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MULTISCALE APPROACH FOR TWO-DIMENSIONAL
DIFFEOMORPHIC IMAGE REGISTRATION∗

HUAN HAN† , ZHENGPING WANG‡ , AND YIMIN ZHANG§

Abstract. In a beautiful paper, Modin, Nachman, and Rondi [Adv. Math., 346 (2019), pp.
1009–1066] introduced a hierarchical image registration model based on the large deformation dif-
feomorphic metric mapping (LDDMM) framework. Unfortunately, no numerical tests are performed
to show the efficiency of this multiscale approach. The LDDMM image registration framework is
essentially a variational problem with differential equation constraints and the structure of the cost
functional is very complex. Therefore, it’s necessary and meaningful to introduce some other analo-
gous multiscale approaches with a much simpler cost functional. Motivated by the work of Modin,
Nachman, and Rondi, we construct a multiscale image registration approach for the two-dimensional
diffeomorphic image registration model in [H. Han and Z. Wang, SIAM J. Imaging Sci., 13 (2020),
pp. 1240–1271]. This approach achieves a smooth minimizer for the cost functional without regular-
ization. This result is completely different from most published models which only achieve minimizers
of the cost functional with some regularization. The existence of solutions for the multiscale approach
and the convergence of the multiscale approach are proved. In addition, a multigrid based multi-
scale diffeomorphic image registration algorithm is presented. Moreover, numerical tests are also
performed to show that the proposed multiscale approach achieves a satisfactory image registration
result without mesh folding.

Key words. multiscale, diffeomorphism, multigrid, image registration, algorithm
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1. Introduction. Let Ω be an open bounded domain on R2 with Lipschitz
boundary. T,D : Ω → R are two images defined on Ω, where T and D are called
the floating image and the target image, respectively. The goal of diffeomorphic im-
age registration is to seek an optimal diffeomorphism h : Ω → Ω between T and
D such that T ◦ h(·) looks like D(·) as much as possible. There are many metrics
to quantitatively characterize the similarity between T ◦ h(·) and D(·), for example,
mutual information [18] and sum of squared distance (SSD) [22]. In monomodality
image registration, the most commonly used similarity is SSD defined by∫

Ω

[T (h(x))−D(x)]2dx.(1.1)

On the other hand, h(x) is divided into identity part x and displacement u(x).
That is, h(x) ≜ x + u(x). Based on this division, the image registration problem is
formulated by the following variational framework:

∗Received by the editors December 2, 2020; accepted for publication (in revised form) August 2,
2021; published electronically October 18, 2021.

https://doi.org/10.1137/20M1383987
Funding: This research was supported by the National Natural Science Foundation of China

(11771127, 11871386, 11871387, 11931012, and 11901443), the National Key Research and Devel-
opment Program of China (2020Y-FA0714200), and Fundamental Research Funds for the Central
Universities (WUT: 2020IVB033, WUT: 2020IB011).

†Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China
(hanhuan11@whut.edu.cn).

‡Center for Mathematical Sciences and Department of Mathematics, Wuhan University of Tech-
nology, Wuhan 430070, China (zpwang@whut.edu.cn).

§Corresponding author. Center for Mathematical Sciences and Department of Mathematics,
Wuhan University of Technology, Wuhan 430070, China (zhangyimin@whut.edu.cn).

1538

D
ow

nl
oa

de
d 

11
/2

5/
21

 to
 1

73
.6

6.
19

9.
67

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/20M1383987
mailto:hanhuan11@whut.edu.cn
mailto:zpwang@whut.edu.cn
mailto:zhangyimin@whut.edu.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE DIFFEOMORPHIC IMAGE REGISTRATION 1539

u = argmin
u∈K

S(u),(1.2)

where here and in what follows, S(u) ≜
∫
Ω
[T (x + u(x)) −D(x)]2dx, and K is some

proper function space.
(1.2) is an ill-posed inverse problem. One classical way to make this inverse

problem well-posed is adding some regularization R(u) [1] on functional S(u). That
is,

u = argmin
u∈K

F (u),(1.3)

where F (u) = S(u) +R(u).
By giving different R(u), many variational image registration models [13, 30, 36,

47, 48] are proposed. However, in most of these models, the physical mesh folding phe-
nomenon is not taken into consideration. In the physical view, mesh folding produces
negative volume, which contradicts physical law. Therefore, it’s necessary to elimi-
nate mesh folding in image registration. For this purpose, quasi conformal/conformal
theory is introduced in image registration and surface registration [16, 21, 22, 25, 26,
39, 40, 44, 45]. Following the pioneering work in [8], quasi conformal/conformal theory
is introduced in many fields of image processing such as surface registration [6, 19, 21,
31, 32, 43], image registration [16, 44, 45], image segmentation [46], and image restora-
tion [20]. Based on these works, there are also some optimization algorithms for com-
puting quasi conformal/conformal diffeomorphism [24]. Moreover, there are also some
related works to improve the quasi conformal/conformal image registration model.
One can refer to [16, 44, 45] for details. These models are essentially introduced based
on framework (1.3). The solutions produced by (1.3) are of good properties. However,
(1.3) only seeks a u ∈ K with proper smoothness to minimize the variational func-
tional F (u), which is not the ultimate goal of image registration. This raises a problem
of whether one can find a global minimizer of S(u) with proper smoothness. In [29],
Modin, Nachman, and Rondi gave a beautiful answer to this question under the large
deformation diffeomorphic metric mapping (LDDMM) framework [2, 3, 4, 5, 12, 15,
17, 22, 23, 27, 28, 38, 41]. Unfortunately, there are no numerical results to validate
the efficiency of their theoretical results. In fact, LDDMM is a differential equation
constrained variational problem and the structure of the cost functional is very com-
plex. Therefore, it’s necessary to construct an analogous multiscale image registration
approach for some other diffeomorphic models (i.e., [16]) with a much simpler cost
functional. Motivated by this problem, we aim to give a multiscale image registration
approach for the two-dimensional (2D) diffeomorphic models in [16]. In [16], Han and
Wang proposed a 2D diffeomorphic image registration model. This model produces
2D diffeomorphic deformation h(·) without mesh folding (see [16] for details). One
can refer to related papers [14, 16] for details. For the purpose of introducing a mul-
tiscale approach, we rewrite the 2D diffeomorphic image registration model in [16] as
follows:

u = arg min
u∈A\Bε

λS(u) +R(u),(1.4)

where here and in what follows, Ω ≜ (a1, b1)× (a1, b1), R(u) ≜ µ
∫
Ω
|∇αu|2dx, µ, λ >

0, A ≜ {u = (u1, u2)
T ∈ [Hα

0 (Ω)]
2 : ∂u1

∂x1
= ∂u2

∂x2
, ∂u1

∂x2
= −∂u2

∂x1
}, Bε ≜ {u = (u1, u2)

T ∈
A : det (∇(x+ u(x))) < ε}, α > 2, ε > 0 is small enough. For x = (x1, x2) ∈ Ω,
i = 1, 2, and function g : Ω → R, the left and right fractional order differential
derivatives are defined by
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1540 HUAN HAN, ZHENGPING WANG, AND YIMIN ZHANG

∂αg(x)

∂xα
i

≜
1

Γ([α] + 1− α)

(
∂

∂xi

)[α]+1 ∫ xi

a1

g(i)(x, t)

(xi − t)α−[α]
dt,(1.5)

∂α∗g(x)

∂xα∗
i

≜
1

Γ([α] + 1− α)

(
− ∂

∂xi

)[α]+1 ∫ b1

xi

g(i)(x, t)

(t− xi)α−[α]
dt,(1.6)

respectively. Note that here ∇αu = (∂
αui

∂xα
j
)2×2, Γ(s) =

∫ +∞
0

ts−1e−tdt, [·] is a round

down function, and g(1)(x, t) = g(t, x2), g
(2)(x, t) = g(x1, t). Concerning the details

of these two fractional order derivatives, one can refer to [12, 16, 47].

Remark 1.1. The original model in [16] is formulated by

u = argmin
u∈A

S(u) +R(u).(1.7)

Here we add a new parameter λ in (1.4) for the purpose of introducing the multiscale
approach in section 2. By ignoring the set Bε, (1.7) and (1.4) are equivalent. Moreover,
by Remark 1.1 in [16],

det(∇h(x)) =

(
1 +

∂u1

∂x1

)2

+

(
∂u1

∂x2

)2

≥ 0 ∀x ∈ Ω.(1.8)

To ensure the existence of inverse mapping for h, deformations with det(∇h(x)) =
(1 + ∂u1

∂x1
)2 + (∂u1

∂x2
)2 = 0 for some x ∈ Ω should be ruled out. Here Bε is additionally

added for this purpose.

In this paper, motivated by [29, 37], we construct a multiscale approach for a
2D diffeomorphic image registration model (1.4). The proposed multiscale approach
contains a series of function composition process and we show that it achieves a
convergent decomposition of an optimal minimizer for variational functional S(u). In
addition, numerical tests are performed to show that the proposed multiscale approach
can achieve an accurate image registration result. Compared with the original model
(1.4), the advantage of the proposed multiscale approach contains the following two
aspects:

• The proposed multiscale approach can efficiently deal with large deformations.
• The proposed multiscale approach is robust and essentially has nothing to do
with parameters.

The rest of this paper is organized as follows. In section 2, a multiscale image
registration approach is proposed. The existence of solutions for the multiscale ap-
proach and the convergence of the multiscale approach are proved. In section 3, a
relaxed approach for the proposed model in section 2 is given and a related numer-
ical algorithm is also presented. In section 4, several numerical tests are performed
to validate the theoretical results in sections 2 and 3. At the end of this paper, we
conclude our results and list some problems for future research.

2. Proposed multiscale approach and its theoretical analysis. There are
many multiscale models for image registration. We refer the reader to [33, 34] for
details. These models are essentially the combination of some different registration
techniques. The proposed multiscale approach for model (1.4) is based on a variational
framework and is completely different from the models in [33, 34]. This approach is
formulated as follows:
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• At the beginning, we seek the solution of the following variational problem:

u0 = arg min
u∈A\Bε0

λ0∥T ◦ h(·)−D(·)∥2L2(Ω) +R(u),(2.1)

where here and in what follows, h(x) = x+ u(x) and λ0 > 0, ε0 > 0.
Based on (2.1), we define h̃0(x) = x+ u0(x).

• In the second step, we seek the solution of the following variational problem:

u1 = arg min
u∈A\Bε1

λ1

∫
Ω

|T ◦ h̃0(x+ u(x))−D(x)|2dx+R(u)(2.2)

for some λ1 > 0, ε1 > 0.
Based on (2.2), we define h1(x) = x+ u1(x) and h̃1(x) = h̃0 ◦ h1(x).

...

• By induction, we seek a un(n ≥ 1) such that

un = arg min
u∈A\Bεn

Fn(u),(2.3)

where Tn(x) = T ◦ h̃n−1(x), Fn(u) = Sn(u) + R(u), Sn(u) = λn

∫
Ω
[Tn(x +

u(x))−D(x)]2dx, and λn > 0, εn > 0.
Here, hn(x) = x+ un(x) and h̃n(x) = h̃n−1 ◦ hn(x).

Remark 2.1. The multiscale approach (2.1)–(2.3) can effectively deal with large
deformation image registration, since h̃n(x) = h̃0 ◦ h1 ◦ · · · ◦ hn(x) can produce large
deformation even if hk(k = 1, 2, . . . , n) are small deformations. This is an advantage
of multiscale approach (2.1)–(2.3). One can see the details of large deformation image
registration image pair C − C in Test 1 of section 4.

(2.1)–(2.3) is an n scale approach for 2D diffeomorphic image registration.
(2.1)–(2.3) is uniformly formulated by

un = arg min
u∈A\Bεn

Fn(u) ∀n ∈ N.(2.4)

Concerning the existence of solutions for variational model (2.4), we have the
following results.

Theorem 2.2. Assume △T ≜ {x : T (x) is discontinuous at x} is a zero measure
set and ess supx∈Ω\△T

|T (x)| < M0 < +∞, ess supx∈Ω\△T
|D(x)| < M0 < +∞; then

there admits a solution of (2.4) for each n ∈ N.
Proof. The proof of Theorem 2.2 is a standard process in calculus of variations.

One can use the similar idea of Theorem 2.2 in [16] to complete the proof. Here we
omit it.

By (2.3), we know that for any n ∈ N+, there holds Fn(u
n) ≤ Fn(0). That is,

Fn(u
n) = λn∥T ◦ h̃n(·)−D(·)∥2L2(Ω)+R(un) ≤ Fn(0) = λn∥T ◦ h̃n−1(·)−D(·)∥2L2(Ω).

(2.5)

Therefore,

∥T ◦ h̃n(·)−D(·)∥2L2(Ω) ≤ ∥T ◦ h̃n−1(·)−D(·)∥2L2(Ω) ∀n ∈ N+.(2.6)
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This implies, {∥T ◦ h̃n(·)−D(·)∥2L2(Ω)} is a decreasing sequence with lower bound.
Define

ϕ0 = lim
n→+∞

∥T ◦ h̃n(·)−D(·)∥2L2(Ω)(2.7)

and

δ0 = inf

{∫
Ω

|T (x+ u(x)−D(x)|2dx : u ∈ A
}
,(2.8)

where hn and h̃n are deformations induced by the multiscale approach (2.1)–(2.3).
Concerning the problem of whether one can find a global minimizer of S(u) on

A, we have the following result.

Theorem 2.3. Let hn and h̃n be deformations induced by the multiscale ap-
proach (2.1)–(2.3), and assume B = B(Ω), M , and λn are three large numbers with

limn→+∞
B4n−3M4n

λn
= 0, limn→+∞ εn = 0. Then there holds ϕ0 = δ0.

Proof. The proof of Theorem 2.3 will be given at the end of this section.

Remark 2.4. There are two remarks on Theorem 2.3:
(i) Theorem 2.3 shows the convergence of multiscale approach (2.1)–(2.3). Theo-

rem 2.3 implies that one can find an optimal solution for the 2D diffeomorphic image
registration model by using the multiscale approach (2.1)–(2.3) as n is large enough.
By Theorem 2.3, we know that the multiscale approach (2.1)–(2.3) is essentially equiv-
alent to the variational problem,

u = argmin
u∈A

S(u),(2.9)

while the model (1.4) is equivalent to

u = arg min
u∈A\Bε

S(u) +
1

λ
R(u).(2.10)

In this view, (2.1)–(2.3) is much more accurate than model (1.4). Moreover, one can
also notice from the comparison between (2.9) and (2.10) that the multiscale approach
(2.1)–(2.3) essentially has nothing to do with parameters while the solution of (1.4)
is affected by parameters such as λ, µ, and α. This makes the multiscale approach
(2.1)–(2.3) much more robust. This is also the main motivation for us to introduce
the multi scale approach (2.1)–(2.3).

(ii) One can notice from the proof of Theorem 2.3 that B = B(Ω) is a number
depending on Ω, andM is a number depending on some diffeomorphism h̄. Intuitively,
by choosing B and M to be some large numbers, the conditions in Theorem 2.3 are
naturally satisfied. In practice, for the domain Ω = (0, 128)× (0, 128), we notice that
B = 10, M = 5 is enough to satisfy the conditions in Theorem 2.3.

Before giving the proof of Theorem 2.3, let’s introduce some notation and lemmas
which are necessary in our proof.

For f : Ω → Ω, define

W(f) = f − I,(2.11)

where I is identity mapping.
Based on (2.11), we have that

W(f)(x) = f(x)− x.(2.12)
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Remark 2.5. For any deformation f(x) = x+ u(x), W(f)(x) = u(x).

The multiscale approach (2.1)–(2.3) contains a series of function composition.
This raises a problem of whether f ◦g is still diffeomorphic if f ,g are diffeomorphisms.
Concerning this problem, we have the following result.

Lemma 2.6. Assume f ,g : Ω → Ω and W(f) ∈ A \ Bε1 ,W(g) ∈ A \ Bε2 for some
ε1, ε2 > 0; then W(f ◦ g) ∈ A \ Bε1ε2 .

Proof. W(f) ∈ A \ Bε1 , W(g) ∈ A \ Bε2 imply that for any x ∈ Ω, there hold

∂f1(x)

∂x1
=

∂f2(x)

∂x2
,
∂f1(x)

∂x2
= −∂f2(x)

∂x1
,
∂g1(x)

∂x1
=

∂g2(x)

∂x2
,
∂g1(x)

∂x2
= −∂g2(x)

∂x1
(2.13)

and

det(∇f(x)) ≥ ε1, det(∇g(x)) ≥ ε2 for any x ∈ Ω.(2.14)

By the chain rule, we obtain that

∂f1(g(x))

∂x1
=

∂f1(g(x))

∂g1

∂g1(x)

∂x1
+

∂f1(g(x))

∂g2

∂g2(x)

∂x1
(2.15)

and

∂f2(g(x))

∂x2
=

∂f2(g(x))

∂g2

∂g2(x)

∂x2
+

∂f2(g(x))

∂g1

∂g1(x)

∂x2
.(2.16)

By (2.13), (2.15), and (2.16), we deduce that

∂f1(g(x))

∂x1
=

∂f2(g(x))

∂x2
.(2.17)

Similarly, we have

∂f1(g(x))

∂x2
= −∂f2(g(x))

∂x1
.(2.18)

Moreover, by a simple derivation based on (2.17) and (2.18), we obtain that

det(∇xf(g(x))) =

(
∂f1(g(x))

∂x1

)2

+

(
∂f1(g(x))

∂x2

)2

=det(∇gf(g)) det(∇xg(x)) ≥ ε1ε2. .(2.19)

It follows from (2.17), (2.18), and (2.19) that W(f ◦ g) ∈ A \ Bε1ε2 .

Remark 2.7. Lemma 2.6 implies that the multiscale approach (2.1)–(2.3) pro-
duces diffeomorphic deformations h : Ω → Ω without mesh folding.

Lemma 2.8. Assume A = ( a b
−b a ), then ∥A∥2 = 2det (A). Here and in what

follows, ∥A∥2 =
∑2

i,j=1(ai,j)
2 for any matrix A = (ai,j)n×n.

Proof. The proof is only a simple calculation; here we omit it.

Lemma 2.9. Assume u ∈ A, then ∥∇u∥2 = 2det (∇u).

Proof. The proof naturally comes from Lemma 2.8 by letting A = ∇u.
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Since hn induced by multiscale approach (2.1)–(2.3) is diffeomorphic, this raises
a problem of whether its inverse mapping is still diffeomorphic. Concerning this
problem, we have the following results.

Lemma 2.10. If h(x) = x + u(x) and u ∈ A \ Bε, then there exists g(x) =
h−1(x) = x+ v(x) and v ∈ A. Moreover, there hold

(i) u(x) = −v(x+ u(x)), v(x) = −u(x+ v(x));
(ii) 1

ε ≥ det(∇g(x)) > 0.

Proof. Since u ∈ A \ Bε, there hold det (∇h(x)) ≥ ε for any x ∈ Ω. By the
inverse mapping theorem [10], there exists an inverse mapping g : Ω → Ω such that
g(x) = h−1(x) = x+ v(x).

(i) By definition of inverse mapping, there holds

x = g(h(x)) = h(x) + v(h(x)) = x+ u(x) + v(x+ u(x)).(2.20)

This implies u(x) = −v(x+ u(x)).
Similarly,

x = h(g(x)) = g(x) + u(g(x)) = x+ v(x) + u(x+ v(x)).(2.21)

That is, v(x) = −u(x+ v(x)).
(ii) By (i), we know that u(x) = −v(x+u(x)), v(x) = −u(x+v(x)). Moreover,

there hold ∂u1

∂g1
(g) = ∂u2

∂g2
(g), ∂u1

∂g2
(g) = −∂u2

∂g1
(g).

Therefore, we deduce that

∂v1(x)

∂x1
= −∂u1(x+ v(x))

∂x1
= −∂u1

∂g1
(g)

(
1 +

∂v1(x)

∂x1

)
− ∂u1

∂g2
(g)

∂v2(x)

∂x1
,(2.22)

∂v2(x)

∂x2
= −∂u2(x+ v(x))

∂x2
= −∂u2

∂g1
(g)

∂v1(x)

∂x2
− ∂u2

∂g2
(g)

(
1 +

∂v2(x)

∂x2

)
.(2.23)

By (2.22) and (2.23), we have that(
1 +

∂u1

∂g1
(g)

)(
∂v1(x)

∂x1
− ∂v2(x)

∂x2

)
+

∂u1

∂g2
(g)

(
∂v2(x)

∂x1
+

∂v1(x)

∂x2

)
= 0.(2.24)

Similarly, we get that

∂v1(x)

∂x2
= −∂u1(x+ v(x))

∂x2
= −∂u1

∂g1
(g)

∂v1(x)

∂x2
− ∂u1

∂g2
(g)

(
1 +

∂v2(x)

∂x2

)
,(2.25)

∂v2(x)

∂x1
= −∂u2(x+ v(x))

∂x1
= −∂u2

∂g1
(g)

(
1 +

∂v1(x)

∂x1

)
− ∂u2

∂g2
(g)

∂v2(x)

∂x1
.(2.26)

By (2.25) and (2.26), we deduce that

−∂u1

∂g2
(g)

(
∂v1(x)

∂x1
− ∂v2(x)

∂x2

)
+

(
1 +

∂u1

∂g1
(g)

)(
∂v2(x)

∂x1
+

∂v1(x)

∂x2

)
= 0.(2.27)

(2.24) and (2.27) are linear equations on ∂v1(x)
∂x1

− ∂v2(x)
∂x2

and ∂v2(x)
∂x1

+ ∂v1(x)
∂x2

.
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Moreover, the determinant of coefficient is∣∣∣∣∣1 +
∂u1

∂g1
(g) ∂u1

∂g2
(g)

−∂u1

∂g2
(g) 1 + ∂u1

∂g1
(g)

∣∣∣∣∣ =
(
1 +

∂u1

∂g1
(g)

)2

+

(
∂u1

∂g2
(g)

)2

≥ ε > 0.(2.28)

By Cramer’s rule [35], we obtain that ∂v1(x)
∂x1

− ∂v2(x)
∂x2

= 0 and ∂v2(x)
∂x1

+ ∂v1(x)
∂x2

= 0.
That is, v ∈ A. Moreover, by (2.19) in Lemma 2.6, we know that

1 = det (∇x) = det (∇(f(g(x)))) = det (∇f(g)) det (∇g(x)).(2.29)

This implies 1
ε ≥ det(∇g(x)) > 0 for any x ∈ Ω.

Next, we introduce three important lemmas which will be used later in our proof.

Lemma 2.11. Assume W(g) ∈ A \ Bε, then
∫
Ω
f(g(x))dx ≤ CR(g−1)

∫
Ω
f(y)dy.

Proof. Let y = g(x); then by Lemma 2.10, there exists an inverse mapping
g−1 : Ω → Ω such that x = g−1(y). Therefore,∫

Ω

f(g(x))dx =

∫
Ω

f(y) det(∇yg
−1(y))dy.(2.30)

By Lemma 2.10, we obtain that g−1(y) ∈ A. Furthermore, by Lemma 2.9, we
know that

det (∇yg
−1(y)) =

1

2
∥∇yg

−1(y)∥2.(2.31)

By the Sobolev embedding theorem (Hα
0 (Ω) ↪→ C1(Ω)) [9, 12], we deduce that

max
y∈Ω

∥∇yg
−1(y)∥2 ≤ ∥∇yg

−1(y)∥2C1(Ω) ≤ C∥∇αg−1(y)∥2L2(Ω) = CR(g−1).(2.32)

By (2.30), (2.31), and (2.32), we get that∫
Ω

f(g(x))dx ≤ 1

2
max
y∈Ω

∥∇yg
−1(y)∥2

∫
Ω

f(y)dy ≤ CR(g−1)

∫
Ω

f(y)dy.(2.33)

Lemma 2.12. Assume p(x) = x+u(x) and W(q) ∈ A\Bε, then R(W(p ◦ q)) =
2[R(W(q)) + CR(q−1)R(W(p))].

Proof. By the inequality |a+ b|2 ≤ 2|a|2 + 2|b|2, we deduce that

R(W(p ◦ q)) = R(W(q) + u(q)) ≤ 2R(W(q)) + 2µ

∫
Ω

|∇αu(q(x))|2dx.(2.34)

Note that here we use the equality p ◦ q = q(x) + u(q) = x+W(q) + u(q).
Let f(x) = |∇αu(x)|2; then it follows from Lemma 2.11 that

µ

∫
Ω

|∇αu(q(x))|2dx ≤ CR(q−1)R(W(p)).(2.35)

By (2.34) and (2.35), we know that

R(W(p ◦ q)) = 2[R(W(q)) + CR(q−1)R(W(p))].(2.36)
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Lemma 2.13. Assume h(x) = x + u(x), g(x) = h−1(x) = x + v(x), and u,v ∈
A \ Bε; then R(u) =

∫
Ω
∥∇αu(x)∥2dx ≤ CR(g)R(W(g)).

Proof. By Lemma 2.10, u(x) = −v(x+ u(x)). Therefore

R(u) =

∫
Ω

∥∇αu(x)∥2dx =

∫
Ω

∥∇αv(x+ u(x))∥2dx.(2.37)

Let f(x) = |∇αv(x)|2; then by Lemma 2.11, there hold

R(u) =

∫
Ω

f(h(x))dx ≤ CR(h−1)

∫
Ω

∥∇αv(x)∥2dx = CR(g)R(W(g)).(2.38)

At the end of this section, we give a proof of Theorem 2.3.
First, we introduce a function which is necessary in our proof. For any ξ ≥ 0,

define

M(ξ) =

{
1, 0 ≤ ξ ≤ 1,

ξ, ξ > 1.
(2.39)

Remark 2.14. In proof of Theorem 2.3, some inequalities between ξn and ξ are
necessary, i.e., formula (2.50). Since ξn ≤ ξ(ξ ≤ 1) and ξn ≥ ξ (ξ ≥ 1), the discussion
is necessary. To simplify this kind of discussion, we introduce the function M(ξ).

Concerning the properties of function M, we have the following results.

Lemma 2.15. For ξ, ξ1, ξ2 ≥ 0, there hold
(i) M(ξ) ≥ ξ;
(ii) Mn(ξ) = M(ξ) and M(ξn) = [M(ξ)]n(n ∈ N+);
(iii) M(cξ) ≤ cM(ξ) for c ≥ 1;
(iv) if ξ1 ≤ ξ2, then M(ξ1) ≤ M(ξ2).

Proof. One can get the proof by direct computation; here we omit it.

Proof of Theorem 2.3. It’s clear that ϕ0 ≥ δ0. We only need to prove ϕ0 ≤ δ0.
By contradiction, assume δ0 < ϕ0; then there exists 0 < C1 < 1 such that

δ0 < C1ϕ0 < ϕ0.
By definition of δ0, there exists an h̄(x) = x+ ū(x) ∈ A such that

∥T (h̄(·))−D(·)∥2L2(Ω) < C1ϕ0 and R(W(h̄)) < +∞.(2.40)

Choosing h = h̃−1
n−1 ◦ h̄, then by Lemmas 2.6 and 2.10, we know that h̃−1

n−1 ∈ A
and h ∈ A. Therefore, we deduce that

λn∥T ◦ h̃n(·)−D(·)∥2L2(Ω) +R(W(hn))

≤ λn∥T ◦ h̄(·)−D(·)∥2L2(Ω) +R(W(h̃−1
n−1 ◦ h̄))

≤ λnC1ϕ0 +R(W(h̃−1
n−1 ◦ h̄)).(2.41)

That is,

λn(1− C1)ϕ0 +R(W(hn)) ≤ R(W(h̃−1
n−1 ◦ h̄)).(2.42)

This implies

R(W(hn)) ≤ R(W(h̃−1
n−1 ◦ h̄)).(2.43)
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On the other hand, hn, h̃
−1
n−1 ◦ h̄ ∈ A. By Lemmas 2.11, 2.12, and 2.13, we have

that

R(W(h̃−1
n ◦ h̄)) = R(W(h−1

n ◦ h̃−1
n−1 ◦ h̄)) ≤ 2[R(W(h̃−1

n−1 ◦ h̄))(2.44)

+ CR((h̃−1
n−1 ◦ h̄)−1)R(W(h−1

n ))].

Note that here C = C(Ω) is a number depending on Ω.
What’s more, by (2.43) and Lemma 2.13, we deduce that

R(W(h−1
n )) ≤ CR(hn)R(W(hn)) ≤ CR(hn)R(W(h̃−1

n−1 ◦ h̄)).(2.45)

Moreover,

R(hn) = R(W(hn) + x) ≤ 2R(W(hn)) + C̄;(2.46)

here and in what follows, C̄ = 2R(x) = 2µ
∫
Ω
|∇αx|2dx is a constant.

It follows from (2.43) and (2.45) that

R(W(h−1
n )) ≤ CR(W(h̃−1

n−1 ◦ h̄))[2R(W(hn)) + C̄].(2.47)

Noticing that R(W(hn)) ≤ R(W(h̃−1
n−1 ◦ h̄)) in (2.46), (2.47) is reformulated to

R(W(h−1
n )) ≤ 2CR2(W(h̃−1

n−1 ◦ h̄)) + C̄R(W(h̃−1
n−1 ◦ h̄)).(2.48)

In addition, by Lemma 2.13, we know that

R((h̃−1
n−1 ◦ h̄)−1) = R(x+W((h̃−1

n−1 ◦ h̄)−1)) ≤ 2R(x) + 2R(W((h̃−1
n−1 ◦ h̄)−1))

(2.49)

≤ 2R(W((h̃−1
n−1 ◦ h̄)−1)) + C̄

≤ CR(h̃−1
n−1 ◦ h̄)R(W(h̃−1

n−1 ◦ h̄)) + C̄

≤ CR2(W(h̃−1
n−1 ◦ h̄)) + C̃R(W(h̃−1

n−1 ◦ h̄)) + Ĉ.

Note that here we use the relationship R(h̃−1
n−1 ◦ h̄) = R(x+W(h̃−1

n−1 ◦ h̄)) ≤ 2[R(x)+

R(W(h̃−1
n−1 ◦ h̄))].

By (2.44), (2.48), and (2.49), we get that

R(W(h̃−1
n ◦ h̄)) ≤

4∑
k=0

BkR
k(W(h̃−1

n−1 ◦ h̄)) ≤ B[M(R(W(h̃−1
n−1 ◦ h̄)))]4,(2.50)

where Bk(k = 0, 1, 2, 3, 4) are some given real numbers (functions of C(Ω), C̄, and Ĉ)

and B = B(Ω) = max{
∑4

k=0 |Bk|, 1}.
Furthermore, by Lemma 2.15 and (2.50), we have that

R(W(h̃−1
n ◦ h̄)) ≤ B5[M(R(W(h̃−1

n−2 ◦ h̄)))]4
2

≤ · · · ≤ B4n−3[M(R(W(h̃−1
0 ◦ h̄)))]4

n

(2.51)

= B4n−3M4n ,

where M ≜ M(R(W(h̃−1
0 ◦ h̄))).

By (2.42) and (2.51), we deduce that

λnϕ0(1− C1) +R(un) ≤ B4n−3M4n .(2.52)

This contradicts the fact that limn→+∞
B4n−3M4n

λn
= 0.

Therefore, ϕ0 = δ0.
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3. Relaxed multiscale approach and its numerical implementation. In
this section, we discuss the problem of numerical implementation of the multiscale
approach (2.4).

(2.4) is a partial differential equation (PDE) constrained problem. The constraints
make too much trouble in numerical implementation and theoretical analysis. Moti-
vated by [16], we transform model (2.4) into the following unconstrained variational
problem approximately:

un = arg min
u∈[Hα

0 (Ω)]2
Fn(u) + ΘnR1(u);(3.1)

here and in what follows, R1(u) =
∫
Ω
(∂u1

∂x1
− ∂u2

∂x2
)2 + (∂u1

∂x2
+ ∂u2

∂x1
)2dx, and Θn is large

enough.

Remark 3.1. There are two remarks on (3.1):
(i) Some smoothness can already be achieved by minimizing Sn(u)+ΘnR1(u). To

make the algorithm much faster, one can also set µ = 0, which is enough to produce
smooth deformation h. In extreme situations (such as a very large deformation),
setting a positive µ can help to achieve much smoother registration results.

(ii) (3.1) is a relaxed form of (2.4). The cost functional of (3.1) is reformulated as
Sn(u)+ R̄(u), where R̄(u) = R(u)+ΘnR1(u). By replacing R(u) with R̄(u) in (2.4),
one can use the similar way of Theorem 2.3 to prove the convergence of the relaxed
multiscale approach in this section. Here we do not repeat it. Based on this conver-
gence result, one can notice from Remark 2.4 that the relaxed multiscale approach
in this section is also equivalent to (2.9). That is, the relaxed multiscale approach
has nothing to do with parameters. This is the main reason why no sensitivity tests
on parameters like Θn, α, µ are listed in section 4. Moreover, we point out that
the function of Θn is to approximately control u into the set A. For each scale, one
should choose Θn to be a large number to eliminate mesh folding. If this condition is
satisfied, Θn has no effect on final registration results.

Concerning the existence of solutions for the relaxed model (3.1), one can use the
similar idea of Theorem 2.2 in [16] to give a proof. Moreover, one can also use the
similar way of Theorem 2.1 in [14] to obtain the following Euler–Lagrange equation
of (3.1):

−Θn∆un + µdivα∗(∇αun) + fn(u
n) = 0,(3.2)

where fn(u
n) = λn[Tn(x + un(x)) − D(x)]∇unTn(x + un(x)) and the definition of

divα∗(∇α) can refer to [16].

Remark 3.2. u ∈ [Hα
0 (Ω)]

2 implies the homogeneous boundary conditions:
∂kui(x)

∂xk
j

|x∈∂Ω = 0, (k = 0, 1, 2, . . . , [α]; i, j = 1, 2) (see [9, 10] for details). By giving ho-

mogeneous boundary conditions, the following two properties of fractional derivatives
hold [47]:

(i) Riemann–Liouville derivatives, Grunwald–Letnikov derivatives, and Caputo
derivatives are equivalent.

(ii) There holds an integration by parts formula∫ b1

a1

ξ(x) · ∂
αf(x)

∂xα
i

dxi =

∫ b1

a1

∂α∗ξ(x)

∂xα∗
i

· f(x)dxi i = 1, 2.(3.3)

Note that these two properties are used for deriving (3.2).
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By introducing a time variable t and defining un(x) ≜ un(x, t), we use the fol-
lowing process to update un(x, t) to the steady state:

∂un

∂t
= Θn∆un − µdivα∗(∇αun)− fn(u

n).(3.4)

Remark 3.3. There are two remarks on (3.4):
(i) If fn(u

n) is a linear term on un(i.e., some image denoising problems), one can
solve the steady state equation (3.2) directly. Note that here fn(u

n) is a nonlinear
term on un with very complex structure. Directly solving the nonlinear steady state
equation (3.2) by using the Newton’s method makes the algorithm very sensitive to the
initial guess. This makes the algorithm not robust. Therefore, we choose to solve the
gradient flow equation (3.4), which ensures that the cost functional Fn(u) + ΘR1(u)
decreases with respect to t [14].

(ii) (3.4) is proposed based on a gradient flow approach. Theoretical results show
that (3.2) is the steady state of (3.4). One can refer to [14] for details.

Now, we discuss the numerical implementation of (3.4) by using the multigrid
method [7, 14].

One can notice that Ω is not necessary to be square in image registration. For the
convenience of description for the multigrid method and without loss of generality, we
assume that Ω ≜ (a1, b1)× (a1, b1) throughout this paper.

To numerically solve PDE (3.4), Ω is discretized in the following way. By giving
some N1, N ∈ N+, we define h = b1−a1

N1
, τ = T

N , (x1)i = a1 + ih, (x2)i = a1 + ih,
tm = mτ for i = 0, 1, 2, . . . , N1 and m = 0, 1, 2, . . . , N .

Next, we discretize PDE (3.4). Using the finite difference method, ∂un

∂t , ∆un, and
fn(u

n) are discretized by the following three formulas:(
∂un

p

∂t

)m

i,j

≈

(
un
p

)m
i,j

−
(
un
p

)m−1

i,j

τ
,(3.5)

(
△un

p

)m
i,j

≈

(
un
p

)m
i+1,j

+
(
un
p

)m
i−1,j

+
(
un
p

)m
i,j+1

+
(
un
p

)m
i,j−1

− 4
(
un
p

)m
i,j

h2
,(3.6)

fn
(
(un)m−1

i,j

)
= λn[T(un)m−1

i,j
−Di,j ]∂(un)m−1

i,j
T(un)m−1

i,j
,(3.7)

where T(un)m−1
i,j

= T (xi,j + (un)m−1
i,j ), xi,j = (x1,i, x2,j), and p = 1, 2.

At last, we focus on the numerical discretization of divα∗(∇αun). Before we list
the approximation formulas, let’s recall the content on discretization of fractional
order derivatives. By using Grunwald approximation [47], the fractional order deriv-

atives ∂αg(x)
∂xα

i
, ∂α∗g(x)

∂xα∗
i

(i = 1, 2) are discretized by the following two formulas:

∂αg(xp,q)

∂xα
1

= h−α

p+1∑
j=0

ρ
(α)
j gp−j+1,q +O(h)(3.8)

and

∂α∗g(xp,q)

∂xα∗
1

= h−α

N1−p+2∑
j=0

ρ
(α)
j gp+j−1,q +O(h),(3.9)

where ρ
(α)
0 = 1, ρ

(α)
j = (1− 1+α

j )ρ
(α)
j−1 for j = 1, 2, . . . , N1.
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Define Uq = (g1,q, g2,q, . . . , gN1,q)
T ; then by (3.8) and (3.9), we obtain that

∂αUq

∂xα
1

≈ BαUq,
∂α∗Uq

∂xα∗
1

≈ BT
αUq,(3.10)

where

Bα =
1

hα


ρ
(α)
1 ρ

(α)
0 ··· 0 0

ρ
(α)
2 ρ

(α)
1 ··· 0 0

...
...

. . .
...

...
ρ
(α)
N1−1 ρ

(α)
N1−2 ··· ρ

(α)
1 ρ

(α)
0

ρ
(α)
N1

ρ
(α)
N1−1 ··· ρ

(α)
2 ρ

(α)
1


N1×N1

,

∂αUq

∂xα
1

= (
∂αg1,q
∂xα

1
,
∂αg2,q
∂xα

1
, . . . ,

∂αgN1,q

∂xα
1

)T , and
∂α∗Uq

∂xα∗
1

= (
∂α∗g1,q
∂xα∗

1
,
∂α∗g2,q
∂xα∗

1
, . . . ,

∂α∗gN1,q

∂xα∗
1

)T .

Based on (3.10), we obtain that

∂α∗

∂xα∗
1

(
∂αUq

∂xα
1

)
= BT

αBαUq ≜ AαUq.(3.11)

Similarly, we have that

∂α∗

∂xα∗
2

(
∂αVp

∂xα
2

)
= BT

αBαVp ≜ AαVp,(3.12)

where Vp = (gp,1, gp,2, . . . , gp,N1
)T .

Based on (3.11) and (3.12), we use the following two formulas to discretize the

fractional order derivatives ∂α∗

∂xα∗
p
(
∂αun

q

∂xα
p
) for p, q = 1, 2:

∂α∗

∂xα∗
1

(
∂αun

q

∂xα
1

)m

i,j

=

N1∑
l=1

aα(i, l)(u
n
q )

m
l,j ,(3.13)

∂α∗

∂xα∗
2

(
∂αun

q

∂xα
2

)m

i,j

=

N1∑
l=1

aα(j, l)(u
n
q )

m
i,l,(3.14)

where here and in what follows, aα(i, j) denotes the element on ith row and jth column
of matrix Aα.

Combining the discretization results in (3.5)–(3.7) and (3.13)–(3.14), PDE (3.4)
is discretized by the following algebraic equations:

(un
p )

m
i,j − (un

p )
m−1
i,j

τ
= Θn

(un
p )

m
i+1,j + (un

p )
m
i−1,j + (un

p )
m
i,j+1 + (un

p )
m
i,j−1 − 4(un

p )
m
i,j

h2

− µ

N1∑
l=1

aα(i, l)(u
n
p )

m
l,j − µ

N1∑
l=1

aα(j, l)(u
n
p )

m
i,l − fp((u

n)m−1
i,j ).(3.15)

Similarly to [14], we use the following alternating direction implicit (ADI) scheme
[15] as 1D solvers to solve (3.15):
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− γn
(
un
p

)m− 1
2

i+1,j
+ [1 + 2γn + µτaα(i, j)]

(
un
p

)m− 1
2

i,j
− γn

(
un
p

)m− 1
2

i−1,j

+ µτ

N1∑
k=1,k ̸=i

aα(i, k)
(
un
p

)m− 1
2

k,j
= (bm1 )m−1

i,j ,

− γn
(
un
p

)m
i,j+1

+ [1 + 2γn + µτaα(i, j)]
(
un
p

)m
i,j

− γn
(
un
p

)m
i,j−1

+ µτ

N1∑
k=1,k ̸=j

aα(j, k)
(
un
p

)m
i,k

= (bn2 )
m− 1

2
i,j ,

(3.16)

where γn = Θnτ
h2 , (bn1 )

m−1
i,j = (un

p )
m−1
i,j + γn[(u

n
p )

m−1
i,j+1 − 2(un

p )
m−1
i,j + (un

p )
m−1
i,j−1] −

τfp((u
n)m−1

i,j ) − µτ
∑N1

k=1 aα(j, k)(u
n
p )

m−1
i,k , (bn2 )

m− 1
2

i,j = (un
p )

m− 1
2

i,j + γn[(u
n
p )

m− 1
2

i+1,j

− 2(un
p )

m− 1
2

i,j + (un
p )

n− 1
2

i−1,j ]− τfp((u
n)m−1

i,j )− µτ
∑N1

k=1 aα(i, k)(u
n
p )

m− 1
2

k,j .
At the end of this section, we introduce the numerical implementation of the

multigrid technique for solving linear equations (3.16).
For each fixed j, the V-cycle of the first equation of (3.16) contains the following

four steps:
Step 1: Smoothing. Here and in what follows, H = 2h, and Ωh, ΩH denote

the fine grid and the coarse grid, respectively. By giving some initial guess on Ωh and
using the iterative formula

(
un
p

)(l+1)

i,j
=

(bn1 )
m−1
i,j + γn

[(
un
p

)(l)
i+1,j

+
(
un
p

)(l)
i−1,j

]
− µτ

N1∑
k=1,k ̸=i

aα(i, k)
(
un
p

)(l)
k,j

1 + 2γn + µτaα(i, j)

(3.17)

to relax ν times(l = 0, 1, 2, . . . , ν−1), we obtain a smooth approximation ūn,h
j on Ωh.

After obtaining the smooth approximation ūn,h
j , we compute the residual error

rn,h on Ωh by the following formula:

(rnp )
h
i,j = (bn1 )

m−1
i,j + γn

[(
ūn
p

)
i+1,j

+
(
ūn
p

)
i−1,j

]
− µτ

N1∑
k=1,k ̸=i

aα(i, k)
(
ūn
p

)
k,j

(3.18)

− [1 + 2γn + µτaα(i, j)]
(
ūn
p

)
i,j

.

Step 2: Restriction. In order to restrict the residual error rn,h to the coarse
grid ΩH , we define the 1D restriction operator RH

h by

vH
j = RH

h vh
j ,(3.19)

where vHi,j =
1
4 [v

h
2i−1,j + 2vh2i,j + vh2i+1,j ].

Computing the residual error (rn)Hj = RH
h (rn)hj on ΩH , then we relax the 1D

solvers

(uH
p )

(l+1)
i,j =

(rnp )
H
i,j + γn,H

[(
un,H
p

)(l)
i+1,j

+
(
un,H
p

)(l)
i−1,j

]
− µτ

N1∑
k=1,k ̸=i

aα(i, k)
(
un,H
p

)(l)
k,j

1 + 2γn,H + µτaα(i, j)

(3.20)
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ν times with initial guess (un)Hj = 0 to compute ūn,H
j on coarse grid ΩH . Note that

here and in what follows γn,H = Θnτ
H2 .

Based on the restriction and smoothing results, we update the residual error rn,H

on ΩH by using the following formula:

(rnp )
H
i,j = (rnp )

H
i,j + γn,H

[
(ūn,H

p )i+1,j +
(
ūn,H
p

)
i−1,j

]
− µτ

N1∑
k=1,k ̸=i

aα(i, k)
(
ūn,H
p

)
k,j

(3.21)

− [1 + 2γn,H + µτaα(i, j)]
(
ūn,H
p

)
i,j

.

Step 3: Coarsest grid solution. On the coarsest grid ΩH , we accurately solve
the linear algebraic system

− γn,H
(
un,H
p

)
i+1,j

+ [1 + 2γn + µτaα(i, j)]
(
un,H
p

)
i,j

− γn,H
(
un,H
p

)
i−1,j

(3.22)

+ µτ

NM∑
k=1,k ̸=i

aα(i, k)
(
un,H
p

)
k,j

= (rnp )
H
i,j ,

where here and in what follows, NM denotes the total number of nodes on x1 direction
on the coarsest grid ΩH .

By solving the linear system (3.22), we obtain an accurate solution un,H on the
coarsest grid.

Step 4: Interpolation. In this step, the first task is to use un,H to correct
the former approximations on the finer grid Ωh. For this purpose, we interpolate the
corrections to Ωh by using the following 1D interpolation:

un,h
j = Ih

Hun,H
j ,(3.23)

where un,h
2i,j = un,H

i,j , un,h
2i+1,j =

1
2 (u

n,H
i,j + un,H

i+1,j).

After interpolating the corrections to the next fine grid Ωh, we use them to update
the current approximations on Ωh via un,h

j = ūn,h
j + un,h

j . Note that here ūn,h
j is an

approximation obtained by former restriction steps. Followed by this modification,
by using the updated un,h

j as an initial guess, we relax (3.20) on Ωh and repeat the
interpolation, correction, and smoothing process until the V-cycle reaches the finest
grid Ωh. Finally, relax (3.17) with initial guess un,h

j to obtain the final solution for
this round of the V-cycle. This completes one round of the V-cycle.

The process for computing (un)
m− 1

2
j is essentially a series of V-cycles. This

process is listed in Algorithm 3.1.
Next, we give the numerical implementation for solving the second equation of

(3.16). By using (un)m− 1
2 as an initial guess, we use the following four similar steps

to solve the second equation of (3.16) for each fixed i.
Step 1: Smoothing. By giving some initial guess on Ωh and using the iterative

formula

(
un
p

)(l+1)

i,j
=

(bn2 )
m− 1

2
i,j + γn

[(
un
p

)(l)
i,j+1

+
(
un
p

)(l)
i,j−1

]
− µτ

N1∑
k=1,k ̸=j

aα(j, k)
(
un
p

)(l)
i,k

1 + 2γn + µτaα(i, j)

(3.24)

to relax ν times(l = 0, 1, 2, . . . , ν−1), we obtain a smooth approximation ūn,h
i on Ωh.
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Algorithm 3.1. ADI algorithm for system (3.16) on x1 direction

Initialization: un,h = (un)m−1, un,h
0 = (un)m−1 +Φ, λn, µ > 0, k = 0, maximum

iteration times K and total layer number L for V-cycle. Note that here and in what
follows, we give a small distortion Φ to start the algorithm.
while ∥un,h − un,h

0 ∥ ≥ ∥Φ∥ and k ≤ K

un,h
0 = un,h.

Step 1. By taking un,h
j as initial guess, we relax (3.17) to obtain a smooth approxi-

mation ūn,h
j and compute the residual error rn,hj by (3.18); At the end of Step 1, we

set level = L;
Step 2. Restricting residual to ΩH by rn,Hj = RH

h rn,hj . Set level = level − 1, relax

(3.20) on coarse grid ΩH with initial guess un,H
j = 0 to obtain the smooth approxi-

mations ūn,H
j and update rn,Hj on ΩH by (3.21).

Step 3. If level = 1,
do: accurately solving the linear algebraic system (3.22) to obtain the accurate solu-

tion un,H
j on coarsest grid ΩH ;

else
do: repeat Step 2 until level = 1.
endif.
Step 4. If level = L,
do: relax (3.17) to obtain the final solution un,h

j for this round of V-cycle and set
k = k + 1;
else
repeat: (i) interpolate the correction to next finer grid by using un,h

t,j = Ih
Hun,H

j ;

(ii) update current grid approximations via correction ûn,h
j = un,h

t,j + ūn,h
j ;

(iii) relax (3.20) with initial guess ûn,h
j on fine grid Ωh to obtain approximations un,h

j

and set level = level + 1.
Repeat interpolation, correction, and smoothing process (i)–(iii) until level = L.
endif.
endwhile
Output: (un)

m− 1
2

j = un,h
j .

After obtaining the smooth approximation ūn,h
i , we compute the residual error

rn,hi on Ωh by the following formula:

(rnp )
h
i,j = (bn2 )

m− 1
2

i,j + γn

[(
ūn
p

)
i,j+1

+
(
ūn
p

)
i,j−1

]
− µτ

N1∑
k=1,k ̸=j

aα(i, k)
(
ūn
p

)
i,k

(3.25)

− [1 + 2γn + µτaα(i, j)]
(
ūn
p

)
i,j

.

Step 2: Restriction. In order to restrict the residual error rn,h to coarse grid
ΩH , we define the 1D restriction operator RH

h by

vH
i = RH

h vh
i ,(3.26)

where vHi,j =
1
4 [v

h
i,2j−1 + 2vhi,2j + vhi,2j+1].

Using 1D restriction operator RH
h and computing the residual error rn,Hi =

RH
h rn,hi on ΩH , then we relax the 1D solvers
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(uH
m)

(l+1)
i,j =

(rnp )
H
i,j + γn

[(
un,H
p

)(l)
i,j+1

+
(
un,H
p

)(l)
i,j−1

]
− µτ

N1∑
k=1,k ̸=j

aα(j, k)
(
un,H
p

)(l)
i,k

1 + 2γn,H + µτaα(i, j)

(3.27)

ν times with initial guess un,H
i = 0 to compute ūn,H

i on coarse grid ΩH .
Based on the restriction and smoothing results, we update the residual error rn,H

on ΩH by the following formulas:

(rnp )
H
i,j = (rp)

H
i,j + γn,H

[(
ūn,H
p

)
i,j+1

+
(
ūn,H
p

)
i,j−1

]
− µτ

N1∑
k=1,k ̸=j

aα(j, k)
(
ūn,H
p

)
i,k

(3.28)

− [1 + 2γn,H + µτaα(i, j)]
(
ūn,H
p

)
i,j

.

Step 3: Coarsest grid solution. On coarsest grid ΩH , we accurately solve the
following linear algebraic system:

− γn,H
(
un,H
p

)
i,j+1

+ [1 + 2γn + µτaα(i, j)]
(
un,H
p

)
i,j

− γn,H
(
un,H
p

)
i,j−1

(3.29)

+ µτ

NM∑
k=1,k ̸=j

aα(j, k)
(
un,H
p

)
i,k

= (rnp )
H
i,j .

By solving the linear systems (3.29), we obtain an accurate solution un,H on the
coarsest grid.

Step 4: Interpolation. In this step, the first task is to use un,H
i to correct

the former approximations on the finer grid Ωh. For this purpose, we interpolate the
corrections by using the following 1D interpolation:

un,h
i = IhHun,H

i ,(3.30)

where un,h
i,2j = un,H

i,j , un,h
i,2j+1 = 1

2 (u
n,H
i,j + un,H

i,j+1).

After interpolating the correction to the next fine grid Ωh, we use them to update
the current approximations on Ωh via un,h

i = ūn,h
i + un,h

i . Note that here ūn,h
i is an

approximation obtained by former restriction steps. Followed by this modification,
by using the updated un,h

i as an initial guess, we relax (3.27) ν times and repeat the
interpolation, correction, and smoothing process until the V-cycle reaches the finest
grid Ωh. Finally, we relax (3.24) with initial guess un,h

i to obtain the final solution
for this round of the V-cycle.

Based on the above discussion, the algorithm for computing (un)mi is summarized
as Algorithm 3.2.

Furthermore, the 1D smoother fast fractional-order image registration algorithm
is summarized as Algorithm 3.3.

Concerning the convergence of Algorithm 3.3, one can use a similar idea of [14]
to give some analysis.

By multiscale approach (2.1)–(2.3), the numerical implementation of multiscale
approach (2.1)–(2.3) is summarized as the multiscale 2D fractional-order diffeomor-
phic image registration algorithm. One can see Algorithm 3.4 for details.
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Algorithm 3.2. ADI algorithm for system (3.16) on x2 direction

Initialization: un,h = um− 1
2 , un,h

0 = um− 1
2 +Φ, λn, µ > 0, k = 0, maximum itera-

tion times K, and total layer number L for V-cycle.
while ∥un,h − un,h

0 ∥ ≥ ∥Φ∥ and k ≤ K

un,h
0 = un,h.

Step 1. By taking un,h
i as an initial guess, we relax (3.24) to obtain a smooth ap-

proximation ūn,h
i and compute the residual error rn,hi by (3.25); At the end of Step

1, we set level = L;
Step 2. Restricting residual to ΩH by rn,Hi = RH

h rn,hi ; Set level = level − 1, relax

(3.27) on coarse grid with initial guess un,H
i = 0 to obtain approximations ūn,H

i and
update (rn)Hi on ΩH by (3.28).
Step 3. If level = 1,
do: accurately solving the linear algebraic system (3.29) to obtain the accurate solu-

tion un,H
i on coarsest grid ΩH ;

else
do: repeat Step 2 until level = 1.
endif
Step 4. If level = L,
do: relax (3.24) to obtain the final solution un,h

i for this round of V-cycle and let
k = k + 1;
else
do(repeat): (i) interpolate the correction to next finer grid by using un,h

t,i = IhHun,H
i ;

(ii) update current grid approximations using correction ûn,h
i = un,h

t,i + ũn,h
i ;

(iii) relax (3.27) with initial guess ûn,h
i on fine grid to obtain approximations un,h

i

and set level = level + 1.
Repeat interpolation, correction, and smoothing process (i)-(iii) until level = L.
endif
endwhile
Output: (un)mi = un,h

i .

Algorithm 3.3. 1D smoother fast fractional-order diffeomorphic image registration
algorithm

Initialization: Given accuracy, initial error E = 1, m = 1, λn, εn, µ, and maximum
iteration times K.
while E >accuracy and m ≤ K

1. Use Algorithm 3.1 to obtain (un)
m− 1

2
j for j = 1, 2, . . . , N1 − 1;

2. Based on (un)m− 1
2 obtained by Algorithm 3.1, we compute (un)mi for

i = 1, 2, . . . , N1 − 1 via Algorithm 3.2;
3. Compute T (x + (un)m(x)), f((un)m), registration error E =
∥T (x+(un)m)−D(x)∥2

L2(Ω)

∥T (x)−D(x)∥2
L2(Ω)

and set m = m+ 1;

endwhile
Output: T (x+ (un)m(x)) for some m ≤ K.
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Algorithm 3.4. Multiscale 2D fractional-order diffeomorphic image registration
algorithm

Initialization: Given maximum scale number KM and µ.
for scale = 1 : KM

1. Let u = 0 and update λn, εn to satisfy the conditions in Theorem 2.3;
2. Use Algorithm 3.3 to obtain uscale

i,j for i, j = 1, 2, . . . , N1 − 1;

3. Compute Tscale(·) = T ◦ h̃scale(·), where hscale
i,j = xi,j +uscale

i,j and h̃scale = h̃scale−1 ◦
hscale.
endfor
Output: T ◦ h̃KM (·).

4. Numerical tests. In this section, we perform several numerical tests to show
the efficiency of Algorithm 3.4. The used data sets contain synthetic images, natural
images, underwater distorted images, and medical images. For quantitative evalua-
tion, we use the following two indexes:

• relative sum of squared difference (Re− SSD for short) which is defined by

Re− SSD(T,D,u) =
SSD(T (x+ u), D)

SSD(T,D)
,(4.1)

where SSD(T,D) = 1
2

∑
i,j(Ti,j −Di,j)

2 ;
• mesh folding number (MFN) which is defined by

MFN(u) = ♯
(
det J(u) ≤ 0

)
,(4.2)

where det J(u) = (1+ ∂u1

∂x1
)(1+ ∂u2

∂x2
)− ∂u1

∂x2

∂u2

∂x1
and for any set A, ♯(A) denotes

the number of elements in A.

4.1. Test 1. In this test, we use four different synthetic image pairs (A − A,
A − R, C − E, C − C) to perform the numerical test. This test contains two parts.
In part 1, we use Algorithm 3.4 to perform the registration on these four synthetic
image pairs, respectively. The simulation results are shown as Figures 1 through 8.
It follows from Figures 1–8 that all S(u) for four data pairs decrease with respect to
scale number. Especially, for the former three data sets, Re − SSD finally achieves
0.0584%, 0.0918%, and 0.0231%, respectively. This implies T ◦ h̃KM (·) ≈ D(·), which
achieves the utimate goal for diffeomorphic image registration. This numerical result
validates the theoretical results in section 2 and shows the efficiency of Algorithm
3.4. In addition, for the C − C image pair with large deformation, though the CPU
consumption is much larger, the proposed Algorithm 3.4 also achieves a very good reg-
istration result (see Figures 7–8 for details). This validates the statement in Remark
2.1 that the proposed multiapproach can deal with large deformation registration. In
addition, for the C−C image pair, one can notice from Table 1 that model (1.4) based
algorithm DFIRA [16] achieves only a local minimum while the multiscale approach
based Algorithm 3.4 achieves a very good registration result. This validates the the-
oretical comparison in remark 2.4. In part 2, a quantitative comparison is performed
by using five different image registration algorithms: the diffeomorphic log demons
image registration (DLDIR) algorithm [11, 38], the A4 algorithm [14], DFIRA [16],
the LDDMM-demons algorithm in [22], and Algorithm 3.4, where the open code of
the DLDIR algorithm can be downloaded from [11] and one can see the detail of
the LDDMM-demons algorithm in Algorithm 1 of [22]. The quantitative comparison
result is shown in Table 1. It follows from Table 1 that Algorithm 3.4 is competitive
to another four algorithms. This shows the advantage of Algorithm 3.4.
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Fig. 1. Registration result of Algorithm 3.4 on image pairs A−A.

Fig. 2. Registration result of different scale on image pairs A−A.

4.2. Test 2. This test contains two parts. In the first part of this test, we
use Algorithm 3.4 to perform image registration on two natural image pairs (Water-
melon and Pineapple-Pepper) and two underwater distorted image pairs (Square and
Fonts). Note that these two underwater image pairs can be downloaded from [42].
Quantitative evaluation and final registration results are listed in Figures 9 through 16.
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Fig. 3. Registration result of Algorithm 3.4 on image pairs A−R.

Fig. 4. Registration result of different scale on image pairs A−R.

In addition, we also plot the relationship between Re−SSD and scale number. More-
over, the final deformation grid for Algorithm 3.4 is also given in Figures 9–16. In
the second part, we use these four image pairs to perform a quantitative compari-
son between five different algorithms: Algorithm 3.4, the DLDIR algorithm [11, 38],
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Fig. 5. Registration result of Algorithm 3.4 on image pairs C − E.

Fig. 6. Registration result of different scale on image pairs C − E.

the A4 algorithm [14], the LDDMM-demons algorithm [22], and DFIRA [16]. The
comparison results are shown in Table 2. By Table 2, we know that Algorithm 3.4
is competitive to another four algorithms. This shows that Algorithm 3.4 is effective
for natural images and underwater images.
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Fig. 7. Registration result of Algorithm 3.4 on image pairs C − C.

Fig. 8. Registration result of different scale on image pairs C − C.

4.3. Test 3. In this test, the registration is performed on four different medical
image pairs: liver, brain, chest, and hand. In the first part of this test, we use Algo-
rithm 3.4 to perform image registration on these four medical image pairs. Quantita-
tive evaluation and final registration results are listed in Figures 17 through 24. In the
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Table 1
Quantitative comparison between registration results of five different algorithms (synthetic im-

ages).

Data Algorithm Re− SSD(%) MFN CPU/s
Proposed 0.058 0 681.3
DFIRA 3.80 0 597.3

A-A DLDIR 54.47 0 3.9
A4 3.02 0 69.4

LDDMM 7.48 0 100.45
Proposed 0.091 0 587.6
DFIRA 7.13 0 569.2

A-R DLDIR 78.3 0 3.3
A4 4.38 0 62.3

LDDMM 11.23 0 100.17
Proposed 0.023 0 223.1
DFIRA 2.5 0 323.5

C-E DLDIR 45.77 0 3.2
A4 2.84 0 24.6

LDDMM 3.15 0 101.8
Proposed 3.12 0 863.3
DFIRA 13.38 0 617.7

C-C DLDIR 98.83 0 2.3
A4 18.61 0 391.2

LDDMM 9.33 0 50.1

Fig. 9. Registration result of Algorithm 3.4 on image pairs Watermelon.

second part, we use these four medical image pairs to perform a quantitative compar-
ison between five different algorithms: Algorithm 3.4, the DLDIR algorithm [11, 38],
the A4 algorithm [14], the LDDMM-demons algorithm [22], and DFIRA [16]. The
comparison results are shown in Table 3. By Table 3, we know that Algorithm 3.4 is
competitive to another four algorithms. This shows the efficiency of Algorithm 3.4.
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Fig. 10. Registration result of different scale on image pairs Watermelon.

Fig. 11. Registration result of Algorithm 3.4 on image pairs Pineapple-Pepper.

5. Conclusion. In this paper, we propose a multiscale image registration ap-
proach for 2D diffeomorphic image registration. This approach achieves an optimal
solution of 2D diffeomorphic image registration. Numerical tests show that the pro-
posed model achieves a satisfactory image registration result and effectively eliminates
mesh folding. For future research, we may focus on extending this multiscale approach
into 3D diffeomorphic image registration.
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Fig. 12. Registration result of different scale on image pairs Pineapple-Pepper.

Fig. 13. Registration result of Algorithm 3.4 on Underwater square pairs.
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Fig. 14. Registration result of different scale on Underwater square pairs.

Fig. 15. Registration result of Algorithm 3.4 on Underwater font pairs.
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Fig. 16. Registration result of different scale on Underwater square pairs.

Table 2
Quantitative comparison between registration results of five different algorithms (natural images).

Data Algorithm Re− SSD(%) MFN CPU/s
Proposed 3.41 0 365.1
DLDIR 3.58 0 81.3

Watermelon DIDRT 8.57 0 31.7
A4 12.33 0 38.1

LDDMM 9.55 0 120.5
Proposed 2.26 0 363.8
DFIRA 2.64 0 80.5

Pineapple-Pepper DLDIR 9.55 0 21.2
A4 6.99 0 38.3

LDDMM 8.38 0 120.8
Proposed 1.37 0 285.9
DFIRA 3.00 0 613.9

Square DLDIR 43.27 0 12.6
A4 2.62 0 24.9

LDDMM 8.86 0 20.6
Proposed 3.18 0 295.3
DFIRA 8.67 0 651.7

Fonts DLDIR 75.44 0 3.6
A4 9.57 0 24.6

LDDMM 13.33 0 79.1
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Fig. 17. Registration result of Algorithm 3.4 on image pairs Brain.

Fig. 18. Registration result of different scale on image pairs Brain.
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Fig. 19. Registration result of Algorithm 3.4 on image pairs Hand.

Fig. 20. Registration result of different scale on image pairs Hand.
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Fig. 21. Registration result of Algorithm 3.4 on image pairs Chest.

Fig. 22. Registration result of different scale on image pairs Chest.

D
ow

nl
oa

de
d 

11
/2

5/
21

 to
 1

73
.6

6.
19

9.
67

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE DIFFEOMORPHIC IMAGE REGISTRATION 1569

Fig. 23. Registration result of Algorithm 3.4 on image pairs Liver.

Fig. 24. Registration result of different scale on image pairs Liver.
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Table 3
Quantitative comparison between registration results of five different algorithms (medical images).

Data Algorithm Re− SSD(%) MFN CPU/s
Proposed 2.87 0 225.1
DFIRA 3.45 0 113.3

Brain DLDIR 10.8 0 18.1
A4 5.39 0 25.1

LDDMM 7.54 0 122.6
Proposed 3.47 0 241.1
DFIRA 5.42 0 75.3

Hand DLDIR 16.95 0 13.0
A4 7.9 0 24.8

LDDMM 5.99 0 114.9
Proposed 1.44 0 172.1
DFIRA 2.01 0 180.3

Chest DLDIR 10.93 0 5.88
A4 3.2 0 18.2

LDDMM 5.55 0 123.2
Proposed 2.44 0 311.3
DFIRA 3.7 0 264.8

Liver DLDIR 6.43 0 19.9
A4 4.1 0 61.1

LDDMM 15.14 0 118.5
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