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Abstract
A total variation (TV) model with an L1-fidelity term and a spatially
adapted regularization parameter is presented in order to reconstruct images
contaminated by impulse noise. This model intends to preserve small details
while homogeneous features still remain smooth. The regularization parameter
is locally adapted according to a local expected absolute value estimator
depending on the statistical characteristics of the noise. The numerical solution
of the L1-TV minimization problem with a spatially adapted parameter is
obtained by a superlinearly convergent algorithm based on Fenchel-duality and
inexact semismooth Newton techniques, which is stable with respect to noise
in the data. Numerical results justifying the advantage of such a regularization
parameter choice rule are presented.

1. Introduction

Images are often blurred and corrupted by different kinds of noise, such as Gaussian noise,
random-valued impulse noise or salt-and-pepper noise; see figures 1(a) and (d). The deblurring
and denoising of such images are necessary before further image processing operations, such
as edge detection, segmentation, or object recognition, are performed.

The image û is considered to be a real function defined on a bounded and piecewise
smooth open subset � of R

2 with the range [0, 1]. The corrupted image z is then given by

z = Kû + ρû. (1.1)

Here, K ∈ L(L2(�)) is a blurring operator, which is assumed to be known, and by L(L2(�))

we denote the space of linear and continuous operators from L2(�) to L2(�). The quantity ρû

represents the noise, which may or may not depend on the original image. In their seminal work
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Figure 1. Local expected absolute estimator, salt and pepper noise, (a) noisy image,
(b) reconstructed image for too small regularization parameter λ, (c) LEAVE11. Random-valued
impulse noise, (d) noisy image, (e) reconstructed image for too small regularization parameter λ,
(f) LEAVE11.

[18], Rudin, Osher and Fatemi proposed total variation regularization for image restoration.
The corresponding minimization task is as follows:

minimize J (u) :=
∫

�

|Du| over u ∈ BV (�)

subject to (s.t.)
∫

�

Ku dx =
∫

�

z dx,

∫
�

|Ku − z|2 dx = σ 2|�|,
(1.2)

where BV (�) denotes the space of functions of bounded variation, i.e. u ∈ BV (�) iff
u ∈ L1(�) and the BV -seminorm∫

�

|Du| = sup

{∫
�

u div�v dx : �v ∈ (C∞
0 (�)

)2
, |�v|l2 � 1

}
is finite. In what follows we refer to (1.2) as the ROF model. Usually, the ROF model is
solved via the following unconstrained optimization problem:

minimize
∫

�

|Du| +
λ

2

∫
�

|Ku − z|2 dx over u ∈ BV (�) (1.3)

for a given λ > 0. For more details about the ROF model; see, e.g., [4, 5, 7, 10, 16, 17,
21, 22, 24, 25]. In [5], conditions are specified such that (1.3) is equivalent to (1.2) for an
adequate λ � 0. In order to cope with different image scales, in [12] the spatial adaptation of
λ is studied. For this purpose, the following model with pointwise almost everywhere (a.e.)
constraints, i.e.

minimize
∫

�

|Du| over u ∈ BV (�), subject to S(u)(x) � σ 2 a.e. x ∈ � (1.4)

2



Inverse Problems 26 (2010) 085005 M Hintermüller and M M Rincon-Camacho

was proposed in order to find an adequate function λ ∈ L∞(�) for the model

minimize
∫

�

|Du| +
1

2

∫
�

λ|Ku − z|2 dx over u ∈ BV (�). (1.5)

In (1.4), S(u) represents a local variance estimator which relies on some local filter such as
the mean filter, the Gaussian filter or the Wiener filter. In the present work, a similar approach
is proposed to improve the total variation model with an L1 data-fidelity term, i.e.

minimize
∫

�

|Du| +
∫

�

λ|Ku − z| dx over u ∈ BV (�). (1.6)

The standard formulation of (1.6) with a scalar λ (rather than an L∞(�)-function) was studied,
e.g., in [6, 11, 19, 20] among other references.

Concerning the blurring by the known operator K we mention that in our tests we use
a Gaussian convolution with a 9 × 9 window and a standard deviation of 1. Its discrete
version is ill-conditioned, but invertible. We emphasize, however, that our subsequent theory
and algorithms work as long as KK∗ is invertible. Here, K∗ denotes the adjoint of K.
Numerically, we do not need to store the blurring operator, rather we store the convolution
kernel. Consequently, for the restoration we rely on an iterative solver (bi-conjugate gradient
stabilized) which only needs the application of the (discrete) blurring operator to a vector
(discrete image).

The outline of the rest of the paper is as follows. In section 2 descriptive statistics of
Gaussian white noise, random-valued impulse noise and salt-and-pepper noise are listed. In
section 3, a relation between the constrained and unconstrained models with L1 data-fidelity
term and the existence of their solutions are studied. A primal–dual method for solving the
problem (1.6) with λ ∈ L∞(�) is the subject of section 4. We call this model spatially
adapted total variation, denoted by SA-T V for short. Its numerical solution relies on the
algorithm presented in [11]. Section 5 focuses on how to automatically adapt the parameter
by considering a local expected absolute value estimator, denoted by LEAVE. In section 6 the
proposed algorithm is briefly summarized. Numerical results for the restoration of perturbed
images are presented in section 7. The paper ends by conclusions and further outlook.

2. Statistical characteristics of the noise

In this section, the characteristics of the noise corrupting the image are described. In order
to simplify the exposition, no blurring is considered. As was stated before, the image is a
function û defined over a domain � ⊂ R

2 which is corrupted by noise. At a point x ∈ �, the
resulting contaminated image z(x) = û(x) + ρû(x) is a stochastic observation, whose random
element ρû(x) depends on the underlying type of noise. For any two points of the domain
x, y ∈ �, ρû(x) and ρû(y) are independent.

Despite the abuse of notation for the ease of exposition let ρ denote the random variable
(r.v.) representing the noise corrupting the image, and let f be its probability density function.
There are different measures that describe the behavior of the r.v. ρ. An important measure
of location is the mean, here denoted by ϑ , which is given by

ϑ = E(ρ)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

−∞
ξρf (ξρ) dξρ if ρ is a continuous random variable (c.r.v),∑

ξρ∈V
ξρf (ξρ) if ρ is a discrete random variable (d.r.v) in a universe V.

(2.1)

3



Inverse Problems 26 (2010) 085005 M Hintermüller and M M Rincon-Camacho

A dispersion measure of interest is the variance

σ 2 = Var(ρ) = E[(ρ − ϑ)2] = E(ρ2) − ϑ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

−∞
ξ 2
ρf (ξρ) dξρ − ϑ2 if ρ is a c.r.v.,∑

ξρ∈V
ξ 2
ρf (ξρ) − ϑ2 if ρ is a d.r.v.

(2.2)

In what follows, we mainly utilize the expected absolute value given by

ν = EAV(ρ) = E(|ρ|) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

−∞
|ξρ |f (ξρ) dξρ if ρ is a c.r.v.,∑

ξρ∈V
|ξρ |f (ξρ) if ρ is a d.r.v.

(2.3)

2.1. Gaussian noise

In this case, ρ is normally distributed, with expectation 0 and variance σ 2. The probability
density function is given by

f (ξρ) = 1

σ
√

2π
exp

(
− ξ 2

ρ

2σ 2

)
, (2.4)

and the mean, variance and expected absolute value are

E(ρ) = 0, Var(ρ) = E(ρ2) = σ 2 and EAV(ρ) = E(|ρ|) =
√

2

π
σ. (2.5)

2.2. Salt-and-pepper noise

The salt-and-pepper characteristics are more difficult to describe. Here the r.v. ρ depends
on the value of the function. Thus, the associated conditional probability density function
depends on the value u (once more abusing notation):

f (ξρ |u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − r if ξρ = 0,

r

2
if ξρ = 1 − u,

r

2
if ξρ = −u,

(2.6)

where | stands for ‘given’. As it can be expected, the mean and the variance depend on u:

E(ρ | u) = r

2
(1 − 2u), Var(ρ) = r

2
(1 − 2u + 2u2) − r2

4
+ r2u(1 − u). (2.7)

Since the range of u belongs to the interval [0, 1], we have

1 − 2u + 2u2 � 1 and r2u(1 − u) � r2,

which yield the following estimates:

E(ρ|u) ∈
[
− r

2
,
r

2

]
and Var(ρ|u) � r

2
+

3r2

4
. (2.8)

However, the expected absolute value does not depend on the value u. It is given by

EAV(ρ | u) = E(|ρ| | u) = r

2
. (2.9)
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2.3. Random-valued impulse noise

This kind of noise also depends on the value of the image, as in the case of salt-and-pepper
noise. Its conditional probability density function is described in dependence on u by

f (ξρ | u) =
{

1 − r if ξρ = 0,

r if ξρ = y − u,
(2.10)

where y is a uniformly distributed r.v. in the range [0, 1]. The mean and the variance depending
on u are given by

E(ρ | u) = r

(
1

2
− u

)
and Var(ρ) = r

(
1

3
− u + u2

)
− r2

(
1

4
− u + u2

)
. (2.11)

Similarly as above, the following estimates are obtained:

E(ρ | u) ∈
[
− r

2
,
r

2

]
and Var(ρ | u) � r

3
+

r2

4
. (2.12)

Here, the expected absolute value also depends on the value u:

EAV(ρ | u) = E(|ρ| | u) = r

(
u2 − u +

1

2

)
. (2.13)

Since the range of u is between 0 and 1, we have that EAV(ρ | u) ∈ [ r
4 , r

2

]
.

3. Constrained and unconstrained L1-TV models

As was mentioned in the introduction, a model commonly used to restore images contaminated
by Gaussian white noise is the ROF model:

minimize
∫

�

|Du| +
λ

2

∫
�

|Ku − z|2dx over u ∈ BV (�), (3.1)

with K ∈ L(L2(�)) and z ∈ L2(�). Recently, in [12] the locally constrained model

minimize
∫

�

|Du| over u ∈ BV (�)

s.t.
∫

�

w(x, y)|Ku − z|2(y) dy � σ 2 for almost every x ∈ � (3.2)

was considered, where w is the mean filter defined as

w(x, y) =

⎧⎪⎨
⎪⎩

1

ω2
δ

if |y − x|l∞ � ω

2
,

δ else,
(3.3)

with x ∈ � fixed. The quantity ω > 0 is assumed sufficiently small and represents the
essential width of the filter window and 0 < δ � 1. Moreover, we have ωδ such that∫
�

∫
�

w(x, y) dy dx = 1. Thus, the Lagrange multiplier associated with the constraints in
model (3.2) is used to provide an adequate function λ when solving the unconstrained problem

minimize
∫

�

|Du| +
1

2

∫
�

λ|Ku − z|2 dx over u ∈ BV (�). (3.4)

The present text focusses on the L1-total-variation restoration model

minimize
∫

�

|Du| +
∫

�

λ|Ku − z| dx over u ∈ BV (�), (3.5)

5
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where λ ∈ L∞(�) with ess inf λ � λ > 0 and its locally constrained variant

minimize
∫

�

|Du| over u ∈ BV (�)

s.t.
∫

�

w(x, y)|Ku − z|(y) dy � ν for almost every x ∈ �. (3.6)

Here, the value of ν ∈ R is the expected absolute value that depends on the type of noise, such
as Gaussian white noise, salt-and-pepper noise or random-valued impulse noise. Note that
here we assume that in the case of random-valued impulse noise, ν is a fixed number in the
interval [ r

4 , r
2 ]. In our numerics, however, we report on results when ν is selected empirically

in dependence on some approximation of the true image.
For the existence proof for (3.5) and (3.6) a few prerequisites are needed. Assume that w

is a normalized filter, i.e. w ∈ L∞(� × �), and w � 0 on � × � with∫
�

∫
�

w(x, y) dy dx = 1 and∫
�

∫
�

w(x, y)|φ(y)| dy dx � ε‖φ‖L1(�) ∀ φ ∈ L1(�) (3.7)

for some ε > 0 independent of φ. An instance satisfying (3.7) is the mean filter defined in
(3.3). The w-smoothed version of |Ku − z| is denoted by S(u) and is given by

S(u)(x) :=
∫

�

w(x, y)|Ku − z|(y) dy for x ∈ �. (3.8)

Since Ku − z ∈ L1(�) and w ∈ L∞(� × �), we have S(u) ∈ L∞(�). Moreover, note that
S : L2(�) → L∞(�) is continuous. The closed and convex feasible set of (3.6) is given by

U = {u ∈ BV (�) : S(u) � ν a.e. in �}. (3.9)

In order to prove the existence of a solution to the problems (3.5) and (3.6), a technique
similar to the one of [1] is utilized in this section. We start by establishing a BV -coercivity
result for the functional

Q(u) = J (u) +
∫

�

S(u)(x) dx, (3.10)

where J (u) := ∫
�

|Du|.

Proposition 1. Assume that K does not annihilate constant functions, i.e. Kχ� �= 0 where
χ�(x) = 1 for x ∈ �. Then ‖u‖BV (�) → ∞ implies Q(u) → ∞.

Proof. Any u ∈ BV (�) can be decomposed according to

u = t + v, with t =
(∫

�
u dx

|�|
)

χ� and
∫

�

v dx = 0.

This yields

‖u‖BV � ‖v‖BV + ‖t‖BV =
∫

�

|v| dx + J (v) +
∫

�

|t | dx + J (t)

= J (v) + ‖v‖L1(�) + ‖t‖L1(�)

� (1 + C1)J (v) + ‖t‖L1(�).

6
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Here the inequality ‖v‖L1(�) � C1J (v) results from the Sobolev inequality ‖v‖L2(�) � C4J (v)

with C4 > 0; see [15, p 24]. Thus, we infer

Q(u) � J (u) + ε‖Kv − z + Kt‖L1(�)

� J (u) + ε‖Kt‖L1(�) − ε‖Kv − z‖L1(�)

� J (u) + ε‖Kt‖L1(�) − ε(C3 ‖v‖L2(�) + ‖z‖L1(�))

� J (v) + ε‖Kt‖L1(�) − εC3C4J (v) − ε‖z‖L1(�)

� J (v) + εC2‖t‖L1(�) − εC3C4J (v) − ε‖z‖L1(�)

� (1 − εC3C4)J (v) + εC2‖t‖L1(�) − ε‖z‖L1(�),

where C2, C3 and C4 are the positive constants. Here we used the fact that K does not annihilate
constant functions, i.e. C2 is such that ‖Kt‖L1(�) � C2‖t‖L1(�). The above estimate yields

‖t‖L1(�) � 1

εC2
[Q(u) + ε‖z‖L1(�) + (εC3C4 − 1)J (v)]

� 1

εC2
[Q(u) + εC3C4Q(u) + ε‖z‖L1(�)]

� C(ε)Q(u) +
1

C2
‖z‖L1(�)

where C(ε) = max
(

1
εC2

, C3C4
C2

)
. From this we obtain that

‖u‖BV � ‖t‖L1(�) + (1 + C1)J (v)

� C(ε)Q(u) +
1

C2
‖z‖L1(�) + (1 + C1)J (v)

� [C(ε) + 1 + C1]Q(u) +
1

C2
‖z‖L1(�),

which yields the assertion. �

The existence of a solution of the problem (3.6) is argued as follows.

Theorem 2. Assume that K ∈ L(L2(�)) does not annihilate constant functions. Then the
problem (3.6) admits a solution.

Proof. Let {un} ⊂ U be a minimizing sequence. Since {un} must satisfy the constraints in
(3.6), we have that Q(un) � J (un) + |�|ν where Q is given in (3.10) and |�| is the volume
of the domain �. Hence, proposition 1 implies that {un} is bounded in BV (�). According
to theorem 2.6 in [1] there exists a subsequence {unk

} which converges weakly in L2(�) to
some ũ ∈ L2(�). The functional J is weakly lower semicontinuous with respect to the L2(�)

topology; see theorem 2.3 in [1]. Thus, ũ ∈ BV (�). The sequence {Dunk
} converges weakly

as a measure to Dũ, by lemma 2.5 in [1]. Hence, we have

J (ũ) � lim inf
k→∞

J (unk
) = inf

u ∈U
J (u). (3.11)

Since K is a continuous linear operator,
{
Kunk

}
converges weakly to Kũ in L2(�). Moreover,

since U is convex and closed (and, thus, weakly closed), we have S(ũ) � ν a.e. in �.
Therefore, ũ is a solution to the problem. �

Due to the convexity (only) of the problem, there is no uniqueness result. Next, we study
the relation between the problems (3.5) and (3.6). As is done in [12], the following penalized
problem is considered:

minimize Qγ (u) := J (u) +
γ

2

∫
�

max(S(u) − ν, 0)2 dx over u ∈ BV (�), (3.12)

7
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where γ > 0 denotes a penalty parameter. The proof of the following proposition is similar
to the one of proposition 5 in [12].

Proposition 3. Let the assumptions of theorem 2 be satisfied. Then the problem (3.12) admits
a solution uγ ∈ BV (�) for every γ > 0. Moreover, for γ → +∞, {uγ } converges weakly
along a subsequence in L2(�) to a solution of (3.6).

Proof. Since S : L2(�) → L∞(�) and max(·, 0) : L2(�) → L2(�) are continuous and
convex, respectively, and since J (u) is weakly lower semicontinuous, then Qγ : BV (�) → R

is weakly lower semicontinuous. Let {un} ⊂ BV (�) be a minimizing sequence, and let ũ

be a solution of (3.6). For sufficiently large n, Qγ (un) � Qγ (ũ) + 1 = J (ũ) + 1. Further,
since S(u) � 0 a.e. in � for any u ∈ BV (�) there exists a constant C (independent of n and
γ ) such that ‖S(un)‖L2(�) � C for all n ∈ N. By proposition 1, {un} is bounded in BV (�).
Observing the lower-semicontinuity of the penalty term, the existence of a solution of (3.12)
for fixed γ can be argued similarly as in the proof of theorem 2. Moreover, it is clear that {uγ }
is bounded in BV (�). By weak lower semicontinuity

J (ũγ ) � lim inf
γ→+∞ Qγ (uγ ) � J (ũ) = inf

u∈U
J (u),

where ũγ is a weak limit in L2(�) of a subsequence of {uγ } in L2(�) (still denoted by {uγ }).
It is necessary to show that ũγ ∈ U . For all γ > 0 we have

γ

2

∫
�

max(S(uγ ) − ν, 0)2 dx � J (ũ).

Thus, as γ → ∞ we infer∫
�

max(S(uγ ) − ν, 0)2 dx → 0

and by the continuity of K, weak lower semicontinuity and Fatou’s lemma we have S(ũγ ) � ν

a.e. in �. �

In the same way, it can be obtained that

‖max(S(uγn
) − ν, 0)‖L2(�) = O(1/

√
γn), (3.13)

where O(an)/an → 0 for a sequence {an} with an → 0.
For subsequent results, let us define

λ◦
γ := γ max(S(uγ ) − ν, 0), (3.14)

λγ :=
∫

�

w(x, y)λ◦
γ (y) dy. (3.15)

Utilizing the proof technique of theorem 6 of [12], we obtain the following result.

Theorem 4. Let the assumptions of theorem 2 hold true. Moreover, we assume that there
exists C > 0 such that γn‖ max(S(uγn

) − ν, 0)‖L1(�) � C for all n ∈ N. Then there exist
λ̃ ∈ L∞(�), a bounded Borel measure λ̃◦ and a subsequence

{
γnk

}
such that the following

properties hold true:

(i)
∫
�

λγnk
g dx → ∫

�
λ̃g dx for all g ∈ L1(�) and λ̃ � 0 a.e. in �.

(ii)
∫
�

ϕλ◦
γnk

dx → ∫
�

ϕdλ̃◦ for all ϕ ∈ C(�̄), λ̃◦ � 0 and
∫
�

λ◦
γn

(S(uγn
) − ν) dx → 0.

8
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Proof. The assumption of the existence of a constant C > 0 such that γn‖max(S(uγn
) −

ν, 0)‖L1(�) � C implies that there exists a constant C ′ > 0 independent of γn such that

‖λγn
‖L∞(�) � γn‖w‖L∞(�×�)

∥∥max
(
S
(
uγn

)− ν, 0
)∥∥

L1(�)
� C ′.

Thus, the weak∗ sequential compactness of the closed unit ball in L∞(�) yields the first part
of (i). The non-negativity of λ̃ is implied of the definition of λγ . This proves (i).

Concerning (ii) we observe that∣∣∣∣
∫

�

λ◦
γn

max
(
S
(
uγn

)− ν, 0
)

dx

∣∣∣∣ = γn

∥∥max
(
S
(
uγn

)− ν, 0
)∥∥2

L2(�)
.

Thus, (3.13) implies the last relation of (ii). The first limit in (ii) follows immediately from
the boundedness of γn

∥∥max
(
S
(
uγn

)− ν, 0
)∥∥

L1(�)
and, hence, of

∣∣λ◦
γn

∣∣. The non-negativity of

λ̃◦ is an immediate consequence of the definition of λ◦
γ �

We note that if (3.13) holds true with O (1/
√

γ ) replaced by O(1/γ ), i.e. there exists a
constant C such that∥∥max

(
S
(
uγn

)− ν, 0
)∥∥

L2(�)
� C̃

γn

, (3.16)

then λ̃◦ ∈ L2(�). In this case, the system of theorem 4 (ii) becomes

λ̃◦ � 0 a.e. in �, S(ũ) � ν a.e. in �, lim
n→∞

∫
�

λ◦
γn

(
S
(
uγn

)− ν
)

dx = 0.

If the last relation above holds as
∫
�

λ̃◦(S(ũ) − ν) dx = 0, then we may equivalently write

λ̃◦ � 0 a.e. in �, λ̃◦ = λ̃◦ + τ max(S(ũ) − ν, 0), (3.17)

with τ > 0 arbitrary, but fixed.

4. Primal-dual method for L1-TV image restoration

In this section we propose a primal-dual method for solving (3.5). We start by recalling the
Fenchel duality theorem in infinite-dimensional spaces; see [14].

Theorem 5. Let V and Y be Banach spaces with topological duals denoted by V ∗ and
Y ∗, respectively. Let � ∈ L(V , Y ), with �∗ its adjoint, and let � : V → R ∪ {∞},
� : Y → R ∪ {∞} be convex lower semicontinuous functionals not identically equal to ∞,
and assume that there exists v0 ∈ V such that �(v0) < ∞, �(�v0) < ∞, and � is continuous
at �v0. Then

inf
v∈V

{�(v) + �(�v)} = sup
q∈Y ∗

{−�∗(�∗q) − �∗(−q)}, (4.1)

where �∗ : V ∗ → R ∪ {∞} denotes the conjugate of � defined by

�∗(v∗) = sup
v∈V

{〈v, v∗〉V,V ∗ − �(v)}. (4.2)

Moreover, (v̄, q̄) is a solution pair for (4.1) if and only if

�∗q̄ ∈ ∂�(v̄), (4.3)

−q̄ ∈ ∂�(�v̄). (4.4)

9
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4.1. Fenchel calculus

We begin with the formal computation of the Fenchel–Legendre dual of (3.5). For this purpose,
set � := ∇,

�(u) :=
∫

�

λ|Ku − z| dx and �(�q) :=
∫

�

|�q|l2 dx.

Thus, the conjugate of �(u) is defined by

�∗(u∗) = sup
u

{
〈u, u∗〉 −

∫
�

λ|Ku − z| dx

}
, (4.5)

where 〈u, v〉 = ∫
�

uv dx. From this we obtain that

u∗ − K∗λσ(Ku − z) = 0,

where σ(v) ∈ ∂|v|. Here and below ∂(·) denotes the subdifferential of convex analysis. Hence
�∗ has a maximum if u∗ = K∗λσ(Ku − z). This implies Ku∗ = KK∗λσ(Ku − z) and if
KK∗ is invertible, λσ(Ku − z) = (KK∗)−1Ku∗. Therefore, we find

�∗(u∗) = 〈u,K∗λσ(Ku − z)〉 −
∫

�

λ|Ku − z| dx

=
∫

{Ku�z}
(λKu − λKu + λz) dx +

∫
{Ku<z}

(−λKu + λKu − λz) dx

=
∫

�

zλσ(Ku − z) dx

= 〈z, (KK∗)−1Ku∗〉
together with the condition |(KK∗)−1Ku∗| � λ due to (KK∗)−1Ku∗ = λσ(Ku − z) and
σ(Ku − z) ∈ ∂|Ku − z|. Thus, the conjugates of �(u) and �(�q) are

�∗(u∗) := 〈z, (KK∗)−1Ku∗〉 + I{|(KK∗)−1Ku∗|�λ}(u∗),
�∗(�q∗) := I{| �w(x)|

l2 � 1}(�q∗),

where IS denotes the indicator function of S. For the latter we refer to [16].
According to the Fenchel duality theorem, for u∗ = ∇∗ �p∗ = −div �p, the dual problem

of (3.5) is

minimize − 〈z, (KK∗)−1K div �p∗〉 over �p∗

s.t. |(KK∗)−1K div �p∗| � λ,

|�p∗|l2 � 1.

(4.6)

4.2. Fenchel predual

The computations so far have been just formal. In this section we fix an appropriate function
space setting so that we are able to apply theorem 5 and rigorously establish (4.6) as the
Fenchel pre-dual of (3.5). From now on we assume that

(KK∗) is continuously invertible. (4.7)

We note that this assumption imposes a condition on the possible blurring operators. In our
numerics we utilize a Gaussian convolution with a small window size (9 × 9) which satisfies
(4.7).

Define � := (KK∗)−1Kdiv, Y := L2(�), V := H0(div), where

L
2(�) = L2(�) × L2(�), H0(div) = {�v ∈ L

2(�) : div �v ∈ L2(�), �v · �n = 0 on ∂�},
10
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and

� : Y → R, �(v) = −〈z, v〉 + I{v∈L2(�):|v|�λ a.e. in �}(v),

� : V → R, �(�p) = I{ �w∈H0(div):| �w|l2 �1 a.e. in �}(�p),
(4.8)

where �n denotes the outward unit normal to ∂�. Consider the problem

minimize �(��p) + �(�p) over �p ∈ H0(div). (4.9)

Note that theorem 5 requires the continuity of � at a point ��p0 where �p0 ∈ H0(div). This,
however, cannot be guaranteed with such a setting due to the presence of the indicator function.
Therefore, the following Moreau–Yosida-type regularization of the indicator function in � is
introduced:

minimize − 〈z,��p〉 +
μ

2
‖(|��p| − λ)+‖2

L2(�) over �p ∈ H0(div)

s.t. |�p|l2 � 1 a.e. in �,
(4.10)

where (v)+ = max(v, 0) in the pointwise a.e. sense and μ > 0. Rather than the choices in
(4.8), the following functions are considered for dualization:

�μ : Y → R, �μ(v) = −〈z, v〉 +
μ

2
‖(|v| − λ)+‖2

L2(�),

� : V → R, �(�p) = I{ �w∈H0(div):| �w|
l2 �1 a.e. in �}(�p).

(4.11)

The convex conjugates of �μ and � are given by

�∗
μ : Y ∗ → R, �∗

μ(v∗) = sup
v∈Y

{
〈v, v∗〉 + 〈z, v〉 − μ

2
‖(|v| − λ)+‖2

L2(�)

}
,

�∗ : V ∗ → R, �∗(�p∗) = sup
�p∈V

{〈�p, �p∗〉V,V ∗ − I{ �w∈H0(div):| �w|
l2 �1 a.e. in �}(�p)}. (4.12)

For �∗
μ we obtain

v∗ + z − μ sign(v)(|v| − λ)+ = 0. (4.13)

For our further computations, we consider the following sets:

�0 = {x ∈ � : |v(x)| � λ(x)}, implying v∗ + z = 0,

�+ = {x ∈ � : v(x) > λ(x)}, implying v = v∗ + z

μ
+ λ,

�− = {x ∈ � : v(x) < −λ(x)}, implying v = v∗ + z

μ
− λ.

By splitting the domain � into the previous subsets, i.e. � = �0 ∪̇ �+ ∪̇ �−, it can be shown
that

�∗
μ(v∗) = 1

2μ
‖v∗ + z‖2

L2(�) + ‖λ(v∗ + z)‖L1(�). (4.14)

According to the results in [16], the conjugate �∗ is given by

�∗(�p∗) = sup
�p∈S1

〈�p, �p∗〉, (4.15)

where S1 = {�p ∈ H0(div) : |�p|l2 � 1 a.e. in �}. Let us define the set

S2 = {�p ∈ C1
0(�) × C1

0(�) : |�p|l2 � 1 a.e. in �
}
, (4.16)

which is dense in the topology of H0(div) in S1. Further, (D(�))2 is dense in H0(div), where
D(�) is the space of test functions [2]. Let �p be an arbitrary element of S1 and let the sequence

11
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{�pn} ∈ (D(�))2 converge in H0(div) to �p. By P we denote the canonical projection in H0(div)

onto the closed convex subset S1. Since �p ∈ S1, we have that

‖�p − P �pn‖H0(div) � ‖�p − �pn‖H0(div) + ‖�pn − P �pn‖H0(div)

� 2‖�p − �pn‖H0(div) → 0 as n → ∞,

where ‖ �w‖2
H0( div) = ‖�w‖2

L2(�)
+ ‖div �w‖2

L2(�)
. According to (4.15) for v∗ ∈ L2(�) and

�∗ ∈ L(L2(�),H0(div)∗) we have

�∗(�∗v∗) = sup
�p∈S2

〈v∗,−(KK∗)−1K div �p〉. (4.17)

We define u = K∗(KK∗)−1v∗, such that �∗v∗ = (−div)∗K∗(KK∗)−1v∗ = (−div)∗u.
Hence,

�∗((−div)∗u) = sup
�p∈S2

〈u,−div �p〉 . (4.18)

This function is finite if and only if u ∈ BV (�), i.e.

�∗((−div)∗u) =
∫

�

|Du| < ∞ for u ∈ BV (�). (4.19)

Since u = K∗(KK∗)−1v∗, we infer v∗ = Ku and the function �∗
μ(−v∗) becomes

�∗
μ(−v∗) = 1

2μ
‖Ku − z‖2

L2(�) + ‖λ(Ku − z)‖L1(�). (4.20)

By (4.1), the dual problem of (4.10) is given by

minimize
∫

�

|Du| +
1

2μ
‖Ku − z‖2

L2(�) + ‖λ(Ku − z)‖L1(�) over u ∈ BV (�). (4.21)

Moreover, according to (4.3), a primal-dual solution pair (ū, �̄p) of the problems (4.10) and
(4.21) satisfies

−div �̄p = 1

μ
K∗(Ku − z) + K∗λσ(Kū − z),

〈(−div)∗ū, �p − �̄p〉H0(div)∗,H0(div) � 0 for all �p ∈ S1.

(4.22)

Notice the relation between (4.21) and the original problem (1.6). In fact, the penalization
of the dual constraint |��p| � λ a.e. in � in (4.10) yields, after yet another dualization, a
least-squares data-fidelity term in L2(�) weighted by 1

2μ
as is the case in (4.21). Thus, the

resulting problem has a combined L1-L2-fidelity term. Since we are interested in μ → ∞, the
L1-fidelity term increasingly dominates. It can even be shown that (4.21) converges to (1.6)
as μ → ∞. In our numerics, we choose μ = 106.

4.3. Reconstructability, a first regularization

It turns out that for a given dual solution �̄p, the image intensity u, i.e. the primal solution,
cannot be recovered in the general from (4.22). As a remedy we introduce an appropriate
regularization of the dual problem (4.10), which is more amenable to computations than the
primal problem (4.21). In fact, we consider the following dual regularization:

minimize − 〈z,��p∗〉 +
μ

2
‖(|��p∗| − λ)+‖2

L2(�) +
β

2
‖��p∗‖2

L2(�) over �p∗ ∈ H0(div),

s.t. |�p∗|l2 � 1 a.e. in �, (4.23)

12
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where β > 0 is a regularization parameter. As we shall see from dualization, the β-term
results in a local smoothing of the L1 fidelity term in (4.21). In order to see this, define

�μ,β(v) := −〈z, v〉 +
μ

2
‖(|v| − λ)+‖2

L2(�) +
β

2
‖v‖2

L2(�),

�(�p) := I{ �w∈H0(div):| �w|
l2 �1 a.e. in �}(�p∗).

(4.24)

The dual of �μ,β(v) is given by �∗
μ,β(v∗) = supv{〈v, v∗〉 − �μ,β(v)}. Hence, we obtain

v∗ + z − μ σ(v)(|v| − λ)+ − βv = 0. (4.25)

Splitting the domain � according to � = �0 ∪̇ �+ ∪̇ �− yields

�0 = {x ∈ � : |v(x)| � λ(x)}, which implies v = v∗ + z

β
;

�+ = {x ∈ � : v(x) > λ(x)}, which implies v = v∗ + z + μλ

β + μ
;

�− = {x ∈ � : v(x) < −λ(x)}, which implies v = v∗ + z − μλ

β + μ
.

From this we obtain that

�∗
μ,β(v∗)(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2β
|v∗ + z|2(x), if |v∗ + z|(x) � λ(x)β,

1

2(β + μ)
|v∗ + z|2(x) +

μ

μ + β
|λ(v∗ + z)|(x) − μβ

2(μ + β)
λ2(x)

if |v∗ + z|(x) > λ(x)β.

(4.26)

As u = K∗(KK∗)−1v∗, we have v∗ = Ku and the function �∗
μ,β(−v∗) becomes

�∗
μ,β(−Ku)(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2β
|Ku − z|2(x) if |Ku − z|(x) � λ(x)β,

1

2(β + μ)
|Ku − z|2(x) +

μ

μ + β
|λ(Ku − z)|(x) − μβ

2(μ + β)
λ2(x)

if |Ku − z|(x) > λ(x)β.

(4.27)

As before, we obtain

�∗((−div)∗u) =
∫

�

|Du| < ∞ for u ∈ BV (�). (4.28)

Thus, the dual problem of (4.23) is given by

minimize
∫

�

|Du| +
∫

�

�∗
μ,β(−Ku) dx over u ∈ BV (�). (4.29)

4.4. Uniqueness of �p, a second regularization

To ensure the uniqueness of the solution of the problem (4.23), a Tikhonov-type regularization
may be used. It is given by

minimize − 〈z,��p〉 +
μ

2
‖(|��p| − λ)+‖2

L2(�) +
β

2
‖��p‖2

L2(�)

+
γ

2
‖Pdiv �p‖2

L2(�) over �p ∈ H0(div), s.t. |�p|l2 � 1 a.e. in �, (4.30)

13
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where, as before, � = (KK∗)−1Kdiv. Here, Pdiv denotes the orthogonal projection in L
2(�)

onto H0(div 0) with H0(div 0) = {�v ∈ H0(div) : div �v = 0 a.e. in �}. We have

H0(div 0)⊥ = {�v ∈ grad H 1(�) : div �v ∈ L2(�), �v · n = 0 on ∂�},
H0(div) = H0(div 0)⊥ ⊕ H0(div 0); (4.31)

see [9] for details. We obtain the following result.

Theorem 6. Let �̄p ∈ H0(div) be the solution to (4.30) and assume that Kerdiv(K) := {s ∈
div(H0(div)) : Ks = 0} = {0}. Then there exists �̄v ∈ H0(div)∗ such that

−�∗z + μ �∗σ(� �̄p)(|� �̄p| − λ)+ + β�∗� �̄p + γPdiv �̄p + �̄v = 0,

〈 �̄v, �p − �̄p〉H0(div)∗,H0(div) � 0 for all �p ∈ H0(div)
(4.32)

with |�p|l2 � 1 a.e. in �, and the solution �̄p is unique.

Proof. Due to (4.31), every �w ∈ H0(div) can be decomposed according to �w = �w1 + �w2 ∈
H0(div 0)⊥ ⊕ H0(div 0). Thus, the problem (4.30) can be expressed in the following way:

minimize �(�p) + �1(�1 �p1) + �2(�2 �p2) over �p ∈ H0(div), (4.33)

where

�(�p) := I{ �w∈H0(div):| �w|l2 �1 a.e. in �}(�p),

�1(v) := −〈z, v〉 +
μ

2
‖(|v| − λ)+‖2

L2(�) +
β

2
‖v‖2

L2(�)

(4.34)

and �1 = �. As was done in [16], we set

�2 : L
2(�) → R, �2(�p) := γ

2
‖�p‖2

L2(�) (4.35)

and �2 ∈ L(H0(div0), L
2(�)) with �2 the canonical injection. According to remark 4.3 of

chapter III in [14], there exists �̄u1 ∈ L
2(�) and �̄u2 ∈ L

2(�) such that

−�̄u1 = −z + μσ(�1 �̄p1)(|�1 �̄p1| − λ)+ + β�1 �̄p1

= −z + μσ(� �̄p)(|� �̄p| − λ)+ + β� �̄p
− �̄u2 = γ �̄p2 = γPdiv �̄p
〈�∗ �̄u1 + �̄u2, �p − �̄p〉H0(div)∗,H0(div) � 0

(4.36)

which yields (4.32) with �̄v = �∗ �̄u1 + �̄u2.
In order to prove uniqueness of the solution, we consider the variational form of the first

equation in (4.32) given by

−〈z,� �w〉 + μ〈σ(� �̄p)(|� �̄p| − λ)+,� �w〉 + β〈� �̄p,� �w〉
+ γ 〈Pdiv �̄p, Pdiv �w〉 + 〈 �̄v, �w〉H0(div)∗,H0(div) = 0 (4.37)

for all �w ∈ H0(div). Let us suppose that (�pi, �vi) ∈ H0(div) × H0(div)∗, i = 1, 2, are the two
solutions with associated multipliers satisfying (4.32) for δ �p = �p2 − �p1, δ�v = �v2 − �v1 we
have

F(�p1, �p2, �w) + β〈�δ �p,� �w〉 + γ 〈Pdivδ �p, Pdiv �w〉 + 〈δ�v, �w〉H0(div)∗,H0(div) = 0,

〈δ�v, δ �p〉H0(div)∗,H0(div) � 0,
(4.38)

where

F(�p1, �p2, �w) = μ〈σ(��p2)(|��p2| − λ)+ − σ(��p1)(|��p1| − λ)+,� �w〉. (4.39)

14
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Replacing �w by δ �p, we have that

F(�p1, �p2, δ �p) = μ〈σ(��p2)(|��p2| − λ)+ − σ(��p1)(|��p1| − λ)+,��p2 − ��p1〉. (4.40)

We define the following functions:

A(x) := A(x, �p1, �p2) = σ(��p2(x))(|��p2(x)| − λ(x))+ − σ(��p1(x))(|��p1(x)| − λ(x))+,

B(x) := B(x, �p1, �p2) = ��p2(x) − ��p1(x) (4.41)

and the following splitting of the domain � = ∪̇8
i=0�i and its implications on A(x) and B(x):

i �i A(x) B(x)

0 {x ∈ � : |��p2(x)| � λ(x), |��p1(x)| � λ(x)} =0
1 {x ∈ � : |��p2(x)| � λ(x),��p1(x) < −λ(x)} −��p1(x) − λ(x) � 0 �0
2 {x ∈ � : |��p2(x)| � λ(x),��p1(x) > λ(x)} −��p1(x) + λ(x) � 0 �0
3 {x ∈ � : ��p2(x) < −λ(x), |��p1(x)| � λ(x)} ��p2(x) + λ(x) � 0 �0
4 {x ∈ � : ��p2(x) < −λ(x),��p1(x) < −λ(x)} ��p2(x) − ��p1(x) =A(x)

5 {x ∈ � : ��p2(x) < −λ(x),��p1(x) > λ(x)} ��p2(x) − ��p1 + 2λ � 0 �0
6 {x ∈ � : ��p2(x) > λ(x), |��p1(x)| � λ(x)} ��p2(x) − λ � 0 �0
7 {x ∈ � : ��p2(x) > λ(x),��p1(x) < −λ(x)} ��p2(x) − ��p1 − 2λ � 0 �0
8 {x ∈ � : ��p2(x) > λ(x),��p1(x) > λ(x)} ��p2(x) − ��p1 =A(x)

(4.42)

Thus, we infer that F(�p1, �p2, δ �p) � 0. Replacing �w by δ �p in equation (4.38), we obtain

F(�p1, �p2, δ �p) + β‖�δ �p‖2
L2(�) + γ ‖Pdivδ �p‖2

L2(�) = −〈δ�v, δ �p〉H0(div)∗,H0(div) . (4.43)

From (4.38) and (4.43) we obtain that

‖�δ �p‖L2(�) = 0 and ‖Pdivδ �p‖L2(�) = 0. (4.44)

Note that the invertibility of (KK∗) and our assumption that Kerdiv(K) = {0} yield
‖�δ �p‖L2(�) � c‖divδ �p‖L2(�) for some constant c > 0. This and (4.44) imply

‖div δ �p‖L2(�) = 0. (4.45)

Hence, δ �p ∈ H0(div0) and therefore Pdivδ �p = δ �p. This result together with the second part
of (4.44) implies that ‖δ �p‖L2(�) = 0, thus �p1 = �p2. �

4.5. Alternative setting of the problem

Here, we mention an alternative way of approaching the solution of (1.6) which is convenient
for numerical purposes.

Instead of considering the problem (4.21) the following setting is proposed:

minimize
∫

�

|∇u|l2 dx +
α

2

∫
�

|∇u|2l2 dx +
1

2μ

∫
�

|Ku − z|2 dx

+
∫

�

λ|Ku − z| dx over u ∈ H 1
0 (�), (4.46)

where 0 < α � 1/‖λ‖L∞(�). Model (4.46) is a close approximation of the problem (4.21).
Via dual regularization, similar as in section 4.3, the following problem is obtained:

minimize
∫

�

|∇u|l2 dx +
α

2

∫
�

|∇u|2l2 dx +
∫

�

�∗
μ,β(−Ku) dx over u ∈ H 1

0 (�), (4.47)
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where �∗
μ,β(−Ku) is given by (4.27). In the same way, if the (pre)dual of (4.47) is regularized

by γ

2 ‖�p‖2
L2(�)

rather than by γ

2 ‖Pdiv �p‖2
L2(�)

like in section 4.4, and the resulting problem is
dualized, we obtain

minimize
α

2

∫
�

|∇u|2l2 dx +
∫

�

�∗
μ,β(−Ku) dx +

∫
�

�∗
γ (∇u) dx over u ∈ H 1

0 (�), (4.48)

where �∗
γ is given by

�∗
γ ( �w) =

⎧⎪⎨
⎪⎩

1

2γ
| �w(x)|2l2 if | �w(x)|l2 < γ,

| �w(x)|l2 − γ

2
if | �w(x)|l2 � γ,

(4.49)

see [17] for details. According to the Fenchel theorem, the optimality conditions for the
coupled solutions (ū, �̄p) are

−div �̄p = −α�ū +
1

μ + β
K∗(Kū − z) +

μ

μ + β
K∗ λ(Kū − z)

max{λβ, |Kū − z|} ,

− �̄p = ∇ū

max{γ, |∇ū|l2} .

Let �̄q = − �̄p and v̄ = λ(Kū−z)

max{λβ,|Kū−z|} ; then the following system of equations is obtained:

−max{βλ, |Kū − z|}v̄ + λ(Kū − z) = 0, (4.50)

div �̄q + α�u − 1

μ + β
K∗(Ku − z) − μ

μ + β
K∗v̄ = 0, (4.51)

max{γ, |∇ū|l2}�̄q − ∇ū = 0. (4.52)

In what follows, we use (4.50)–(4.52) rather than the system associated with (4.30) and its
dual.

Note that by adding the term α
∫
�

|∇u|2
l2 dx with α > 0 we lift the solution of (4.21) into

H 1
0 (�). This has the mathematical advantage of yielding a problem in a reflexive function

space and makes the dualization process convenient, and it has the numerical advantage of
allowing us to reduce the first order system to a system in u (as compared to a system in the
vector field �p). It can be shown that (4.46) converges to (4.21) as α → 0 and to (1.6) for
α → 0 and μ → ∞.

4.6. Primal-dual algorithm

Note that the system (4.50)–(4.52) is non-smooth, i.e. not necessarily Fréchet differentiable.
However, relying on generalized differentiation, it turns out that the discrete version of this
system can be solved efficiently by a semismooth Newton method.

For this purpose let uh ∈ R
M , ph ∈ R

2M , λh ∈ R
M denote the discrete image intensity,

dual variable and spatially dependent λ, respectively, for some M ∈ N which depends
on the image size m × m. Further, let zh ∈ R

M denote the discrete data vector, ∇h ∈ R
2M×M

the discrete gradient operator, �h ∈ R
M×M the discrete Laplace operator, and Kh ∈ R

M×M

the discrete blurring operator. Here the mappings | · |, max{·, ·} and sign(·) are understood
for vectors in a componentwise sense. We use the mapping [| · |] : R

2M → R
2M with

[|vh|]i = ∣∣(vh
i , vh

i+M

)T ∣∣
l2 for i ∈ {1, . . . ,M}, and eh ∈ R

2M is the vector of all ones. The
discrete version of (4.50)–(4.52) is given by

−max{βλh, |Khuh − zh|}vh + λh(Khuh − zh) = 0, (4.53)
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−(∇h)T qh + α�huh − 1

μ + β
(Kh)T (Khuh − zh) − μ

μ + β
(Kh)T vh = 0, (4.54)

max{γ eh, [|∇huh|]}qh − ∇huh = 0. (4.55)

For the generalized linearization of (4.53)–(4.55), which is required for the semismooth
Newton solver, we use the following element of the generalized Jacobian of max : R

M → R
M ,

the diagonal matrix Gmax ∈ R
M×M with

(Gmax(w))ii :=
{

1 if wi � 0,

0 if wi < 0
for 1 � i � 1, (4.56)

compare [8].
Hence, in every step of our Newton method for solving (4.53)–(4.55) the following system

needs to be solved:⎛
⎜⎜⎜⎝

Ah
k −D(mβk

) 0

− 1

μ + β
KT K + α�h − μ

μ + β
(Kh)T −(∇h)T

Bh
k 0 D(mγk

)

⎞
⎟⎟⎟⎠
⎛
⎜⎝

δu

δv

δq

⎞
⎟⎠ =

⎛
⎜⎝

−Fk
1

−Fk
2

−Fk
3

⎞
⎟⎠ (4.57)

where

Ah
k = [D(λh

k

)− D
(
vh

k

)
χAβk

D
(
sign

(
Khuh

k − zh
))]

Kh := �kK
h,

Bh
k = [−I2M + D

(
qh

k

)
χAγk

D
(
mγk

)−1
Nh
(∇huh

k

)]∇h := −Ck∇h,

F k
1 := D

(
λh

k

)(
Khuh

k − zh
)− D

(
mβk

)
vh

k ,

F k
2 := −(∇h)T qh

k + α�huh
k − 1

μ + β
(Kh)T

(
Khuh

k − zh
)− μ

μ + β
(Kh)T vh

k ,

F k
3 := −∇huh

k + D
(
mγk

)
qh

k ,

I2M ∈ R
2M×2M is the identity matrix, D(v) is a diagonal matrix with the vector v in the main

diagonal, mβk
= max

{
βλh

k ,
∣∣Khuh

k − zh
∣∣}, mγk

= max
{
γ eh,

[∣∣∇huh
k

∣∣]},
χAβk

= D
(
tβk

)
with

(
tβk

)
i
=
{

0 if (mβk
)i = β

(
λh

k

)
i
,

1 else;

χAγk
= D

(
tγk

)
with

(
tγk

)
i
=
{

0 if
(
mγk

)
i
= γ,

1 else;

Nh(v) =
(

D(vx) D(vy)

D(vx) D(vy)

)
with v = (vx, vy)

T ∈ R
2M.

The diagonal matrices D
(
mβk

)
and D

(
mγk

)
are invertible. Therefore, δv and δq are obtained

from the first and third equation in (4.57), respectively, and substituted into the second equation.
The resulting equation for δu is written as

Hkδu = fk, (4.58)

where the matrix Hk and the right-hand side fk are defined by

Hk := 1

μ + β
(Kh)T Kh − α�h +

μ

μ + β
(Kh)T D

(
mβk

)−1
�kK

h + (∇h)T D
(
mγk

)−1
Ck∇h,

fk := Fk
2 − μ

μ + β
(Kh)T D

(
mβk

)−1
Fk

1 + (∇h)T D
(
mγk

)−1
Fk

3 .
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First note that the matrix Hk is in general not symmetric, because Ck is not. In [17] it was
shown that the matrix Ck at the solution

(
uh

k , v
h
k , qh

k

) = (ū, v̄, q̄) is positive definite whenever[∣∣qh
k

∣∣]
i
� 1 for i = 1, . . . , 2M. (C1)

Another important condition is(∣∣vh
k

∣∣)
j

�
(
λh

k

)
j

for j = 1, . . . ,M, (C2)

which yields feasibility of the dual variable. In fact, when both (C1) and (C2) are satisfied,
the following result holds true.

Lemma 7. Suppose the conditions (C1) and (C2) hold true and α > 0, then for all k ∈ N,
the matrix Hk is positive definite.

For the proof of the lemma 7 we refer to [17].
In case conditions (C1) and (C2) are not satisfied, qh

k and vh
k are projected onto their

respective feasible set. In fact, if (C1) is not satisfied,
((

qh
k

)
i
,
(
qh

k

)
i+m

)
is replaced by

max
{
1,
[∣∣qh

k

∣∣]
i

}−1 ((
qh

k

)
i
,
(
qh

k

)
i+m

)
. Analogously, if (C2) is violated at some index j ,

(
vh

k

)
j

is replaced by
(
λh

k

)
j

max
{(

λh
k

)
j
,
(∣∣vh

k

∣∣)
j

}−1(
vh

k

)
j
. Thus, the modified system matrix, denoted

by H +
k , is positive definite; see [11]. Summarizing the above discussion, our semismooth

Newton solver is as follows.

Semismooth Newton for step 2 of the SA-TV-algorithm.

(1) Initialize
(
uh

0, p
h
0

) ∈ R
M × R

2M and set k := 0.
(2) Estimate the active sets, i.e. determine χAβk+1

∈ R
M×M , χAγk+1

∈ R
2M×2M .

(3) If (C1) and (C2) are not satisfied, then compute H +
k ; otherwise, H +

k := Hk .
(4) Solve H +

k δu = f h
k for δu, and let δuk

denote the solution.
(5) Use δuk

to compute δpk
.

(6) Update uh
k+1 := uh

k + δuk
, ph

k+1 := ph
k + δpk

.
(7) Stop, or set k := k + 1 and return to step 2.

We point out that instead of α > 0, one may use H +
k + εkIM with α = 0, εk > 0 and

εk ↓ 0 as k → ∞ to obtain a positive definite system matrix. For εk = ε > 0 for all k, this
regularization corresponds to replacing α

∫
�

|∇u|2
l2 dx by ε

∫
�

|u|2
l2 dx in (4.46).

The locally superlinear convergence of the above algorithm follows from standard theory;
see [16, 17].

5. Spatial adaptation by local expected absolute value estimators

In the case were the local expected absolute value ν of the noise is at our disposal, as was the
case in section 3, the parameter λ may be chosen depending on the local constraint

S(u) � ν a.e. in �. (5.1)

We are interested in a reconstructed image such that its expected absolute value of the residual is
close to the expected absolute value of the noise in both the detail regions and the homogeneous
parts. Hence, we introduce a LEAVE for an automated adaptive choice of λ. The adjustment
rule makes use of the constraint (5.1).
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5.1. Local expected absolute value estimator

In the following, only discrete terms are used. The discrete image domain �h contains
M = m × m pixels. The discrete image residual is denoted by rh = Khuh − zh with
rh, zh, uh ∈ R

M and Kh ∈ R
M×M . For convenience, for the remainder of this section, rh, zh

and Khuh are reshaped as m×m matrices. In the discrete version of the mean filter defined in
(3.3), we use ε = 0. Let �ω denote the set of pixel-coordinates in a ω-by-ω window centered
at (i, j) (with a symmetric extension at the boundary), i.e.

�ω
i,j =

{
(s + i, t + j)

∣∣∣∣ −
⌊ω

2

⌋
� s, t �

⌊ω

2

⌋}
,

where �·� denotes rounding to the nearest integer towards zero. The mean filter is applied to
the absolute value of the residual image to obtain

LEAVEω
i,j = 1

ω2

∑
(s,t)∈�ω

i,j

∣∣(Khuh)s,t − zh
s,t

∣∣ = 1

ω2

∑
(s,t)∈�ω

i,j

∣∣rh
s,t

∣∣. (5.2)

Based on the current estimate λh and the pertinent reconstruction uh, the LEAVE is a statistical
measure which allows us to decide on the amount of details contained in the window around
(i, j). In figure 1 the LEAVE11 is shown for images corrupted by salt-and-pepper noise and
random-valued impulse noise, respectively. The LEAVE11 is large (indicated in light gray) in
image regions which contain fine scale details. One also observes that for fixed contrast, the
LEAVE11 is the larger the finer (smaller) the scale is.

5.2. Selection of λ in case of salt-and-pepper noise

For this type of noise, the expected absolute value is ν = r
2 , where r is the noise ratio. As we

observe in figure 1(b), the use of a small regularization parameter in the L1-TV model results
in an over-smoothing of the image and larger values of the LEAVE11 in details regions, as we
see in figure 1(c). This shows that the constraint (5.1) may have been violated. Thus, if the
LEAVEω

i,j at a pixel (i, j) is larger than ν, the current value of λh at this pixel needs to be
increased; otherwise, it must not to be increased in comparison to other pixels. Hence, for a
given λ̃

◦,h
k (which yields λh

k ), associated with a reconstructed image uh
k , the following update

of the regularization parameter λh is proposed:(
λ̃

◦,h
k+1

)
i,j

= η min
((

λ̃
◦,h
k

)
i,j

+ τ
((

LEAVEω
k

)
i,j

− ν
)+

, L
)
, (5.3)

(
λh

k+1

)
i,j

= 1

ω2

∑
(s,t)∈�ω

i,j

(
λ̃

◦,h
k+1

)
s,t

. (5.4)

Note that (5.3)–(5.4) (for η = 1) are inspired by (3.14) and (3.15) together with the result
(3.17). Here, the LEAVEω

k is obtained from uk, and L is a large positive value to ensure that
λ̃

◦,h
k stays bounded. The parameter τ is set as τ = τk = ∥∥λ̃◦,h

k

∥∥
l∞
/
ν in order to keep the

new λ̃
◦,h
k+1 at the same scale as λ̃

◦,h
k . The choice of η > 1 homogeneously increases λ̃

◦,h
k for

improving the reconstruction and is motivated and explained in more detail in section 6.

5.3. Empirical selection of λ in the case of random-valued impulse noise

Similarly to the salt-and-pepper case, we observe in figure 1(e) that a small regularization
parameter in the L1-TV model results in an over-smoothing of the image and comparatively
large values of the LEAVE11 in detail regions. Hence, in these regions an increase of λ is
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supposed to improve the restoration result. In our numerical test we found that an update rule
for λ like (5.3) with a scalar ν ∈ [ r

4 , r
2

]
is improved by remembering that according to (2.13)

ν actually depends on u. Rather than considering S(u) � ν(u) a.e. in �, which results in
a quite nonlinear problem, we choose a reference value for u and compute an approximated
expected absolute value which then is a function rather than a scalar. In our discrete setting, the
approach works as follows. For a given λ̃

◦,h
k (which yields λh

k ) associated with a reconstructed
image uh

k , a current expected absolute value is computed, i.e.(
νω

k

)
i,j

= 1

ω2

∑
(s,t)∈�ω

i,j

r

((
Khuh

k

)2
s,t

− (Khuh
k

)
s,t

+
1

2

)
.

Then the update of the regularization parameter λh is as follows:(
λ̃

◦,h
k+1

)
i,j

= η min
((

λ̃
◦,h
k

)
i,j

+ τ
((

LEAVEω
k

)
i,j

− (νω
k

)
i,j

)+
, L
)
, (5.5)

(
λh

k+1

)
i,j

= 1

ω2

∑
(s,t)∈�ω

i,j

(
λ̃

◦,h
k+1

)
s,t

. (5.6)

The parameters η, L have the same motivation as before. We note that we experimented with
using different window sizes for λh

k , the LEAVEk on one hand and νk on the other hand. We
found that using equal window sizes produces the best robust results. In order to keep the new
λ̃

◦,h
k+1 at the same scale as λ̃

◦,h
k , here τ is set as τ = τk = 2

∥∥λ̃◦,h
k

∥∥
l∞
/
r . This setting is inspired

by the fact that ν ∈ [ r
4 , r

2

]
.

6. Spatially adapted TV-algorithm

Based on the LEAVE of section 5, the reconstruction of the image by the primal-dual method
presented in section 4 is improved by modifying iteratively the regularization parameter.
Hence, the following algorithm is proposed:

SA-TV-Algorithm (A).

(1) Initialize uh
0 ∈ R

M , ph
0 ∈ R

2M , λh
0 ∈ R

M
++ and set k = 0.

(2) Solve the discrete version of the problem

uk ∈ arg min
u∈BV (�)

∫
�

|Du| +
∫

�

λk|Ku − z| dx

by means of the primal-dual method proposed in section 4. The discrete version of the
solution is denoted by uh

k .
(3) Based on uh

k , update

λ̃
◦,h
k+1 = min

(
λ̃

◦,h
k + τ

(
LEAVEω

k − νω
k

)+
, L
)
,(

λh
k+1

)
i,j

= 1

ω2

∑
(s,t)∈�ω

i,j

(
λ̃

◦,h
k+1

)
s,t

,

where

(
νω

k

)
i,j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r

2
for salt-and-pepper noise,

1

ω2

∑
(s,t)∈�ω

i,j

r

((
Khuh

k

)2
s,t

− (Khuh
k

)
s,t

+
1

2

)
for random-valued impulse noise.

(4) Stop, or set k := k + 1 and return to step 2.
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As will be shown in the numerical results, see figure 3, this algorithm exhibits a slow
convergence. For this reason, we propose to accompany the update by an image decomposition
method inspired by [13] in order to accelerate the restoration of the image. In [13], an image
is represented as the sum of ‘atoms’ wk , where every wk reveals finer scales than the previous
wk−1. In [13], each wk comes from an L2-TV image restoration. The resulting algorithm for
dyadic scales (i.e. λj = 2j λ0) is as follows:

(1) Choose λ0 > 0 and compute

u0 = arg min
u∈BV (�)

∫
�

|Du| +
λ0

2

∫
�

(Ku − z)2 dx. (6.1)

(2) For j = 0, 1, 2, . . . set λj = 2j λ0 and vj = z − Kuj . Then compute

wj = arg min
u∈BV (�)

∫
�

|Du| +
λj+1

2

∫
�

(Ku − vj )
2 dx, uj+1 = uj + wj . (6.2)

The dual of the seminorm
∫
�

|Du| is

‖u‖� = sup
φ∈BV (�),

∫
�

|Dφ|�=0

∫
�

uφ dx∫
�

|Dφ| . (6.3)

For û0 := u0, one has
∑k

j=0 Kwj → z as k → ∞ in the following weak sense:∥∥∥∥∥∥K∗

⎛
⎝z −

k∑
j=0

Kwj

⎞
⎠
∥∥∥∥∥∥

�

= 1

2kλ0
. (6.4)

We transfer this idea to the L1-TV case and incorporate it into our algorithm in order to
accelerate the adjustment of the regularization parameter. This is done in steps 2 and 3 of the
following algorithm. In step 4 we observe that the parameter η > 1 is used instead of the
factor 2 in step (ii).

SA-TV-Algorithm (B)

(1) Initialize uh
0 ∈ R

M , ph
0 ∈ R

2M , λh
0 ∈ R

M
++, vh

0 = zh and set k = 0.
(2) Solve the discrete version of the problem

wk ∈ arg min
v∈BV (�)

∫
�

|Dv| +
∫

�

λk|Kv − vk| dx

by means of the primal-dual method proposed in section 4. The discrete version of the
solution is denoted by wh

k .
(3) Update uh

k+1 = uh
k + wh

k , vh
k+1 = zh − Khuh

k+1.
(4) Based on uh

k+1, update

λ̃
◦,h
k+1 = η min

(
λ̃

◦,h
k + τ

(
LEAVEω

k − νω
k

)+
, L
)
,(

λh
k+1

)
i,j

= 1

ω2

∑
(s,t)∈�ω

i,j

(
λ̃

◦,h
k+1

)
s,t

,

where

(
νω

k

)
i,j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r

2
for salt-and-pepper noise,

1

ω2

∑
(s,t)∈�ω

i,j

r

((
Khuh

k

)2
s,t

− (Khuh
k

)
s,t

+
1

2

)
for random-valued impulse noise.

(5) Stop, or set k := k + 1 and return to step 2.
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(a) (b)

(c) (d)

Figure 2. (a) Cameraman, (b) man, (c) cameraman with Gaussian convolution with a 9×9 window,
(d) man with Gaussian convolution with a 9 × 9 window.

The parameter λh is initialized by a relatively small constant, i.e. λh
0 = (λ̄0, λ̄0, . . . , λ̄0)�

with λ̄0 > 0 small.
We note that a full theoretical justification of the transfer of the image decomposition

method of [13] to the L1-TV context is out of the scope of the present paper. Some first steps
in this direction can be found, e.g., in [23, 26, 27] and further studies are the subject of our
outgoing investigations.

7. Numerical results

In this section different experiments assessing the quality of algorithm (B) are presented. The
images called ‘cameraman’ and ‘man’ shown in the first row of figure 2 and their blurred
version in the second row of figure 2 are corrupted by random-valued impulse noise and
salt-and-pepper noise. The corrupted images are then restored by means of the L1-TV model.
More precisely, the algorithm presented in [11] is used where the regularization parameter is
a scalar. This scalar is close to be optimal, in the sense that after many trials, this scalar gives
the best restoration. Then, the images are also restored by using the model presented in this
paper and both results are compared.

The results for denoising are discussed in detail in section 7.2 and the ones for
the simultaneous deblurring and denoising in section 7.3. The next section addresses a
performance comparison of algorithms (A) and (B).
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(d)

(e)
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1.4

1.6
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(f)

(g)

1.4

1.6

1.8

2

2.2

2.4

(h)
(a) (c) (e) (g)

MAE 0.0308 0.0290 0.0269 0.0218
PSNR 22.49 22.75 24.35 25.17

Figure 3. Salt-and-pepper noise: (a) restored image using algorithm (A), (b) resulting λ,
(c) restored image using algorithm (B), (d) resulting λ. Random-valued impulse noise:
(e) restored image using algorithm (A), (f) resulting λ, (g) restored image using algorithm (B), (h)
resulting λ.

7.1. General remarks

The performance of the method is compared quantitatively by means of the mean absolute
error (MAE) and the peak signal-to-noise ratio (PSNR) [3]. Note that since the PSNR is an
L2-based measure, it has to be taken with care. Therefore, we also propose to consider the
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(a) (b) (c)

(d) (e) (f)

Figure 4. Restoration of Cameraman with different windows size. Salt-and-pepper: (a) ω = 11,
(b) ω = 21, (c) ω = 31. Random-valued impulse noise: (d) ω = 11, (e) ω = 21, (f) ω = 31.

MAE which is an L1-based measure. The smaller MAE becomes the better the reconstruction
results are.

In order to compare the performance of algorithms (A) and (B), we use them to denoise
‘cameraman’ corrupted by salt-and-pepper noise with noise ratio r = 0.5 (see figure 5(a))
and ‘cameraman’ corrupted by random-valued impulse noise with noise ratio r = 0.4 (see
figure 6(a)). These results are shown in figure 3. The images (a) and (e) are obtained after
20 iterations of the algorithm (A). The images in (c) and (g) are obtained after 5 iterations
of algorithm (B). Note that the cost per iteration for each of the algorithms is approximately
the same. We observe that the convergence of algorithm (A) is significantly slower than the
one of algorithm (B), and that smaller details are better preserved by using algorithm (B)
rather than algorithm (A). Thus, in all other examples, algorithm (B) is used to restore the
images.

In figure 4, one can observe that the restoration results are stable with respect to the
window size, i.e. there is no considerable difference between the results, although a larger
window is more suitable in order to reduce the influence of noise clusters, as one can find
upon comparing (a) and (b) or (c) and (d) and (e) or (f) in figure 4. In the results and unless
otherwise specified, the window size used to compute the LEAVEω explained in section 5 is
set to ω = 21.

The parameter η for updating the regularization parameter in step 4 of the algorithm (B)
in section 6 is set to 1.1. As the L1-TV model is rather sensitive to the regularization parameter
(this coincides with the observations in [6]), a moderate acceleration of the λ̂-update due to η

is appropriate. This is the reason why we choose η rather close to 1. The parameters μ, β, γ

are set to 106, 10−4 and 10−5, respectively.
The quality of images corrupted by blurring and noise is worse than the quality of those

corrupted by noise only. The reconstructed images, however, are usually better in the case
of deblurring and denoising rather than denoising only. This is due to the characteristics
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MAE 0.0296 0.0293 0.0371 0.0370
PSNR 22.67 22.62 23.15 22.77

Figure 5. Cameraman: (a) image with salt and pepper noise r = 0.5, (b) denoising with L1-TV
model, λ = 1.2, (c) denoising with the present method, (d) resulting λ. Man: (e) image with
salt-and-pepper noise r = 0.4, (f) denosing with the L1-TV model, λ = 1.3, (g) denoising with the
present method and (h) resulting λ.

of the impulse noise (random-valued or salt-and-pepper). Since the restoration method is
concerned with detecting the noisy pixels, this task becomes easier when the original image
is first ‘smoothed’ i.e. a contrast reduction due to blurring, and then corrupted by noise. As a
result, noisy pixels are better distinguished from other ones. This helps the restoration method
to produce better results.

The blurring used to corrupt the images in figures 7 and 8(a) and (e) comes from a
Gaussian convolution with a 9×9 window and a standard deviation of 1. The resulting matrix
Kh ∈ R

M×M is ill-conditioned, but invertible. It therefore satisfies the discrete versions of our
assumptions on K; see (4.7), theorem 6 and proposition 1.

Step 2 of algorithm (B) presented in section 6 applies the primal-dual algorithm presented
at the end of section 4. At most it needs 21 iterations until successful termination, i.e. until
the residual resi = (∣∣F i

1

∣∣2
l2 +
∣∣F i

2

∣∣2
l2 +
∣∣F i

3

∣∣2
l2

)/(∣∣F 0
1

∣∣2
l2 +
∣∣F 0

2

∣∣2
l2 +
∣∣F 0

3

∣∣2
l2

)
in (4.57) drops below a

given tolerance. The linear system in step 4 of the primal-dual algorithm in the denoising case
is solved by a direct solver, but in the deblurring and denoising case, it is solved by an iterative
solver (biconjugate gradient stabilized—BICGSTAB) which requires at most 20 iterations at
each call. In the spirit of an inexact Newton approach, we stop the BICGSTAB iteration as
soon as

∣∣f h
k − H +

k δu�
k

∣∣
l2

/∣∣f h
k

∣∣
l2 � 0.5. Here, δu�

k denotes the direction in iteration � of the
BICGSTAB algorithm in the kth step of our semismooth Newton method. With this setting
our Newton solver always converged to the desired accuracy.

The iterations of algorithm (B) of section 6 are stopped when the expected absolute value
estimator for the whole domain �h defined as

EAVE�
k := 1

|�h|
∑

(s,t)∈�h

∣∣(Khuh)s,t − zh
s,t

∣∣ (7.1)
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MAE 0.0226 0.0216 0.0476 0.0462
PSNR 24.84 25.21 22.36 22.18

Figure 6. Cameraman: (a) image with random-valued impulse noise r = 0.4, (b) denosing with
the L1-TV model, λ = 1.3, (c) denoising with the present method, (d) resulting λ. Man: (e) image
with random-valued impulse noise r = 0.4, (f) denosing with the L1-TV model, λ = 1.3, (g)
denoising with the present method and (h) resulting λ.

Table 1. Outer iterations (k), inner iterations (i), residual (resi), expected absolute value estimator
(EAVE�

k ), expected absolute value (ν�
k ).

Cameraman: salt-and-pepper, Man: random-valued impulse noise,
figure 5(c) figure 6(g)

k i resi EAVE�
k ν�

k k i resi EAVE�
k ν�

k

1 14 9.63 × 10−007 0.2647 0.25 1 16 3.13 × 10−007 0.1580 0.1305
2 17 9.64 × 10−007 0.2600 0.25 2 13 3.57 × 10−007 0.1526 0.1315
3 15 2.98 × 10−007 0.2575 0.25 3 17 2.76 × 10−007 0.1461 0.1321
4 18 8.18 × 10−007 0.2539 0.25 4 21 4.66 × 10−007 0.1374 0.1323
5 15 6.10 × 10−007 0.2504 0.25 5 21 2.45 × 10−007 0.1288 0.1324
6 20 7.77 × 10−007 0.2447 0.25

is less or equal to the corresponding expected absolute value ν�
k given by

ν�
k :=

⎧⎪⎪⎨
⎪⎪⎩

r

2
for salt-and-pepper noise,

1

|�h|
∑

(s,t)∈�h

r

((
Khuh

k

)2
s,t

− (Khuh
k

)
s,t

+
1

2

)
for random-valued impulse noise,

(7.2)

where |�h| = M = m × m pixels, i.e. size of the image.
In table 1 we illustrate these stopping conditions. In fact, we consider the reconstruction

of ‘cameraman’ corrupted by salt-and-pepper noise with ratio r = 0.5 as shown in
figure 5(c) and the reconstruction of ‘man’ corrupted by random-valued impulse noise with
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MAE 0.0268 0.0274 0.0388 0.0398
PSNR 24.46 24.44 24.06 23.90

Figure 7. Cameraman: (a) image with blur and salt-and-pepper noise r = 0.5, (b) denosing and
deblurring with the L1-TV model, λ = 3, (c) denoising and deblurring with the present method,
(d) resulting λ. Man: (e) image with blur and salt and pepper noise r = 0.5, (f) denosing and
deblurring with the L1-TV model, λ = 3, (g) denoising and deblurring with the present method
and (h) resulting λ.

r = 0.4 shown in figure 6(g). In this table, we show the number of necessary inner iterations
(i) of the semismooth Newton solver and the residual (resi ) upon termination of the inner
iteration. The stopping condition EAVE�

k � ν�
k is also contained in table 1 when comparing

the columns for EAVE�
k and ν�

k for the respective image. Further, the number of the necessary
outer iterations (k) of algorithm (B) is shown.

7.2. Image denoising

In figure 5, our results in the case where the image is corrupted by salt-and-pepper noise are
shown. The noise corrupting ‘cameraman’ has a noise ratio of r = 0.5, whereas the one
corrupting the ‘man’ has r = 0.4. The results obtained by a scalar regularization parameter
only can be found in (b) and (f) and the results obtained with a spatially adapted regularization
parameter in (c) and (g) for ‘cameraman’ and ‘man’, respectively. Note that in (c) and (g)
small features are better recovered as compared to (b) and (f). Also, homogeneous regions
appear smoother in (c) and (g) rather than in (b) and (f). For instance, in ‘cameraman’ we
observe that the center of the tripod is ‘sharper’ in (c) than in (b). Also noise spots in the sky
appear in (b) and not in (c). Moreover, the edges are better defined in (c). In (b) the edges
seem to be more irregular. In the case of ‘man’, the feathers in the hat exhibit more details
in (g) rather than in (f). The background is also more homogeneous in (g) than in (f). The
improvement of the images is due to the different values of the regularization parameter λ

over the image domain which can be observed in (d) and (h). In (d) and (h) the values of the
function λ are presented in a gray scale. Light gray regions refer to large values of λ, whereas
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PSNR 24.88 24.65 21.69 21.47

Figure 8. Cameraman: (a) image with blur and random-valued impulse noise r = 0.4, (b)
denosing and deblurring with the L1-TV model, λ = 3, (c) denoising and deblurring with the
present method, (d) Resulting λ. Man: (e) image with blur and random-valued impulse noise
r = 0.5. (f) denosing and deblurring with the L1-TV model, λ = 3. (g) denoising and deblurring
with the present method and (h) resulting λ.

dark gray belongs to zones where λ is rather small. Note that in (d) λ is large in the tripod
area and in (h) λ is large in the regions of the feathers. Both image details are of rather small
scale. The measure MAE shows that the restoration of ‘cameraman’ in (c) is better than in (b)
and that the restoration of ‘man’ is better in (g) than in (f). However, the PSNR is a little bit
smaller in (c) than in (b) and is also smaller in (g) than in (f). The algorithm (B) in section 6
requires 6 iterations for ‘cameraman’ and 5 for ‘man’.

In figure 6, images are corrupted by random-valued impulse noise with a noise ratio of
r = 0.4. The results obtained by a scalar regularization parameter only can be found in (b) and
(f) and the results obtained with a spatially adapted regularization parameter in (c) and (g) for
‘cameraman’ and ‘man’, respectively. The middle of the tripod and the details in the buildings
in ‘cameraman’ are better defined in (c) than in (b). In (d) we observe that the value of λ is
bigger in these regions. A similar effect is found in ‘man’ in the region of the feathers in the
hat. Thus, the details are better recovered in (g) than in (f) due to the spatial adaptation of λ

yielding the result in (g). The algorithm (B) in section 6 requires 5 iterations for ‘cameraman’
and 4 for ‘man’. The measure MAE is better in (c) and (g) than in (b) and (f). The PSNR is
better in (c) than in (b) although it is smaller in (g) than in (f). The algorithm (B) of section 6
requires 5 iterations in both cases.

7.3. Image deblurring

In figure 7 we observe the reconstruction of blurred images corrupted by salt-and-pepper
noise. We find that the reconstructions for spatially adapted regularization are slightly better;

28



Inverse Problems 26 (2010) 085005 M Hintermüller and M M Rincon-Camacho

compare (c) versus (b) and (g) versus (f). In this case we note that the difference in λ between
details and homogeneous regions appears smaller in the deblurring rather than in the denoising
case. The algorithm (B) of section 6 required 5 iterations for ‘cameraman’ and 6 for ‘man’.

Further, in figure 8 we observe a slightly better recovery of the details in (c) than in (b)
and in (g) than (f). In (d) we observe that the values of λ are larger in regions with small details
and edges. This behavior is less pronounced for ‘man’ as can be seen in (h). The restoration
of ‘cameraman’ needs 5 iterations and of ‘man’ 6 iterations.

We observe that the images restored by the algorithm requiring a scalar regularization
parameter yield slightly better results of the MAE and the PSNR than the restoration given
by the proposed algorithm (B) although these measures are close. As we mentioned before,
the original image is first ‘smoothed’ due to blurring, and then corrupted by noise. As a
consequence, small details may get lost due to this process. Subsequently, the update of the
spatially adapted parameter does not have the same impact as it has in the case of images
corrupted by noise only.

8. Conclusions

The L1-TV method is modified by replacing the scalar regularization parameter λ by a function.
A suitable choice of such a function is related to an equivalent problem with pointwise
constraints. Moreover, statistical characteristics of the noise help to locally adjust λ. For
this purpose, a local expected absolute value estimator is introduced for the parameter update.
The resulting spatially adapted regularization parameter λ is better suited in an L1-TV model
where small details are desired to be preserved. The two non-differentiable terms in the L1-TV
model (i.e. the TV-seminorm and the L1 fidelity term) are appropriately treated by adequate
regularization and Fenchel duality. The overall method combines an automated λ-adjustment
scheme with an inexact semismooth Newton solver for the L1-TV subproblems. The resulting
method outperforms the restoration due to a scalar regularization parameter in the case of
images contaminated by noise only. In the case of blurred and noisy images the reconstruction
performed by a model using a scalar parameter is already very accurate for a large range
of scalars, i.e. a precise tuning of the regularization is not necessary to find an appropriate
reconstruction. This is due to the fact that details are lost in the blurring process. Thus, blurred
details tend to remain in the residual image and do not contribute to a significant update of
the spatially adapted regularization parameter. We also point out that the spatially adapted
regularization parameter choice is fully automatic.
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