have πk0 ≡ π

k+1
0 on B(0, k).

We apply the result of local in space and time uniqueness. The solutions are
the same on {(x, t) | 0 ≤ t ≤ T0, |x| ≤ k −Mkt}, provided that the initial data
are the same on B(0, k), where

Mk ≥ sup
0≤t≤T0

(
C1|π

k|L∞(B(0,k))(t) + |uk|L∞(B(0,k))(t)
)
.
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Now we have, thanks to our estimates:

|πk|∞(t) ≤ C,

|uk|L∞(B(0,k))(t) ≤ C + |ū|L∞(B(0,k))(t),

where C depends on δ, ‖u0‖X , ‖π0‖m.
Then we estimate |ū|L∞(B(0,k)). We choose T0 = 1/(2|Du0|∞) to obtain the

following lemma:

Lemma 6. If (x, t) ∈ [0, T0] × B(0, k) and x = x0 + tu0(x0), then x0 ∈
B(0, Rk) with Rk = 2(k + T0|u0(0)|).

We deduce from this lemma the estimate:

|ū|L∞(B(0,k)) ≤ |Du0|∞Rk + |u0(0)|.

Then the condition on Mk is:

Mk ≥ 2C + 2|u0(0)|+ 2|Du0|∞k.

Thus, for k big enough, we can take Mk ≤ c̃k, where

c̃ = c̃
(∣∣u0(0)

∣∣, ∣∣Du0

∣∣
∞
, δ,
∥∥u0

∥∥
X
,
∥∥π0

∥∥
m

)
.

Now, we consider T < min(T0, 1/(2c̃)). Then, we know that Uk = Uk+1 on
{(x, t) | 0 ≤ t ≤ T0, |x| ≤ k −Mkt}. Note that k −MkT ≥ k − c̃kT ≥ k/2.
Therefore, we have shown that Uk = Uk+1 on B(0, k/2)× [0, T ].

We can now define

U(x, t) = (π(x, t), u(x, t))T

by

Uk = (πk, uk)T on B

(
0,
k

2

)
× [0, T ]

for k big enough. We know that U − (0, ū)T is in C0([0, T ];Hm(B(0, R))) for all
R ∈ R+, by using the property of each Uk. We have to show that U − (0, ū)T ∈
C0(0, T ;Hm(Rd)), and thus U will be a local solution of our problem. Moreover,
we will show that U satisfies the same energy estimates as Uk, so that U is a
global solution. We set V = U − (0, ū)T . We have:∥∥DjV

∥∥2

0
(t) = supR>0

∥∥DjV
∥∥2

L2(B(0,R))
(t).

Hence for k big enough:∥∥DjV
∥∥2

L2(B(0,R))
≤

∥∥Dj(Uk − (0, ū)T )
∥∥2

0
(t)

≤ C(1 + t)−2(a+γj),
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since ∥∥Dj(Uk − (0, ū)T )
∥∥2

0
(t) ≤ C(1 + t)−2(a+γj),

and C only depends on m, d, δ, ‖u0‖X , ‖ρ(γ−1)/2
0 ‖m.

We conclude that (U − ū)(t) ∈ Hm(Rd) and that

Z(t) =

m∑
j=1

(1 + t)γj
∥∥DjV

∥∥
0

satisfies:
Z(t) ≤ C(1 + t)−a.

In the same way, we verify that

U − (0, ū)T ∈ Cj([0,∞[;Hm−j(Rd)) for j = 0, 1.

2. The non-isentropic case. The results in the general case are mainly
the same as in the isentropic one. Nevertheless, some difficulties, especially in
the estimates, appear due to the presence of the entropy in the equations.

We express a result of global existence of a smooth solution for (1), and we
state some properties of uniqueness which can be proved as in the isentropic
case. Recall the system that we consider with (ρ0, u0, S0) as initial data:

∂tρ+ div(ρu) = 0,

ρ(∂tu+ (u · ∇)u) +∇p = 0,

∂tS + u · ∇S = 0,

and the pressure law is the following: p = (γ − 1)ρe.

2.1. Global existence. We prove the following result:

Theorem 3. Let m > 1 + d/2. Suppose that

(H1) (ρ
(γ−1)/2
0 , S0) is small enough in Hm(Rd),

(H2) u0 ∈ X,
(H3) there exists δ > 0 such that for all x ∈ Rd, dist(Sp (Du0(x)),R−) ≥ δ,
(H4) ρ0 and S0 have a compact support.

Let ū be the global solution to (4). Then there exists a global smooth solution to
the Cauchy problem for (1), i.e., (ρ, u, S) such that

(ρ(γ−1)/2, u− ū, S) ∈ Cj([0,∞[;Hm−j(Rd))for j ∈ {0, 1}.

In (H3), dist stands for the distance and Sp for the spectrum. Note that
we can suppose that S0 − S̄0 is small in Hm(Rd) where S̄0 is a constant. The
scheme of the proof is the same as in the isentropic case. But we have to study
more precisely the terms appearing in Rk and Sk, and to adapt our norm since
we have a new term with S.

We obtain the following estimates:
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Theorem 4. Under the hypotheses (H1)-(H4), the solution of Theorem 3
satisfies:

• forall 1 ≤ k ≤ m, all t ≥ 0, ‖DkT‖0(t) ≤ K(1 + t)−k−b/2+d/2,

forall 1 ≤ k ≤ m, all t ≥ 0, ‖DkS‖0(t) ≤ K(1 + t)−k+d/2,

• forall t ≥ 0, |S|∞(t) ≤ K,
forall t ≥ 0, |T |∞(t) ≤ K(1 + t)−b/2,

• forall t ≥ 0, |DT |∞(t) ≤ K(1 + t)−1−b/2,
forall t ≥ 0, |DS|∞(t) ≤ K(1 + t)−1.

where T stands for π or w = u−ū, K depends on δ, ‖u0‖X , ‖ρ(γ−1)/2
0 ‖m, ‖S0‖m,

and b is a real number such that

0 < b < min

(
1,
γ − 1

2
d

)
.

2.1.1. Local existence. We have first to symmetrize the system in taking
into account S. As in [6], we take

π =

(
γ − 1

2

p

γ − 1

)(γ−1)/2γ

,

and we obtain the following system from (1):
eS/γ(∂t + u · ∇)π + C1e

S/γπdiv(u) = 0 ,

(∂t + (u · ∇))u+ C1e
S/γπ∇π = 0 ,

∂tS + u · ∇S = 0 .

(21)

The construction of a local solution is the same as in the isentropic case. Let
R > 0 be such that suppρ0 ⊂ B(0, R) and suppS0 ⊂ B(0, R). Let ϕ ∈ C∞c (Rd)
be such that ϕ ≡ 1 on B(0, R + 2η) where η > 0. We consider the same
approximate problem on the velocity (4) and we use the result of Propositions
2. We use also the general theorem of local existence of smooth solution for
symmetric hyperbolic systems —cf [2]— to obtain a local solution (πϕ, uϕ, Sϕ)
with (π0, u0ϕ, S0) ∈ Hm as initial data. A result of local uniqueness can be
proved as in the isentropic case -see in the next section-. With this result, we
obtain (π, u, S) a solution of (21) defined by:{

(πϕ, uϕ, Sϕ) on K,

(0, ū, 0) outside K,

where

K = {(x, t) | 0 ≤ t ≤ T , x ∈ B(0, R+ η +Mt)} with:
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M = sup
0≤t≤Tex−ε

(C1e
|S0|∞/2γ |πϕ|L∞ + |uϕ|L∞), and

T = min
(
Tex − ε,

η

2M
− ε
)
, for ε > 0 given.

And by construction (π, u− ū, S) ∈ Cj([0,∞[;Hm−j(Rd)) for j ∈ {0, 1} and has
a compact support.

2.1.2. Estimates in the general case. Thus, we compare V and Ū =
(0, ū, 0)T and we note w = u − ū , U = (π,w, S)T . Using the fact that the
equation on S is a simple transport equation, which is not deeply linked to the
rest of the system, we put a weight in t on S to control its role in the estimates.
We write the system in the following way:

eS/γ(∂t + w · ∇)π + C1e
S/γπdiv(w) = −eS/γ(ū · ∇π − C1πdiv(ū)),

(∂t + (w · ∇))w + C1e
S/γπ∇π = −(w · ∇)ū− (ū · ∇)w,

(1 + t)−b∂tS + w · ∇((1 + t)−bS) = −ū · ∇((1 + t)−bS),

where b is a real number that we will choose later. We write this also:

A0(t, U)∂tU +

d∑
α=1

Aα(U)∂αU = −B(DŪ, U)−
d∑

α=1

Cα(Ū)∂αU,(22)

where A0(t, U) = diag(eS/γ , 1, . . . , 1, (1 + t)−b) ∈Md+2(R) is symmetric positive
definite—we denote it by A0 in the following—. Each Aα(V ) ∈ Md+2(R) is
symmetric:

Aα(V ) =



eS/γuα 0 . . . C1e
S/γπ . . . 0 0

0 uα 0
...

...
... 0

. . .

C1e
S/γπ

...
. . .

...
...

. . . 0
...

...
... . . . 0 uα 0

0 0 . . . . . . 0 (1 + t)−buα


,

Cα(Ū) = ūαA
0 ∈Md+2(R) is symmetric, and

B(DŪ, U) =


C1e

S/γπdiv(ū)

(w · ∇)ū

0

 ∈Md+2(R).
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Note that S is bounded in L∞-norm since it is the solution of a transport
equation and S0 is in L∞(Rd). We choose the semi-norm:

Yk(t) =

(∫
Rd
DkU(x, t) ·A0(t, U)DkU(x, t) dx

)1/2

.

Then, we introduce

Z(t) =

m∑
k=0

(1 + t)γkYk(t),

where γk is chosen such that each term of the sum has the same decay in t. In
fact, we choose:

γk = k + r − a, r =
b

2
−
d

2
, with 0 < b ≤ min

(
1,
γ − 1

2
d

)
.

We determine a later on. As in the isentropic case, the expression k+ r appears
in the calculus when we study the role of DŪ in the estimates, i.e., when we
compute S1

k.
We applyDk on (22), we take the inner product withDkU . Then we integrate

on Rd and we use Stokes’ formula. We obtain:

1

2

d

dt
(Yk)2 =

∫
Rd
Rk(U)(x, t) dx+

∫
Rd
Sk(U, Ū)(x, t) dx,(23)

with -dropping x and t-:

Rk(U) = −
∑
α

DkU ·A0(Dk((A0)−1Aα(U)∂αU)− (A0)−1Aα(U)∂αD
kU)

+
1

2

∑
α

DkU · ∂αA
α(U)DkU −

1

2γ
eS/γDkπ · (w · ∇S)Dkπ,

Sk(U, Ū) = −DkU ·A0Dk((A0)−1B(DŪ, U)) +
1

2

∑
α

DkU · ∂αC
α(Ū)DkU

−
∑
α

DkU ·A0(Dk((A0)−1Cα(Ū)∂αU)− (A0)−1Cα(Ū)∂αD
kŪ)

−
1

2γ
eS/γDkπ · (ū · ∇S)Dkπ −

b

2
(1 + t)−b−1DkS ·DkS.

We show the estimates:

Proposition 6. There exist C ∈ R+ depending only on m, d, and C ′ ∈ R+

depending on m, d, δ, ‖u0‖X , such that:∣∣∣∣ ∫
Rd
Rk(U)(x, t) dx

∣∣∣∣ ≤ C ∑
x∈Ek

YkZ
2+x(1 + t)e(x),(24)
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where Ek = {0, 1, 2, . . . , k, p/(k − 1) for 1 ≤ p ≤ k − 1} and e(x) = −γk + β +
(β + 1 + b/2)x = −γk + β + ax.

k + r

(1 + t)
Y 2
k +

∫
Rd
Sk(U, Ū)(x, t) dx ≤ C ′YkZ(1 + t)−γk−2.(25)

Recall that

β = −γ1 −
d

2
= −1−

b

2
+ a.

The main difference between this proposition and the Proposition 3 stands
in the point (i) and comes from the term eS/γ in our matrices. We first show
that Sk is not modified by this term and then we find an upper bound for the
new terms appearing in Rk because of this factor eS/γ .

Proof.
(i) First we consider Sk and we make a cancellation in its terms. We have

indeed:

∂αC
α(Ū) =


eS/γ

(
1
γ

(∂αS)ūα + ∂αūα

)
0 0

0
(
∂αūα I

)
0

0 0 (1 + t)−b∂αūα

 .

Thus:

1

2

d∑
α=1

DkU · ∂αC
α(Ū)DkU =

1

2γ
eS/γDkπ · (ū · ∇S)Dkπ

+
1

2

∑
α

∂αūα(DkU ·A0DkU).

Therefore we have:

Sk = −DkU ·A0Dk((A0)−1B(DŪ, U)) +
1

2
divū(DkU ·A0DkU)

−
∑
α

DkU ·A0(Dk((A0)−1Cα(Ū)∂αU)− (A0)−1Cα(Ū)∂αD
kU)

−
b

2
(1 + t)−b−1DkS ·DkS.

Now, we note that (A0)−1 and Cα(Ū) are two diagonal matrices and that the
product (A0)−1Cα(Ū) equals to ūαI. Remark also the simple expression of the
product (A0)−1B(DŪ, U) = B̄(DŪ, U) with

B̄(DŪ, U) =


C1πdiv(ū)

(w · ∇)ū

0

 ∈Md+2(R).
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As a consequence, we claim that the calculus for Sk are the same as in the
isentropic case, except for the presence of a term DkS ·DkS. We use here that
S is bounded in L∞-norm by |S0|∞ to find an upper bound for eS/γ . As a
consequence, we have:

Sk = −DkU ·A0Dk(B̄U) +
1

2
divū(DkU ·A0DkU)

−
∑
α

DkU ·A0(Dk(uα∂αU)− uα∂αD
kŪ)

−
b

2
(1 + t)−b−1DkS ·DkS.

We note Sk = S1
k + S2

k, where S1
k contains the terms with a derivative of

order one of Ū , and S2
k contains the terms with a derivative of order at least two

of Ū . We have:∫
S1
k = −

∫
Rd
DkU ·A0B̄(DŪ,DkU)−

∫
Rd

b

2
(1 + t)−b−1DkS ·DkS

−

∫
Rd

∑
1≤β1≤...≤βk≤d

(
∂β1...βk

U ·A0
k∑
i=1

∑
α

(∂βi ūα)∂α∂β1...βi−1βi+1...βk
U
)

+
1

2

∫
Rd

divū(DkU ·A0DkU).

Recall Proposition 2 and replace Dū in the previous expression:∫
S1
k =

∫
Rd

d
2 − k

1 + t
DkU ·A0DkU −

∫
Rd

C1d

1 + t
(eS/γDkπ ·Dkπ)

−

∫
Rd

1

1 + t
Dkw ·Dkw −

∫
Rd

b

2(1 + t)
(1 + t)−bDkS ·DkS

+

∫
Rd
O

(
1

(1 + t)2

)
DkU ·A0DkU.

Now we use the definition of Yk to write this:∫
S1
k =

d
2 − k

1 + t
Y 2
k −

1

1 + t

(
γ − 1

2
d

∫
Rd
eS/γDkπ ·Dkπ

+

∫
Rd
Dkw ·Dkw +

b

2

∫
Rd

(1 + t)−bDkS ·DkS

)
+O

(
1

(1 + t)2
Y 2
k

)
.

We have

r =
b

2
−
d

2
= min

(
γ − 1

2
d, 1,

b

2

)
−
d

2
,
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since we have already chosen b such that

b

2
≤ min

(
1,
γ − 1

2
d

)
.

Then we obtain:∫
S1
k +

k + r

1 + t
Y 2
k ≤

C

(1 + t)2
Y 2
k ≤

C

(1 + t)2
YkZ(1 + t)−γk .

And for S2
k there is no difference from the isentropic case. It is a sum of

terms like

Q(T ) = ∂kT∂`Ū∂k+1−`T

for 1 ≤ k ≤ m, 2 ≤ ` ≤ k + 1, and T = π or T = w. Thus we can show:∣∣∣∣∫ S2
k

∣∣∣∣ ≤ C

(1 + t)2
YkZ(1 + t)−γk .

Then we have proved the estimate (25).

(ii) Now we consider Rk. We note that the product (A0)−1Aα(U) contains
some terms with eS/γ . As a consequence, when we compute

Dk((A0)−1Aα(U)∂αU)

some new terms arise in addition of those we had in the isentropic case. They
are of the form:

Q(U) = ∂kT

( p∏
j=1

(∂jS)βj
)
∂`−pT∂k+1−`T,

with 1 ≤ ` ≤ k, 1 ≤ p ≤ `, and
∑
j jβj = p, for T = π or T = w. We have also

the usual terms and the terms corresponding to S:{
Q′(U) = ∂kT∂`T∂k+1−`T for 1 ≤ ` ≤ k and T = π or T = w,

Q′(U) = (1 + t)−b∂kS∂`T∂k−`+1S for 1 ≤ ` ≤ k.

For these last terms, we find an upper bound as in the Proposition (i) of 3, that
is to say: ∫

|Q′(U)| ≤ C|DU |∞Y
2
k ≤ CYkZ

2(1 + t)θk ,

with θk = −γk + β. This corresponds to the case x = 0 in the proposition. Now
we have to find an upper bound for the terms like Q(U). We consider four cases.

(a) 1 ≤ p ≤ `− 1. Note that in this case we have necessarily k ≥ 2.
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Let

pj = 2
k − 1

j
, q = 2

k − 1

`− p− 1
, s = 2

k − 1

k − `
.

We have
p∑
j=1

βj
pj

+
1

q
+

1

s
=

1

2
.

Then: ∫ ∣∣Q(U)
∣∣ ≤ ∥∥∂kT∥∥

0

∥∥∥∥ p∏
j=1

(∂jS)βj∂`−pT∂k+1−`T

∥∥∥∥
0

,

≤
∥∥∂kT∥∥

0

p∏
j=1

∣∣∂jS∣∣βj
pj

∣∣∂`−pT ∣∣
q

∣∣∂k+1−`T
∣∣
s
.

We use Lemma 1 ∣∣∂jS∣∣
pj
≤ C

∣∣S∣∣1−2/pj

∞

∥∥Dk−1S
∥∥2/pj

0
,∣∣∂`−pT ∣∣

q
≤ C

∣∣DT ∣∣1−2/q

∞

∥∥DkT
∥∥2/q

0
,∣∣∂k+1−`T

∣∣
s
≤ C

∣∣DT ∣∣1−2/s

∞

∥∥DkT
∥∥2/s

0
.

Then since T = π or T = w, ‖DkT‖0 ≤ CYk, and going back to the definition of
Yk, we see that ‖Dk−1S‖0 ≤ C(1 + t)b/2Yk−1. The same remarks can be made
for the L∞-norm

|S|∞ ≤ C,

|DT |∞ ≤ CZ(1 + t)β, for T = π or T = w,

|DS|∞ ≤ CZ(1 + t)β+b/2.

Thus, we obtain:∫
|Q(U)| ≤ CYk

∣∣S∣∣∑j
(1−2/pj)βj

∞

∥∥Dk−1S
∥∥2
∑

j
βj/pj

0

∣∣DT ∣∣2−2/q−2/s

∞

∥∥DkT
∥∥2/q+2/s

0

≤ CYkZ
2+p/(k−1)(1 + t)θk ,

with

θk =

(
−γk−1 +

b

2

)(
2
∑
j

βj
pj

)
+ β

(
2−

2

q
−

2

s

)
− γk

(
2

q
+

2

s

)

=

(
−γk + 1 +

b

2

)(
2
∑
j

βj
pj

)
+ β

(
1 + 2

∑
j

βj
pj

)
− γk

(
2

q
+

2

s

)
=
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= −γk + β +

(
1 +

b

2
+ β

)(
2
∑
j

βj
pj

)

= −γk + β +

(
1 +

b

2
+ β

)
p

k − 1
.

This gives x = p/(k − 1) for 1 ≤ p ≤ `− 1 in the proposition.

(b) 1 ≤ p = ` and
∑
βj = 1. Note that 1 ≤ p =

∑
j jβj . Thus we have nec-

essarily β` = 1 and βj = 0 for j 6= `. That is to say Q(U) = ∂kT∂`ST∂k+1−`T .
Let

q = 2
k − 1

`− 1
, s = 2

k − 1

k − `
.

We have ∫ ∣∣Q(U)
∣∣ ≤ ∥∥∂kT∥∥

0

∣∣T ∣∣
∞

∣∣∂`S∣∣
q

∣∣∂k+1−`T
∣∣
s
.

We use that ∣∣T ∣∣
∞
≤ Z(1 + t)β+1,∣∣∂lS∣∣

q
≤ C

∣∣DS∣∣1−2/q

∞

∥∥DkS
∥∥2/q

0
,∣∣∂k+1−`T

∣∣
s
≤ C

∣∣DT ∣∣1−2/s

∞

∥∥DkT
∥∥2/s

0
.

Then we obtain easily ∫
|Q(U)| ≤ CYkZ

3(1 + t)θk ,

with θk = −γk+β+(1 + b/2 + β). This gives the value x = 1 in the proposition.

(c) 1 ≤ p = ` and
∑
βj = k. This case occurs only when β1 = k and βj = 0

for j 6= 1. That is to say Q(U) = ∂kT (∂S)kT∂T . We have:∫
|Q(U)| ≤ CYk|DS|

k
∞ ‖T‖0 |DT |∞,

and this leads easily to ∫
|Q(U)| ≤ CYkZ

2+k(1 + t)θk ,

with θk = −γk + β + (1 + b/2 + β) k. This gives x = k in the proposition.

(d) p = ` and 1 <
∑
βj < k. We set

pj = 2
k − 1

j − 1
, s = 2

k − 1

k − `
,

1

q
=

1

2
−

(
1

s
+
∑ βj

pj

)
.
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Thus we have

2 < q =
2(k − 1)∑
βj − 1

and ∫
Q(U) ≤

∥∥∂kT∥∥
0

∥∥∥∥( ∏̀
j=1

(∂jS)βj
)
T∂k+1−`T

∥∥∥∥
0

≤
∥∥∂kT∥∥

0

∏̀
j=1

∣∣∂jS∣∣βj
pj

∣∣T ∣∣
q

∣∣∂k+1−`T
∣∣
s
.

We use Lemma 1:

|∂jS|pj ≤ C|DS|1−2/pj
∞ ‖DkS‖

2/pj
0 ,

|∂k+1−`T |s ≤ C|DT |1−2/s
∞ ‖DkT‖2/s0 .

And we use the Sobolev’s imbeddings theorem to find an upper bound to |T |q.
Indeed, for n = d/2 and for all q ≥ 2, Hn(Rd) ⊂ Lq(Rd). We deduce from that
the following estimate:

|T |q ≤ CZ(1 + t)−γ0−d(1/2−1/q).

Thus we obtain ∫
|Q(U)| ≤ CYkZ

2+
∑

βj (1 + t)θk ,

with θk = −γk + β + (1 + b/2 + β)
∑
βj . This gives x = 2, · · ·, k − 1 in the

proposition.

2.1.3. Conclusion. Now we conclude using (23) and Proposition 6. We
have proved that:

1

2

d

dt
Yk

2 +
k + r

(1 + t)
Yk

2 ≤
C

(1 + t)2
YkZ(1 + t)−γk(26)

+ C
∑
x∈Ek

YkZ
2+x(1 + t)e(x),

with Ek = {0, p/(k − 1) for 1 ≤ p ≤ k − 1, 1, 2, . . . , k} and e(x) = −γk + β +
(β + 1 + b/2)x.

Recall that γk = k + r − a and r = b/2 − d/2. We simplify by Yk, multiply
by (1 + t)γk , and make the sum over k to obtain:

dZ

dt
(t) +

a

(1 + t)
Z(t) ≤ C

(
1

(1 + t)2
Z(t) +

∑
k

∑
x∈Ek

Z(t)2+x(1 + t)β+ax

)
.
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The constant C is positive and depends only on γ, m, d, δ, ‖u0‖X . We used that

β = −γ1 −
d

2
= −1− r + a−

d

2
= −1−

b

2
+ a.

Now we claim that

dZ

dt
(t) +

a

(1 + t)
Z(t) ≤ C

(
1

(1 + t)2
Z(t) + Z(t)2(1 + t)β

+ Z(t)2+m(1 + t)β+am

)
,

since we keep the smaller and the biggest e(x) in the sum. We choose a = 1+b/2,
that is to say β = 0 to obtain

dZ

dt
(t) +

a

(1 + t)
Z(t) ≤ C

(
1

(1 + t)2
Z(t) + Z(t)2(27)

+ Z(t)2+m(1 + t)am
)
.

We set ζ(t) = (1 + t)a exp(C/(1 + t))Z(t) to get

dζ

dt
(t) ≤ C

ζ2

(1 + t)a
(1 + ζ(t)m).(28)

Using that ζ2 + ζ2+m ≤ 2ζ(1 + ζ1+m), we modify (28)

1

ζ(1 + ζ1+m)

dζ

dt
(t) ≤

C̃

(1 + t)a
.(29)

Now we can integrate (29). Consider

f(x) =
1

m+ 1
ln

(
xm+1

(1 + xm+1)

)
and ψ(t) = f(ζ(t)) +

C̃

a− 1
(1 + t)1−a.

We derivate ψ to obtain

ψ′(t) =
1

ζ(1 + ζ1+m)
ζ ′(t)−

C̃

(1 + t)a
.

Since (29) holds, we conclude that:

ψ(t) ≤ ψ(0) for all t ≥ 0.

And this leads to

f(ζ(t)) ≤ f(ζ(0)) +
C̃

a− 1
for all t ≥ 0.



Global Smooth Solutions to Euler Equations for a Perfect Gas 1431

To finish, we remark that f is strictly increasing and that f(x)→ −∞ when
x→ 0. Thus if ζ(0) ≤ ε0, then

f(ζ(t)) ≤ f(ε0) +
C̃

a− 1
for all t ≥ 0.

This implies that ζ(t) ≤M0 = M(ε0, a, C̃) for all t ≥ 0. As a consequence, we
have:

Z(t) ≤M0(1 + t)−a exp

(
−

C

1 + t

)
for all t ≥ 0.

We conclude that if we have Z(0) ≤ ε0 exp(−C), then

Z(t) ≤M0(1 + t)−a for all t ≥ 0.

That corresponds to hypothesis (H1), since Z(0) ∼ ‖π0‖m + ‖S0‖m.

2.2. Uniqueness results and corollary. In the isentropic case, we prove
two results of uniqueness: the first one is local in time and space, the second one
is local in space and global in time. In the proofs, we used the symmetric form
of the system (21):

A0(V )∂tV +
d∑

α=1

Aα(V )∂αV = 0.(30)

The proofs work in the same way in the general case, one has just to deal with
A0(V ) instead of A0.

Proposition 7. Let V 1
0 , V 2

0 be two initial data for (21). Assume that
V 1

0 ∈ Hm(Rd). Let V 1 = (π, u, S)T , V 2 be two associated solutions of (21)
defined for 0 ≤ t ≤ T0 and let

M ≥ sup
0≤t≤T0

(
C1e

|S0|∞/2γ |π|∞ + |u|∞
)
(t).

Suppose that V 1
0 = V 2

0 on B0 = B(x0, η). We take CT = {(x, t) | 0 ≤ t ≤ T ,
x ∈ Bt = B(x0, η −Mt)} for 0 ≤ T ≤ T1 = min(T0, η/M). Then V 1 = V 2 on
CT1

.

Proposition 8. Let (ρ0, u0, S0) satisfy (H1)-(H4). Let U = (π, u, S)T be
the global solution of (21) given by Theorem (3) and ū be the solution of (4).
Consider V a global solution of (21) such that DV ∈ L∞(Rd × R+).

Then for all ν ∈ ]2−a, 1[, for all R0 > 0, there exists T0 > 0 such that, if
U(·, T0) = V (·, T0) on B(0, R0), then U and V are equal on the domain {(x, t) :
|x− x(t)| ≤ R(t), for all t ≥ T0}, where x(t) is the solution of x′(t) = u(x(t), t),
x(T0) = 0, and R(t) = R0(1 + t)ν .

Using the local uniqueness result, we can show as in the isentropic case that
the hypothesis (H4) can be forgotten:

Corollary 2. Let (ρ0, u0, S0) be the initial data for Problem (1). Suppose
(H1)-(H3). Then the result of Theorem 3 is still true.
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