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ENTROPY STABLE ESSENTIALLY NONOSCILLATORY METHODS BASED
ON RBF RECONSTRUCTION

Jan S. Hesthaven and Fabian Mönkeberg�

Abstract. To solve hyperbolic conservation laws we propose to use high-order essentially nonoscilla-
tory methods based on radial basis functions. We introduce an entropy stable arbitrary high-order finite
difference method (RBF-TeCNOp) and an entropy stable second order finite volume method (RBF-
EFV2) for one-dimensional problems. Thus, we show that methods based on radial basis functions are
as powerful as methods based on polynomial reconstruction. The main contribution is the construction
of an algorithm and a smoothness indicator that ensures an interpolation function which fulfills the
sign-property on general one dimensional grids.
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1. Introduction

Conservation laws arise in different fields of physics to describe systems with certain conserved properties,
e.g. mass, momentum, and energy. A change in these properties within a domain can be described by the flux
through its boundaries. The one-dimensional conservation law on differential form is given as

ut � fpuqx � 0, px, tq P R� R�,

up0q � u0,
(1.1)

with the conserved variables u : R � R� Ñ RN and the flux f : RN Ñ RN . A well known and challenging
property is the formation of discontinuities out of smooth initial data [25]. Thus, solutions need to be defined in
the weak (distributional) sense. Since the weak solutions are not unique they need to be restricted by additional
conditions. Let η be a convex scalar function (entropy function) such that there exists the entropy flux q with
∇uq � ∇uη∇uf . The function u : R�R� Ñ RN is called an entropy solution of (1.1) for the entropy pair pη, qq
if the inequality

ηpuqt � qpuqx ¤ 0, (1.2)

is satisfied in a weak sense. In the case of scalar conservation laws, existence and uniqueness of the weak entropy
solution in Rd was shown by Kružkov [21]. Furthermore, we can use entropy variables v :� p∇uηq

T to symmetrize
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(1.1) in the sense that ∇vupvq is symmetric positive definite and ∇vfpupvqq is symmetric. This can be seen by
introducing the entropy potential ψpvq � vT � fpupvqq � qpupvqq to recover ∇vfpupvqq � ∇vvψ [28]. Note that
entropy solutions satisfy

ηpuqt � qpuqx � 0, (1.3)

in smooth regions, but satisfy (1.2) at discontinuities as entropy must dissipate.

1.1. Finite difference and finite volume methods

One goal of numerical methods is to express the approximative behaviour of the physical correct solution.
Let us assume a one-dimensional grid txiuiPZ � R, partitioned into cells Ci � rxi�1{2, xi�1{2s of size ∆x. The

finite difference approach is based on approximating spatial derivatives at xi as

Bf

Bx
puiq �

Fi�1{2 � Fi�1{2

∆x
�Op∆xpq, (1.4)

with p ¡ 0. This results in the semi-discrete scheme

dui
dt

�
1

∆x
pFi�1{2 � Fi�1{2q � 0, (1.5)

where the numerical flux terms Fi�1{2 depend on point values tui�k, . . . , ui�p�ku with 0 ¤ k ¤ p� 1.
On the other hand, finite volume methods work with mean values ūi for the cells Ci. By integrating (1.1)

over the cells and dividing it by its size |Ci| we recover (1.5) with the difference that

fpupxi�1{2qq � Fi�1{2 �Op∆xpq. (1.6)

There exist multiple high-order accurate methods to solve conservation laws, for example the MUSCL scheme
introduced in [39], the ENO scheme [18] or the WENO scheme [37]. In all cases, we can apply an arbitrary time
discretization technique to recover a fully discrete scheme, e.g. an SSPRK method.

In [11], Fjordholm et al. proposed an entropy stable TeCNO scheme based on polynomial reconstruction.
We follow the spirit of this work and introduce a scheme based on radial basis functions (RBF). Note that for
taking advantage of the RBFs on general grids in higher dimensions, we would need a MUSCL type scheme.

In Section 2 we introduce the framework of entropy stable schemes based on an entropy conservative flux
and a diffusion operator [11,38]. We describe the basics of RBFs in Section 3. Furthermore, we give an explicit
representation of the interpolation function for infinitely smooth RBFs in one dimension. Sections 4 and 5
contain the main contribution. In Section 4 we introduce a smoothness indicator for RBFs which is based on
the generalized divided difference method and in Section 5 we prove that it fulfills a certain stability property
(the sign-property) for general grids in one dimension. Section 6 combines these results to construct an arbitrarily
high-order RBF based entropy stable finite difference method and a second order entropy stable finite volume
one that is generalizable to general grids in higher dimensions. In the last section we demonstrate the robustness
of the numerical scheme with a variety of one dimensional examples.

2. Entropy stable methods

The goal is to construct methods that fulfill a discrete version of (1.2), referred to as entropy stable [19, 23].
As a first step, we introduce entropy conservative methods that fulfill (1.3) at the discrete level. Next, we add
a dissipation term to control oscillations at discontinuities to recover an entropy stable method.
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2.1. Entropy conservative methods

A finite difference method is entropy conservative if it satisfies

d
dt
ηpuiq � �

1
|Ci|

rQi�1{2 �Qi�1{2s, (2.1)

for a consistent numerical entropy flux Qi�1{2. To construct entropy conservative methods we use Tadmor’s
entropy conservation condition [38]

vvwTi�1{2Fi�1{2 � vψwi�1{2. (2.2)

This condition describes a system of equations, but its solvability is not clear. For scalar conservation laws
there exists a unique solution as can be summarized in the following theorem.

Theorem 2.1 (Entropy conservative schemes for scalar equations [38]). For a given entropy pair pη, qq the
numerical flux

Fi�1{2 �

#
vψwi�1{2

vvwi�1{2
if ui � ui�1

fpuiq if ui � ui�1

, (2.3)

defines an entropy conservative method for scalar equations with the entropy variable v and the conserved variable
u. Furthermore, it is second-order accurate in smooth regions of u.

Given a numerical second order two-point flux the work of Lefloch et al. [24] combines these linearly to
construct a 2pth order accurate flux on a uniform grid.

Theorem 2.2 (High-order entropy conservative fluxes [24]). Let p P N and assume that α1,p, . . . , αp,p solve the
p linear equations

p̧

i�1

iαi,p � 1,
p̧

i�1

i2s�1αi,p � 0, for s � 2, . . . , p. (2.4)

Then the flux

F̃ 2ppui�p�1, . . . , ui�pq �
p̧

j�1

αj,p

j̧

l�1

F̃ 2pui�j�l, ui�lq, (2.5)

is consistent, 2pth order accurate and entropy conservative provided the second order two-point conservative flux
F̃ 2 fulfills (2.2).

The fourth order entropy conservative flux with coefficients α2 � p 4
3 ,�

1
6 q and the sixth order scheme with

α3 � p 3
2 ,�

3
10 ,

1
30 q present two explicit examples.

2.1.1. Entropy conservative methods for shallow water equations

The shallow water equations describe a flow under the assumptions that the horizontal length scales are much
larger than the vertical ones. In one space dimension the system of equations depends on the mass flow m and
the fluid height h �

h
m



t

�

�
m

1
2gh

2 �m2{h



x

� 0, (2.6)

with the gravitational constant g [25]. To apply Theorem 2.2 we need to construct a second order entropy
conservative scheme by solving (2.2). One choice of an entropy pair for the one-dimensional shallow water
equation is

η �
1
2

�m2

h
� gh2

	
, q �

m3

h2
� gmh, (2.7)
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which results in the entropy variables and the potential

v �

�
gh� m2

2h2
m
h



, ψ �

1
2
gmh. (2.8)

An alternative second order entropy conservative flux is

F̃i�1{2 �

�
h̄i�1{2ūi�1{2

h̄i�1{2pūi�1{2q
2 � 1

2gh
2
i�1{2



, (2.9)

with u � m{h and f̄i�1{2 �
1
2 pfi � fi�1q [10].

2.1.2. Entropy conservative methods for Euler equations

The Euler equations can be recovered from the Navier–Stokes equations by neglecting the viscosity. They
consist of the continuity equation, momentum equation and the conservation law for the total energy. In one
dimension they are �� ρ

m
E

�

t

�

�� m
m2

ρ � p
m
ρ pE � pq

�

x

� 0, (2.10)

with p � RρT � pγ�1qpE� 1
2
m2

ρ q for an ideal gas with the ratio of specific heat γ [20]. For the Euler equations
the thermodynamical entropy s � logppq � γ logpρq is different from the entropy function and the entropy flux.
One possible pair is proposed in [11]

η �
�ρs

γ � 1
, q �

�ms

γ � 1
� (2.11)

Chandrashekar [5] proposed the kinetic energy preserving and entropy conservative (KEPEC) flux, based on
the entropy variables and the potential

v �

�� γ�s
γ�1 �

ρu2

2p

ρu{p
�ρ{p

�
, ψ � ρu. (2.12)

The KEPEC flux makes use of the logarithmic averages ρ̂ and β̂ with β � ρ
2p and can be written as

fρ � ρ̂ū, fm �
ρ̄

2β̄
� ūfρ, fe �

� 1

2pγ � 1qβ̂
�

1
2
u2
	
fρ � ūfm, (2.13)

where v̄ � vi�1�vi

2 and with the logarithmic average defined as v̂ � vi�vi�1
logpviq�logpvi�1q

.

2.2. Entropy stable methods

Entropy conservative methods yield good results in smooth regions, but it is well-known that spurious oscil-
lations appear close to discontinuities. Introducing artificial dissipation, depending on the size of the jump in
the interface, controls these oscillations. Based on an entropy conservative scheme F̃j�1{2 of second order and a
symmetric positive definite matrix Di�1{2, Tadmor constructed the entropy stable numerical flux function [38]

Fi�1{2 � F̃j�1{2 �
1
2
Di�1{2vvwi�1{2. (2.14)

Combining high-order conservative fluxes with dissipation terms introduces the constraint that
Di�1{2vvwi�1{2 � Op∆xpq to maintain accuracy for smooth solutions.
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For each cell Ci we define a stencil of cells Si on which we construct an interpolation function sipxq of order
p and replace the jump vvwi�1{2 by the jump in the reconstruction xxvyyi�1{2 � si�1pxi�1{2q � sipxi�1{2q. Thus,
the method has the form

Fi�1{2 � F̃ 2p
i�1{2 �

1
2
Di�1{2xxvyyi�1{2, (2.15)

with the additional condition
Di�1{2 � Ri�1{2Λi�1{2R

T
i�1{2, (2.16)

where Ri�1{2 P RN�N is invertible and Λi�1{2 ¥ 0 is diagonal. Fjordholm et al. recovered the following stability
results [11].

Lemma 2.3 (Entropy stability with high-order diffusion [11]). For each i P Z, let (2.16) be fulfilled. Let si be a
reconstruction of the entropy variables in cell Ci, such that for each i, there exists a diagonal matrix Bi�1{2 ¥ 0
such that

xxvyyi�1{2 � R�T
i�1{2Bi�1{2R

T
i�1{2vvwi�1{2. (2.17)

Then the scheme with the flux (2.15) is entropy stable.

By introducing the scaled entropy variables

w�
i � RTi�1{2vi, w̃�

i R
T
i�1{2v

�
i , (2.18)

with the reconstructed entropy variables v�i � sipxi�1{2q, (2.17) becomes

xxw̃yyi�1{2 � Bi�1{2vwwi�1{2. (2.19)

Since Bi�1{2 is diagonal and semi-positive definite, this can be reformulated componentwise as

sgnxxw̃lyyi�1{2 � sgnvwlwi�1{2, (2.20)

for each component l. This structural property of the reconstruction is called the sign-property.

2.3. Entropy stable finite volume methods

The setting of the one dimensional finite volume method differs only slightly from the finite difference scheme,
i.e. we consider cell-average values ūi rather than point values and the definition of higher order methods
changes to

Fi�1{2 � fpupxi�1{2qq �Op∆xpq. (2.21)

Nevertheless, given a 2-point second order finite difference flux F , it is also a second order accurate finite
volume flux, which follows from the midpoint rule.

Since the definition of entropy conservative schemes does not change for finite volume methods, we can
conclude that a second order finite difference flux that fulfills (2.2) is also a second order entropy conservative
finite volume method. This can be summarized as follows.

Theorem 2.4. Every second order finite difference scheme that fulfills Tadmor’s entropy conservation condition
(2.2) in one space dimension is also a second order entropy conservative finite volume method.

The construction of entropy stable schemes from entropy conservative schemes proceeds as for the finite
difference case, the only difference being that the interpolation is based on cell-averages instead of point values.

Thus, Lemma 2.3 holds also for finite volume methods and we recover an entropy stable finite volume method
of the form

Fi�1{2 � F 2
i�1{2 �Di�1{2xxvyyi�1{2. (2.22)

Note that the extension to higher order as in Theorem 2.2 does not work in the finite volume case and we
are not aware of any method doing it.
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3. Radial basis functions

Radial basis functions (RBF) are successfully used for scattered data interpolation. Due to their mesh-free
property, they are more flexible in terms of the geometric structure of the data points. Furthermore, their
application to high-dimensional problems is immediate. Following the seminal work by Duchon [8] and Micchelli
[27], RBFs are successfully used in different domains.

3.1. Basic interpolation

The goal is the interpolation of a data vector f |X � pfpx1q, . . . , fpxnqq
T P Rn, defined at a scattered set

of data points X � px1, . . . , xnq
T with xi P Rd for some function f : Rd Ñ R. The basic idea is to use one

univariate continuous function φ, the radial basis function, composed with the Euclidean norm centered at the
data points as the interpolation basis

B � tφpε‖x� x1‖q, . . . , φpε‖x� xn‖qu, (3.1)

parametrized by the shape parameter ε. To simplify the notation we use

φpx� xiq :� φpε‖x� xi‖q, φ : Rd Ñ R. (3.2)

The standard radial basis function approximation is written as

spxq �
ņ

i�1

aiφpx� xiq � ppxq, (3.3)

with a polynomial p P Πm�1pRdq, m P N, the interpolation condition

spxiq � fpxiq, (3.4)

and the additional constraints
ņ

i�1

aiqpxiq � 0, for all q P Πm�1pRdq, (3.5)

with the coefficients ai P R for all i � 1, . . . , n. Conditions (3.4) and (3.5) can be expressed in the system of
equations �

A P
PT 0


�
a
b



�

�
f |X

0



. (3.6)

The choice of the radial basis function φ is restricted to insure the solvability of (3.6).

Definition 3.1 (Conditionally positive function). A function φ : Rd Ñ R is called conditionally positive (semi-)
definite of order m if, for any pairwise distinct points x1, . . . , xn P Rd and c � pc1, . . . , cnq

T P Rnzt0u such that

ņ

i�1

cippxiq � 0, (3.7)

for all p P Πm�1pRdq, the quadratic form

ņ

j,k�1

cjckφpxj � xkq, (3.8)

is positive (non-negative).
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Table 1. Commonly used RBFs with N S ν ¡ 0, k P N and ε ¡ 0.

RBF φprq Order

Infinitely smooth RBFs
Multiquadratics p1 � pεrq2qν rνs
Inverse multiquadratics p1 � pεrq2q�ν 0
Gaussians expp�pεrq2q 0
Piecewise smooth RBFs
Polyharmonic Splines r2k�d k

r2k�d logprq k

Wendland shows in [40] that for a conditionally positive definite RBF φ of order m (3.6) has a unique solution
if x1, . . . , xn are Πm�1pRdq-unisolvent.

Definition 3.2 (Positive definite functions). A function φ : Rd Ñ R is called positive definite if the quadratic
form

ņ

j,k�1

cjckφpxj � xkq, (3.9)

is positive for any n pairwise different points x1, . . . , xn P Rd and c � pc1, . . . , cnq
T P Rnzt0u.

Note that for a positive definite function φ, the matrix A is positive definite and there exists an unique
solution a to (3.6).

Some examples of positive definite functions are the inverse multiquadratics and the Gaussians (Tab. 1). Other
RBFs fulfill a slightly weaker condition and are conditionally positive definite of order k, e.g. multiquadratics
and polyharmonic splines.

3.2. Interpolation of cell-averages

For the finite volume method we do not consider the pointwise interpolation, but cell-averages. Let us assume
a given grid of cells C1, . . . , Cn with its average values ū1, . . . , ūn for n P N. Following [1, 2] we consider

spxq �
ņ

i�1

aiλ
ξ
Ci
φpx� ξq � ppxq, p P Πm�1pRdq, (3.10)

with the average operator of f over the cell C, λξCf , such that

λCj
s � ūj , for all j � 1, . . . , n, (3.11a)

ņ

i�1

aiλCipqq � 0, for all q P Πm�1pRdq. (3.11b)

To show solvability of system (3.11) it suffices to assume that φ is conditionally positive definite in a pointwise
sense.

Aboiyar et al. prove in [1] that (3.11) has a unique solution if the set tλCi
uni�1 is Πm�1pRdq-unisolvent.

Theorem 3.3 (Well-posedness of RBF interpolation in the mean value sense). Let φ be a conditionally positive
definite radial basis function and let the set tλCi

uni�1 be Πm�1pRdq-unisolvent with n P N. Then, the problem
(3.11) has a unique solution.
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The proof closely follows the one for the pointwise evaluation in [40] plus an estimate for the positive defi-
niteness, based on a pointwise result in [31].

Despite the simple extension of RBF-interpolation in multiple dimensions, there is a major drawback, often
referred to as the Uncertainty Principle [34]. It refers to the trade-off between the well-known properties that flat
infinitely smooth RBFs (ε Ñ 0) have an increasing approximation power but a decreasing numerical stability
due to ill-conditioning of the interpolation matrix [7,22,36]. To overcome the ill-conditioning there are multiple
propositions for choosing an “optimal” shape parameter [9,33]. Note that a continuous scaling ε � αn�1{d causes
error stagnation [4]. However, there are multiple approaches which overcome this problem: the RBF-CP [16], the
RBF-QR [15], and the RBF-GA [14]. We decided to use the more flexible vector-valued rational approximation
method (RBF-RA), based on the RBF-CP algorithm [42].

3.3. Explicit formula of the RBF interpolation

Let us consider the pointwise RBF interpolation problem (3.6) with the interpolation function (3.3). Fur-
thermore, let x1, . . . , xn be the grid points such that xi   xi�1 and n P N and y1, . . . , yn P R its values. We are
looking for an RBF interpolation function

spxq �
ņ

i�1

aiφpx� xiq �
m̧

j�1

bjLjpxq, (3.12)

where Lj for j � 1, . . . ,m are the Lagrange polynomials such that Ljpxiq � δij and φ a conditional positive
definite RBF of order m. By assuming further that m � n� 1, it holds

Lemma 3.4 (Explicit RBF solution formula). The interpolation problem (3.4) and (3.5) can be solved using
an explicit formula if we choose an RBF interpolation ansatz with a conditional positive definite RBF of order
smaller than n� 1

spxq � αdϕpxq �
n�1̧

i�1

yiLipxq, (3.13)

where α �
yN�

°n�1
i�1 yiLipxnq
dϕpxnq

, dϕpxq � ϕpxq �
°n�1
j�1 ϕpxjqLjpxq and ϕpxq � φpx� xnq �

°n�1
i�1 Lipxnqφpx� xiq.

Proof. From the representation of the polynomial part using Lagrange polynomials we recover

aj � �anLjpxnq, for j � 1, . . . , n� 1. (3.14)

This yields the interpolation function

spxq � αϕpxq �
n�1̧

j�1

bjLjpxq, (3.15)

with α � an, which solves the reduced interpolation problem

αϕpxiq �
n�1̧

j�1

bjLjpxiq � yi, for i � 1, . . . , n. (3.16)

By the properties of the Lagrange polynomials we recover the explicit form of α and bj

α �
yn �

°n�1
i�1 yiLipxnq

dϕpxnq
, (3.17a)

bj � yj � αϕpxjq, for j � 1, . . . , n� 1. (3.17b)

�
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Remark 3.5. We can express dϕ in terms of projections

dϕpxq :� Ψpx, xiq � pId� PxqpId� Pyqrφpx� yqqs|y�xi
, (3.18)

where the operators Pz is the projection of the variable z on the polynomial space of dimension n�1. Schaback
[35] shows that Ψ is positive definite on Rdztx1, . . . , xn�1u. Thus, it is closely related to reproducing kernels
and its native spaces, introduced in [35].

Remark 3.6. Note that this representation is independent of permutations of the indices. In general we can
choose ỹn � yj and ỹi P tyl| l � ju.

4. Smoothness indicator for RBF interpolation functions

In essentially nonoscillatory (ENO)- and weighted ENO (WENO)-type methods a key component is to mea-
sure the smoothness of the interpolation function. In the polynomial ENO scheme, the highest degree divided
difference plays an important role for identifying the least oscillating interpolation of a certain degree. To
extend this to RBF-based interpolation we need something similar. However, the divided differences, used in
the standard Newton’s interpolation formula, are valid only for polynomials.

4.1. Generalized divided differences

For non-polynomial basis functions Mühlbach [29] introduces generalized divided differences, which coincide
in the monomial case with the standard one. The result is based on functions f1, . . . , fn that form a Chebyshev
system, i.e., they satisfy ∣∣∣∣∣∣∣

f1pz1q � � � f1pzkq
...

...
fkpz1q � � � fkpzkq

∣∣∣∣∣∣∣ � 0, (4.1)

for all distinct points z1, . . . , zk and for k � 0, . . . , n. Using Cramer’s rule we recover that for any f : R Ñ R
and set of distinct points x1, . . . , xn there exists a unique linear combination

pnf :� pf
�
f1, . . . , fn
x1, . . . , xn

�
, (4.2)

of f1, . . . , fn which satisfy the interpolation condition

pnfpxiq � fpxiq, for all i � 1, . . . , n. (4.3)

Theorem 4.1 (Generalized Newton’s interpolation formula [30]). Let f1, . . . , fn form a complete Chebyshev
system. Then for any f : R Ñ R and any subset Gn � tx1, . . . xnu � R of cardinality n it holds

pf
�
f1, . . . , fn
x1, . . . , xn

�
�

ņ

k�1

�
f1, . . . , fk
x1, . . . , xk

f

�
� gk, (4.4)

where

g1 :� f1,

gk :� rk�1fk, for k � 2, . . . , n,

with the interpolation error in the kth step

rkf :� rf
�
f1, . . . , fk
x1, . . . , xk

�
:� f � pf

�
f1, . . . , fk
x1, . . . , xk

�
, (4.5)
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and the recursively defined coefficients

�
f1, . . . , fk
x1, . . . , xk

f

�
:�

�
f1, . . . , fk�1

x2, . . . , xk
f

�
�

�
f1, . . . , fk�1

x1, . . . , xk�1
f

�
�
f1, . . . , fk�1

x2, . . . , xk
fk

�
�

�
f1, . . . , fk�1

x1, . . . , xk�1
fk

� , for k ¥ 2, (4.6)

where �
f1
xj

f

�
:�

fpxjq

f1pxjq
. (4.7)

Based on this we can express the generalized divided differences for the basis t1, x, . . . , xN�2, ϕu for N P N
and ϕ from Lemma 3.4 to quantify the oscillations of the interpolation function. To distinguish between the
Lagrange polynomials of different degree we write Li,dj for the Lagrange polynomial of degree d such that
Li,dj pxlq � δlj for l P ti� d� 1, . . . , i� 1u.

Theorem 4.2. Let the basis be given by t1, x, . . . , xN�2, ϕu for N P N and ϕ as defined in Lemma 3.4. We
recover the generalized divided differences of the form�

1
x0

f

�
� fpx0q � y0, (4.8)�

1, x, . . . , xk
x1, x2, . . . , xk�1

f

�
�
yk�1 �

°k
i�1 yiL

k�1,k�1
i pxk�1q±k

i�1pxk�1 � xiq
, for k   N � 1, (4.9)�

1, x, . . . , xN�2, ϕ
x1, x2, . . . , xN�1, xN

f

�
�

yN �
°N�1
i�1 yiL

N,N�2
i pxN q

ϕpxN q �
°N�1
i�1 ϕpxiqL

N,N�2
i pxN q

� (4.10)

By comparing this results with the RBF interpolation in Lemma 3.4, we observe that the last divided difference
can be written as �

1, x, . . . , xN�2, ϕ
x1, x2, . . . , xN�1, xN

f

�
� α. (4.11)

This suggests that α may be a good choice as the smoothness indicator based on the success of the classic
ENO scheme.

4.2. Relation to reproducing Kernel Hilbert spaces and its norm

As mentioned above there is a close relation to native spaces of conditionally positive definite functions (see
Schaback [35]). Indeed, the RBF-based basis function dϕ can be expressed in terms of the modified kernel
function Ψpx, yq � pId� PxqpId� Pyqrφpx� yqqs.

By analysing the norm of the interpolation function, based on the inner product of the native space, we have

Lemma 4.3. Let s be a RBF-interpolation function given by (3.13). Then, it has the norm

‖s‖2
φ �

N�1̧

i�1

spxiq
2 � α2dϕpxN q. (4.12)

In particular, we have

‖s‖φ �
β

dϕpxN q1{2
, (4.13)

with β � yN �
°N�1
i�1 yiLipxN q.
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This lemma proposes a scaling of dϕpxN q1{2 of our smoothness indicator.

Proof. The inner product of the native space is

pf, gqφ �
N�1̧

i�1

fpxiqgpxiq � pf � Pf, g � Pgqφ,0, (4.14)

with

pf, gqφ,0 �
M̧

j�1

Ņ

k�1

λjµkφpxj , ykq, (4.15)

for f �
°M
j�1 λjφpx, xjq and g �

°N
k�1 µkφpx, ykq [35].

We have ps� Psqpxq � β dϕpxq
dϕpxN q and

‖s‖2
φ �

N�1̧

j�1

spxjq
2 �

�
β

dϕpxN q

�2

pdϕ,dϕqφ. (4.16)

Finally, we insert the definition of dϕ to recover

pdϕ,dϕqφ � pdϕ,dϕqφ,0,

� φp0q � 2
N�1̧

j�1

φpxN � xjqLjpxN q �
N�1̧

j,k�1

φpxk � xjqLjpxN qLkpxN q,

� dϕpxN q.

�

Corollary 4.4. Let dϕ be given as in Lemma 3.4. We have

dϕpxN q ¡ 0. (4.17)

Lemma 4.5 (Equivalent Norm). The set defined by

B :�
!
ϕ
)
Y
! ϕpxjq

LjpxN q
Lj |j � 1, . . . , N � 1

)
, (4.18)

is a basis of the interpolation space. In particular, we have equivalence of the norms || � ||φ and || � ||B, where

‖s‖2
B �

Ņ

i�1

α2
i ,

for spxq � αNϕpxq �
°N�1
i�1 αi

ϕpxjq
LjpxN qLjpxq.

Proof. From the interpolation (3.13) we recover that B is a basis of the interpolation space. �

4.3. Smoothness indicator and stencil choice

Harten et al. proposed the Essentially Nonoscillatory method to control spurious oscillations at discontinuities
[18]. Its principle is based on the evaluation of multiple stencils for each cell Ci in which we need to reconstruct
the solution. Finally, one chooses the least oscillatory reconstruction to define si. Fjordholm et al. [12] showed the
sign-property for the polynomial reconstruction method with the recursive algorithm introduced in [18] which
utilizes the last divided difference as a local smoothness indicator. A sign preserving WENO reconstruction
method was proposed by Fjordholm et al. [13]. In the RBF reconstruction, the highest derivative is similar to
the RBF-part of the reconstruction in Lemma 4.3 and Theorem 4.2. As we shall show, the recursive algorithm
from the polynomial case, combined with the smoothness indicator
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ISpsq �
β

dϕpxN q1{2
with β � yN �

N�1̧

i�1

yiLipxN q, (4.19)

is sign-stable for small enough grid sizes. Numerical experiments confirm this to be true for general grids. In
the next section we prove this for the second and third degree reconstructions on general grids.

Note that Corollary 4.4 ensures the definition of ISpsq.

Algorithm 1. Recursive Algorithm.
Let the interpolation points xi�N�1, . . . , xi�N�1 and its values yi�N�1, . . . , yi�N�1 be given.
Start by initializing s0 � 0.
for j � 0, . . . , N � 2 do

if |ISpspi� sj � 1, . . . , i� sj � jqq|   |ISpspi� sj , . . . , i� sj � j � 1qq| then
Set sj�1 � sj � 1

else
Set sj�1 � sj

end if
end for
Define the stencil Si � tCi�sN , . . . , Ci�sN�N�1u.

Remark 4.6. The restriction that the sign-property holds only on grids with small grid size is not a limitation.
For infinitely smooth RBFs we can choose a small shape parameter to decrease the computational grid size.

Remark 4.7. The smoothness indicator (4.19) requires an impractical and computationally expensive evalua-
tion. However, from Lemma 4.5 we recover

dϕpxN q � ‖dϕ‖2
φ � ‖dϕ‖2

B �
�

1 �
N�1̧

i�1

LipxN q
2
	
. (4.20)

Thus, we have equivalence of the smoothness indicator IS with

rISpsq :�
β

dϕpxN q

�
1 �

N�1̧

i�1

LipxN q
2
	1{2

�
� Ņ

i�1

a2
i

	1{2

. (4.21)

To choose the least oscillatory stencil Si for the ith cell for the RBF-reconstruction we follow Algorithm 1
which is based on the one from Harten et al. [18]. We use the notation spj, . . . , j � kq that corresponds to the
reconstruction on the cells Cj , . . . , Cj�k with the interpolation points xj , . . . , xj�k and its values yj , . . . , yj�k.

Remark 4.8. In the general case of N ¥ M � 1 and a conditionally positive definite RBF of order M , we

replace α by
b°N

i�1 a
2
i in Algorithm 1. In this case it is more difficult to prove the sign-property, but numerical

experiments suggest that it remains valid.

5. Sign-property for 2nd and 3rd degree reconstruction

Based on the results from the previous sections we show the sign-property of the RBF interpolation for the
second and third degree reconstruction, i.e. N � 2, 3. This means that we deal with stencils Si of size N which
represent the interpolation points for the reconstruction on cell Ci. Let us name them

Si � tCi�rN�1 , . . . , Ci�rN�1�N�1u, (5.1a)
Si�1 � tCi�sN�1�1, . . . , Ci�sN�1�Nu, (5.1b)

where rN�1 ¤ 1 � sN�1 and Cj is the jth cell with its mid-point xj on which we apply the interpolation.
Further, we define dN�1 :� 1 � sN�1 � rN�1 ¥ 0 as the shift between the stencils. The stencils are chosen by
Algorithm 1 and there are no constraints on the stencils.
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5.1. Notation

For simplicity, we introduce some general notation. We assume the stencil length to be N and we name terms
by the highest appearing index j that exists in the underlying stencil Cj�N�1, . . . , Cj . We also define

Lijpxq � Lagrange polynomial of degree N � 1 such that (5.2)

Lijpxlq � δlj for l P ti�N � 1, . . . , i� 1u,

ϕjpxq :� φpx� xjq �
N�1̧

l�1

φpx� xj�N�lqL
j
j�N�lpxjq, (5.3)

dϕjpxq :� ϕjpxq �
N�1̧

i�1

ϕjpxiqL
j
i pxq, (5.4)

αj :�
βj

dϕjpxjq
, γj :�

βj
dϕjpxjq1{2

, βj :� yj �
N�1̧

i�1

yj�N�iL
j
j�N�ipxjq. (5.5)

5.2. Representation of the reconstructed jumps

The idea of the proof is to give a simple representation of the reconstructed jumps

jRi�1{2 :� si�1pxi�1{2q � sipxi�1{2q, (5.6)

and show that each term has the same sign as the jump in its neighboring cells. Let us assume that we have
given the stencils Si and Si�1 for the cells i and i� 1 from Algorithm 1.

Theorem 5.1 (Generalized representation). The second and third degree reconstructed jump can be written in
the following form

jRi�1{2 �

dN�1�1¸
j�0

Cjpγi�rN�1�N�j � γi�rN�1�N�1�jq � εp∆xq, (5.7)

with the constants

C0 �
dϕkpxi�1{2q

δk
�Akδk,

Cj � Cj�1 �Ak�jδk�j �
dϕkpxi�1{2q

δk
�

j̧

l�0

Ak�lδk�l,

(5.8)

and an error term

εp∆xq � γk�dN�1

�dϕk�dN�1pxi�1{2q

δk�dN�1

� CdN�1�1

	
, (5.9)

where k � i� rN�1 �N � 1.

The proof relies on multiple Lemmas which we now develop.

Lemma 5.2. Given the Lagrange polynomials. For N � 2, 3 it holds

�
N�1̧

l�1

yj�N�lL
j
j�N�lpxi�1{2q � Ajβj �

N�1̧

l�1

yj�N�l�1L
j�1
j�N�l�1pxi�1{2q, (5.10)

where

Aj �
Ljj�N�1pxi�1{2q

Ljj�N�1pxjq
� (5.11)
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Proof. The case N � 2 is immediate since the Lagrange polynomials are constant. Thus, (5.10) is

�yj�1 � βj � yj , (5.12)

For N � 3, we write the left hand side of (5.10) and subtract Ajβj

�yj�2L
j
j�2pxi�1{2q � yj�1L

j
j�1pxi�1{2q �Ajβj � �yj�1

�
Ljj�1pxi�1{2q �AjL

j
j�1pxjq

	
� yjAj . (5.13)

Note that Aj � Lj�1
j pxi�1{2q and consider

AjL
j
j�1pxjq � Ljj�1pxi�1{2q �

pxi�1{2 � xjq

pxj � xj�1q
� �Lj�1

j�1pxi�1{2q. (5.14)

�

Lemma 5.3. The reconstructed jump jRi�1{2 for the second and third degree reconstruction method can be
expressed as

jRi�1{2 �
γk�dN�1

δk�dN�1

dϕk�dN�1pxi�1{2q �
γk
δk

dϕkpxi�1{2q �

dN�1�1¸
j�0

Ak�jγk�jδk�j , (5.15)

where k � i� rN�1 �N � 1, k � dN�1 � i� sN�1 �N and δi � dϕipxiq1{2.

Proof. From Lemma 3.4 and the stencils selected from (5.1) we rewrite the Nth degree reconstructed jump
jRi�1{2 between cell i and i� 1 as

jRi�1{2 � αi�sN�1�Ndϕi�sN�1�N pxi�1{2q � αi�rN�1�N�1dϕi�rN�1�N�1pxi�1{2q

�
N�1̧

j�1

yi�sN�1�jL
i�sN�1�N
i�sN�1�j

pxi�1{2q �
N�1̧

j�1

yi�rN�1�j�1L
i�rN�1�N�1
i�rN�1�j�1 pxi�1{2q. (5.16)

The polynomial part of the reconstructed jump is

pi�1pxi�1{2q � pipxi�1{2q �

dN�1�1¸
j�0

Ai�rN�1�N�1�jβi�rN�1�N�1�j , (5.17)

by recursively applying Lemma 5.2. This yields

jRi�1{2 � αk�dN�1dϕk�dN�1pxi�1{2q � αkdϕkpxi�1{2q �

dN�1�1¸
j�0

Ak�jdϕk�jpxk�jqαk�j . (5.18)

By inserting γi � αidϕipxiq1{2 we recover the result. �

Lemma 5.4. We have

Ajdϕjpxjq � dϕjpxi�1{2q � �pϕj � PN�1
j�1 ϕ

jqpxi�1{2q, (5.19)

with Pkj�1 as the kth degree polynomial approximation with respect to the interpolation points xj , . . . , xj�1�k.

Proof. In the case N � 2, we have Aj � 1 and Lj � 1 and recover

dϕjpxjq � dϕjpxi�1{2q � φp0q � φpxj � xj�1q � φpxi�1{2 � xjq � φpxi�1{2 � xj�1q,

� �pϕj � P1
j�1ϕ

jqpxi�1{2q.
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In the case N � 3, we have

Ajdϕjpxjq � dϕjpxi�1{2q �
�
ϕjpxjqL

j
j�2pxi�1{2q � ϕjpxi�1{2qL

j
j�2pxjq

� ϕjpxj�1qL
j
j�1pxjqL

j
j�2pxi�1{2q � ϕjpxj�2qL

j
j�2pxjqL

j
j�2pxi�1{2q

� ϕjpxj�1qL
j
j�1pxi�1{2qL

j
j�2pxjq � ϕjpxj�2qL

j
j�2pxi�1{2qL

j
j�2pxjq

	 1
Ljj�2pxjq

, (5.20)

which can be simplified as

Ajdϕjpxjq � dϕjpxi�1{2q �
�
ϕjpxjqL

j
j�2pxi�1{2q � ϕjpxi�1{2qL

j
j�2pxjq

� ϕjpxj�1q
�
Ljj�1pxi�1{2qL

j
j�2pxjq � Ljj�1pxjqL

j
j�2pxi�1{2q

		 1
Ljj�2pxjq

� (5.21)

Next, we express the last term

Ljj�1pxi�1{2qL
j
j�2pxjq � Ljj�1pxjqL

j
j�2pxi�1{2q � Ljj�2pxjq � Ljj�2pxi�1{2q, (5.22)

and insert this into (5.21)

Ajdϕjpxjq � dϕjpxi�1{2q � �ϕjpxi�1{2q � ϕjpxjqL
j�1
j pxi�1{2q � ϕjpxj�1qL

j�1
j�1pxi�1{2q,

� �pϕj � PN�1
j�1 ϕ

jqpxi�1{2q.
(5.23)

where we use that

Lj�1
j pxi�1{2q �

Ljj�2pxi�1{2q

Ljj�2pxjq
, Lj�1

j�1pxi�1{2q � 1 �
Ljj�2pxi�1{2q

Ljj�2pxjq
� (5.24)

�

Now, we are ready to prove Theorem 5.1.

Proof. (Thm. 5.1)
The goal is to show the equivalence with the representation in Lemma 5.3. Therefore, we insert (5.9) into (5.7)
to recover

jRi�1{2 � CdN�1�1γk�dN�1 �

dN�1�1¸
j�1

γk�jpCj�1 � Cjq � C0γk � εp∆xq,

� CdN�1�1γk�dN�1 �

dN�1�1¸
j�1

γk�jpCj�1 � Cjq �Akδkγk

�
γk
δk

dϕkpxi�1{2q � γk�dN�1

�dϕk�dN�1pxi�1{2q

δk�dN�1

� CdN�1�1

	
.

Finally, we insert the definition of Cj to obtain

jRi�1{2 �
γk�dN�1

δk�dN�1

dϕk�dN�1pxi�1{2q �

dN�1�1¸
j�0

Ak�jδk�jγk�j �
γk
δk

dϕkpxi�1{2q.

�
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Remark 5.5. Let us define

εjp∆xq :�
1

δj�1δj

�
dϕj�1pxi�1{2q

δj
δj�1

� dϕjpxi�1{2q �Ajdϕjpxjq
	
. (5.25)

Thus, the error εp∆xq can be written as

εp∆xq � βk�d

dN�1¸
i�0

εk�ip∆xq
δk�i�1

δk�d
� (5.26)

From Lemma 5.4 we can express εjp∆xq by

εjp∆xq �
1

δj�1δj

�
dϕj�1pxi�1{2q

δj
δj�1

� pϕj � PN�1
j�1 ϕ

jqpxi�1{2q
	
. (5.27)

5.3. Sign-property for small grid size

In this section we analyse the reconstructed jumps for infinitely smooth RBFs for small grid size ∆x Ñ 0.
From Theorem 5.1 we have a simple expression for the reconstructed jump. We first show that the error εp∆xq
goes to zero, as the grid size goes to zero. Then, we show that each term of the remaining equation has the sign
of the jump yi�1 � yi.

Remark 5.6. The notation Op∆xpq for ∆xÑ 0 should be interpreted in the way that given a grid x̂0   x̂1  
� � �   x̂m we analyse the terms for the grid x0   x1   � � �   xm with xj � x̂j∆x and we use

Op∆xpq ¤ C∆xp, for ∆xÑ 0. (5.28)

Remark 5.7. When calculating the errors εj we recall that

dϕjpxq � ϕjpxq � PN�1
j ϕjpxq. (5.29)

Theorem 5.8. Let φ be an infinitely smooth RBF of first or second order. Then, we have that εp∆xq � Op∆x2q
for ∆xÑ 0 for N � 2, 3 and

jRi�1{2 �

dN�1�1¸
j�0

Cjpγi�rN�1�N�j � γi�rN�1�N�1�jq�Op∆x2q. (5.30)

Proof. We start by analysing the different parts in the error term εkp∆xq. Note that as φ is a conditionally
positive definite RBF

φpxq � hpx2q. (5.31)

Thus, it follows by induction that φp2k�1qp0q � 0 for k P N and we can neglect odd terms in the Taylor
expansions.

Let us start with the case N � 2 and a first order RBF:

dϕkpyq � φpy � xkq � φpy � xk�1q � φpxk�1 � xkq � φp0q,

�
φ2p0q

2

�
py � xkq

2 � py � xk�1q
2 � pxk�1 � xkq

2
	
�Op∆x4q,

� �φ2p0qpxk�1 � xkqpxk�1 � yq �Op∆x4q.

(5.32)

We further have that

pϕk � P1
k�1ϕ

kqpyq � φpy � xkq � φpy � xk�1q � φp0q � φpxk � xk�1q,

�
φ2p0q

2

�
py � xkq

2 � py � xk�1q
2 � pxk�1 � xkq

2
	
�Op∆x4q,

� �φ2p0qpxk�1 � xkqpxk � yq �Op∆x4q. (5.33)
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From (5.32) we recover

δk
δk�1

�
xk � xk�1

xk�1 � xk
�Op∆x2q, (5.34)

δkδk�1 �
φ2p0q

2
pxk � xk�1qpxk�1 � xkq �Op∆x4q � Op∆x2q, (5.35)

which allows us to conclude

εkp∆xq � Op∆x2q. (5.36)

To find a bound for εp∆xq we further need δk{δk�1 � Op1q and βk�d � Op1q. The latter is clear since the
reconstructed function is bounded and Lijpx

iq is Op1q. Further, δk{δk�1 � Op1q results from (5.34). Using (5.36)
in (5.26) we conclude that εp∆xq � Op∆x2q.

Next, we consider the more complicated case with N � 3 and a second order RBF φ. Hence, we need to
analyse the following two terms:

dϕk�1pyq � ϕk�1pyq � ϕk�1pxkqL
k�1
k pyq � ϕk�1pxk�1qL

k�1
k�1pyq,

� φpy � xk�1q � φpy � xkqL
k�1
k pxk�1q � φpy � xk�1qL

k�1
k�1pxk�1q

�
�
φpxk � xk�1q � φp0qLk�1

k pxk�1q � φpxk � xk�1qL
k�1
k�1pxk�1q

	
Lk�1
k pyq

�
�
φpxk�1 � xk�1q � φpxk�1 � xkqL

k�1
k pxk�1q � φp0qLk�1

k�1pxk�1q
	
Lk�1
k�1pyq, (5.37)

pϕk � P2
k�1ϕ

kqpyq � ϕkpyq � ϕkpxkqL
k�1
k pyq � ϕkpxk�1qL

k�1
k�1pyq,

� φpy � xkq � φpy � xk�1qL
k
k�1pxkq � φpy � xk�2qL

k
k�2pxkq

�
�
φp0q � φpxk � xk�1qL

k
k�1pxkq � φpxk � xk�2qL

k
k�2pxkq

	
Lk�1
k pyq

�
�
φpxk�1 � xkq � φp0qLkk�1pxkq � φpxk�1 � xk�2qL

k
k�2pxkq

	
Lk�1
k�1pyq. (5.38)

As before, we apply the Taylor expansion

ϕk�1pyq � φpy � xk�1q � φpy � xkqL
k�1
k pxk�1q � φpy � xk�1qL

k�1
k�1pxk�1q,

�
φ2p0q

2

�
py � xk�1q

2 � py � xkq
2Lk�1

k pxk�1q � py � xk�1q
2Lk�1

k�1pxk�1q
	

�
φp4qp0q

2

�
py � xkq

4 � py � xkq
4Lk�1

k pxk�1q � py � xk�1q
4Lk�1

k�1pxk�1q
	

�Op∆x6q. (5.39)

We write

dϕk�1pyq � a1
φ2p0q

2
� a2

φp4qp0q
4!

�Op∆x6q,

pϕk � P2
k�1ϕ

kqpyq � b1
φ2p0q

2
� b2

φp4qp0q
4!

�Op∆x6q.

Let us calculate the coefficients a1 and a2

a1 � ak�1
1 Lk�1

k�1pxk�1q � ak1L
k�1
k pxk�1q. (5.40)
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From standard algebra we recover that ak�1
1 � ak1 � 0. The fourth order term is

a2 � py � xk�1q
4 � py � xkq

4Lk�1
k pxk�1q � py � xk�1q

4Lk�1
k�1pxk�1q

�
�
pxk � xk�1q

4 � pxk � xk�1q
4Lk�1

k�1pxk�1q
	
Lk�1
k pyq

�
�
pxk�1 � xk�1q

4 � pxk�1 � xkq
4Lk�1

k pxk�1q
	
Lk�1
k�1pyq,

� 6pxk�1 � xk�1qpxk � xk�1qpxk�1 � yqpxk � yq.

(5.41)

We repeat this for the coefficients b1 and b2

b1 � bk�1
1 Lkk�1pxkq � bk�2

1 Lkk�2pxkq, (5.42)

with bk�1
1 � bk�2

1 � 0. The fourth order term is

b2 � py � xkq
4 � py � xk�1q

4Lkk�1pxkq � py � xk�2q
4Lkk�2pxkq

�
�
� pxk � xk�1q

4Lkk�1pxkq � pxk � xk�2q
4Lkk�2pxkq

	
Lk�1
k pyq

�
�
pxk�1 � xkq

4 � pxk�1 � xk�2q
4Lkk�2pxkq

	
Lk�1
k�1pyq,

� 6pxk�2 � xkqpxk�1 � xkqpxk�1 � yqpxk � yq.

(5.43)

The results can be summarized as

dϕk�1pyq �
φp4qp0q

4
pxk�1 � xk�1qpxk � xk�1qpxk�1 � yqpxk � yq�Op∆x6q, (5.44)

pϕk � P2
k�1ϕ

kqpyq �
φp4qp0q

4
pxk�2 � xkqpxk�1 � xkqpxk�1 � yqpxk � yq�Op∆x6q. (5.45)

From this we recover

δk
δk�1

�
pxk � xk�1qpxk � xk�2q

pxk�1 � xkqpxk�1 � xxq
�Op∆x2q, (5.46)

δkδk�1 �
φp4qp0q

4
pxk � xk�1qpxk � xk�2qpxk�1 � xkqpxk�1 � xxq �Op∆x6q, (5.47)

� Op∆x4q. (5.48)

Thus, we have

dϕk�1pyq
δk
δk�1

� pϕk � P2
k�1ϕ

kqpyq � Op∆x6q, (5.49)

which yields
εkp∆xq � Op∆x2q, (5.50)

for ∆x Ñ 0. Equivalent to the case N � 2, we can combine (5.46) and (5.50) in (5.26) and conclude εp∆xq �
Op∆x2q. �

Since the error term εp∆xq vanishes, the remaining step is to prove that each term of (5.30) has the same
sign as the jump.

Theorem 5.9 (Sign-property of second and third degree RBF-reconstruction). Let us assume that the stencil
Si and Si�1 are chosen with the Algorithm 1. Then, for infinitely smooth RBFs of first or second order it holds
that

sgnpCjpγi�rN�1�N�j � γi�rN�1�N�1�jqq � sgnpyi�1 � yiq, (5.51)

for all j � 0, . . . , dN�1 � 1 and for ∆xÑ 0.
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Proof. The proof is based on a study of all possible choices of stencils, that may result from Algorithm 1:

– Si � tCi�1, Ciu, Si�1 � tCi, Ci�1u,
– Si � tCi�1, Ciu, Si�1 � tCi�1, Ci�2u,
– Si � tCi, Ci�1u, Si�1 � tCi�1, Ci�2u,
– ...

For each case we look at any inequality due to Algorithm 1 to recover the particular stencil configuration,
and show for each case that (5.51) is fulfilled.

Note that jRi�1{2 � 0, if Si � Si�1. Hence, we do not include such cases in the analysis. Further, we use the
notation

A � B if A � B �Op∆xq, for ∆xÑ 0. (5.52)

Let us first consider N � 2 and assume φ is of first order.

Case 1. Consider the stencils Si � tCi�1, Ciu, Si�1 � tCi, Ci�1u, which require the following conditions

|γi|   |γi�1|, |γi�1|   |γi�2|. (5.53)

Further, we have the representation of the jump for small grid sizes

jRi�1{2 � C0pγi�1 � γiq,

and from (5.32) it follows that

C0 � δi

�
dϕipxi�1{2q

dϕipxiq
� 1

�
� δi

xi�1{2 � xi

xi � xi�1
¡ 0.

Hence
sgn

�
C0pγi�1 � γiq

�
� sgnpγi�1 � γiq � sgnpγi�1q � sgnpyi�1 � yiq, (5.54)

since
|a| ¡ |b| ñ sgnpa� bq � sgnpaq. (5.55)

Case 2. Consider the stencils Si � tCi�1, Ciu, Si�1 � tCi�1, Ci�2u, which is equivalent to the conditions

|γi|   |γi�1|, |γi�1| ¡ |γi�2|. (5.56)

The jump can be represented as

jRi�1{2 � C0pγi�1 � γiq � C1pγi�2 � γi�1q.

As before it holds that sgn
�
C0pγi�1 � γiq

�
� sgnpyi�1 � yiq and

C1 � C0 � δi�1 � δi
xi�1{2 � xi�1

xi � xi�1
  0. (5.57)

Thus, we get for the second term

sgn
�
C1pγi�2 � γi�1q

�
� sgnpγi�1 � γi�2q � sgnpγi�1q � sgnpyi�1 � yiq,

where we used (5.55) and (5.56).
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Case 3. In the last case of the second degree reconstruction we have the stencils Si � tCi, Ci�1u, Si�1 �
tCi�1, Ci�2u, equivalent to the conditions

|γi| ¡ |γi�1|, |γi�1| ¡ |γi�2|. (5.58)

The representation of the jump is
jRi�1{2 � C0pγi�2 � γi�1q.

As in the first case we recover from (5.32), that

C0 � δi�1

�
dϕi�1pxi�1{2q

dϕi�1pxiq
� 1

�
� δi

xi�1{2 � xi�1

xi�1 � xi
  0,

and
sgn

�
C0pγi�2 � γi�1q

�
� sgnpγi�1 � γi�2q � sgnpγi�1q. (5.59)

This completes the proof of the sign-property for the second degree reconstruction with infinitely smooth
RBFs of first order for small enough grids.

The proof for N � 3 can be found in Appendix A. �

6. Entropy stable RBF-based methods

In one space dimension there is no need to deviate from the polynomial reconstruction. For unstructured
grids in multiple dimensions the problem is the construction of an interpolation function. There exist a lot cell
or point configurations such that the reconstruction problem is not well-defined. This issue can be relaxed by
solving an overdetermined system of equations, but then we lose the exact interpolation property. The RBF-
interpolation can circumvent this problem since we do not need a unisolvent set of cells or points, but only a
unisolvent subset of lower order. Thus, by adding some extra cells we significantly reduce the possibility that
an unsolvable configuration occurs.

6.1. RBF-TeCNOp method

Based on the theory of entropy stable schemes and the work of Fjordholm et al. [11] we introduce the RBF-
TeCNOp scheme. By using Algorithm 1 with (4.21) for calculating the least oscillatory stencil, Theorem 5.9
shows that the sign-property holds for 2nd and 3rd degree reconstruction in the limit of ∆xÑ 0. We conjecture
that this result generalizes to higher order reconstructions. Thus, by combining the framework proposed in
[11] with the RBF reconstruction using multiquadratics we recover an entropy stable essentially nonoscillatory
RBF-based finite difference method of arbitrary high order. Furthermore, we use the RBF-RA algorithm to
circumvent ill-conditioning in the reconstruction step [42].

In more detail, for constructing a pth order RBF-TeCNOp method of the form (2.15) we use an entropy
conservative flux of order 2k with k � rp{2s (see Thm. 2.2) and an ENO based RBF reconstruction (Algorithm 1)
on the scaled entropy variables of order p with multiquadratics of order p� 1.

Based on the Roe diffusion operator
R|Λ|R�1vuw, (6.1)

with the eigenvector matrix R and the diagonal matrix of the eigenvalues Λ, evaluated at the Roe average,
we are choosing R and Λ in the same way. By Merriam [26] there is a scaling of the eigenvectors such that
RRT � vu � Buvpui�1{2q. Thus, we get the relation

R|Λ|R�1vuw � R|Λ|R�1vuvvw � R|Λ|RT vvw, (6.2)
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that has a similar structure to that of a diffusion operator (2.16). The numerical diffusion term can be written
as

Di�1{2xxvyyi�1{2 � Ri�1{2Λi�1{2xxwyyi�1{2, (6.3)

with the scaled entropy variables (2.18). Furthermore, we choose Λi�1{2 � diagpλ1pui�1{2q, . . . , λN pui�1{2qq and
ui�1{2 �

ui�ui�1
2 with the eigenvalues Λpuq of the Jacobian ∇uf .

It is important to note that the ill-conditioning of the interpolation matrix does not only affect the evaluation
of the reconstruction; it also affects the calculation of the smoothness indicator which is based on the sum of
the squares of the coefficients of the RBF-part of the interpolation.

From the theory we expect that the error of the interpolation with infinitely smooth RBFs decreases for
smaller shape parameters. However, computations suggest that the choice of the stencil does not depend on the
shape parameter. Thus, we calculate the stencil with respect to a stable shape parameter.

6.2. RBF-finite volume method

The combination of the RBF interpolation with finite volume methods works analogeously to the RBF-
TeCNOp Method. Aboiyar et al. [1] combine in their work a high-order WENO approach with a polyharmonic
spline reconstruction and Bigoni et al. [3] apply a high-order WENO approach to multiquadratics.

We construct an entropy stable finite volume method of second order that is essentially nonoscillatory by
combining (2.22) with a second order accurate RBF interpolation that acts on the scaled entropy variables.
Therefore, we are using multiquadratics with the smoothness indicator (4.21), combined with Algorithm 1 and
the vector valued rational approximation to ensure a stable evaluation of the interpolation function.

We conjecture the sign-property for the RBF reconstruction on mean values that is based on Algorithm 1
which is fulfilled in the pointwise case for second and third degree reconstruction in the limit ∆xÑ 0 (Thm. 5.9).
Under this assumption we recover a second order entropy stable finite volume (RBF-EFV2) method. This method
can be generalized to general grids in higher dimensions [32].

7. Numerical results

In this chapter, we are evaluating the second order entropy stable finite volume (EFV2) and the TeCNOp
methods with RBF reconstruction for one-dimensional problems and compare it with its original version. Note
that in one dimension we do not expect to do better than the classical methods, but also not worse.

For the polynomial reconstruction we use the original algorithm from [18] to select the stencil and in the
RBF case we use Algorithm 1. The EFV2 and TeCNOp methods are based on the diffusion term (6.3).

The parameters for the vector-valued rational approximation are chosen as described in [42]. Further, we
choose the shape parameter ε � 0.1 for all examples.

7.1. Linear advection equation

We consider the linear advection equation

ut � aux � 0, (7.1)

with wave speed a � 1 and periodic boundary conditions [25]. With the entropy function ηpuq � u2

2 we have

qpuq � a
u2

2
, vpuq � u, ψpuq � a

u2

2
, (7.2)

and obtain the second order entropy conservative flux

F̃i�1{2 � ūi�1{2, (7.3)



946 J. S. HESTHAVEN AND F. MÖNKEBERG

Table 2. Convergence rates of TeCNOp and EFV2 methods using multiquadratics and poly-
nomials for the linear advection and Burgers equation on r0, 1s at time t � 0.1.

N
Linear Advection equation Burgers’ equation

RBF Reconstr Poly Reconstr RBF Reconstr Poly Reconstr
error rate error rate error rate error rate

TeCNO2 16 2.27e-02 – 2.26e-02 – 3.01e-02 – 2.97e-02 –
32 7.26e-03 1.64 7.26e-03 1.64 9.01e-03 1.74 9.01e-03 1.72
64 2.06e-03 1.82 2.06e-03 1.82 2.46e-03 1.87 2.46e-03 1.87
128 5.44e-04 1.92 5.44e-04 1.92 6.88e-04 1.84 6.88e-04 1.84
256 1.45e-04 1.91 1.45e-04 1.91 1.88e-04 1.87 1.88e-04 1.87

TeCNO3 16 1.48e-03 - 1.48e-03 – 5.19e-03 – 5.17e-03 –
32 1.89e-04 2.97 1.89e-04 2.97 9.23e-04 2.49 9.23e-04 2.49
64 2.36e-05 3.00 2.36e-05 3.00 1.47e-04 2.65 1.47e-04 2.65
128 2.96e-06 3.00 2.96e-06 3.00 2.52e-05 2.54 2.52e-05 2.54
256 3.70e-07 3.00 3.70e-07 3.00 4.13e-06 2.61 4.13e-06 2.61

TeCNO4 16 5.61e-04 - 5.60e-04 – 2.84e-03 – 2.84e-03 –
32 3.98e-05 3.82 3.98e-05 3.82 5.37e-04 2.40 5.37e-04 2.40
64 2.62e-06 3.92 2.62e-06 3.93 5.76e-05 3.22 5.76e-05 3.22
128 1.74e-07 3.91 1.74e-07 3.90 4.97e-06 3.54 4.97e-06 3.54
256 1.14e-08 3.93 1.14e-08 3.93 6.97e-07 2.83 6.97e-07 2.83

TeCNO5 16 4.40e-05 - 4.40e-05 – 1.17e-03 – 1.17e-03 –
32 1.40e-06 4.98 1.40e-06 4.98 2.90e-04 2.01 2.90e-04 2.01
64 4.43e-08 4.98 4.43e-08 4.98 1.19e-05 4.61 1.19e-05 4.61
128 1.47e-09 4.92 1.47e-09 4.92 6.84e-07 4.12 6.84e-07 4.12
256 5.50e-11 4.74 5.50e-11 4.74 1.81e-07 1.92 1.81e-07 1.92

EFVM2 16 2.25e-02 - 2.24e-02 – 2.68e-02 – 2.68e-02 –
32 7.26e-03 1.63 7.25e-03 1.63 8.10e-03 1.73 8.10e-03 1.73
64 2.06e-03 1.82 2.06e-03 1.82 2.28e-03 1.83 2.28e-03 1.83
128 5.44e-04 1.92 5.44e-04 1.92 6.40e-04 1.84 6.40e-04 1.83
256 1.45e-04 1.91 1.45e-04 1.91 1.78e-04 1.85 1.78e-04 1.85

Notes. We use periodic boundary conditions and u0pxq � sinp2πxq, shape parameter ε � 0.1, CFL � 0.5.

Table 3. Runtime comparison for the 5th order method solving the linear advection equation.

RBF + RBF-RA RBF Poly

16 4.3 3.2 2.1
32 7.4 5.0 3.7
64 21.8 12.6 6.6
128 73.5 38.0 16.9
256 279.5 132.4 44.9

to construct a high-order accurate scheme. We use a 5th order SSPRK method for the time discretization in
the TeCNOp method [17]. For the EFV2 method we use the second order entropy conservative flux plus a third
order SSPRK method in time.

The convergence results for the smooth initial conditions are shown in Table 2. The L1-errors are the same for
the different reconstruction methods for grids of size smaller than 1{32 and their convergence rates are as expected.

In Table 3 we present a comparison of the runtime for the 5th order TeCNO scheme with RBF reconstruction
using the RBF-RA algorithm, RBF reconstruction evaluated at a stable shape parameter. The RBF method
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Figure 1. Burgers’ equation on r0, 1s at time t � 0.3 with continuous initial condition u0 �
sinp2πxq, shape parameter ε � 0.1, CFL � 0.5, solved by TeCNO5.

based on the RBF-RA algorithm solves multiple times the same system of equations with different shape
parameters to approximate the final one, explaining the difference between the first two columns. The difference
between the RBF and the polynomial reconstruction comes from the fact that the RBF algorithm solves in each
recursive step of Algorithm 1 a system of equations and the polynomial case calculates just the next divided
difference.

7.2. Burgers’ equation

For the Burgers equation

ut �
1
2
pu2qx � 0, (7.4)

we study the order of convergence and check if the methods handle discontinuities without introducing major
oscillations. The EFV2 and TeCNOp method are based on the entropy ηpuq � u2{2 and

qpuq �
u3

3
, vpuq � u, ψpuq �

u3

6
, (7.5)

leading to an entropy conservative flux

F̃i�1{2 �
u2
i � uiui�1 � u2

i�1

6
, (7.6)

which is used to construct an high-order scheme. For the time discretization we use a 5th order SSPRK method
[17]. Furthermore, we choose the domain r0, 1s and the initial conditions u0pxq � sinp2πxq.

A detailed analysis of the convergence is shown in Table 2. The convergence rate is as expected and the
errors of the two different methods (polynomial reconstruction and RBF reconstruction) coincide. At time
t � 0.3 a discontinuity emerges at x � 0.5. This can be resolved accurately with vanishing oscillations (Fig. 1).
Furthermore, we observe that the difference between the reconstruction methods vanishes in the smooth part
while at the shock it stays small.

7.3. Shallow water equations

For the shallow water equations (2.6) we consider the dambreak problem with the initial conditions

ph0,m0q �

#
p1.5, 0q if |x| ¤ 0.2
p1, 0q if |x| ¡ 0.2

, (7.7)
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Figure 2. Shallow water equations on r�1, 1s at time t � 0.4 with N � 100, shape parameter
ε � 0.1, CFL � 0.5, solved by TeCNO and EFV2.

on the domain r�1, 1s and periodic boundary conditions. We use a second order entropy stable flux (2.9) to
construct a high-order flux and a third order SSPRK method for the time integration.

Fjordholm et al. [11] showed that the standard TeCNO scheme behaves similar to the ENO-MUSCL scheme.
The same holds for the RBF-TeCNOp scheme and the RBF-EFV2 scheme as seen in Figure 2. The difference
between the RBF methods and the polynomial scheme is around Op10�6q in the region where the discontinuity
passed and much smaller in smooth regions.

7.4. Euler equations

The one-dimensional Euler equations (2.10) are a system of size three. As for the shallow water equations
we use a third order SSPRK method and as a second order entropy conservative flux we use the KEPEC-flux
(2.13). Further, we choose γ � 1.4 which simulates a diatomic gas such as air.

7.4.1. Sod’s shock tube problem

Sod’s shock tube problem is a Riemann problem where two gases with different densities collide. A rarefaction
wave emerges, followed by a contact and a shock discontinuity. The initial conditions are

pρ0,m0, p0q �

#
p1, 0, 1q if x   0
p0.125, 0, 0.1q if x ¥ 0

, (7.8)

where m � uρ. The results at time t � 2 of the RBF-TeCNOp and RBF-EFV2 methods are shown in Figure 3,
clearly representing the rarefaction wave, the contact, and the shock discontinuity. Comparing the solutions
obtained with polynomial reconstruction or with RBF reconstruction, we see in Figure 4 that their difference
is decreasing with the refinement of the grid.

7.4.2. Lax shock tube problem

The Lax shock tube problem is another Riemann problem with the initial conditions

pρ0,m0, p0q �

#
p0.445, 0.698, 3.528q if x   0
p0.5, 0, 0.571q if x ¥ 0

, (7.9)

where m � uρ. The RBF-TeCNOp methods of order three to five represent the big shock in the density sharply
with just N � 100 points, see Figure 5. The second order RBF-EFV2 method does not perform well for this
case.
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Figure 3. Sod’s shock tube problem on r�5, 5s at time t � 2 with N � 100, shape parameter
ε � 0.1, CFL � 0.3, solved by RBF-TeCNOp and RBF-EFV2.

Figure 4. Pointwise error between RBF and polynomial based reconstruction EFV2 method
for the Sod’s shock tube problem on r�5, 5s at time t � 2 for different number of grid points
N , shape parameter ε � 0.1, CFL � 0.3.

7.4.3. Shu-Osher shock-entropy wave interaction problem

The Shu-Osher problem models a shock-turbulence interaction in which a shock interacts with a low frequency
wave. Due to this interaction high-frequency oscillations develop over time. The initial conditions are

pρ0,m0, p0q �

#
p3.857143, 2.629369, 10.33333q if x   �4
p1 � 0.2 sinp5xq, 0, 1q if x ¥ �4

, (7.10)
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Figure 5. Lax shock tube problem on r�5, 5s at time t � 1.3 with N � 100, shape parameter
ε � 0.1, CFL � 0.3, solved by RBF-TeCNOp and RBF-EFV2.

Figure 6. Shu-Osher problem on r�5, 5s at time t � 1.8 with N � 200, shape parameter
ε � 0.1, CFL � 0.3 solved by RBF-TeCNOp and RBF-EFV2.

where m � uρ. The RBF-TeCNOp methods of order larger than three recover the high frequency oscillations
well. The RBF-EFV2 method fits the low order oscillations and the shock, but not the high frequency one due
to excessive dissipation (Fig. 6).
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Figure 7. Low density problem on r0, 1s at time t � 0.12 with N � 100, shape parameter
ε � 0.1, CFL � 0.1 solved by RBF-TeCNOp.

Figure 8. WC blast wave problem on r0, 1s at time t � 0.038 with N � 200, shape parameter
ε � 0.1, CFL � 0.1 solved by RBF-TeCNOp and RBF-EFV2.

7.4.4. Low density problem

The low density problem on r0, 1s is a Riemann problem that tests the ability of preserving positive density
and pressure. The initial condition are

pρ0,m0, p0q �

#
p1,�2, 0.4q if x   0.5
p1, 2, 0.4q if x ¥ 0.5

, (7.11)

with Neumann boundary conditions.
In Figure 7 we observe the increasing accuracy of the RBF-TeCNOp method with increasing order p. Note

that by choosing the wrong smoothness indicator, negative pressures will occur.
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Figure 9. WC blast wave problem on r0, 1s at time t � 0.038 with shape parameter ε � 0.1,
CFL � 0.1 solved by RBF-TeCNO4.

7.4.5. Two interacting blast waves

A more complex one dimensional example is the two interacting blast waves, introduced by Woodward et al.
[41]. It is based on two blast waves that interact and introduce low pressures and densities. Its initial condition
is

pρ0,m0, p0q �

$'&'%
p1, 0, 1000q if x   0.1
p1, 0, 0.01q if 0.1 ¤ x   0.9
p1, 0, 100q if x ¥ 0.9

. (7.12)

Compared to the low density problem we add here an additional challenge caused by the collision of the two
shocks. Note that the standard version of the TeCNO method always produces negative pressures or densities
for the RBF and polynomial reconstruction.

Thus, we introduce a more complicated symmetric positive definite dissipation operator (2.16), similar to the
one introduced by Derigs et al. [6]. The goal is to mimic the more dissipative Rusanov-type diffusion operator
such that

αvuwi�1{2 � Di�1{2vvwi�1{2. (7.13)

See Appendix B for more details.
The results with the new dissipation matrix approximate the correct solution and we can see an improvement

with increasing order (Fig. 8) and for increasing number of points (Fig. 9).

8. Conclusions

We introduce a new smoothness indicator and an algorithm to choose the least oscillatory stencil based on
RBF interpolation. This smoothness indicator is directly related to the RBF interpolation and it is based on
the generalized divided difference method. For this ENO reconstruction we prove the sign-property in the finite
difference case for the second and third order reconstruction in the limit ∆xÑ 0 for infinitely smooth RBFs on
general grids. Further, we conjecture this property for higher order schemes and for the case of the average-based
interpolation based on numerical experiments. Note that the condition ∆xÑ 0 can be replaced by the condition
for the shape parameter that εÑ 0.
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Based on this, we construct a RBF-TeCNOp method as an arbitrary high-order entropy stable finite difference
method and the RBF-EFV2 method as a second order entropy stable finite volume method. Both are based on
high-order entropy conservative schemes and a diffusion term which depends on the RBF-reconstruction in the
scaled entropy variables. To circumvent the ill-conditioning of the local interpolation problems we apply the
vector-valued rational approximation method [42].

Thus, we propose a method that has all the properties of the original TeCNO scheme [11]. It is entropy
stable, high-order accurate for smooth solutions and essentially nonoscillatory near discontinuities. To show
their robustness we present a range of numerical simulations in one dimension. The solutions coincide up to a
small error with those obtained from the original TeCNO method.

The main drawback of the method is the expensive evaluation of the vector-valued approximation to circum-
vent ill-conditioning, but this problem is being considered. The advantages of RBF-based reconstructions will
become much clearer for high-dimensional problems and we hope to report on this in the near future.

Appendix A. Proof of Theorem 5.9 for the 3rd degree reconstruction

Proof. The proof is based on a study of all possible choices of stencils, that may result from Algorithm 1:

– Si � tCi�2, Ci�1, Ciu, Si�1 � tCi�1, Ci, Ci�1u,
– Si � tCi�2, Ci�1, Ciu, Si�1 � tCi, Ci�1, Ci�2u,
– Si � tCi�2, Ci�1, Ciu, Si�1 � tCi�1, Ci�2, Ci�3u,
– . . .

We consider N � 3 (third degree reconstruction) and assume φ is of second order. The main difference
between the second and third degree is that Algorithm 1 now gives two conditions for each stencil that depend
on different grid sizes. Therefore, we introduce the superscript l to indicate the size of the stencil

δlk � dϕkpxkq1{2, βlk � yk �
l�1̧

i�1

yk�lL
k,l
k�lpxlq, γlk �

βlk
δlk
,

based on the stencil tCk�l�1, � � � , Cku. Further, we can show with simple calculations that

β3
k�1 � β2

k�1 �
xk�1 � xk
xk � xk�1

β2
k.

From (5.32) and (5.44) we recover
xk�1 � xk
xk � xk�1

�
δ2k�1

δ2k
,

which allows us to conclude that

δ3k�1γ
3
k�1 � β3

k�1 � β2
k�1 �

δ2k�1

δ2k
β2
k � δ2k�1pγ

2
k�1 � γ2

kq,

and so

γ3
k�1 �

δ2k�1

δ3k�1

pγ2
k�1 � γ2

kq. (A.1)

Note that the term δ2k�1{δ
3
k�1 is always positive (Cor. 4.4). Next, we can show the sign of the constant Cl

using Theorem 5.1

C0 � δk

�
dϕkpxi�1{2q

dϕkpxkq
�Ak

�
� δk

�
pxk�2 � xi�1{2qpxk�1 � xi�1{2q

pxk�2 � xkqpxk�1 � xkq
�
xi�1{2 � xk�1

xk � xk�1

�
,

� δk
pxi�1{2 � xk�1qpxi�1{2 � xkq

pxk � xk�2qpxk � xk�1q
,
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with k � i� rN�1 �N � 1. By induction one proves that

Cl � δk
xi�1{2 � xk�l�1

xk � xk�2

xi�1{2 � xk�l

xk � xk�1
, (A.2)

for l P N and we recover
sgnpClq � p�1qrN�1�N�1�l. (A.3)

Case 1. Consider the stencils Si � tCi�2, Ci�1, Ciu, Si�1 � tCi�1, Ci, Ci�1u, equivalent to the conditions

|γ2
i |   |γ2

i�1|, |γ3
i |   |γ3

i�1|, |γ2
i�1|   |γ2

i�2|, |γ3
i�1|   |γ3

i�2|. (A.4)

Note that this case can be characterized by d2 � 1 and s2 � r2 � �2. From Theorem 5.8 we know

jRi�1{2 � C0pγ
3
i�1 � γ3

i q, (A.5)

and we recover

sgn
�
C0pγ

3
i�1 � γ3

i q
�
� sgnpγ3

i�1 � γ3
i q � sgnpγ3

i�1q � sgnpγ2
i�1 � γ2

i q � sgnpγ2
i�1q � sgnpyi�1 � yiq,

where we used (A.1), (A.2) and (A.4).

Case 2. Assume the stencil Si � tCi�2, Ci�1, Ciu, Si�1 � tCi, Ci�1, Ci�2u, equivalent to the conditions

|γ2
i |   |γ2

i�1|, |γ3
i |   |γ3

i�1|,#
|γ2
i�1|   |γ2

i�2|, |γ3
i�1| ¡ |γ3

i�2|, paq

|γ2
i�1| ¡ |γ2

i�2|, |γ3
i�2|   |γ3

i�3|. pbq

(A.6)

The jump can be written by

jRi�1{2 � C0pγ
3
i�1 � γ3

i q � C1pγ
3
i�2 � γ3

i�1q. (A.7)

For each term we calculate its sign. The first term can be understood in the same way as above and it holds
for both paq and pbq in (A.6)

sgn
�
C0pγ

3
i�1 � γ3

i q
�
� sgnpyi�1 � yiq,

For the second term we first assume that paq holds and compute its sign as

sgn
�
C1pγ

3
i�2 � γ3

i�1q
�
� sgnpγ3

i�1 � γ3
i�2q � sgnpγ3

i�1q � sgnpγ2
i�1 � γ2

i q � sgnpγ2
i�1q � sgnpyi�1 � yiq.

For pbq we split it in two terms using (A.1)

C1pγ
3
i�2 � γ3

i�1q � C1

δ2i�2

δ3i�2

pγ2
i�2 � γ2

i�1q � C1

δ2i�1

δ3i�1

pγ2
i�1 � γ2

i q,

and calculate the sign of each one

sgn
�
C1

δ2i�2

δ3i�2

pγ2
i�2 � γ2

i�1q
	
� sgnpγ2

i�1 � γ2
i�2q � sgnpγ2

i�1q � sgnpyi�1 � yiq,

sgn
�
� C1

δ2i�1

δ3i�1

pγ2
i�1 � γ2

i q
	
� sgnpγ2

i�1 � γ2
i q
	
� sgnpγ2

i�1q � sgnpyi�1 � yiq.
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Case 3. Consider the stencil Si � tCi�2, Ci�1, Ciu, Si�1 � tCi�1, Ci�2, Ci�3u, equivalent to the conditions

|γ2
i |   |γ2

i�1|, |γ3
i |   |γ3

i�1|, |γ2
i�1| ¡ |γ2

i�2|, |γ3
i�2| ¡ |γ3

i�3|. (A.8)

For the reconstructed jump we have

jRi�1{2 � C0pγ
3
i�1 � γ3

i q � C1pγ
3
i�2 � γ3

i�1q � C2pγ
3
i�3 � γ3

i�2q. (A.9)

The sign of each term is

sgn
�
C0pγ

3
i�1 � γ3

i q
�
� sgnpγ3

i�1 � γ3
i q � sgnpγ3

i�1q � sgnpγ2
i�1 � γ2

i q � sgnpγ2
i�1q � sgnpyi�1 � yiq.

For the second term we need

sgnpγ3
i�1q � sgnpγ2

i�1 � γ2
i q � sgnpγ2

i�1q,

sgnp�γ3
i�2q � sgnpγ2

i�1 � γ2
i�2q � sgnpγ2

i�1q,

such that we can show

sgn
�
C1pγ

3
i�2 � γ3

i�1q
�
� sgnpγ3

i�1 � γ3
i�2q � sgnpγ2

i�1q � sgnpyi�1 � yiq.

The last term yields

sgn
�
C2pγ

3
i�3 � γ3

i�2q
�
� sgnpγ3

i�3 � γ3
i�2q � � sgnpγ3

i�2q � sgnpγ2
i�1 � γ2

i�2q � sgnpγ2
i�1q � sgnpyi�1 � yiq.

Case 4. Assume the stencils Si � tCi�1, Ci, Ci�1u, Si�1 � tCi, Ci�1, Ci�2u, equivalent to the conditions#
|γ2
i |   |γ2

i�1|, |γ3
i | ¥ |γ3

i�1|, pa1q
|γ2
i | ¥ |γ2

i�1|, |γ3
i�1|   |γ3

i�2|, pa2q#
|γ2
i�1|   |γ2

i�2|, |γ3
i�1| ¥ |γ3

i�2|, pb1q
|γ2
i�1| ¥ |γ2

i�2|, |γ3
i�2|   |γ3

i�3|. pb2q

(A.10)

Here, we have the different combinations pa1, b1q, pa1, b2q, pa2, b1q and pa2, b2q, where pa2, b1q is not possible.
The jump is represented as

jRi�1{2 � C0pγ
3
i�2 � γ3

i�1q. (A.11)

Let us first consider the combination pa1, b1q. We have

sgn
�
C0pγ

3
i�2 � γ3

i�1q
�
� sgnpγ3

i�1 � γ3
i�2q � sgnpγ3

i�1q � sgnpγ2
i�1 � γ2

i q � sgnpγ2
i�1q � sgnpyi�1 � yiq.

In the case pa1, b2q, we precalculate

sgnpγ3
i�1q � sgnpγ2

i�1 � γ2
i q � sgnpγ2

i�1q,

sgnp�γ3
i�2q � sgnpγ2

i�1 � γ2
i�2q � sgnpγ2

i�1q.

Thus,

sgn
�
C0pγ

3
i�2 � γ3

i�1q
�
� sgnpγ3

i�1 � γ3
i�2q � sgnpγ2

i�1q � sgnpyi�1 � yiq.

In the last case pa2, b2q, we get

sgn
�
C0pγ

3
i�2 � γ3

i�1q
�
� sgnpγ3

i�1 � γ3
i�2q � � sgnpγ3

i�2q � sgnpγ2
i�1 � γ2

i�2q � sgnpγ2
i�1q � sgnpyi�1 � yiq.
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Case 5. Assume the stencils Si � tCi�1, Ci, Ci�1u, Si�1 � tCi�1, Ci�2, Ci�3u, equivalent to the conditions#
|γ2
i |   |γ2

i�1|, |γ3
i | ¥ |γ3

i�1|, paq

|γ2
i | ¥ |γ2

i�1|, |γ3
i�1|   |γ3

i�2|, pbq

|γ2
i�1| ¡ |γ2

i�2|, |γ3
i�2| ¡ |γ3

i�3|.

(A.12)

The jump is represented as

jRi�1{2 � C0pγ
3
i�2 � γ3

i�1q � C1pγ
3
i�3 � γ3

i�2q. (A.13)

In the case of paq we precalculate

sgnp�γ3
i�2q � sgnpγ2

i�1 � γ2
i�2q � sgnpγ2

i�1q,

sgnpγ3
i�1q � sgnpγ2

i�1 � γ2
i q � sgnpγ2

i�1q.

With these we have

sgn
�
C0pγ

3
i�2 � γ3

i�1q
�
� sgnpγ3

i�1 � γ3
i�2q � sgnpγ2

i�1q � sgnpyi�1 � yiq,

sgn
�
C1pγ

3
i�3 � γ3

i�2q
�
� sgnpγ3

i�3 � γ3
i�2q � � sgnpγ3

i�2q � sgnpγ2
i�1 � γ2

i�2q � sgnpγ2
i�1q � sgnpyi�1 � yiq.

For pbq we can use the same calculation as above for the second term since we were not using paq. The sign
of the first term is

sgn
�
C0pγ

3
i�2 � γ3

i�1q
�
� sgnpγ3

i�1 � γ3
i�2q � sgnpγ3

i�1q � sgnpγ2
i�1 � γ2

i�2q � sgnpγ2
i�1q � sgnpyi�1 � yiq.

Case 6. The last configuration is Si � tCi, Ci�1, Ci�2u, Si�1 � tCi�1, Ci�2, Ci�3u, equivalent to the conditions

|γ2
i | ¡ |γ2

i�1|, |γ3
i�1| ¡ |γ3

i�2|, |γ2
i�1| ¡ |γ2

i�2|, |γ3
i�2| ¡ |γ3

i�3|, (A.14)

with a reconstructed jump of the form

jRi�1{2 � C0pγ
3
i�3 � γ3

i�2q. (A.15)

We recover

sgn
�
C0pγ

3
i�3 � γ3

i�2q
�
� sgnpγ3

i�3 � γ3
i�2q � � sgnpγ3

i�2q � sgnpγ2
i�1 � γ2

i�2q � sgnpγ2
i�1q � sgnpyi�1 � yiq.

This completes the proof of the sign-property of the reconstruction method for grids as ∆xÑ 0 or the shape
parameter εÑ 0. �

Appendix B. New diffusion matrix

The goal is to recover a new diffusion matrix that mimics the first order Rusanov-type diffusion operator.
We combine results from Chandrashekar [5]

∆v1 �
∆ρ
ρ̂

�
� 1

pγ � 1qβ̂
� u2

�
� 2uβ∆u, (B.1)

∆v2 � 2β∆u� 2u∆β, (B.2)
∆v3 � �2∆β, (B.3)
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with the following

∆E �
∆p
γ � 1

�
1
2

∆pu2ρq,

∆ρ
2

� ∆pβpq � p̄∆β � β̄∆p,

∆pu2ρq � 2ρ̄ū∆u� u2∆ρ.

This can be summarized as ��∆ρ
∆m
∆E

�
� D̃

��∆v1
∆v2
∆v3

�
, (B.4)

with

D̃ �

��� ρ̂ uρ̂ E1

uρ̂ u2ρ̂� ρ

2β
uE1 �

u ρ

2β

E2 uE2 �
u ρ

2β
R̃

��
, (B.5)

with E1 � ρ̂u2 � ρ̂
2

�
1

pγ�1qβ̂
� u2

�
, E2 �

ρ̂
2

�
1

pγ�1qβ
� u2

�
, R̃ � E1E2

ρ̂ � u2 ρ

2β
� p

2pγ�1qβ
.

To use this in the entropy stable framework we need to symmetrize it. By assuming D̃3,1 � E1 and D̃3,2 �
uE1 �

u ρ

2β
we get at least the exact jump for the density and mass flow.

We recover the matrix

D � α

��� ρ̂ uρ̂ E1

uρ̂ u2ρ̂� ρ

2β
uE1 �

u ρ

2β

E1 uE1 �
u ρ

2β
R

��
, (B.6)

with R �
E2

1
ρ̂ � u2 ρ

2β
� p

2pγ�1qβ
, which mimics the Rusanov-type diffusion operator for the density and mass flow.

By showing that the leading principal minors are positive we get the positive definiteness for D in the case
γ ¡ 1. However, we are not aware of an exact and stable decomposition D � LBLT for an invertable matrix L
and a diagonal one B. Thus, this needs to be done numerically in each step.

Note that Derigs et al. obtained a related result with a different value R [6].

Acknowledgements. The authors are grateful to Dr. Deep Ray for helpful discussions and insights. This work was partially
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