
NONCLASSICAL SHOCKS AND KINETIC RELATIONS: FINITE
DIFFERENCE SCHEMES∗

BRIAN T. HAYES† AND PHILIPPE G. LEFLOCH‡

SIAM J. NUMER. ANAL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 35, No. 6, pp. 2169–2194, December 1998 004
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Mac Hyman and Peter Lax, was among the avant garde in the study of

entropy-violating shocks in numerical schemes.

Abstract. We consider hyperbolic systems of conservation laws that are not genuinely nonlinear.
The solutions generated by diffusive-dispersive regularizations may include nonclassical (n.c.) shock
waves that do not satisfy the classical Liu entropy criterion. We investigate the numerical approxima-
tion of n.c. shocks via conservative difference schemes constrained only by a single entropy inequality.
The schemes are designed by comparing their equivalent equations with the continuous model and
include discretizations of the diffusive and dispersive terms.

Limits of these schemes are characterized via the kinetic relation introduced earlier by the au-
thors. We determine the kinetic function numerically for several examples of systems and schemes.
This study demonstrates that the kinetic relation is a suitable tool for the selection of unique n.c. so-
lutions and for the study of their sensitive dependence on the critical parameters: the ratios of
diffusion/dispersion and diffusion/mesh size, the shock strength, and the order of discretization of
the flux.
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1. Introduction. This paper is part of a series devoted to systems of conser-
vation laws and to the notion of weak solutions not satisfying the classical entropy
conditions [10, 11]. The focus is on strictly hyperbolic systems admitting one or more
characteristic fields which are not genuinely nonlinear. We recall that solutions to
nonlinear hyperbolic equations are generally discontinuous and cannot be uniquely
determined from their initial data. Classically, one attempts to single out the physi-
cally relevant solutions by the so-called entropy criterion.

For nongenuinely nonlinear systems, the Liu criterion leads to the classical entropy
solutions, as we call them. For the Riemann problem, Liu’s construction [24] provides
a unique solution that depends continuously upon its end states.

Shock waves violating the Liu criterion do arise, however, as limits of diffusive-
dispersive regularizations of hyperbolic systems. This happens when the system is not
genuinely nonlinear, and the diffusion and the dispersion are kept in balance. Many
models in continuum mechanics fall into this category: nonlinear elastodynamics,
magnetohydrodynamics, dynamics of complex fluids, etc. Dispersive effects have var-
ious physical sources: capillarity effects in viscous fluids, the Hall effect in magnetic
fluids, etc. In the models arising in concrete applications, both the lack of genuine
nonlinearity and the coexistence of diffusive and dispersive effects are often realized.
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At the core of this work is an observation Lax built on in his early mathematical
studies of shock wave solutions to systems of conservation laws [18, 19]. Every sys-
tem arising in physics can be endowed with one strictly convex entropy function. For
smooth solutions, this provides us with an additional conservation law; for discontinu-
ous solutions, one can develop a selection criterion in the form of an entropy inequality.
The Lax inequality is independent of the underlying regularization, i.e., independent
of the physical constants such as the capillarity, viscosity, or other parameters.

This latter property demonstrates both the power and the limitation of the Lax
entropy inequality. On one hand, the Lax–Wendroff theorem [20], for instance, implies
that, for genuinely nonlinear and strictly hyperbolic systems, any entropy consistent,
conservative scheme can converge only toward the physically relevant solutions. On
the other hand, in the presence of “small-scale dependent” solutions, the whole strat-
egy appears to fail.

The existence of shock waves sensitive to regularization has been long recog-
nized, but in rather different contexts (e.g., nonstrictly hyperbolic systems, hyperbolic-
elliptic systems, nonconservative systems) from the one we emphasize in this study.
(See [11] for a list of references.) We focus on a somewhat limited class of prob-
lems (shocks with small strength to strictly hyperbolic and nongenuinely nonlinear
systems), with the aim of developing a practical tool for studying the existence,
uniqueness, and properties of the nonclassical shocks generated by balanced diffusive-
dispersive effects. In [11], we observed that precisely one entropy inequality, in general,
can be derived for limiting solutions of a class of diffusive-dispersive approximations.

Building on work by Abeyaratne and Knowles [1, 2], Truskinovsky [31, 32], and
LeFloch [21], we developed in [10, 11] the concept of a kinetic relation, which provides
a selection principle for the nonclassical shocks and therefore, jointly with the entropy
inequality, plays the role the latter performs alone for genuinely nonlinear systems.

The Riemann problem in this class was studied in Hayes and LeFloch [11]: it
admits a multiparameter family of entropy solutions. Under generic assumptions,
each nongenuinely nonlinear characteristic field generates a two-dimensional wave set
instead of the classical one-dimensional wave curve. The Riemann problem can then
be solved uniquely with classical waves and nonclassical shocks, provided we stipu-
late that the entropy dissipation across any nonclassical shock is a given, constitutive
function. For certain systems, the entropy dissipation may be expressed as a function
of the propagation speed of the n.c. shock. We call such an admissibility criterion a
kinetic relation. We use the term admissible nonclassical entropy solution for a solu-
tion of a nongenuinely nonlinear system that satisfies an entropy inequality together
with a kinetic relation.

The present paper addresses the issue of numerical computation of nonclassical
shocks. A main challenge for the theory lies in developing shock-capturing techniques
adapted to n.c. shocks. One of the difficulties is that the Lax–Wendroff theorem is no
longer sufficient to design adapted shock capturing schemes: it merely ensures that
the limiting solutions satisfy one entropy inequality, while this inequality alone does
not guarantee uniqueness for nongenuinely nonlinear systems.

One approach is to attempt to resolve the small-scale structure of the shocks; this
is out of reach in a number of concrete applications. Another approach is to track
the n.c. fronts in the solutions [4, 33], a task which becomes rather complicated when
fronts interact, especially in multidimensional problems. A strategy that bypasses
some of the difficulties is to keep track of the location of the n.c. shocks via a level
set formulation [14].
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Studies on numerical schemes for computing solutions of a hyperbolic-elliptic
phase transition model, utilizing the viscosity-capillarity regularization, have been
undertaken by Slemrod and Flaherty [28], Affouf and Caflisch [3], Cockburn and Gau
[5], Jin [16], and Shu [27], among others.

In section 2 of this paper, we study a class of difference schemes which fit into
the general framework of [11]. We consider a continuous model containing vanishing
diffusive-dispersive terms and attempt to numerically compute the limiting solutions
generated by the continuous model without resolving the small-scale structures. To
this end a family of discrete models is proposed, which are conservative and consistent
and satisfy a local, discrete entropy inequality . We deal here with general systems of
conservation laws, hyperbolic or not, regularized with diffusion and dispersion terms
that are linear functions of the entropy variable, i.e., the gradient of the entropy with
respect to the conservative variable. The schemes under consideration are based on a
suitable discretization of the diffusive-dispersive terms of the continuous model. Sev-
eral specific schemes are investigated for the cases of the system of elastodynamics and
the scalar conservation law with cubic flux. The latter is the prototype of a nongen-
uinely nonlinear equation, and in this case, by applying the method of compensated
compactness, we show the strong convergence of a class of schemes.

From experiments with difference schemes for nongenuinely nonlinear systems,
it turns out [10] that certain schemes produce classical solutions while others give
nonclassical ones. Our goal in section 3 is to derive conditions ensuring or excluding
the generation of n.c. shocks.

For scalar equations, the condition that the scheme does not increase the total
variation (i.e., satisfies the famous TVD criterion introduced by Harten [8]) guarantees
that all limiting solutions will be classical.

In section 3 we study three types of schemes, corresponding to different dis-
cretizations of the hyperbolic flux function: a first-order approximation based on the
Lax–Friedrichs or upwinding schemes; a second-order, entropy conservative approx-
imation (after Tadmor [30]); and a higher-order approximation designed to closely
mimic the continuous equation.

For each scheme, we derive an equivalent equation based on a Taylor expansion
in the mesh size. This equation is compared with the original, continuous model and
used as a preliminary indicator as to whether the limiting solutions of the continuous
and discrete models approach each other. Based on the sign of the dispersive term of
the equivalent equation, we determine a threshold in the shock strength below which
the solutions are classical. The use of the equivalent equation is not rigorous for
solutions containing shocks, but heuristically is expected to be accurate for shocks
having small strength (Goodman and Majda [7], Hou and LeFloch [13]).

At first glance, numerical results for all of the schemes under study seem to
produce the same nonclassical shocks. The equivalent equation was also used to
design nonconservative schemes [17] and in phase dynamics [5].

In section 4, we study the limitations of the approach based on the equivalent
equation. We demonstrate that the kinetic function is a useful tool for the analysis of
nonclassical shocks. We display first the kinetic function in the state variables, i.e., the
right state of an n.c. shock versus its left state. These curves are independent of the
entropy under consideration. From these graphs we calculate the kinetic functions
directly from the entropy dissipation and the jump conditions.

By numerically computing the (distinct) kinetic functions for several specific
schemes, we observe the sensitive dependence upon the parameters such as the ratio
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of diffusion to dispersion and the ratio of diffusion to mesh size. The former is to be
expected from the analysis of the continuous model, but the latter is atypical.

Three regimes in the shock strength are distinguished: for weak shocks and fixed
diffusion/dispersion ratio, the kinetic functions are indistinguishable from the (con-
tinuous) traveling wave solution. Beyond this, there is always some discrepancy. In an
intermediate range of shock strength, the higher-order approximation almost matches
the (continuous) traveling wave solution. For strong shocks, none of the numerical
methods can reproduce the kinetics of the continuous model.

In some applications, it may desirable to prevent the formation of nonclassical
shocks, as when no specific physical effects are sought. The equivalent equation could
then be used as a tool to select the classical solution. An empirical requirement is that
the dispersion coefficient have a certain sign. It would be interesting to find rigorous
criteria.

In [9], Harten, Hyman, and Lax demonstrate that the Lax–Wendroff scheme
converges to an entropy-violating solution for the scalar conservation law with flux
f(u) = u − αu2(1 − u)2, α > 0. They write, presciently, that “It seems that both
the non-monotonicity of the finite-difference scheme and the non-convexity of the flux
function are responsible for this non-physical behavior of the solution.” The present
work aims at a deeper understanding of just how the nonlinearity of the flux and
the high-order nature of the numerical scheme interact to produce a certain type of
entropy-violating shocks.1

2. Entropy stability.
2.1. General systems. Consider a system of conservation laws:

ut + f(u)x = 0, u(x, t) ∈ Rp, x ∈ R, t > 0,(2.1)

endowed with an entropy-entropy flux pair (U,F ) : Rp → R2, i.e., a pair of functions
satisfying the compatibility condition ∇uF = ∇uU · Duf . Here f : Rp → Rp is a
smooth mapping, called the flux-function of (2.1). We are interested in weak solutions
to (2.1) satisfying the entropy inequality:

U(u)t + F (u)x ≤ 0.(2.2)

The main focus is on systems that are strictly hyperbolic but not genuinely nonlinear.
The discussion in this subsection and in 2.2 also applies to mixed (hyperbolic-elliptic)
systems. In both cases the Riemann problem for (2.1)–(2.2) does not, in general,
possess a unique solution.

The entropy inequality (2.2) is generally the only such inequality which is valid
for a class of approximations to (2.1). Our purpose in this section is to consider
a class of schemes which approximate (2.1) and satisfy a discrete version of (2.2).
The schemes will explicitly contain both diffusive and dispersive effects, in balance.
Such an entropy consistency is essential but does not select a unique solution. In the
following sections of this paper we will search for additional constraints induced by
the approximations on the limiting solutions.

Consider for a moment the case where U is strictly convex, so that (2.1) is hyper-
bolic and can be symmetrized via the change of variable v := v̂(u) := ∇U(u), called
the entropy variable. The mapping u→ v is one-to-one and system (2.1) becomes

ũ(v)t + f̃(v)x = 0,(2.3)

1These shocks, however, do not fit directly in our framework since they do not satisfy an entropy
inequality of the form (2.2).
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where ũ(v) := u and f̃(v) := f(u). Also define Ũ(v) := U(u), . . . . Using the compat-
ibility condition, which implies that ∇2

uU · Duf is a symmetric matrix, we see that
the matrices Dvũ(v) and Dv f̃(v) are symmetric.

Considering the symmetric formulation (2.3) of (2.1), we introduce the following
regularization which adds diffusion and dispersion:

ũ(vε)t + f̃(vε)x = ε vεxx + α ε2 vεxxx.(2.4)

Here α is a real parameter measuring the ratio of the dispersion to the diffusion terms,
and ε is a small positive parameter. The limiting function v := limε→0 v

ε (if the limit
exists in a strong sense) is a solution of (2.3). Furthermore, upon multiplying (2.4)
by vε, we observe that the left-hand side takes the conservative form Ũ(vε)t+ F̃ (vε)x,
while, on the right-hand side, the diffusion yields a conservative term plus a dissipative
one,

ε vε · vεxx = ε
( |vε|

2

)
xx
− ε ∣∣vεx∣∣2,

and the dispersion is entropy conservative:

α ε2vε · vεxxx = α ε2
(
vε · vεxx −

|vεx|2
2

)
x
.

(We denote by a dot and |.| the scalar product and the norm in Rp.) Under suitable
conditions on the convergence of vε as ε→ 0, it follows that vε satisfies∫

R
Ũ(vε(T )) dx+ ε

∫ T

0

∫
R

∣∣vεx∣∣2 dxdt =

∫
R
Ũ(vε(0)) dx, T ≥ 0,(2.5)

and the limit v satisfies

Ũ(v)t + F̃ (v)x ≤ 0,(2.6)

which is nothing but the entropy inequality (2.2), provided a function u is defined

from v by the formula u =
(∇uU)−1

(v).

At this stage of the discussion, we note that the entire analysis also applies without
assuming U to be convex, as was observed by Levermore [23]. Consider system (2.1)
regularized as follows:

uεt + f(uε)x = ε v̂(uε)xx + α ε2 v̂(uε)xxx.(2.7)

Similarly, as in the derivation of (2.5), (2.6), we can check that uε satisfies∫
R
U(uε(T )) dx+ ε

∫ T

0

∫
R

∣∣v̂(uε)x
∣∣2 dxdt =

∫
R
U(uε(0)) dx,(2.8)

and that the limit u := limε→0 u
ε satisfies the conservation law (2.1) and the en-

tropy inequality (2.2). Observe again that the diffusion ε v̂(uε)xx is dissipative for
the entropy U while the dispersion α ε2 v̂(uε)xxx is entropy conservative. For addi-
tional material and rigorous proofs involving the vanishing diffusion-dispersion limit
for nongenuinely nonlinear problems, we refer to [6, 10, 11, 22, 25].
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We now extend the above analysis to a class of schemes which approximate (2.7).
Denote by uj(t) an approximation to u(xj , t), where the points xj := j h describe

a mesh of length h → 0. To obtain a continuous in time scheme, there are three
terms to be discretized in (2.7). The discretization of the term f(u)x is based on a
conservative (2 k + 1)-point numerical flux,

g0 : R2k+1 → R, g0(u, u, . . . , u) := f(u) for all u.(2.9)

For the diffusion and dispersion, we use high-order accurate, centered finite differences.
The accuracy of the discretization is a central issue to be discussed in section 3, while
the present section aims at deriving a discrete entropy inequality.

Specifically, we introduce the following conservative, continuous in time, discrete
in space, difference scheme:

d

dt
uj(t) +

1

h

(
gj+1/2(t)− gj−1/2(t)

)
= 0, t ≥ 0,(2.10i)

where

gj+1/2 := g0
j+1/2 + g1

j+1/2 + g2
j+1/2,(2.10ii)

g0
j+1/2 := g0(uj−k+1, uj−k+2, . . . , uj+k),

g1
j+1/2 := −β

2

(
v̂(uj+1)− v̂(uj)

)
,

g2
j+1/2 := −γ

6

(
v̂(uj+2)− v̂(uj+1)− v̂(uj) + v̂(uj−1)

)
.(2.10iii)

The initial data are discretized in a standard fashion. In (2.10) the parameters β > 0
and γ ∈ R are fixed but should be thought of as

β h := κ1 ε, γ h2 := κ2 α ε
2,(2.11)

with precise constants κ1 and κ2 given later in section 3 by deriving the equivalent
equation of the scheme. One anticipates that, under certain assumptions, the h→ 0
limit of (2.10) should be a good approximation to the ε→ 0 limit of (2.7). However,
the scheme (2.10) is also studied here for its own sake. Note that the scheme naturally
balances the effects of diffusion and dispersion.

Our basic requirement in arriving at (2.10) from (2.7) was the following: the
discrete problem should satisfy, as does the continuous problem, an entropy inequality
of the form

d

dt
U
(
uj(t)

)
+

1

h

(
Gj+1/2(t)−Gj−1/2(t)

) ≤ 0, t ≥ 0,(2.12)

where Gj+1/2 := G(uj−m+1, uj−m+2, . . . , uj+m) and G : R2m+1 → R (the numerical
entropy flux) is consistent with the exact entropy flux, i.e., G(u, u, . . . , u) := F (u) for
all u. When (2.12) holds, we say that the scheme (or the numerical flux) is entropy
dissipative. Following Tadmor [29, 30], we say that a scheme is entropy conservative
when (2.12) holds as an equality for all j.

Indeed, our proposed discretization of the diffusion and dispersion allows us to
retain the entropy inequality of the continuous model.

Theorem 2.1. Consider an entropy pair (U,F ) for the system (2.1). Suppose
that when β = γ = 0, the scheme (2.10) satisfies a local entropy inequality with
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numerical entropy flux G0. Then, for all β ≥ 0 and γ, the scheme (2.10) satisfies the
local, discrete entropy inequality (2.12) with

Gj+1/2 := G0
j+1/2 +G1

j+1/2 +G2
j+1/2,

G1
j+1/2 := −β

2
v̂(uj)

(
v̂(uj+1)− v̂(uj)

)
,

G2
j+1/2 := −γ

6

(
v̂(uj+2) v̂(uj) + v̂(uj+1) v̂(uj−1)− 2 v̂(uj+1) v̂(uj)

)
.(2.13)

When the scheme is L∞ stable and convergent almost everywhere (a.e.) as h→ 0, the
limiting function is a single entropy solution, i.e., satisfying (2.1), (2.2).

The entropy inequality (2.2) satisfied at the limit is independent of the parameters
β and γ. It is therefore too lax to characterize a unique solution to the Riemann
problem, since we shall check in section 4 that the solutions generated by the scheme
(2.10) do depend on β and γ in general.

Observe that the entropy U need not be convex in Theorem 2.1. Our result applies
when, for instance, the flux term f(u)x is discretized with an entropy conservative,
numerical flux g0. (This choice has definite advantages, as we will see in section 3.)

Proof of Theorem 2.1. Multiplying both sides of (2.10i) by ṽ(uj), we arrive at the
following identity:

h
d

dt
U(uj(t)) +Gj+1/2(t)−Gj−1/2(t) = −D0

j (t)−D1
j (t) ≤ 0, t ≥ 0,(2.14)

where Gj+1/2 is given by (2.13) and

D0
j := v̂(uj)

(
g0
j+1/2 − g0

j−1/2

)−G0
j+1/2 +G0

j−1/2,

D1
j :=

β

2

∣∣v̂(uj)− v̂(uj−1)
∣∣2.(2.15)

Observe that D0
j (t) ≥ 0 since g0 is entropy dissipative, while obviously D1

j (t) ≥ 0
when β ≥ 0.

The Lax–Wendroff theorem [20] may be applied to obtain the second part of the
theorem.

By summation in j and integration in t of (2.14), we arrive at the uniform entropy
estimate: ∑

j∈Z

U(uj(T ))h+
∑
j∈Z

∫ T

0

(
D0
j (t) +D1

j (t)
)
dt =

∑
j∈Z

U(uj(0))h,(2.16)

which is a discrete version of the entropy stability (2.8).
2.2. Elastodynamics model. Consider the system of two conservation laws:

vt − σ(w)x = ε vxx − α ε2 wxxx,
wt − vx = 0,(2.17)

where v(x, t) and w(x, t) are the velocity and the deformation gradient of a material
at the point (x, t), respectively. The stress-law w → σ(w) is a function depending on
the material under consideration. For definiteness we treat the case

σ(w) = w3 + aw,(2.18)
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with a being a real parameter.

Consider system (2.17) with ε = 0. When a > 0, it is strictly hyperbolic and
admits two real and distinct wave speeds, ±c(w) := ±√3w2 + a; when a = 0, it is
strictly hyperbolic except on the line

{
w = 0

}
; when a < 0, it is strictly hyperbolic

in the range
{

3w2 > |a|} but elliptic in
{

3w2 < |a|}.

Theorem 2.1 could be applied (with the choice of entropy (2.19) given below) pro-
vided that the dispersion term wxxx in (2.17) were replaced with

(
σ(w)

)
xxx

, which is
an entropy conservative regularization. The dispersion wxxx is not entropy conserva-
tive, and Theorem 2.1 needs to be extended.

Observe first that the model (2.17) actually dissipates the entropy

U(v, w) =
w4

4
+
v2 + aw2

2
, F (v, w) := −v (w3 + aw

)
.(2.19)

Namely we have(
U(v, w) + α ε2

w2
x

2

)
t

+
(
F (v, w)

)
x

= ε
(
v vx

)
x
− ε v2

x − α ε2
(−v wxx + wt wxx

)
x
.

So if the convergence (vε, w
ε)→ (v, w) is strong and ε2 w2

x → 0 (which is known when
a > 0; cf. [11]), we recover the inequality(v2

2
+
w4

4
+ a

w2

2

)
t
−
(
v (w3 + aw)

)
x
≤ 0.(2.20)

Note that the entropy in (2.19) is strictly convex iff a > 0.

Fix initial data (v̄, w̄) for the hyperbolic problem, i.e., (2.17) with ε = 0. Discretize
(2.17)–(2.18), in a similar spirit to (2.10), but now using an entropy conservative flux
for σ(w)x and vx. Given β and γ, we propose the following scheme:

(vj(0), wj(0)) =
1

h

∫ xj+1/2

xj−1/2

(v̄(y), w̄(y)) dy(2.21)

and

d

dt
vj(t) +

1

h

(
gvj+1/2(t)− gvj−1/2(t)

)
= 0, t ≥ 0,

d

dt
wj(t) +

1

h

(
gwj+1/2(t)− gwj−1/2(t)

)
= 0, t ≥ 0,(2.22i)

where

gvj+1/2 := gv,0j+1/2 + gv,1j+1/2 + gv,2j+1/2, gwj+1/2 := gw,0j+1/2 + gw,1j+1/2 + gw,2j+1/2,

(2.22ii)

gv,0j+1/2 := −(w3
j+1 + w3

j + awj+1 + awj
)
/2, gw,0j+1/2 := −(vj+1 + vj)/2,

gv,1j+1/2 := −β
2

(vj+1 − vj), gw,1j+1/2 := 0,

gv,2j+1/2 :=
γ

6

(
wj+2 − wj+1 − wj + wj−1

)
, gw,2j+1/2 := 0.(2.22iii)
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Theorem 2.2. For all β ≥ 0 and all reals a and γ, the scheme (2.21)–(2.22)
satisfies the discrete entropy inequality

1

2

d

dt

(
v2
j +

w4
j

4
+ aw2

j + γ (wj+1 − wj)2
)

+
1

h

(
Gj+1/2(t)−Gj−1/2(t)

) ≤ 0, t ≥ 0,

(2.23)

where Gj+1/2 := G0
j+1/2 +G1

j+1/2 +G2
j+1/2,

G0
j+1/2 := −(1/2)

(
vj σ(wj+1) + vj+1 σ(wj)

)
,

G1
j+1/2 := −β

2
vj
(
vj+1 − vj

)
,

G2
j+1/2 :=

γ

6

(
vjwj+2 − vjwj+1 − 2vj+1wj − vj+2wj+1

+ vj+2wj + vj+1wj−1 + vj+1wj+1

)
.(2.24)

When a, β, γ > 0, the scheme satisfies the following uniform bounds:

∑
j

(
vj(t)

2 + wj(t)
4 + awj(t)

2 + γ (wj+1 − wj)2
)
≤ C (‖v̄‖2L2 + ‖w̄‖2L2 + ‖w̄‖4L4

)
.

(2.25)

Proof of Theorem 2.2. Multiply the equations in (2.22i) by vj and σ(vj), respec-
tively:

h
d

dt

(v2
j

2
+
w4
j

4
+ a

w2
j

2

)
+ vj

(
gv,0j+1/2 − gv,0j−1/2

)
+ σ(wj)

(
gw,0j+1/2 − gw,0j−1/2

)
+ vj

(
gv,1j+1/2 − gv,1j−1/2

)
+ vj

(
gv,2j+1/2 − gv,2j−1/2

)
= 0.

First of all we have

vj
(
gv,0j+1/2 − gv,0j−1/2

)
+ σ(wj)

(
gw,0j+1/2 − gw,0j−1/2

)
= −1

2

(
vj
(
σ(vj+1)− σ(vj−1)

)
+ σ(vj)

(
vj+1 − vj−1)

)
= G0

j+1/2 −G0
j−1/2.

Next we have

vj
(
gv,1j+1/2 − gv,1j−1/2

)
= G1

j+1/2 −G1
j−1/2 +D1

j ,

where D1
j := (β/2) |vj − vj−1|2 ≥ 0.

Finally we treat the third term:

vj
(
gv,2j+1/2−gv,2j−1/2

)
= G2

j+1/2−G2
j−1/2+(vj+2−vj)(wj+1−wj)−(vj+1−vj−1)(wj+1−wj).

We now use the second equation from (2.22i), at the (j+ 1)st and the jth gridpoints,
to eliminate v from the last two terms in the above line. We obtain

vj(g
v,2
j+1/2 − gv,2j−1/2) = G2

j+1/2 −G2
j−1/2 +

h

2

d

dt
(wj+1 − wj)2,
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and the entropy inequality (2.23) then follows from combining the contributions from
the three terms in the flux decomposition.

The uniform bound (2.25) is then obtained by summing (2.23) over j and inte-
grating from 0 to t in time.

In view of the estimate (2.25), the convergence theorem established in [11] for
the continuous model (2.17) easily extends to the scheme (2.22), allowing us to prove
that it converges strongly to a weak solution satisfying the entropy inequality (2.20).
Bounds like (2.25) were obtained by Cockburn and Gau [5] for a scheme (different
from ours) approximating (2.17) with a piecewise linear stress function.

2.3. Cubic conservation law. Consider the Cauchy problem for the scalar
conservation law with cubic flux f(u) := u3, that is,

∂tu+ ∂xu
3 = 0,(2.26)

u(x, 0) = ū(x), x ∈ R,(2.27)

where ū is given. Solutions of (2.26) that are limits of uε given by

∂tuε + ∂xu
3
ε = ε ∂xxuε + α ε2 ∂xxxuε(2.28)

are sought. Such solutions satisfy the entropy inequality

∂t

(
u2

2

)
+ ∂x

(
3u4

4

)
≤ 0.(2.29)

Observe that the characteristic speed f ′(u) := 3u2 is positive for u 6= 0.
Given β > 0 and γ ∈ R, we introduce the scheme

d

dt
uj(t) +

1

h

(
gj+1/2(t)− gj−1/2(t)

)
= 0,(2.30i)

(2.30ii)

gj+1/2 := g0
j+1/2 + g1

j+1/2 + g2
j+1/2, g0

j+1/2 := u3
j ,

g1
j+1/2 := −β

4

(
uj+2 + uj+1 − uj − uj−1

)
, g2

j+1/2 := −γ
6

(
uj+2 − uj+1 − uj + uj−1

)
.

We also set

uj(0) =
1

h

∫ xj+1/2

xj−1/2

ū(y) dy.(2.31)

A family of piecewise constant, approximate solutions uh(x, t) is defined from the
uj(t)’s by u(x, t) = uj(t) if x ∈ [xj−1/2, xj+1/2

)
.

Observe that Theorem 2.1 applies to scheme (2.30), since u itself is the entropy
variable associated with the entropy U(u) = u2/2 and the upwinding scheme used
for g0 is entropy dissipative. However, the result of Theorem 2.1 can be improved in
the scalar case: it is a remarkable property of the discrete model (2.30)–(2.31) that
it preserves an additional invariant of the continuous problem, closely related to the
entropy u4/4 of the hyperbolic equation. This is the key for us in establishing a strong
convergence result.
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Theorem 2.3. Consider the Cauchy problem (2.26)–(2.27) with ū ∈ L1(R) ∩
L4(R). For all β ≥ 0 and γ, the scheme (2.30)–(2.31) satisfies the discrete entropy
inequality (2.12) with U(u) = u2/2, Gj+1/2 := G0

j+1/2 +G1
j+1/2 +G2

j+1/2, and

G0
j+1/2 := (3/4)u4

j ,

G1
j+1/2 := −β

4

(
u2
j+2 − uj+2 uj + u2

j+1 − uj+1 uj−1

)
,

G2
j+1/2 := −γ

6

(
uj+2 uj + uj+1 uj−1 − 2uj+1 uj

)
.(2.32)

The scheme is stable in L∞
(
(0, T ), L1(R) ∩ L4(R)

)
for every T > 0. As h → 0,

(a subsequence of) uh converges strongly in Lq
(
(0, T ), Lp(R)

)
, for all q ∈ [1,∞),

p ∈ [1, 4), and T > 0, to a weak solution u of the Cauchy problem (2.26)–
(2.27).

Remark. 1) The entropy inequality (2.29) formally follows from the discrete
entropy inequality obtained in Theorem 2.3. However, it cannot be rigorously derived
with the estimates currently available, since u need not be in L∞loc(L4), and thus the
entropy flux may not be a function but merely a measure.

2) When γ 6= 0, the schemes are not TVD. As a matter of fact, it follows from
the analysis in [10] that at least for piecewise smooth, limiting solutions, a TVD
scheme that is consistent with (at least) one entropy inequality can only converge to a
classical entropy solution. This is so because, for a range of initial data, nonclas-
sical shocks do increase the total variation of the initial data. (See Figure 3.1b in
next section.)

Proof of Theorem 2.3. Proceeding as in the proof of Theorem 2.1, we obtain the
following entropy balance for the entropy U(u) = u2/2:

(h/2)
d

dt
u2
j +Gj+1/2 −Gj−1/2

= −(1/4)
(
u2
j + 2uj uj−1 + 3u2

j−1

)(
uj − uj−1

)2 − (β/4)
(
uj+1 − uj

)2
,(2.33)

where we use the notation (2.32). In particular this provides the uniform bound

h
∑
j

u2
j (t) +

∑
j

∫ T

0

(
β + u2

j (t) + u2
j−1(t)

) (
uj(t)− uj−1(t)

)2
dt ≤ C ‖ū‖L2 .(2.34)

To obtain higher-order bounds, we estimate the entropy production/dissipation
associated with u4/4. Multiply (2.30i) by u3

j , sum over j, and integrate by parts to
obtain

(h/4)
d

dt

∑
j

u4
j + (1/2)

∑
j

(
u2
j + uj uj−1 + u2

j−1

)2 (
uj − uj−1

)2
+ (β/4)

∑
j

(
u2
j + uj uj+2 + u2

j+2

)2 (
uj+2 − uj

)2
− (γ/6)

∑
j

u3
j

(
uj+2 − 2uj+1 + 2uj−1 − uj−2

)
= 0.(2.35)

All of the terms in (2.35) have a favorable sign, except the term containing γ.
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Next consider (2.30) with j replaced by j ± 1, respectively, and subtract the two
corresponding formulas. Multiply by the difference uj+1− uj−1. After integrating by
parts, we get

(h/2)
d

dt

∑
j

(
uj+1 − uj−1

)2
+
∑
j

u3
j

(
uj+2 − 2uj+1 + 2uj−1 − uj−2

)
+ (β/4)

∑
j

(
uj+2 − 2uj + uj−2

)2
− (γ/6)

∑
j

(
uj+1 − uj−1 − uj−3 + uj+1

) (
uj+3 − 2uj+2 + 2uj − uj−1

)
= 0.(2.36)

Two remarkable properties of (2.35) and (2.36) are to be noted. The “bad term”
found in (2.35) arises once more as the second term in (2.36), and actually with a
different sign, which allows us to eliminate it by summation of the two identities. On
the other hand the last sum in (2.36) is found to be zero, by integrating by parts
several times. We therefore obtain

(2.37)

h
d

dt

∑
j

(
u4
j

4
+

γ

12

(
uj+1 − uj−1

)2)
+ (1/2)

∑
j

(
u2
j + uj uj−1 + u2

j−1

)2 (
uj − uj−1

)2
+
β γ

24

∑
j

(
uj+2 − 2uj + uj−2

)2
+
β

4

∑
j

(
u2
j+1 + uj+1 uj−1 + u2

j−1

)(
uj+1 − uj−1

)2
= 0.

The following uniform bounds have been derived:

∑
j

(
u4
j (t) + u2

j (t) + γ
(
uj+1(t)− uj−1(t)

)2)
h ≤ C (‖ū‖4L4 + ‖ū‖2L2

)
, t ≥ 0,

(2.38)

(2.39)∑
j

∫ T

0

(
β + u4

j+1 + u4
j + u2

j+1 + u2
j

)
dt+ β

∑
j

∫ T

0

(
u2
j+1 + u2

j−1

) (
uj+1(t)− uj−1(t)

)2
dt

+ β γ
∑
j

(
uj+2 − 2uj + uj−2

)2
dt ≤ C (‖ū‖4L4 + ‖ū‖2L2

)
.

These are discrete analogues of the estimates obtained in [10] for the continuous
problem. In view of (2.38)–(2.39), a proof based on the method of compensated
compactness follows in a standard fashion. (See Schonbek [25] and Hayes and LeFloch
[10].) This yields the strong convergence in Lp for p ∈ [1, 4).

3. Equivalent equation. In this section we present a hierarchy of difference
schemes approximating the continuous problem, (2.1)–(2.2), based on how accurately
the flux term is discretized. To fix ideas, we focus on the following choices:

Scheme I: First-order, entropy dissipative discretization of the flux.
Scheme II: Second-order, entropy conservative discretization.
Scheme III: Fourth-order discretization.



NONCLASSICAL SHOCK WAVES 2181

As long as the solution involves only classical shocks, the single entropy inequality
derived in section 2 is sufficient to guarantee uniqueness of the weak solutions (at least
in the class of the piecewise smooth solutions and for the Riemann problem, which is
the primary concern in this paper). This means that all schemes would converge to
the same solution, in that case. In the present discussion we study the case where the
entropy inequality does not determine the limiting solutions, and different schemes
may converge to distinct limits.

For each scheme we consider its equivalent equation. We attempt to predict
heuristically whether or not nonclassical shocks will arise for that scheme. To this
end, the sign of the dispersion coefficient appears to be crucial. It would be desirable to
use a third (or higher) order entropy conservative discretization of the flux function.
However, it can be checked (Hayes and LeFloch [12]) that no such numerical flux
exists.

3.1. Cubic conservation law. For all three choices of numerical flux, the
scheme is assumed to have the form

duj
dt

+
g0
j+1/2 − g0

j−1/2

h
=

β

2h

(
uj+1 − 2uj + uj−1

)
+

γ

6h

(
uj+2 − 2uj+1 + 2uj−1 − uj−2

)
,

(3.1)

where g0
j+1/2 is a discrete flux consistent with u3.

We want to compare the equivalent equations corresponding to the three choices
of numerical flux with (2.28). Since (2.28) is consistent with the entropy inequality
(2.29), we expect that numerical schemes whose equivalent equations also satisfy (2.29)
to better approximate the limiting solutions generated by the vanishing approximation
(2.28). We recall [15, 10] that for the continuous problem (2.28), nonclassical behavior
is observed only when α > 0.

Scheme I. Upwinding scheme with numerical flux:

g0
j+1/2 = (uj)

3.(3.2)

The equivalent equation for (3.1) in this case is

ut + (u3)x = h
(
u3/2 + β u/2

)
xx

+ h2
(
γ u/3− u3/6)xxx +O(h3).(3.3)

The flux contribution to the dispersive term, u3/6, occurs with the opposite sign,
compared to the γ-term. We therefore expect a competition between the linear term,
tending to produce nonclassical shocks, and the cubic term, tending to prevent non-
classical shocks. For sufficiently strong shocks, it might be anticipated that (with γ
fixed) the cubic, i.e., classical, behavior would win out. Note that due to the presence
of both uxxx and (u3)xxx, neither of the entropies u2/2 or u4/4 are dissipated by the
equivalent equation (3.3).

Scheme II. Entropy conservative flux:

g0
j+1/2 =

1

4

(uj+1)4 − (uj)
4

uj+1 − uj ,(3.4)

which leads to the equivalent equation

ut + (u3)x = h
β

2
uxx +

h2

2

(
2 γ

3
uxx − u2uxx − u(ux)2

)
x

+O(h3).(3.5)
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The flux of the equivalent equation is also conservative for the entropy u2/2, so that(
u2

2

)
t

+
3

4

(
u4
)
x

=
hβ

4
(u2)xx − hβ

2
(ux)2 +

h2γ

3

(
uuxx − (ux)2/2

)
x

− h2

4

(
2u3uxx + u2(ux)2

)
x
,(3.6)

where the only dissipation comes from the second term on the right. Thus the equiv-
alent equation (3.5) (with O(h3) replaced by 0) dissipates the entropy u2/2. Once
again, in (3.5), there appears to be a competition between linear and nonlinear terms
in producing a sign for the dispersion.

Scheme III. Fourth-order flux:

g0
j+1/2 =

1

12

(− (uj+2)3 + 7 (uj+1)3 + 7 (uj)
3 − (uj−1)3

)
,(3.7)

so that

gj+1/2 − gj−1/2

h
= (u3)x +O(h4).

The equivalent equation is

ut + (u3)x =
hβ

2
uxx +

h2γ

3
uxxx +O(h3),(3.8)

where the third-order contribution comes from the β term in (3.1).
To second order, (3.8) (with O(h3) replaced by 0) coincides exactly with the con-

tinuous model (2.28), provided we identify ε = hβ/2 and α = 4γ/(3β2). Equivalently,
one has

β = 2
ε

h
, γ = 3α

( ε
h

)2

.(3.9)

In particular, the equivalent equation (3.8) is entropy dissipative.
Typical solutions to the Riemann problem for each of the three schemes are pre-

sented in Figure 3.1a–b. In both figures, β = 10, while in Figure 3.1a, γ = 18.75,
and in Figure 3.1b, γ = 75. For both figures ul = 4 and ur = −5. While Scheme II
produces some palpable oscillations in Figure 3.1a, it is striking that even for mod-
erately strong shocks there are few oscillations to betray the fact that these schemes
do not converge to the classical (Oleinik) solutions. Of course the presence of the
intermediate state stands in contrast to the classical case.

We now discuss some heuristic arguments on excluding nonclassical shocks.
Motivated by the fact that the sign of the dispersive term is crucial to the contin-

uous model (2.28), we now examine the equivalent equations of the three numerical
schemes. In a pedestrian manner, we enforce this sign requirement, combined with
information regarding the traveling wave (TW) solution of (2.28), in order to obtain
a condition on γ, for fixed ε/h, such that the shocks will only be classical.

For weak shocks, we expect that the nonlinear contributions to the dispersion
(from truncation error in the flux) will be small compared to the linear portions. This
would produce discrete shocks very close to the TW solutions associated with (2.28).
In particular, the TW solution of the continuous model (2.28) is known to have a
“nucleation criterion,” that is, a value unucl such that for a positive left state ul less
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Fig. 3.1. (a) Two-shock solutions for Schemes II and III with γ = 18.7; (b) Nonclassical shocks
and rarefactions for γ = 75.

than unucl, there are only classical solutions (see [15, 10]). In terms of the parameter
α, this value is

unucl =
2
√

2

3
√
α
.(3.10)

We turn first to Scheme I and its equivalent equation (3.3). The dispersive term
has the form

C
(
2 γ u− u3

)
xxx

,

and if we make the crude assessment that the dispersive term will have the correct
sign when the quantity inside the parentheses is positive, then we need 2γ > u2, so
that in order to prevent any nonclassical behavior in the numerical scheme, we need
only have unucl >

√
2γ. In terms of the parameters α and γ,

2
√

2

3
> α

ε

h
, or γ < 2

√
2
ε

h
.(3.11)

Fixing ε/h then gives an upper bound, αcrit, on when the solutions will be entirely
classical. In section 4, we test this value with numerical experiments.

In the case of the equivalent equation (3.5) for the entropy conservative flux, it
is no longer possible to write the dispersive term as g(u)xxx, and hence to apply the
idea from Scheme I above. Scheme II should also have a (lower) cut-off value for γ.
It will be computed numerically in the next section.

Finally, for the high-order flux Scheme III, it appears that the numerical behavior
of the scheme (based on its equivalent equation (3.8)) should mimic the solution of
(2.28) for small u, regardless of the size of γ. When u is large, the equivalent equation
no longer provides an accurate picture of the numerical solution.

3.2. Elastodynamics model. We now compute the equivalent equations for
three choices of numerical flux in the elastodynamics model (2.17)–(2.18). We utilize
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continuous in time, discrete in space approximations of the form (2.22),

(3.12)

dvj
dt

+
1

h
(gv,0j+1/2 − gv,0j−1/2) =

β

h
(vj+1 − 2vj + vj−1)− γ

h
(wj+2 − 2wj+1 + 2wj−1 − wj−2),

dwj
dt

+
1

h
(gw,0j+1/2 − gw,0j−1/2) = 0,

where β, γ > 0 are constants and h is the mesh size. The fluxes gv,0j+1/2 and gw,0j+1/2 in

all three schemes are given now.
Scheme I. Lax–Friedrichs scheme:

gv,0j+1/2 = −(1/2)
(
σ(wj+1) + σ(wj)

)− (2λ)−1(vj − vj+1),

gw,0j+1/2 = −(1/2)(vj+1 + vj)− (2λ)−1(wj − wj+1),(3.13)

where σ(wj) := w3
j + awj , for a > 0, and where λ is a fixed parameter. In particular,

for the Riemann problem—our primary interest here—with initial data (vl, wl) and
(vr, wr), we define the constant w0 by

w2
0 = max (4w2

l , 4w
2
r),

and set λ := 3/(4
√

3w2
0 + a), in analogy with the corresponding term from the dis-

crete Lax–Friedrichs scheme. See the discussion of the timestep in Section 4.2 for
more details.

The equivalent equation is

vt −
(
σ(w)

)
x

= h
(
β + (2/3) c(w0)

)
vxx − (h2/6)

(
(12γ − a)w − w3)xxx +O(h3),

wt − vx = h (2/3)c(w0)wxx + (h2/6) vxxx +O(h3),(3.14)

where c(w0) :=
√

3w2
0 + a.

Scheme II. Entropy conservative scheme:

gv,0j+1/2 = −(σ(wj+1) + σ(wj)
)
/2,

gw,0j+1/2 = −(vj+1 + vj)/2.(3.15)

With this choice, and for β = γ = 0, the scheme is entropy conservative:

d

dt

(v2
j

2
+
w4
j

4
+
aw2

j

2

)
+

1

h

(
Gj+1/2 −Gj−1/2

)
= 0,

with Gj+1/2 := −vj w3
j+1− vj+1 w

3
j . For arbitrary β and γ, the equivalent equation is

vt −
(
σ(w)

)
x

= hβ vxx − (h2/6)
(
(12 γ − a)w − w3

)
xxx

+O(h3),

wt − vx = (h2/6) vxxx +O(h4).(3.16)

Note that the third-derivative terms from the flux both act counter to the capillarity
due to γ.

Scheme III. Fourth-order flux:

gv,0j+1/2(v, w) = −(−σ(wj+2) + 7σ(wj+1) + 7σ(wj)− σ(wj−1)
)
/12,

gw,0j+1/2(v, w) = −(−vj+2 + 7 vj+1 + 7 vj − vj−1

)
/12.(3.17)
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Fig. 3.2. (a) v-component for α = 2; (b) w-component for α = 2; (c) v-component for α = 10;
(d) w-component for α = 10.

The equivalent equation is

vt − σ(w)x = β h vxx − 2 γh2 wxxx +O(h3),

wt − vx = O(h4),(3.18)

which agrees with (2.17) to O(h3), provided we identify ε = hβ, α = 2 γ/β2. In other
words, if

β =
ε

h
and γ =

α

2

( ε
h

)2

.(3.19)

Finally we present some heuristic arguments for a threshold of nonclassical behavior.
In the equivalent equation (3.16) for the entropy conservative flux (Scheme II),

the sign of the capillarity term,

C (12 γw − aw − w3)xxx,

can now change, depending upon a balance between linear and nonlinear effects. As
a minimal requirement, it appears that one needs γ > a/12, in order to observe
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nonclassical behavior. Preliminary information concerning traveling wave solutions of
(2.17) [26] indicates that like the scalar equation, there is a nucleation criterion for
the system. If we denote by wnucl the value below which all TW solutions of (2.17)
converge strongly to classical shocks—note that wnucl will be a function of γ and
ε/h—then we have the following algebraic condition: In order to exclude n.c. shocks
from Scheme II, one must have

γ < (a+ w2
nucl)/12.(3.20)

Taking a = 1, we now plot typical profiles in both v and w for Schemes I–III for both
small and large values of γ. In Figure 3.2a, we plot the v-component when α = 2,
with the w-component graphed in Figure 3.2b. Then in Figure 3.2c, we take α = 10
and plot the v-component, while the w-component for this α is drawn in Figure 3.2d.
While the left-moving shock is always classical, with wr < −2wl, the right-moving
shocks are nonclassical in the case Schemes II and III, with the intermediate state
and the separation in wavespeed more pronounced in Figures 3.2c and 3.2d. The
oscillations appear almost exclusively in the left-moving, classical shock.

4. Kinetic relation. We now study numerically nonclassical shocks for the
schemes introduced in section 3. In comparing the continuous and discrete models,
we emphasize that for small or even moderate-size shocks the entirety of nonclassical
shocks for both continuous and discrete models are quite close together. This is mea-
sured by drawing the kinetic function in the state variables, i.e., the right-hand state
of nonclassical shock as a function of its left-hand state. From this we calculate the
kinetic function, providing the entropy dissipation across a shock as a function of its
propagation speed.

The kinetic relation depends not only on the parameter α in the continuous model,
but on both the ratios of β/γ and ε/h in the numerical schemes.

4.1. Cubic conservation law. The first set of figures pertains to Schemes
I, II, and III for the cubic scalar equation (2.26). In Figures 4.1a and 4.1b we plot
the intermediate/right-hand state, um, of the Riemann solution versus the left-hand
state, ul, as this latter quantity is varied from 0 to 16.5 in increments of 0.15. In each
of the runs, the Riemann data chosen were

uj(0) =

{
ul, j ≤ 0,

ur = −1.25ul, j > 0.
(4.1)

For initial data (4.1), the Riemann solution consists of a shock from ul to um ∈
[−ul,−ul/2] , followed by a smooth rarefaction from um to ur. When the kinetics
select the classical solution, um = −ul/2. This upper boundary is drawn with a dashed
line in Figures 4.1a and 4.1b. The “most” nonclassical solution, with um = −ul, is
also drawn with a dashed line.

With the above Riemann data, the shock corresponding to the TW solution of
the continuous model (2.28) (see [15, 10]) takes the form

um =

{
− ul

2 , 0 ≤ ul ≤ 2
√

2
3
√
α
,

−ul +
√

2
3
√
α
, ul >

2
√

2
3
√
α
,

(4.2)

where α ε2 multiplies the dispersive term in (2.28); that is, the shock remains classical
until ul is sufficiently large, compared with 1/

√
α. Beyond this point, the TW solution
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Fig. 4.1. (a) α = 0.25; (b) α = 1.0.

is nonclassical, differing from −ul by a constant. This TW solution, (4.2), is plotted
with a solid line in Figures 4.1a and 4.1b.

In Figures 4.1a and 4.1b, we chose mesh spacing h = 1/200 and diffusion ε = 1/40
and used fourth-order Runge–Kutta for time stepping. The CFL number was taken
to be as large as possible in each run (each of the three curves contains approximately
100 such runs) and was identical for both the entropy conservative and fourth-order
flux models. A slightly smaller time-step was required for the upwinding scheme. In
Figure 4.1a we took α = 1, while in Figure 4.1b we chose α = 0.25.

As might be expected, the larger value of α in Figure 4.1b gives rise to a “more
nonclassical” kinetic function; i.e., the curves stay farther away from the classical
(upper dashed) line. From most nonclassical to most classical, in both plots, were the
fourth-order scheme, the entropy conservative scheme, and the upwinding scheme,
respectively. The fourth-order flux scheme also stays closest to the TW solution of
(2.28) for the widest range of ul. This is not surprising, as the equivalent equation
for the fourth-order flux scheme most closely approximates (2.28). Notice that in no
case are the right-hand states more nonclassical than the traveling wave solution.

In Figures 4.1c and 4.1d, we plot the numerical kinetic functions in the state
variables using the data on left- and right-hand states from Figures 4.1a and 4.1b,
respectively. We use the quadratic entropy U(u) = u2/2 in computing the entropy
dissipation. In terms of ul and um, this is

φ(ul, um) = (um − ul)2(u2
m − u2

l )/4.(4.3)

From the Rankine–Hugoniot relation, the shock speed is

s = u2
l + ulum + u2

m,(4.4)

and formulas (4.3)–(4.4) provide a parametric representation of the kinetic function
ϕ(s). (Cf. [10].) In Figure 4.1c, all numerical kinetic functions lie close to the classical
kinetic function, with Scheme I closer than II, which is, in turn, closer than III.
In Figure 4.1d, both Schemes II and III begin along the TW kinetic function but
gradually transition to classical kinetics.

In section 3, we gave some heuristic criteria to decide whether for a given nu-
merical scheme, and a fixed set of parameters, the shocks would be entirely classical.
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Fig. 4.1. (cont.). Scaled entropy dissipation, φ(s)/s2, vs. shock speed, s, for three numerical
schemes. (c) α = 0.25, (d) α = 1.0.
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Fig. 4.1. (cont.). (e) Scheme I has n.c. threshold 0.2 < α < 0.25. (f) Scheme II has n.c. thresh-
old 0.1 < α < 0.15.

We now test these criteria for the three schemes. In Figure 4.1e, we plot the left-
and right-hand states of the shocks for the upwinding scheme. We took ε/h = 5, so
that γ = 75α, and several values of α : 0.25, 0.2, and 0.15. From condition (3.12), we
estimate the cut-off value of α to be αcrit = 0.19 and, indeed, we observe experimen-
tally that the cut-off occurs in the range 0.2 < α < 0.25. For α = 0.25, the curve
dips below the classical, um = −ul/2-line, while it never deviates from this line when
α ≤ 0.2.

For the entropy conservative flux (Scheme II), we again take ε/h = 5, and now take
α = 0.25, 0.2, 0.15, and 0.1. These data are plotted in Figure 4.1f. Similar phenomena
occur, only now at smaller values of α: the cut-off occurs for 0.1 < α < 0.15.

Focusing next on the fourth-order flux scheme, we first plot the right- vs. left-
hand states for small α: 0.2, 0.1, and 0.0. This is depicted in Figure 4.1g. Notice that
even when α = 0, the solution to Scheme III is classical, as would be predicted by the
equivalent equation, out to ul ≤ 6. For stronger shocks, the equivalent equation fails
to predict the right-hand state of the scheme. Indeed the kinetic function appears to
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Fig. 4.1. (cont.). (g) For small α, Scheme III gives neither the classical nor the TW solution
to (2.28). (h) For large α, Scheme III gives the solution of (2.28).

have a distinct limit as ul →∞.
When we take α (i.e., γ) large in Scheme III, which is in some sense what we

should do in order to dominate higher-order terms, then the solution approaches the
limiting TW solution of (2.28). This can be seen in Figure 4.1h.

4.2. Elastodynamics model. We now turn to the elastodynamics model and
the numerical kinetic relations for Schemes I, II, and III. Once again we determine the
kinetic function in the state variables by plotting the left- and right-hand states of a
shock (in this case, the w-component of the 2-shock) for a range of left-hand states.
For Riemann data in Schemes I and II, we took

(
vk(0), wk(0)

)
=

{
(1, 1), k ≤ 0,

(vr, wr), k > 0.
(4.5)

The value of wr is increased from 0 to approximately 22, in increments of 0.2. For
each of these runs, vr is selected to lie well within the region of the (v, w)-plane which,
depending on the viscosity and capillarity, gives rise to nonclassical shocks; i.e., the
Riemann solution must twice cross the v-axis. Specifically, if (v∗, 0) lies on the 1-
wave integral curve from (vl, wl), then v∗ = vl − Fl + F0, where Fl =

√
3/4

(
wlcl +

(1/3) log(wl + cl)
)
, cl =

√
w2
l + 1/3 , and F0 = .5− (1/

√
48) log 3. We then chose vr

to lie well below the 2-wave integral curve from (v∗, 0): vr = v∗ − 3(Fr − F0), where
Fr =

√
3/4
(
wrcr+(1/3) log(wr+cr)

)
and cr =

√
w2
r + 1/3. Here we have used a = 1.

The above choice of (vl, wl) and (vr, wr) induces a 1-wave fan (including either
a classical or nonclassical shock) from (vl, wl) to a point (vm, wm). For purposes of
computing the numerical kinetic function, wm < 0 is taken as the left-hand state of the
shock. Owing to our choice of (vr, wr), with wr > 0, the state (vm, wm) is connected
by a 2-shock to (vi2 , wi2); this shock may either be classical, with wi2 = −wm/2, or
nonclassical, with wi2 ∈ [−wm,−wm/2) .

In Figures 4.2a and 4.2b we chose a gridsize of h = 1/400, with the viscosity
fixed at ε = 1/100. For all three schemes, we used fourth-order Runge–Kutta for time
stepping with the condition λ = 0.75/

√
3w2

0 + a, where w2
0 = max (4w2

l , 4w
2
r) is an

upper bound on ‖w‖∞2

L- , coming from the fact that for classical shock-rarefaction in the

2-wave family, wm = −2wi2 , and wr ≥ wi2 , with equality only when the rarefaction
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Fig. 4.2. (a) α = 2, the data for Scheme I is not drawn in but follows precisely the lower,
dashed line. (b) α = 10. Again, Scheme I shocks are entirely classical and are not drawn in.

is degenerate. Time steps were identical for corresponding runs of each scheme.
Besides the data points from the various runs, the boundaries for possible classi-

cal and nonclassical shocks are plotted (dashed lines) in Figures 4.2a and 4.2b. The
lower line, wi2 = −wm/2, represents a kinetic function which always selects the clas-
sical solution, while the upper dashed line, wi2 = −wm, corresponds to the “most”
nonclassical kinetic function.

In Figure 4.2a, we took α = 2, while in Figure 4.2b, α = 10. In both cases, Scheme
I gives only classical behavior. Consequently, the data from Scheme I is excluded from
Figures 4.2a and 4.2b in order to clarify the presentation. Notice that in Figure 4.2a,
the Scheme II shocks return to the classical line, for wm ≥ 12, while those of Scheme
III continue along an n.c. trajectory. Then in Figure 4.2b, the curves for Schemes
II and III have a region of overlap, but Scheme II ultimately arcs back toward the
classical solutions. In all curves, note that wi2 is monotone decreasing with wm.

In Figures 4.2c and 4.2d, we plot the numerical kinetic functions, based on the
left- and right-hand states in Figures 4.2a and 4.2b, respectively, and using the entropy
(2.19). The entropy dissipation is

φ(w−;w+) = (w2
+ + w+ w− + w2

− + a)1/2(w+ − w−)3(w+ + w−)/4.(4.6)

In Figure 4.2c, the kinetics for Schemes I and II are nearly identical (classical)
for s ≥ 6. In Figure 4.2d, all three kinetic functions are quite distinct at large
values of s.

We now turn to small values of the dispersion and to the existence of threshold
values in γ for the existence of n.c. shocks. In Figure 4.2e, it can be seen that the
behavior of Scheme I is always classical, except for very large dispersion, α = 40,
i.e., γ = 320. This latter, rather jagged curve should only be taken as an indication of
n.c. behavior in Scheme I; the nonmonotonicity of this curve is inconsistent with other
numerical experiments of this type. In Figure 4.2f, we plot the left- vs. right-hand
states for Scheme II, with several choices for α : 2.0, 1.0, 0.5, and 0.25. The last two
choices both return purely classical behavior, while α = 1 has only a tiny interval in
wm for n.c. shocks. The numerical threshold for Scheme II to produce n.c. shocks is
therefore 4 < γ < 8.
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Fig. 4.2. (cont.). Scaled entropy dissipation, φ(s)/s5, vs. shock speed, s, for Schemes II and
III. Scheme I gives the classical, solid curve. (c) α = 2; (d) α = 10.
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Fig. 4.2. (cont.). (e) Classical and (likely) n.c. behavior for large α in Scheme I. (f) Threshold
for n.c. shocks in Scheme II is .5 < α < 1.

For Scheme III, we consider the behavior both for γ small (Figure 4.2g) and γ
large, (Figure 4.2h). Note that in Figure 4.2b, the curves approach the classical line,
and that when α = 0.5, the solution is, in fact, classical out to wm = 12, at which
point it gives rise to n.c. shocks. Similar behavior occurs when α = 0, but now the
transition occurs at a larger value, wm = 16.5.

At the other end of the spectrum, for large γ, the curves in Figure 4.2h straighten
out and parallel the maximally n.c. curve, where wi2 = −wm. It will be interesting
to compare the curves in this large α limit with n.c. traveling wave solutions to the
elastodynamics model.

5. Concluding remarks. We have shown that schemes balancing diffusion and
dispersion may generate nonclassical shock waves which do not satisfy the Liu crite-
rion. To characterize these new shocks, we introduced the kinetic function, expressed
either in the state variables or—when possible—parametrized by shock speed. It was
shown to be an efficient tool to study sensitive dependence on the ratios of diffu-
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Fig. 4.2. (cont.). (g) Small α in Scheme III; (h) large α in Scheme III.

sion/dispersion, diffusion/mesh size, the order of accuracy of the discretization, etc.
Our study sheds light on the design of numerical schemes for problems containing
small-scale dependent shock waves.

One requirement is to ensure that the scheme is consistent with the natural en-
tropy induced by the continuous model,

U(u)t + F (u)x ≤ 0.(5.1)

By itself, (5.1) does not guarantee uniqueness (say, for the Riemann problem) but
does severely restrict the class of admissible solutions. The analysis in [11] shows that
at most one parameter per wave family is left undetermined. In view of our numer-
ical experiments, we expect that for most practical applications the corresponding
parameters occupy a very limited range. It would be interesting to characterize this
range for specific physical applications, such as the dynamics of austenite-martensite
phase transformations in solids, or the magnetohydrodynamics of the solar wind past
earth’s magnetosphere.

We find that numerical schemes whose equivalent equations best mimic the con-
tinuous model provide better approximations than either first-order or entropy con-
servative schemes. Still, for shocks with large strength, numerical solutions diverge
from those of the continuous model. In fact, we show that the ε-limit of the solutions
to the continuous model differ from the continuum limit of the numerical solutions uh

as the mesh is refined:

lim
ε→0

uε 6= lim
h→0

uh.(5.2)

For small shock strength, this discrepancy is so subtle that it is often difficult to
detect. Moreover the continuous model may not have this degree of accuracy. In fact,
many are derived using assumptions of the magnitude of the relevant variables and
with experimental tolerances in the coefficients and data. The results presented here
justify that for many practical purposes, one may use the discrete model as a good
approximation to the continuous one. Indeed, it may be very difficult in practice to
determine the small-scale effects in the continuous model accurately, the experimental
data being out of reach for various reasons.
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When one is interested in large-time calculations, however, there is a real possi-
bility that the error between the continuous and the discrete models will accumulate
and that the corresponding solutions will eventually differ substantially. For strong
shocks, the same effect may occur.

The generalization of this work to physical models from phase dynamics [12] is
currently in progress.

Acknowledgment. The authors are grateful to Eitan Tadmor for pointing out
the relevance of [30].
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