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Abstract We propose a nonlinear multiscale decom-

position of signals defined on the vertex set of a general

weighted graph. This decomposition is inspired by the

hierarchical multiscale (BV,L2) decomposition of Tad-

mor, Nezzar, and Vese [39]. We find the decomposition

by iterative regularization using a graph variant of the

classical total variation regularization [36]. Using tools

from convex analysis, and in particular Moreau’s iden-

tity, we carry out the mathematical study of the pro-

posed method, proving the convergence of the represen-

tation and providing an energy decomposition result.

The choice of the sequence of scales is also addressed.

Our study shows that the initial scale can be related to

a discrete version of Meyer’s norm [28] which we intro-

duce in the present paper. We propose to use the re-

cent primal-dual algorithm of Chambolle and Pock [13]
in order to compute both the minimizer of the graph

total variation and the corresponding dual norm. By

applying the graph model to digital images, we inves-

tigate the use of nonlocal methods to the multiscale

decomposition task. Since the only assumption needed

to apply our method is that the input data is living on

a graph, we are also able to tackle the task of adaptive

multiscale decomposition of irregularly sampled data

sets within the same framework. We provide in partic-

ular examples of 3-D irregular meshes and point clouds

decompositions.
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1 Introduction

Our main concern in this paper is to introduce a mul-

tiscale representation for data sets defined on the ver-

tex set of a general undirected graph. Before entering

into technical details, we introduce the motivation and

background for our work.

1.1 Multiscale Representations in Image Analysis

The importance of multiscale representations in the

field of image analysis stems from the fact that, gener-

ally, natural images contain features of different scales.

Beside edges which are important for image understand-

ing, these features range from homogeneous regions to

oscillatory patterns of texture and noise. As a conse-

quence, a mathematical tool for providing adaptive rep-

resentations of different image features is a major step

towards higher level vision tasks.

A unified framework for the multiscale representation

of digital images is the scale-space paradigm (see [42]

and references therein). A scale-space representation

of an image f : Ω ⊂ R2 → R embeds f in a family

{Ttf : Ω → R, t ≥ 0}. As parameter t increases, im-

ages Ttf get smoother, starting from T0f = f . Such

scale-scale representations are obtained by imposing a

set of axioms on the operators Ti [1].

Recently, inverse scale-space representations have been

introduced in [37,32]. These representations embed an

original image f : Ω ⊂ R2 → R in a family {Ttf : Ω →
R, t ≥ 0} such that T0f = 0 and limt→∞ Ttf = f . In
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comparison with the standard scale-space theory, the

order is reversed: the representation starts with a con-

stant image and then moves toward the original data.

However, the difference between the two approaches is

not limited to the order in which the original data is

recovered. A deeper difference comes from the formula-

tion of the problem. While the scale-space paradigm is

formulated directly in the language of partial differen-

tial equations, the inverse scale-space idea comes from

a variational point of view.

A related but different representation was proposed in

[39,40] based on total variation (TV) regularization [36].

This time, the representation embeds f : Ω ⊂ R2 → R
in a sequence {Tnf : Ω → R, n ≥ 0} such that T0f = 0

and limn→∞ Tnf = f . In this setting, one minimizes

the Rudin-Osher-Fatemi (ROF) functional

E(u; f) = λ

∫
Ω

|∇u|+ 1

2
‖f − u‖2, (1)

where f : Ω ⊂ R2 → R is a noisy image,
∫
Ω
|∇u| de-

notes the TV seminorm, and the minimization is car-

ried over the space of functions of bounded variations

[12]. As pointed out by Meyer in [28], image denoising

leads to image decomposition: the original image f is

decomposed into a part u that extracts edges and a part

v = f − u that contains texture and/or noise. It yields

to the one scale decomposition

f = u+ v. (2)

The scalar λ in (1) is then viewed as a parameter dic-

tating the separation of scales. In [39], Tadmor, Nez-

zar, and Vese extend the one scale decomposition (2)

to a multiscale hierarchical representation by iteratively

decomposing the successive residuals. This idea is the

starting point of our present work.

1.2 Graph Representation of Discrete Data

We are interested in this paper in data sets having an

underlying graph structure. Such a graph structure can

be naturally present in the data under consideration

(e.g., with square lattices), or it can be explicitly con-

structed (e.g., with proximity graphs). In both cases,

the resulting graph encodes pairwise similarities be-

tween data instances. Those similarities are in turn used

to generate more global descriptions of the underlying

data. The pair represented by the data and the associ-

ated graph is called a graph-signal.

Adopting a graph-signal model for digital images leads

to the so-called nonlocal methods (see [7,20,23] and ref-

erences therein).

We also use in this paper the graph-signal model to

handle data defined on irregularly shaped domains as

well as scattered data points. For such data sets, the

adaption of classical multiscale methods such as those

based on wavelets is not straightforward. We show that

as soon as a graph structure can be associated with the

data, an efficient multiscale representation can be ob-

tained. In particular, we apply our method to generate

multiscale representations of 3-D triangular meshes and

point clouds.

The model for the rest of the paper is a weighted graph

G = (V,E,w) consisting of a vertex set V = {1, . . . n},
an edge set E ⊆ V × V and a nonnegative symmetric

weight function w : E → R+: w(i, j) = w(j, i) for all

(i, j) ∈ E. The quantity w(i, j) represents a similarity

or proximity measure between the two vertices i and

j. This measure is usually computed as a decreasing

transformation of a prior distance measure. The graph

structure can be encoded by its (weighted) adjacency

matrix W ∈ Rn×n defined by

Wi,j =

{
w(i, j) if (i, j) ∈ E,
0 otherwise.

(3)

In the sequel, the symbol Wi,. is used to denote the ith

row, while W.,j denotes the jth column of a matrix W .

The transpose of a vector x is denoted by xᵀ.

1.3 Contributions

In this work, we provide a general tool to generate adap-

tive multiscale representations of data defined on the

vertex set of a general weighted graph. The local simi-

larities encoded by the graph structure are turned into

a multiscale description by adopting a variational point

of view. More precisely, we formulate a graph version

of the classical TV regularization and use it to extract

successive layers 1 in the spirit of [39]. The mathemati-

cal study of the proposed representation is carried out.

In particular, the convergence towards the input data

is proved, and an energy decomposition result is stated.

The issue concerning the choice of the first scale param-

eter is fully addressed. Our study shows that this quan-

tity is related to a discrete version of Meyer’s norm [28],

that we extend to weighted graphs. We show that the

recent primal-dual algorithm of Chambolle and Pock

can be used in order to compute this norm.

We finally give advice regarding the choice of the graph

structure and the weighting function and apply our ap-

proach to generate multiscale representations of digital

images, 3-D triangular meshes and point clouds.

1 A very preliminary version of this work was published in
[24].
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1.4 Outline

The paper is organized as follows. In Section 2, we recall

facts from convex analysis needed for the mathemati-

cal study of the proposed method. Section 3 formulates

the graph variant of TV regularization. Different per-

spectives concerning this approach are outlined and the

minimization of the functional is discussed. The multi-

layered representation is presented in Section 4, where

the principle is given, the mathematical study carried

out, and the link between the computation of the first

scale and a discrete weighted version of Meyer’s norm

is drawn. Section 5 addresses the computation of the

latter norm using the recent primal-dual algorithm of

[13]. We provide numerical experiments in Section 6 and

conclude in Section 7.

2 Notations and Facts from Convex Analysis

We recall in this section some results that will help us

carry out the mathematical study of our method. In

particular, we review some concepts from convex anal-

ysis including the notion of a proximity operator intro-

duced in [30] and popularized in signal processing since

[18]. A detailed account about proximity operators can

be found in [18]. For the use of proximity operators in

splitting methods we refer the reader to [17] and refer-

ences therein. Further details about convex analysis in

the finite-dimensional setting can be found e.g. in [25,

5].

Let H be a finite-dimensional vector space equipped

with a scalar product 〈., .〉. The associated norm is de-

noted by ‖.‖ =
√
〈., .〉. A function f : H → ]−∞,+∞]

is said to be proper if its domain, dom(f) := {x ∈ H :

f(x) < +∞}, is nonempty. The function f is said to

be convex if its epigraph, epi(f) := {(x, a) ∈ H × R :

f(x) ≤ a}, is convex in H × R, and lower semicontin-

uous if epi(f) is closed in H × R. The set of all proper

convex and lower semicontinuous functions from H to

]−∞,+∞] is denoted by Γ0(H).

Let C denote a nonempty closed convex subset of H.

The indicator function of C, ιC , is defined for all x ∈ H
by

ιC(x) =

{
0 if x ∈ C,
+∞ otherwise.

(4)

Notice that ιC ∈ Γ0(H).

For f ∈ Γ0(H) and z ∈ H, Moreau showed in [30] that

the function x ∈ H 7→ 1
2‖x − z‖

2 + f(x) achieves its

infimum at a unique point called proximity operator of

f at point z and denoted by proxfz:

proxfz = argmin
x∈H

1

2
‖x− z‖2 + f(x). (5)

If f = ιC , then one recovers the definition of the convex

projection operator denoted by proj:

proxιCz = projCz. (6)

The notion of proximity operator thus generalizes the

concept of projection onto nonempty closed convex sets.

It leads to Moreau’s identity (14) which in turn general-

izes the representation of a Hilbert space as the direct

sum of a closed subspace and its orthogonal comple-

ment [31].

The conjugate of f ∈ Γ0(H) is the function f∗ ∈ Γ0(H)

defined for all y ∈ H by

f∗(y) = sup
x∈H
{〈x, y〉 − f(x)}. (7)

The conjugate of ιC is the support function of C, de-

noted by σC :

ι∗C(y) = sup
x∈C
〈x, y〉 = σC(y). (8)

The conjugate of a norm ‖.‖ is the indicator of its dual

norm ‖.‖∗ unit ball 1:

‖.‖∗(y) = ι{‖.‖∗≤1}(y), (9)

where the dual norm ‖.‖∗ is defined for all x ∈ H by

‖x‖∗ = sup
‖y‖≤1

〈x, y〉. The following holds for all f ∈

Γ0(H):

f∗∗ = f, (10)

f(x) + f∗(y) ≥ 〈x, y〉, for all x, y ∈ H. (11)

The subdifferential of f at point x, ∂f(x), is the set of

points y such that equality holds in (11):

∂f(x) = {y ∈ H : f(x) + f∗(y) = 〈x, y〉}. (12)

We have
inf
x∈H

f(x) = −f∗(0),

and

inf
x∈H

f(x) = f(x0) ⇐⇒ 0 ∈ ∂f(x0).

(13)

Moreau’s identity, introduced in [30] and generalized in

[18], states that for all f ∈ Γ0(H) and all z ∈ H the

following equality holds

z = proxλfz + λproxf∗/λ(z/λ), for all λ > 0. (14)

Equation (14) leads to a whole family of decomposition

schemes parametrized by the function set Γ0(H) and

the parameter λ.

1 star as a superscript denotes the convex conjugate func-
tion while star as a subscript denotes the dual norm.
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3 Total Variation Based Regularization on

Graphs

3.1 Norms and Operators

Let N ≥ 1 be an integer. We denote by X the set

RN and by Y the set RN×N . Elements of X represents

signals defined on the vertex set of a general graph.

Both X and Y are endowed with the usual inner prod-

ucts: 〈u, v〉X =
∑N
i=1 uivi for u, v ∈ X and 〈p, q〉Y =∑N

i,j=1 pi,jqi,j for p, q ∈ Y . The associated norms are

denoted by ‖.‖X and ‖.‖Y . For simplicity of notation,

we will sometimes drop the subscripts X and Y when

there is no possible ambiguity. We also consider on Y

the ‖.‖1,2 norm and its dual norm ‖.‖∞,2 defined for all

p ∈ Y by:

‖p‖1,2 =

N∑
i=1

‖pᵀi,.‖X =

N∑
i=1

 N∑
j=1

p2i,j

1/2

, (15)

‖p‖∞,2 = max
1≤i≤N

‖pᵀi,.‖X = max
1≤i≤N

 N∑
j=1

p2i,j

1/2

. (16)

Consider a symmetric matrix W ∈ Y with nonnegative

entries representing the weighted adjacency matrix of a

given graph, as explained in Section 1.2. We associate

with the matrix W the first order weighted difference

operator ∇w : X → Y defined for all u ∈ X and i, j ∈
{1, . . . , N} by

(∇wu)i,j =
√
wi,j(uj − ui). (17)

The quantity ‖(∇wu)i,.‖X then represents a measure of

the local variation of the signal u at the node i.

The operator ∇w has been introduced in [6,20,23]. A

closely related operator has been considered in the con-

text of machine learning in [44].

The adjoint of ∇w, denoted by ∇∗w, is the unique oper-

ator from Y to X verifying the following identity

(∀(u, p) ∈ X × Y ) 〈∇wu, p〉Y = 〈u,∇∗wp〉X . (18)

Its expression is given by:

(∇∗wp)i =

N∑
j=1

√
wi,j(pj,i − pi,j). (19)

The divergence operator divw : Y → X is defined as

divw = −∇∗w, namely

(divwp)i =

N∑
j=1

√
wi,j(pi,j − pj,i). (20)

The composition of the two latter operators leads to the

unnormalized graph Laplacian ∆w : X → X defined as

∆w = − 1
2divw ◦ ∇w. Its expression is given by:

(∆wu)i =

N∑
j=1

wi,j(ui − uj). (21)

The properties of the unnormalized graph Laplacian

have been studied in different contexts. We recall here

one specific property that will be useful for the develop-

ment of our study. For the proof, we refer the interested

reader to [29] where an overview of the properties of the

unnormalized graph Laplacian can also be found.

Proposition 1 Let ∆w be the Laplacian operator asso-

ciated with a given weighted graph. The smallest eigen-

value of ∆w is λ1 = 0. Furthermore, the multiplicity of

0 as an eigenvalue is equal to the number of connected

components of the graph.

3.2 Gw Norm

In [28], Y. Meyer addressed some limitations of the ROF

model [36]. He then proposed a modified model where

the L2 norm quantifying the dissimilarity between the

input and the sought functions is replaced by the G

norm. The latter norm is defined on the G space that

models signals with large oscillations. The precise def-

initions and justification for such a choice are given in

[28]. An intuitive interpretation of the G norm can be

gained when considering its relation to ROF model.

In our finite-dimensional setting, this relation will be

further given in Proposition 3. Equipped with the di-

vergence operator in (20), we now introduce the corre-

sponding concepts in our finite-dimensional setting over

graphs.

The space Gw is defined as follows

Gw = {u ∈ X : ∃p ∈ Y, u = divwp}. (22)

The Gw norm is then given by

(∀u ∈ Gw) ‖u‖Gw = inf{‖p‖∞,2 : p ∈ Y,divwp = u}.
(23)

For µ > 0, Gµw denotes the closed ball

Gµw = {u ∈ Gw : ‖u‖Gw ≤ µ}. (24)

We note that a discrete version of Meyer’s space and

norm were already introduced in [3] based on the dis-

cretization of the continuous differential operators in-

volved in the ROF model. An analogue of Proposition

3 was given there. Our version has several advantages.

It allows to take account of nonlocal interactions when
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modeling digital images. It also makes it possible to

consider the G norm of irregularly sampled signals, pro-

vided a graph structure can be associated with the spa-

tial locations of the samples.

The next result identifies the space Gw with the set of

zero-mean graph-signals. It is the analogous of Propo-

sition 2.2 in [3].

Proposition 2 Consider a weighted graph with adja-

cency matrix W . If the graph is connected, then

Gw = X0 := {u ∈ X :

N∑
i=1

ui = 0}. (25)

Proof From equation (20) we see that Gw ⊆ X0. The

range of the operator ∆w is included in X0. If the graph

is connected, then using the result of proposition 1, we

see that the dimension of the null space of ∆w is equal

to 1. Hence, the dimension of its range is equal to N−1,

which is exactly the dimension of the space X0, so that

both spaces are equal. Hence, for all u ∈ X0, there exists

v ∈ X such that u = ∆wv. Defining v′ = − 1
2∇wv, we

have u = divwv
′, which concludes the proof.

All the graphs considered in the sequel are assumed

connected, unless otherwise stated.

3.3 Total Variation Over Graphs

The isotropic total variation associated with the adja-

cency matrix W and the difference operator∇w is given

for all u ∈ X by

Jw(u) := ‖∇wu‖1,2 =

N∑
i=1

 N∑
j=1

wi,j(uj − ui)2
1/2

.

(26)

The functional in (26) can be regarded as a measure of

“smoothness” of data living on general graphs. It is the

sum of the local variations around all the nodes of the

graph. The choice of the `1 norm is motivated by the

analogy to the classical total variation over Euclidean

domains and its well known ability to preserve sharp

discontinuities. Alternatively, this choice can be seen as

a regularizing prior promoting the sparsity of the local

variations vector.

Notice that Jw defines a seminorm over X. Using equa-

tions (20)-(23) and the fact that the norms ‖.‖1,2 and

‖.‖∞,2 are dual, we see that the TV seminorm is the

support function of the Gw unit norm ball:

Jw(u) = sup{〈u, v〉X : v ∈ G1
w} = σG1

w
(u). (27)

The result in (27) it is a general fact, namely, each

closed sublinear function is the support function of a

closed convex set ([25], Theorem 3.1.1).

3.4 Total Variation Based Regularization on Graphs

We now consider the classical ROF model in the context

we presented above. Given an initial observation f ∈ X
living on a graph and a scale parameter λ > 0, the

graph version of the ROF model consists in solving the

following convex optimization problem:

minimize
u∈X

E(u; f, λ), (28)

where

E(u; f, λ) = λJw(u) +
1

2
‖u− f‖2X . (29)

Functional E corresponds to the particular case of p = 1

in the family of functionals introduced in [20]. It has

been studied in [23] and has found numerous applica-

tions in image and mesh processing [20], data filtering

[26], image zooming [22]. In [35,2], the authors proposed

to adapt the penalization to the topology of the under-

lying function. The same approach has been taken in

[43] for motion deblurring.

The model (28)-(29) can be seen under different per-

spectives. In the subsequent sections, we give three dif-

ferent point of views justifying the introduction of (28)-

(29).

3.4.1 Bayesian Interpretation

The Bayesian derivation of (28)-(29) can be obtained

when considering the standard denoising problem. Let

us assume that a true graph-signal u ∈ X is degraded

by an additive centered Gaussian white noise n of stan-

dard deviation σ, yielding the following model: u =

u + n. Adopting the MAP estimate, we see that the

functional (29) is obtained when considering the fol-

lowing prior density probability function:

(∀u ∈ X) p(u) ∝ e−‖∇wu‖1,2 . (30)

3.4.2 An Iterative Neighborhood Filter

Previous approaches to solve problem (28)-(29) dealt

with the non-differentiability of the functional E in (29)

by smoothing the penalty term Jw. In our context, this

strategy amounts to replacing Jw defined in equation

(26) by the smoothed penalty Jεw defined for all u ∈ X
by

Jεw(u) :=

N∑
i=1

 N∑
j=1

wi,j(uj − ui)2 + ε2

1/2

, (31)

for a small fixed ε (e.g. ε = 10−4). Now, the modified

energy Eε(u; f, λ) = λJεw(u) + 1
2‖u − f‖2X is smooth
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and still strictly convex. Differentiating and applying a

fixed point iteration to the resulting system of nonlinear

equations (see [20] for further details, and in particular

for the convergence of the proposed scheme) leads to

the following iterative scheme
u(0) = f,

u
(n+1)
i =

fi + λ
∑N
j=1 γ

(n)
i,j u

(n)
j

1 + λ
∑N
j=1 γ

(n)
i,j

,
(32)

where

γ
(n)
i,j = Wi,j

 1√
‖(∇wu(n))ᵀi,.‖2X + ε2

+ (33)

1√
‖(∇wu(n))ᵀj,.‖2X + ε2

 . (34)

Notice that the coefficients γ
(n)
i,j depend on the current

iterate u(n). The convergence of algorithm (32) is very

slow in practice. However, the presented scheme allows

to interpret the TV-regularized solution as a nonlinear

data-dependent iterative filter [15]. At each iteration,

the raw data f at a given node i is averaged with the

current iterate values at the neighboring nodes to get

the updated value. The coefficients of the filter depend

on the parameter λ and the amplitude of the current

(smoothed) local variations. When the latter local vari-

ation is dominant, the raw data is preserved, thus ex-

plaining the well known discontinuity preserving prop-

erty of TV regularization. Notice however, that the lo-

cal variation should be compared with the size of the

parameter λ. The latter remark gives an interpretation
of the parameter λ as a scale parameter.

3.4.3 u+ v Decomposition

Following [28], the ROF model can be casted into the

more general setting of u + v models where an origi-

nal signal is decomposed into a geometric component u

and oscillating (and maybe noisy) part v. u+ v models

include the ones proposed in [3,4,41,33].

Using the tools recalled in Section 2, we see that solving

the graph ROF model (28)-(29) amounts to comput-

ing the proximity operator of λJw. Applying Moreau’s

identity leads to the following decomposition

f = proxλJw(f) + λproxJ∗w/λ(f/λ). (35)

Applying equations (27), (8) and (10) we see that J∗w/λ

is equal to ιG1
w

. Finally, using equation (6), we get the

important characterization

f = proxλJw(f) + projGλw(f). (36)

Equation (36) allows to precise the behavior of (28)-

(29) as a decomposition model. Namely, the regularized

solution is obtained by subtracting the projection of f

onto the space Gw from f . The relative importance of

the projection regarding the parameter λ is precisely

quantified by its Gw norm.

3.5 Minimization

We now consider the issues concerning the minimization

of (28)-(29). As already stated in Section 3.4.2, the con-

vergence of the fixed-point algorithm (32) is too slow

in practice. A further and probably more serious draw-

back concerning (32) is the introduction of the smooth-

ing parameter ε which modifies the formulation of the

problem. For these reasons, we do not consider algo-

rithm (32) for the numerical simulation, but we keep in

mind the interpretation given in Section 3.4.2.

Algorithms that solve the exact TV problem can be di-

vided into two categories. The first category solves the

dual problem associated with (28)-(29). The forerun-

ner algorithms in this category are the fixed-point and

projected gradient algorithms proposed by Chambolle

in [9,10]. In fact, the projected gradient of [10] corre-

sponds to a forward-backward algorithm on the dual

problem [17].

The second category consists in the so-called primal-

dual algorithms, the first of which was proposed by

Chan, Golub, and Mulet [16]. We refer the reader to

[14] for a review of numerical methods in total varia-

tion restoration.

Recently, Chambolle and Pock [13] proposed a very

flexible primal-dual algorithm that exhibits very good

numerical performance. We detail the adaption of the

fixed-point algorithm of [9] and the primal-dual algo-

rithm of [13] to our setting and perform a performance

comparison on digital images.

3.5.1 Chambolle’s Fixed Point Algorithm

The dual formulation of problem (28)-(29) correspond-

ing to the decomposition (36) is the following:

minimize
p∈Y

‖f − λdivwp‖2X ,

subject to ‖p‖∞,2 ≤ 1. (37)

The projection algorithm proposed in [9] to solve (37)

yields in our setting the following iterative scheme:
p0 = 0 ,

pn+1
i,j =

pni,j + τ (∇w(divwp
n − f/λ))i,j

1 + τ‖(∇w(divwpn − f/λ))ᵀi,.‖X
.

(38)
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The iterations in (38) converge under the following re-

striction on the time step τ :

0 < τ ≤ 1

‖divw‖2
, (39)

where ‖divw‖ is the norm of the divergence operator

induced by the norms ‖.‖X and ‖.‖Y :

‖divw‖ = sup{‖divwp‖X : p ∈ Y, ‖p‖Y ≤ 1}.

The following inequality was proved in [23]

∀p ∈ Y, ‖divwp‖2X ≤ 4m‖p‖2Y . (40)

where m := max di
1≤i≤n

, and di =
∑n
j=1 wi,j is the degree

of vertex i. Consequently, if 0 < τ ≤ 1
4m , the conver-

gence of the sequence (pn)n≥0 is guaranteed. Finally,

the unique solution û of problem (28)-(29), is given by

û = f − λdivwp
∞, where p∞ is the limit of (pn)n≥0

defined in (38).

3.5.2 Chambolle-Pock Primal-Dual Algorithm

The convex optimization problem addressed in [13] is

the following:

minimize
x∈X

F (Kx) +G(x). (41)

In (41), X and Y denote two general finite-dimensional

vector spaces, F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X → Y

a linear operator. The saddle-point problem associated

with (41) is

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y), (42)

where F ∗ is the conjugate of F . The authors propose

the following iterative resolution:
yn+1 = proxσF∗(y

n + σKxn),

xn+1 = proxτG(xn − τK∗yn+1),

xn+1 = xn+1 + θ(xn+1 − xn),

(43)

where K∗ denotes the adjoint operator of K. The con-

vergence of algorithm (43) is guaranteed if θ = 1 and

0 < τσL2 < 1 where L = ‖K‖ = max
‖x‖≤1

‖Kx‖ denotes

the induced norm of K. We refer the reader to [13]

for detailed study of the speed of convergence of (43).

Notice that the authors of [13] also proposed an acceler-

ated version of (43). A second remark concerning (43) is

that by taking the dual problem of (41), one can replace

the iterations in (43) by the equivalent iterations:
xn+1 = proxτG(xn − τK∗yn),

yn+1 = proxσF∗(y
n + σKxn+1),

yn+1 = yn+1 + θ(yn+1 − yn),

(44)

We now apply algorithm (43) to problem (28)-(29). The

sets X and Y are the ones defined in Section 3.1. The

identification of the operators is the following: K ≡ ∇w,

F ≡ ‖.‖1,2, G ≡ 1
2λ‖.− f‖

2
X . For y ∈ Y we have

proxσF∗(y)
(9)
= proxσιB∞,2(1)

(y)
(6)
= projB∞,2(1)(y) =: ỹ,

(45)

where ỹi,j =
yi,j

max(1,‖yᵀi,.‖X)
and B∞,2(τ) is the ‖.‖∞,2

ball of radius τ . The computation of the second prox-

imity operator in (43) is straightforward because the

involved function is quadratic. The expression is given

by

proxτG(x) =
λx+ τf

τ + λ
. (46)

3.5.3 Performance Comparison on Digital Images

In this section, we compare the performance of the algo-

rithms presented in the two latter sections. We restrict

our setting to digital images where each pixel repre-

sents a vertex, and consider the square lattice graph

with binary weights. In order to perform the compar-

ison, we have chosen different values for the parame-

ter λ, namely, λ = 5, 10, 100, 250. As each iteration of

the two algorithms has the same algorithmic complex-

ity, we have decided to let both algorithm run for a

fixed common number of iterations M . We have taken

M = 500. The original images on which we have per-

formed the experiment are shown in Figure 1. Figures

2 and 3 show the images obtained when applying both

algorithms with different values of λ. Figures 4 and 5

show the corresponding energy profiles in log-scale.

While the fixed-point algorithm (38) performs well

for reasonable values of λ, it suffers from very slow con-

vergence when λ is too important. The situation where

λ is set to a high value is rarely encountered for denois-

ing/deblurring applications in image processing. How-

ever, in the multiscale representation we seek in this

paper, the initial value for λ will be very high in order

to extract a first geometrical layer from the input data.

4 Multilayered Representation of

Graph-Signals

Throughout this section, W denotes a weighted adja-

cency matrix encoding a weighted graph G and f ∈ X
is a real-valued graph-signal on G. The multilayered

representation we propose is based on iterative regular-

ization as explained in the following section.
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(a) (b)

Fig. 1 Test images used for the comparison between algorithms (38) and (43).

4.1 Principle

Applying the minimization (28)-(29) to f with a fixed

λ > 0 yields the one scale decomposition f = u + v

as explained in Section 3.4.3. This one scale decompo-

sition can be turned into a multiscale representation

by iteratively applying the minimization process to the

successive residuals as initially proposed in [39,40].

Let (λn)n≥0 denote a sequence of decreasing positive

scales. We consider the following iterative regulariza-

tion:
v−1 = f ,

ui = argmin
u∈X

E(u; vi−1;λi), i ≥ 0,

vi = vi−1 − ui, i ≥ 0,

(47)

where each residual vi is further decomposed using (28)-

(29). Algorithm (47) yields the following decomposi-

tion:

(∀n ≥ 0) f =

n∑
i=0

ui + vn. (48)

Starting with an initial parameter λ0, a first decomposi-

tion of f is obtained by applying (28)-(29) with λ = λ0,

yielding f = u0+v0. The layer u0 should be interpreted

as a first sketch of the graph-signal f , while the residual

v0 is to be understood as a detail coefficient. Modifying

the scale parameter from λ0 to λ1 and applying (28)-

(29) to v0 with λ = λ1 yields the subsequent decompo-

sition v0 = u1 +v1. Now the term u1 can be interpreted

as a second layer extracted from f by means of v0. It-

erating the same process n times leads to identity (48).

The ui’s thus represent different layers of f captured at

different scales. These layers are parametrized by three

variables: the graph topology through the adjacency

matrix W , the energy function E , and the sequence

λ0, . . . , λn involved in the successive minimizations. It

is clear that in order to extract the successive layers in a

coherent manner, the sequence of scales (λi)i≥0 should

be decreasing. In terms of image decomposition, this

assumption has the following simple interpretation: as

the process (47) evolves, the successive minimizers ex-

tract more texture from the original image [39]. The

asymptotic behavior of (48) is studied in the following

section.

4.2 Mathematical Study

It turns out that the characterization (36) is a powerful

tool to study the convergence of our representation. We

have the following result.

Proposition 3 Consider a positive sequence (λn)n≥0.

Let f ∈ X and (ui)i≥0 obtained by applying algorithm

(47). We have

‖f −
n∑
i=0

ui‖Gw = λn. (49)

If the sequence (λn)n≥0 is decreasing, then the series∑
i=0 ui converges to f

∞∑
i=0

ui = f. (50)

Proof The first equation follows immediately from the

characterization (36). Indeed, we have f −
∑n
i=0 ui =

vn = projGλnw (vn−1).

If the sequence (λn)n≥0 is decreasing, then we get con-

vergence for the Gw norm:

lim
n→∞

‖f −
n∑
i=0

ui‖Gw = 0, (51)

and hence, since we are in a finite-dimensional setting,

we readily get the convergence for any other norm. In

particular, we have

lim
n→∞

‖f −
n∑
i=0

ui‖X = 0. (52)
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Chambolle Projection Chambolle-Pock

λ
=

5
λ

=
1
0

λ
=

1
0
0

λ
=

2
5
0

Fig. 2 Results of applying algorithms (38) and (43) with different values of λ to the standard Barbara image.

Remark 1 Equation (49) relates the rate of conver-

gence of the decomposition (48) to that of the sequence

of scales (λn)n≥0.

We also have the following energy decomposition state-

ment.

Proposition 4 Consider a positive and decreasing se-

quence (λn)n≥0. Let f ∈ X and (ui)i≥0 obtained by

applying algorithm (47). Then the series whose general

term is 2λiJw(ui) + ‖ui‖2X converges to the energy of

f :

∞∑
i=0

(
2λiJw(ui) + ‖ui‖2X

)
= ‖f‖2X . (53)

In order to prove Proposition 2 we need the following

lemma.
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Chambolle Projection Chambolle-Pock

λ
=

5
λ

=
1
0

λ
=

1
0
0

λ
=

2
5
0

Fig. 3 Results of applying algorithms (38) and (43) with different values of λ to the standard Jetplane image.

Lemma 1 Let f ∈ X, λ > 0. Let u denote the mini-

mizer of problem (28)-(29) and v = f − u the residual.

We have

〈u, v〉X = λJw(u). (54)

Proof Equation (36) shows that v = projGλw(f). Apply-

ing the characterization of a projection onto a closed

convex set, we see that v is the unique vector in Gλw

satisfying

∀w ∈ Gλw, 〈w − v, f − v〉X ≤ 0. (55)

Hence, we have for all w ∈ Gλw

〈w − v, u〉X ≤ 0, (56)
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(a) λ = 5 (b) λ = 10

(c) λ = 100 (d) λ = 250

Fig. 4 Energy profiles in log-scale obtained when applying algorithms (38) and (43) with different values of λ to the standard
Barbara image.

so that

〈u, v〉X = sup
w∈Gλw

〈u,w〉X = λ sup
w∈G1

w

〈u,w〉X ,

= λσG1
w

(u),

(27)
= λJw(u). (57)

We now give the proof of Proposition 2.

Proof For all i ≥ −1, the decomposition vi = ui+1 +

vi+1 leads the identity

‖vi‖2X = ‖vi+1‖2X + ‖ui+1‖2X + 2〈ui+1, vi+1〉X . (58)

Using equation (54), we have

〈ui+1, vi+1〉X = λi+1Jw(ui+1),

so that

‖vi‖2X − ‖vi+1‖2X = ‖ui+1‖2X + 2λi+1Jw(ui+1). (59)

Summing for i from −1 (with v−1 = f) to n − 1 leads

to

‖f‖2X − ‖vn‖2X =

n∑
i=0

(
2λiJw(ui) + ‖ui‖2X

)
. (60)

We achieve the result by taking the limit when n→∞
and using Proposition 3.

4.3 Choosing the Sequence of Scales

In the rest of the paper, we consider a dyadic progres-

sion of scales: λi+1 = λi
2 , with λ0 given. We are now

reduced to the choice of the first scale λ0 which is an

important issue since it determines the performance of

the decomposition (48). In particular, if λ0 is chosen too

small, then many levels of the hierarchy will be needed

in order to recover the original data. For large graphs

whose number of nodes and/or edges is important, the

cost associated with such a decomposition can be pro-

hibitive. In contrast, if λ0 is too important, the final
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(a) λ = 5 (b) λ = 10

(c) λ = 100 (d) λ = 250

Fig. 5 Energy profiles in log-scale obtained when applying algorithms (38) and (43) with different values of λ to the standard
Jetplane image

decomposition might miss some of the scales present in

the graph-signal f . The parameter λ0 is thus related to

the greatest value λ that yields a nontrivial decomposi-

tion 1. This choice can be made clear after the following

proposition.

Proposition 5 Let f ∈ X and λ > 0. Let f denote the

vector whose components are all equal to the mean of

f : f i = 1
N

∑N
j=1 fj, and uλ the solution of (28)-(29).

Then

‖f − f‖Gw ≥ λ =⇒ ‖f − uλ‖Gw = λ,

‖f − f‖Gw ≤ λ =⇒ uλ = f. (61)

Proposition 5 is the analogue of Theorem 3 in [28]. In

our setting, this result is an immediate consequence

of (36). It provides an interpretation of the Gw norm,

namely that the open interval ]0, ‖f−f‖Gw [ is the scale

range which yields a nontrivial decomposition for the

1 By a trivial decomposition we mean the decomposition
f = u+ v where u = f is the vector whose all components are
equal to the mean of f .

ROF model. Adopting a dyadic progression of scales

λi+1 = λi/2, and considering the result in Proposition

5 we can deduce the following bounds for λ0

1

2
‖f − f‖Gw ≤ λ0 < ‖f − f‖Gw . (62)

We decide to chose the middle point estimate: λ0 =
‖f−f‖Gw

4 . We are now led to the computation of ‖f −
f‖Gw . The details are given in the next sections.

4.4 Multilayered Representation with the Presence of

Noise

We consider here the case where the original data f is

corrupted by additive noise. Let us fix the initial scale

parameter λ0 according to (62), and denote (ui)i ≥ 0

the successive layers extracted by dyadic progression as

explained above. According to Proposition 3, the se-

ries
∑
i=0 ui converges to the noisy data f . Due to the

fact that the representation evolves in inverse scale or-

der (coarse scales are recovered first), we see that in
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order to avoid integrating noise to the reconstruction,

the expansion
∑∞
i=0 ui should be truncated at an ade-

quate stopping time τ . If the corrupting noise is ad-

ditive white gaussian with known variance σ2, then

one can use the discrepancy principle proposed in [32],

which amounts to stopping at the first time τ satisfying

‖f −
∑τ
i=0 ui‖2X ≤ Nσ2.

5 Computing the Gw Norm

In [4], the authors proposed to compute the G norm

of a digital image by dichotomy, exploiting the result

of Proposition 5. However, they report that it does not

yield a precise approximation. A very close approach

has also been taken in [38].

We propose in this section to use the recent primal-dual

algorithm of [13] in order to compute the Gw norm. In

the sequel, the sets X and Y are the ones defined in

Section 3.1. Let u ∈ Gw. Computing the Gw norm of u

amounts to solving the following convex problem (23):

minimize
p∈Y

‖p‖∞,2,

subject to divw(p) = u. (63)

Problem (63) can be rewritten in the form

minimize
p∈Y

‖p‖∞,2 + ι{u} ◦ divw(p). (64)

Applying algorithm (44) with F ≡ ι{u}, K ≡ divw,

G = ‖.‖∞,2, and θ = 1 yields the following iteration:
pn+1 = proxτ‖.‖∞,2(pn + τ∇wvn),

vn+1 = proxσ〈.,u〉X (vn + σdivwp
n+1),

vn+1 = 2vn+1 − vn.
(65)

Note that the dual problem associated to (63) is the

following

minimize
v∈X

〈u, v〉X ,

subject to Jw(v) ≤ 1, (66)

which involves a constraint on the total variation of the

optimization variable v.

5.1 Computing Proximity Operators

The computation of the second proximity operator in

(65) is straightforward because of the linearity of the

involved function. The expression is given by

∀x ∈ X,proxσ〈.,u〉X (x) = x− σu. (67)

In order to compute the first proximity operator in (65),

we apply Moreau’s identity (14), use the fact that the

conjugate of a norm is the support function of its dual

norm unit ball (8), and that ‖.‖∞,2 is the dual norm of

‖.‖1,2. Hence, we have

proxτ‖.‖∞,2(y)
(14)
= y − τprox‖.‖∗∞,2/τ (y/τ)

(9)
= y − τproxιB1,2(1)

(y/τ)

(6)
= y − projB1,2(τ)(y), (68)

where B1,2(τ) denotes the ‖.‖1,2 closed ball of radius τ .

5.2 Computing the Projection onto an ‖.‖1,2 ball

We have just seen that computing the first proximity

operator in (65) is related to the computation of the

projection of a matrix y ∈ Y onto a ‖.‖1,2 ball. We pro-

pose in this section to extend the projection algorithm

proposed in [8,19], which computes the `2 projection of

a vector in the Euclidean space Rn onto an `1 ball. In or-

der to do so, we need to introduce the soft-thresholding

operator acting on matrices y ∈ Y . A similar extension

to vector fields has recently been proposed in [21] and

is used as an intermediate step in order to compute the

projection of a vector onto a TV ball of pre-specified

radius.

The soft-thresholding operator of level µ ≥ 0 on Y ,

Sµ : Y → Y , is defined by

(Sµy)i,j =

0 if ‖yᵀi,.‖X ≤ µ,(
1− µ

‖yᵀi,.‖X

)
yi,j if ‖yᵀi,.‖X > µ.

(69)

Thus we have

‖Sµy‖1,2 =

N∑
i=1

‖(Sµy)ᵀi,.‖X =

N∑
i=1

 N∑
j=1

(Sµy)
2
i,j

1/2

=

N∑
i=1

‖yᵀi,.‖X≥µ

(
1− µ

‖yᵀi,.‖X

)
‖yᵀi,.‖X

=

N∑
i=1

‖yᵀi,.‖X≥µ

(
‖yᵀi,.‖X − µ

)
. (70)

The following proposition relates the soft-thresholding

operator defined in (69) to the computation of the pro-

jection onto an ‖.‖1,2 ball.

Proposition 6 Let y ∈ Y , R > 0. If ‖y‖1,2 ≤ R, then

projB1,2(R)(y) = y. Otherwise, there exists a unique µ >

0 such that projB1,2(R)(y) = Sµy.
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Proof The first assumption follows from the definition

of the projection operator. Suppose that ‖y‖1,2 > R.

First observe that in view of equation (70), the map-

ping µ 7→ ‖Sµy‖1,2 from [0,∞[ to R is piecewise linear,

continuous and nonincreasing with ‖S0y‖1,2 = ‖y‖1,2
and ‖Sµy‖1,2 = 0 for all µ ≥ max

i=1,...,N
‖yᵀi,.‖X . Thus there

exists a unique µ > 0 such that ‖Sµy‖1,2 = R. To show

that Sµy = projB1,2(R)(y) it suffices to observe that Sµy
is the unique solution (see [11] for the vectorial case) of

the problem

minimize
z∈Y

‖z − y‖2Y + µ‖z‖1,2. (71)

Hence

∀z ∈ B1,2(R), ‖Sµy − y‖2Y ≤ ‖z − y‖2Y + µ(‖z‖1,2 −R),

(72)

so that

∀z ∈ B1,2(R), ‖Sµy − y‖2Y ≤ ‖z − y‖2Y , (73)

which concludes the proof.

Coming back to equation (70), we see that the slope of

the piecewise linear mapping µ 7→ ‖Sµy‖1,2 changes at

the points ‖yᵀi,.‖X , i = 1, . . . , N . This leads to the fol-

lowing steps to compute the projection summarized in

Algorithm 1. Algorithm 2 summarizes the computation

of the Gw norm. Finally, algorithm 3 summarizes the

proposed multilayered representation we propose.

Algorithm 1 Projection onto ‖.‖1,2 ball of radius R

1: INPUT: y ∈ Y , 0 < R ≤ ‖y‖1,2.
2: OUTPUT: projB1,2(R)(y).

3: Compute : ‖yᵀi,.‖X for i = 1 . . . n.

4: Sort ‖yᵀi,.‖X in descending order to obtain an ≤ an−1 ≤
. . . ≤ a1.

5: Compute bi := ‖Saiy‖ =
∑i
j=1(aj − ai) for i = 1 . . . n.

6: Find k such that bk ≤ R < bk+1.

7: µ← ak + bk−R
k

.
8: projB1,2(R)(y)← Sµy.

Algorithm 2 Computing the Gw norm of y ∈ Gw
1: INPUT: y ∈ Gw.
2: OUTPUT: ‖y‖Gw .
3: set p0 = 0, v0 = v0 = 0
4: while (not converged) do

5: pn+1 = pn + τ∇wvn − projB1,2(τ)
(pn + τ∇wvn),

6: vn+1 = vn + σ(divwpn+1 − u),
7: vn+1 = 2vn+1 − vn.
8: end while

9: ‖y‖Gw = divwp∞.

Algorithm 3 Multilayered representation of graph-

signals
1: INPUT: f ∈ X, N ≥ 0.
2: OUTPUT: (ui)0≤i≤N .
3: v−1 ← f

4: Compute λ0 = ‖f − f‖Gw using Algorithm 2.
5: for i = −1→ N − 1 do

6: Decompose vi into ui+1 and vi+1 using model (28)-(29)
using λi+1.

7: λi+2 ← 1
2
λi+1.

8: end for

6 Experiments

We present in this section results obtained by apply-

ing the proposed multilayered representation to three

types of digital data, namely digital images, 3-D trian-

gular meshes, and point clouds. In order to obtain the

representations, appropriate similarity graphs are asso-

ciated with each data type. While the construction of

similarity graphs is a task by itself, we try to give spe-

cific advices concerning each particular data type. The

next subsection explains the general setting.

6.1 General Setting

Let F denote the input data we want to decompose.

We consider F to be in the space Rn×m, where n is the

number of instances, and m the number of components.

When m > 1, the data is multivalued: to each vertex i

is associated a vector of observations F ᵀ
i,. ∈ Rm. In the

latter case, the decomposition is performed component-

wise, the scale parameters (λi)i≥0 being common to all

the components.
For all the experiments, the first scale parameter λ0 in

(47) is computed automatically, except for meshes with

color attributes of Section 6.3.1 where it has been set

manually. When the input data F is in Rn×1, the value

of λ0 is set to ‖F −F‖Gw/4 as explained in Section 4.3.

This is for example the case for grayscale images. When

F is multivalued, λ0 is set to the maximum of the Gw
norms of the components: λ0 = max

1≤i≤m
‖F ᵀ

i,.−F
ᵀ
i,.‖Gw/4.

In all cases, Gw norms are computed using Algorithm

2.

Finally, each decomposition is performed using the Al-

gorithm 1 of Chambolle and Pock [13] for which the

actual derivation in our case was given in Section 3.5.2.

6.2 Images

With each digital image we associate a weighted graph

whose set of vertices is the set of pixels of the given

image. Different strategies can be adopted in order to
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Original u0
∑1
i=0 ui

∑2
i=0 ui

∑3
i=0 ui

∑4
i=0 ui

∑5
i=0 ui

∑6
i=0 ui

∑7
i=0 ui

∑8
i=0 ui

∑9
i=0 ui v9 + 120

Fig. 6 Sum of the successive layers extracted from the standard image Barbara. Results are obtained by considering a 4-
connectivity unweighted graph. The bottom right image represents the last residual.

construct the weighted adjacency matrix. The first nat-

ural choice consists in adopting a 4-connectivity lattice

graph, where each vertex is connected to its 4 neighbors

and weights are set to 1. Figures 6 and 9 show the sums

of the successive layers obtained when using the latter

graph construction on the two standard images Barbara

and Jetplane of Figure 1. One can see clearly the recon-

struction being performed as the successive layers are

extracted and summed up, in accordance with Propo-

sition 1. First levels exhibit a very rough description of

the original images. A first geometrical description is

obtained at the fifth level (
∑4
i=0 ui) for the image Bar-

bara, and at the sixth level (
∑5
i=0 ui) for the Jetplane

image. First rows of Figures 8 and 11 show the succes-

sive layers extracted. Therein, we can see how texture is

iteratively resolved as the process evolves. The second

to last layers are enhanced by adding a factor of 120 for

better visualization.

Though the lattice graph construction is natural for

digital images, other graph constructions can be con-

sidered. The general class of similarity graphs is often

used to model digital images. In this setting, a given dis-

tance measure is first computed, then transformed into

a similarity measure upon which the weighted graph

adjacency matrix is computed [27,20]. Since the in-

troduction of the NL-Means algorithm [7], patch-based

metrics have been popular in image processing. In this

setting, the distance between two pixels u and v does

not depend solely on the values at u and v but rather

on the values taken inside square windows centered at

each pixel, called patches. The distance between u and

v, d(u, v), is then computed as a weighted Euclidean

distance between the vectors collecting the values of

each patch. In this work, we consider 5 × 5 square

patches, and the distance between two vertices is set
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to the Euclidean distance between the vectors collect-

ing the values inside each patch. Based on the latter

distance, the most used graph construction consists in

fixing a search window Su around each pixel u (typ-

ically a 21 × 21 square window), connecting u to all

v ∈ Su − {u}, and weighting the edges (u, v) using a

Gaussian kernel: wu,v = e
−d(u,v)2

2h2 . While the latter ap-

proach proved its efficiency for the denoising task [7],

where the parameter h is related to the noise level, its

adaption to the decomposition task is not straightfor-

ward. We instead propose to form a nearest-neighbors

graph. In this setting we fix a search window (a 21 ×
21 square window in the experiments) and connect its

center to its N nearest-neighbors inside the search win-

dow. The value of N is set to 10 in the experiments. The

latter construction leads to a directed graph (the ma-

trix W is not symmetric). We cast it into an undirected

graph simply by ignoring the orientation of the edges,

so that we are led to a graph where each vertex is con-

nected to at least N neighbors. Once the neighbors are

found, the associated edges are given a unit weight. Fur-

thermore, the nearest-neighbors graph is coupled with

the standard 4-connectivity lattice graph to ensure that

the resulting graph is connected. Notice that the initial

scale λ0 changes with respect to the graph topology.

Figures 7 and 10 show the sums of the successive layers

obtained when using the latter graph construction on

the two standard images Barbara and Jetplane. Again

one can see the reconstruction being performed as the

successive layers are extracted and summed up. How-

ever, in contrast with the lattice graph results, we see

that the first levels exhibit a more geometric descrip-

tion of the input images so that the geometric part of

both images are reconstructed earlier. To quantify this

observation, we show in Figure 12 the mean square er-

rors (MSE) between the original images and the sums

of the successive layers. For the partly textured image

Barbara, the nonlocal graph construction clearly out-

performs the lattice graph construction. Finally, second

rows of Figures 8 and 11 show the successive layers ex-

tracted when using a nearest-neighbors graph.

6.3 Nonuniformly Sampled Data

We show in this section that the proposed approach can

be used to generate multiscale descriptions of nonuni-

formly sampled data. We illustrate this capability on

two types of data, namely, 3-D triangular meshes and

point clouds.

6.3.1 3-D Triangular Meshes

A triangular mesh consists of a set of vertices along with

a triangle-vertex incidence graph. Each vertex is de-

scribed by a set of geometrical attributes and optionally

by a set of photometric attributes. The geometric at-

tributes are the coordinates of each vertex and option-

ally the normals, while the photometric attributes can

be colors or texture coordinates per vertex. For a given

mesh, each of the aforementioned attributes leads to a

specific signal on the triangle-vertex incidence graph of

the mesh, thus leading to a specific graph-signal. We

concentrate in this subsection on two specific instances

of such graph-signals, namely meshes with coordinates

attributes, and meshes with vertex colors attributes.

Let us begin with multiscale descriptions of meshes with

coordinates attributes. Here, the aim is to enhance the

description of a geometric model by describing its sur-

face at different smoothness levels [34]. This is different

from multiresolution representations where the goal is

to describe the original model with varying sampling

resolution.

Figure 13 shows the sum of the successive layers ex-

tracted from the top left original head 3-D model. The

result is obtained by applying our multilayered rep-

resentation to the coordinates signal. Since the latter

signal is multivalued, the successive regularizations are

performed component-wise. Graph edges have been as-

signed weights using the inverse distance between their

endpoints:

wu,v = 1/(d(u, v) + ε),

where d(u, v) is the Euclidean distance between u and

v, and ε = 10−4.

Once again, the representation starts with a very rough

description of the input data, and the geometrical de-

tails are recovered as the successive layers are extracted.

At the twelfth level (
∑11
i=0), the original model is com-

pletely recovered. Notice however how the volume of the

model corresponding to u0 has been shrunk in compar-

ison to that of the original model. This suggests that

the volume preservation property, if desired, should be

built into the regularizing functional by means of a con-

straint.

We now move on to multiscale descriptions of meshes

with vertex colors attributes. In this setting, each vertex

has, in addition to its three spatial coordinates, three

color attributes corresponding to RGB values. The top

model of Figure 14 shows an example of such a mesh 1.

The graph we consider is the triangle-vertex incidence

graph given by the mesh, and the signal is composed

1 The model is taken from the sample dataset of the
Cyberware Head & Face Color 3D Scanner available at:
http://www.cyberware.com/
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Fig. 7 Sum of the successive layers extracted from the standard image Barbara. Results are obtained by considering a 10-
nearest neighbors unweighted graph. The bottom right image represents the last residual.

of the color attributes of each vertex. Our multilayered

representation manipulates the color attributes with-

out changing the coordinates of the vertices. It leads

to a multilayered representation of the colors of the

model, similar to the ones presented above for digital

images, the difference being that the support of the

signal is now nonuniform. In addition, the processing

is done component-wise. Note that the last residual v9
still contains some texture and that the sum of the six

first layers,
∑5
i=0 ui, can be interpreted as the struc-

ture part of a structure-texture decomposition of the

original model. In particular,
∑5
i=0 ui can be used to

segment the 3-D model into different meaningful com-

ponents, based on the homogeneity of the color signal.

This segmentation can be transferred back to the orig-

inal model since there is a one to one correspondence

between the models.

We now give an example of decomposition in the pres-

ence of noise. The top model of Figure 15 is obtained

by adding Gaussian white noise of standard deviation

σ = 20 to the color attributes of the model of Fig-

ure 14. The noise is added to each of the three RGB

components. This example is given to support the re-

mark made in Section 4.4. We see that as the multilay-

ered algorithm evolves, it extracts more details from the

successive residuals. The key observation here is that,

moving from level 8 (
∑7
i=0) to level 9 (

∑8
i=0), we see

that part of the noise has been added back to the re-

construction. Thus, the stopping time in this example

should be τ = 7. The bottom right image shows indeed

that at level 8, the residual is composed mainly of noise,

and no further decomposition should be performed.
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u0 u3 + 120 u5 + 120 u7 + 120

Fig. 8 Layers extracted form Barbara image. Top row is obtained using a 4-connectivity unweighted graph. Second row is
obtained using a 10-nearest neighbors unweighted graph.

6.3.2 Point Clouds

Finally, we consider the decomposition of a noisy toroidal

helix in Figure 16. Each point in 3-D space is mapped

to a vertex. A nearest-neighbors graph is constructed

based on the Euclidean distance between two points.

For N = 10, the resulting graph is connected. Finally,

the edges are weighted as for meshes, taking the inverse

of the Euclidean distance. The sums of the successive

layers are displayed in Figure 16 where a unique color

has been associated with each vertex of the graph. The

bottom right plot shows the tenth residual (v9) which

is almost reduced to a single point.

7 Conclusion

We have presented a method that allows to generate

adaptive multiscale descriptions of general digital data

sets that can be supported by a weighted graph struc-

ture. The proposed method works by extracting suc-

cessive layers from the input data in a nonlinear way.

Those layers are obtained by successive minimizations

of a graph variant of the classical TV regularization ap-

proach. The behavior of the method has been studied

and quantified. Issues regarding the choice of the scale

parameters have been formulated as a convex optimiza-

tion problem and solved using the recent primal-dual

algorithm of [13]. The latter formulation draws connec-

tions with previous works concerning the G norm intro-

duced in [28]. We have shown how the proposed method

can be applied to generate multiscale representations of

digital images. In this setting, we have shown how the

incorporation of nonlocal interactions can improve the

multiscale description. We have also shown how the pro-

posed method can be applied to nonuniformly sampled

data and gave examples for 3-D triangular meshes and

point clouds multiscale representation.
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Fig. 13 Sum of the successive layers extracted from the top left 3-D triangular mesh. The graph structure is given by the
input mesh. The edges are weighted as the inverse of the Euclidean distance. The signal is the coordinates of each vertex.
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Fig. 14 Sum of the successive layers extracted from the top 3-D triangular mesh. The graph structure is given by the input
mesh. The edges are unweighted. The signal is the RGB color values associated with each vertex. The bottom right model
represents the tenth residual.
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Fig. 15 Sum of the successive layers extracted from the top noisy 3-D triangular mesh. The graph structure is given by the
input mesh. The edges are unweighted. The signal is the RGB color values associated with each vertex. The bottom right
model represents the eighth residual and is composed mainly of noise.
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Fig. 16 Sum of the successive layers extracted from the top left noisy toroidal helix. The results are obtained by considering a
10-nearest neighbors graph. The edges are weighted as the inverse of the Euclidean distance. The bottom right plot represents
the last residual.


