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We apply the method of operator splitting on the generalized Korteweg–de Vries
(KdV) equationut + f (u)x + εuxxx= 0, by solving the nonlinear conservation law
ut + f (u)x = 0 and the linear dispersive equationut + εuxxx= 0 sequentially. We
prove thatif the approximation obtained by operator splitting converges, then the
limit function is a weak solution of the generalized KdV equation. Convergence
properties are analyzed numerically by studying the effect of combining different
numerical methods for each of the simplified problems.c© 1999 Academic Press
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1. INTRODUCTION

There are at least two fundamentally different approaches to computations of numerical
solutions of the Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0, u(x, 0) = u0(x).

One approach is based on appropriate finite difference approximations. See, e.g., [27, 6, 2].
Alternatively, one can use the inverse scattering transform; see, e.g., [23, 4]. This method has
had enormous impact on the analysis of the KdV equation and other completely integrable
equations, but can also be used numerically; see, e.g., [26, 24, 25]. For an extensive survey
of numerical methods associated with completely integrable equations we refer to Taha
and Ablowitz, [31–33]. The inverse scattering transform method can briefly be described
as follows: One considers the solution,u, of the nonlinear equation as an entry in an
associated linear problem. In the case of the KdV equation one introducesu in the stationary
Schrödinger equation,−ψxx+ uψ = λψ , as a potential parametrized by the variablet .
For this equation one first computes the appropriate scattering quantities (reflection and
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transmission coefficients, bound states, etc.) for the initial datau0. It turns out that whenu
solves the KdV equation, the scattering quantities develop as functions oft in an explicit and
trivial manner (e.g., the eigenvalues remain unchanged). Subsequently, one has to solve the
inverse problem of computing the potentialu(x, t) from the scattering data. The function
u(x, t) then solves the KdV equation for any timet . Ingenious as this method is, it is
however restricted to the KdV equation and other completely integrable equations. Small
perturbations of the equation will render this method useless.

We will in this paper, in contrast to the methods discussed above, apply the method of
operator splitting to generalized KdV equations of the form

ut + f (u)x + εuxxx = 0, u(x, 0) = u0(x). (1)

In the special case off (u)= u2/2 andε= 1 it reduces to the KdV equation, while for
f (u)= u3/3 andε= 1 we obtain the modified KdV equation, another completely inte-
grable equation. Preliminary qualitative numerical experiments using operator splitting
were reported by Tappert [34]. Numerically he investigated equations of the form

ut + f (u)x + Lux = 0, u(x, 0) = u0(x), (2)

whereL is a linear pseudodifferential operator with constant coefficients. By first solving

ut + f (u)x = 0, (3)

using an implicit finite difference scheme, and subsequently solving

ut + Lux = 0, (4)

using discrete fast Fourier transform, he studied perturbations around the KdV equation.
The principal result was that the KdV equation is morphologically stable in the sense that
a small deviation from the KdV equation does not seem to alter qualitative features of the
equation, e.g., interaction of solitons.

There are extensive theoretical results on the generalized KdV equation (1). Solutions of
(1) are unique within the proper class of function classes. We can summarize the present
results as follows: Assume thatf is C1 with f (0)= 0 and| f ′(u)| ≤C |u|p for p∈ (0, 2].
Consider initial datau0 such that(1+ max(x, 0))β/2u0 ∈ L2(R)with β = 1/p− 1/4. Then
there exists (see Ginibreet al.[8, 7]) a unique solutionu such thatu∈ L∞([0,∞); L2(R))∩
Cw([0,∞); L2(R))∩ L2

loc([0,∞); H1
loc(R)). HereCw denotes the set of weakly differen-

tiable functions. There are also results in the case withp∈ [2, 3). Briefly, these types of
results are obtained by regularizing Eq. (1) by adding the termν(uxxxx−µuxx) to the
left-hand side of (1). The regularized equation has a unique solution, and by a certain com-
pactness argument one obtains convergence of a subsequence in the limitν→ 0 to a solution
of (1). An additional argument proves uniqueness within the proper class of functions.

For initial datau0 in H1 the result reads as follows: Assume thatf is C2 with | f ′(u)| ≤
C |u|(3/2)+ γ . Now Eq. (1) has a unique solution in the classC(R; L2(R))∩ L∞(R; H1(R))∩
L2(R; H1

loc(R))∩ Lq(R; L p
1+θα/2(R)); see Keniget al. [16]. The result holds for anyθ ∈

[0, θ0], α ∈ [0, 1/2] with θ0= min(1, 2γ ) andq= 6/θ(α+ 1), p= 2/(1− θ).
For further analytical results see [15, 17, 39].
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We now describe our operator splitting strategy. LetStu0 and Atu0 denote the solution
of the initial value problems

ut + f (u)x = 0, u(x, 0) = u0(x), (5)

and

ut + εuxxx = 0, u(x, 0) = u0(x), (6)

respectively.
The idea of operator splitting is to solve Eqs. (5) and (6) sequentially, and approximate

the solution of (1) as1

u1t (x, n1t) = [ A1t ◦ S1t ]
n u0(x). (7)

The method of operator splitting has successfully been applied to several other problems
of the form

ut + f (u)x = F(x, t, u, uxx), u(x, 0) = u0(x), (8)

by solving the equations

ut + f (u)x = 0

and

ut = F(x, t, u, uxx)

separately. In particular, Karlsen and Risebro [14] analyzed the caseF = εuxx using operator
splitting. By using a dimensional splitting in addition, their result also covered the multi-
dimensional case. A more sophisticated splitting algorithm was presented in [13]. Holden
and Risebro [10] used operator splitting to study the case withF = g(t, x, u) in the more
complicated case of a stochastic source. An unconditionally stable splitting scheme for
the equation withF = εuxx+ g(t, x, u) was analyzed in [12]. Finally, Evje and Karlsen
[5] treated the case with a possibly degenerate viscous termF = (a(u)ux)x, wherea may
vanish, using operator splitting.

There is an important difference2 between the diffusive or viscous case

ut + f (u)x = εuxx, u(x, 0) = u0(x), (9)

and the dispersive case

ut + f (u)x = −εuxxx, u(x, 0) = u0(x), (10)

1 HereA◦ B denotes the composition of two operatorsA andB.
2 The sign in front of the highest derivative is vital in the diffusive case, but only changes the direction of the

waves in the dispersive case.
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namely the deep fact that limits asε→ 0 of solutions of the two equations are distinct; see
[18–20]. Limit solutions of (9) are used as entropy conditions to define the unique weak
solution of the conservation lawut + f (u)x = 0.

More precisely, asε→ 0+, the generalized KdV equation (1) formally reduces to the
conservation law

ut + f (u)x = 0, u(x, 0) = u0(x), (11)

whose solutions may develop shocks. It is well known that the correct shock (discontinuous)
solutions of (11)—interpreted in the sense of distributions—can be obtained as strongL1

limits of smooth solutions of the dissipative regularization (9) asε→ 0+. The situation for
the dispersive regularization (10) is radically different. More precisely, whent exceeds the
shock formation time for the conservation law (11) withf = u2, the solutionuε of (10)
behaves in an oscillatory manner over somex interval. Asε→ 0+, the amplitude of these
oscillations remains bounded but does not tend to zero, and its wave length is of orderO(ε).
Thus dispersive solutionsuε only converge weakly to some limit function̄u asε→ 0+.
Furthermore, it is easy to see that the limitū does not satisfy the conservation law (11) in
the sense of distributions. On the other hand, it is well known that when the solution of the
conservation law (11) is smooth, then the dispersive solution of (10) converges uniformly to
that smooth solution asε→ 0+. Recall that whenf = u2, the weak limitū can be calculated
explicitly; see Lax and Levermore [18–20] and Venakides [35, 36]. We also refer to the
recent review papers of Levermore [21] and Venakides [37] (and the references therein)
for a detailed overview of the known results of the KdV small dispersion limit problem.
We refer to Goodman and Lax [9] and Hou and Lax [11] for numerical investigations of
the phenomena of oscillations and weak convergence of solutions of dispersive difference
schemes for (11).

The very fact that our operator splitting method uses (approximate) solutions of the con-
servation law (11) that are consistent with the dissipative equation (9), and not in general
the dispersive equation (10), may at first glance generate some doubts about the soundness
of the operator splitting method and whether it can produce approximate solutions that
will converge to the correct solution of the generalized KdV equation (1) as1t→ 0+. But
concerning this issue one should of course bear in mind that when1t becomes sufficiently
small, the hyperbolic solutionS1t u0 remains smooth (no shocks are formed), at least for
smooth initial data, and then, in view of the discussion above, this solution will be consistent
with both the dissipative equation (9) and the dispersive equation (10). Due to inconsis-
tencies between the topologies used in the analysis of conservation laws and generalized
KdV equations, we have not been able to show that the operator splitting approximations
converge. Butif they converge to some limit function, we show below that this limit must
in fact satisfy the generalized KdV equation (1) in the sense of distributions. Furthermore,
the numerical results presented here strongly suggest that operator splitting approximations
converge to the correct solutions as the discretization parameters tend to zero.

We will now describe the content of the paper more precisely. In Section 2 we first describe
fundamental properties of solutions of the conservation law (5) and the linear dispersive
equation (10). The incompatibility of properties of solutions of the two equations makes it
hard to obtain strong rigorous results. However, we prove a Lax–Wendroff type of result:
Assuming that the operator splitting method converges, we establish that the limit indeed
is a weak solution of the generalized KdV equation.
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In actual computations exact solutions of the conservation law and the linear dispersive
equation will have to be replaced by approximations, and in Subsections 2.2 and 2.3 we
describe the numerical methods employed for the linear dispersive equation and the con-
servation law, respectively. In the first case we consider a direct difference approximation
and a fast Fourier transform. In the latter case we utilize the Godunov method and an ENO
scheme as well as a spectral viscosity method.

In Section 3 we present numerical results for an explicit solution of the differential
equations, namely one- and two-soliton solutions of the KdV equation. The results are
summarized in Section 4.

2. OPERATOR SPLITTING

We consider the Cauchy problem for the generalized KdV equation

ut + f (u)x + εuxxx = 0,

u(x, 0) = u0(x),
(12)

with a suitable initial functionu0. Our strategy is alternately to solve the conservation law

ut + f (u)x = 0,

u(x, 0) = u0(x),
(13)

and the linear dispersive equation

ut + εuxxx = 0,

u(x, 0) = u0(x).
(14)

Let St be the solution operator associated with the conservation law (13); i.e., we write the
unique weak solution to (13) asu(x, t)= Stu0(x). Similarly we denote the solution operator
associated with the linear dispersive equation (14) byAt . Then we approximate the solution
of (12) by

u1t (x, n1t) = [ A1t ◦ S1t ]
n u0(x) (15)

for some (small) time step1t . Of course, when this approach is implemented, bothAt and
St must be replaced by numerical methods.

2.1. Analytical Results

Solutions of (1) possess a smoothing property that stems from the dispersive term. See
Craiget al. [3] for details and precise statements. The linear dispersive equation has strong
smoothing properties, while the equation for the nonlinear hyperbolic conservation law
encounters steepening of gradients and formation of discontinuities, i.e., shocks. Thus the
two equations are characterized by quite distinct behaviors. The solutionu= Stu0 of the
hyperbolic conservation law (13) has several important properties:

(i) maximum principle,‖u( · , t)‖∞ ≤‖u0‖∞;
(ii) L p stability,‖u( · , t)‖p≤‖u0‖p for p≥ 1;
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(iii) total variation diminishing (TVD), TV(u( · , t))≤TV(u0), where TV denotes the
total variation;3

(iv) L1 contractive,‖u( · , t)− v( · , t)‖1 ≤ ‖u0− v0‖1, wherev= Stv0 is another
solution of (13);

(v) Lipschitz continuous in time,‖u( · , t)− u( · , s)‖1 ≤O(1)TV(u0) |t − s|.
On the other hand, the linear dispersive equation (14) will in general have small dispersive
waves moving rapidly in one direction. More precisely, we have (see [17, 7, 16]) with initial
datau0 in L2(R) andD := ∫∞0 xε+1/2 |u0(x)| dx<∞, that the solutionu= Atu0 satisfies:

(i) u is continuous for anyt > 0.
(ii) sup0≤ t ≤ T ‖u( · , t)‖2 ≤ ‖u0‖2 for someT > 0.

(iii) supx0≤x |u(x, t)| ≤Ct−1/3 for 0≤ t ≤ T with the constantC depending onε, T ,
x0, ‖u0‖2, andD.

(iv) ux ∈ L2(R; L2
loc(R)).

Incompatibilities between the topologies used in the analysis of the conservation law
(13) and the linear dispersive equation (14) makes it very difficult to establish rigorously
convergence of the operator splitting method. However, it is possible to prove thatif the
operator splitting approximations converge to some limit function as1t tends to zero,
then this limit must in fact be a weak solution of the Cauchy problem (12). Suppose that
u0∈ L2(R). We then say thatu is a weak solution onR× [0, T ], T > 0, of the Cauchy
problem (12) if

u ∈ L∞([0, T ]; L2(R)) (16)

andu satisfies the the Cauchy problem (12) in the sense of distributions; that is, for any test
functionφ ∈C∞0 that vanishes fort ≥ T ,∫ T

0

∫ ∞
−∞
(φt u+ φx f (u)+ εφxxxu) dx dt+

∫ ∞
−∞

φ(x, 0)u0(x) dx = 0. (17)

It has recently been proved that weak solutions are uniquely determined by their data in
the special casef = u2; see Zhou [39]. In the following, we assume that the functionsStu0

and Atu0 are (exact) weak solutions of their respective equations. Inspired by [13], let us
introduce the auxiliary functionu1t ,

u1t (t) =
{

S2(t−tn)u
n, t ∈ [tn, tn+1/2],[

A2(t−tn+1/2) ◦ S1t
]
un, t ∈ [tn+1/2, tn+1].

(18)

where for brevity we write (cf. (15))

un(x) = u1t (x, n1t) = [ A1t ◦ S1t ]
n u0(x). (19)

Clearly

u1t (tn) = un = [ A1t ◦ S1t ]
nu0, for all n.

3 The total variation may be defined by TV(u)= sup
∑

i
|u(xi+1)− u(xi )|, where the supremum is taken over

all finite partitions{xi } with xi < xi+1.
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Note also that

‖u1t (·, t)‖2 ≤ ‖u1t (·, 0)‖2, ∀t > 0,

at least whenu0∈ L2(R), and thus

u1t ∈ L∞([0, T ]; L2(R)). (20)

In the following, we assume that

u1t → u strongly inL2
loc(R× [0, T ]). (21)

More generally, we could also have assumed thatu1t→ u almost everywhere inR× [0, T ].
In view of (20), it certainly follows that

u ∈ L∞([0, T ]; L2(R)). (22)

We would like to show that the limit in (21) is a weak solution of (12). To this end, fix a
test functionφ ∈ C∞0 that vanishes fort ≥ T and define a new test function by

ϕ(x, t) = φ
(

x,
t

2

)
.

Let

vn(t) = Stu
n, t ∈ [0,1t ].

Then sincevn(t) satisfies the conservation law (11) in the sense of distributions onR ×
[0,1t ] with initial dataun, the following integral equality holds,∫ tn+1/2

tn

∫ ∞
−∞

(
1

2
φt u1t + φx f (u1t )

)
dx dt

= 1

2

∫ 1t

0

∫ ∞
−∞

(
ϕτ (x, τ + 2tn)v

n(τ )+ ϕx(x, τ + 2tn) f (vn(τ ))
)

dx dτ

= 1

2

∫ ∞
−∞

φ(x, tn+1/2)u
n+1/2 dx− 1

2

∫ ∞
−∞

φ(x, tn)u
n dx, (23)

where we have used the substitutionτ = 2(t − tn) and introduced the short-hand notation
un+1/2 = S1t un. Similarly, let

wn(t) = Atu
n+1/2, t ∈ [0,1t ].

Then sincewn(t) satisfies the linear dispersive equation (14) in the sense of distributions
onR× [0,1t ] with initial dataun+1/2, the following integral equality holds,∫ tn+1

tn+1/2

∫ ∞
−∞

(
1

2
φt u1t + εφxxxu1t

)
dx dt

= 1

2

∫ 1t

0

∫ ∞
−∞

(
ϕτ (x, τ + 2tn+1/2)w

n(τ )+ εϕxxx(x, τ + 2tn+1/2)w
n(τ )

)
dx dτ

= 1

2

∫ ∞
−∞

φ(x, tn+1)u
n+1 dx− 1

2

∫ ∞
−∞

φ(x, tn+1/2)u
n+1/2 dx, (24)
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where we have used the substitutionτ = 2(t − tn+1/2) and letun+1 denote [A1t ◦ S1t ]un.
Adding together (23) and (24), multiplying by 2, and summing the result over alln =
0, . . . , N − 1, whereN1t = T , yield the global integral equality∫ T

0

∫ ∞
−∞
(u1tφt u+ 2χ1tφx f (u1t )+ ε2(1− χ1t )φxxxu1t ) dx dt

+
∫ ∞
−∞

φ(x, 0)u0(x) dx = 0, (25)

whereχ1t = χ1t (x, t) is the characteristic function of the set
⋃

nR× [tn, tn+1/2]. Then
because of (21) and sinceχ1t (x, t) ⇀ 1/2 in L2(R× [0, T ]), it follows that∫ T

0

∫ ∞
−∞

χ1t f (u1t )φx dx dt→ 1

2

∫ T

0

∫ ∞
−∞

f (u)φx dx dt,

∫ T

0

∫ ∞
−∞
(1− χ1t )u1tφxxx dx dt→ 1

2

∫ T

0

∫ ∞
−∞

uφxxx dx dt.

Hence, passing to the limit in (25), we obtain (17). Sinceφ was arbitrary and because of
(22), it follows that the limitu is a weak solution of the Cauchy problem (12).

Summing up, we have thus proved the following Lax–Wendroff type of theorem for
operator splitting for generalized KdV equations:

THEOREM 2.1. Suppose that u0 ∈ L2(R). Consider the semi-discrete sequence of op-
erator splitting approximations{u1t } given by(18) and(19). Suppose that u1t converges
strongly in L2

loc(R× [0, T ]) to u as1t→ 0+. Then u∈ L∞([0, T ]; L2(R)) is a weak so-
lution of the Cauchy problem(12); that is, it satisfies(17).

To prove this theorem we didnot require smoothness of the operator splitting approx-
imationu1t . From the point of view of rigorous analysis and the fact that the hyperbolic
solution operatorSt in general maps its (even smooth) data intoBV, we stress that this is
indeed the sort of results that we are interested in. But we mention again that it is an open
problem to establish the strong convergence (21) presupposed in the above theorem.

One should note that the above theorem is valid if the exact solutions operatorsSt andAt

are replaced by numerical methods which produce approximate solutions satisfying their
respective partial differential equations in the sense of distributions with error terms that
tend to zero (slightly) faster thanO (1t). Finally, the above theorem can easily be extended
to more general equations of the form [22]

ut + f (u)x + εg(u)xxx = 0.

We leave the details to the interested reader.

2.2. Methods for the Linear Dispersive Equation

In this section we describe the methods that we use to approximate the linear dispersive
equation. For simplicity we drop theε, so that the equation reads

ut + uxxx = 0, u|t=0 = u0. (26)
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The solution can be expressed explicitly (see, e.g., [17]),

u(x, t) = 1
3
√

3t

∫ ∞
−∞

Ai

(
x − y

3
√

3t

)
u0(y) dy, (27)

where Ai is the Airy function (see, e.g., [1, pp. 446ff].),

Ai(x) = 1

π

∫ ∞
0

cos

(
y3

3
+ yx

)
dy. (28)

Most of the technical problems in treating the generalized KdV equation are intrinsically
connected with the oscillatory behavior of the Airy function. Indeed we have

Ai(x) =
{

c− |x|−1/4 sin
(

2
3 |x|3/2+ c̃

)
for x→−∞,

c+x−1/4 exp(−2x3/2/3) for x→∞,
(29)

for constantsc± and c̃. For numerical computations the explicit formula (27) is of little
help.

2.2.1. A direct difference method.Writing ui = u(ih, t), we approximateuxxx by the
difference quotient

uxxx(ih, t) ≈ 1

2h3
(−ui−2+ 2ui−1− 2ui+1+ ui+2) , (30)

for i = −N, . . . , N. Writing u = (u−N, . . . ,uN)
′, we obtain the linear system of ordinary

differential equations

ut = Bu, (31)

where the matrixB is defined by (30) and the type of boundary condition we use. (In our
examples we use periodic boundary conditions.) To solve (31), we use the midpoint rule,

un+1− un

1t
= 1

2
B(un+1+ un), (32)

whereun denotes the approximate solution atn1t . The advantage of using the midpoint
rule, rather than an explicit method, is that the midpoint rule does not have the prohibiting
time step restriction1t =O(h3). Of course, we pay for this by having to solve a system
of linear equations, but the matrixB is banded and solving this system is not expensive in
terms of CPU-time or memory. Our shorthand for this method is “Diff.”

2.2.2. Methods based on the fast Fourier transform.Assuming periodic boundary con-
ditions in the interval [−π, π ], we write the solution of (26) as

u(x, t) =
∑

n

cnei(nx+n3t), (33)

where the constantscn are Fourier coefficients of the initial function.
Numerically, we can effectively implement this via the fast Fourier transform. Let

ûk =
N/2∑

j=−N/2

u j e
2π i jk/(N+1), (34)
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whereu j = u( jh, ·). The inverse transform is given by

u j = 1

N + 1

∑
k

ûke−2π i jk/(N+1). (35)

The discrete version of the dispersive equation (26) now reads withh= 1/N

(ûk)t − i (2πk)3ûk = 0, (36)

for eachk = −N/2, . . . , N/2. This ordinary differential equation can be solved to give

ûk(t) = ûk(0) ei (2πk)3t , (37)

and one can then use the inverse transform (35) to findu j . We label this method “FFT.”
However, we found that it is unstable when used in conjunction with some of the numerical
methods for the conservation law. Therefore we also solve (36) by using a Crank–Nicholson
scheme, [

1− 1t

2
w(k)

]
ûn+1

k =
[
1+ 1t

2
w(k)

]
ûn

k, (38)

whereûn
k = ûk(n1t) andw(k) = i (2πk)3. Our shorthand for this method is “FFT–CN.”

2.3. Methods for the Conservation Law

There is a great variety of methods to choose from for the conservation law. Since we
have concentrated on smooth solutions of the KdV equation, we have chosen two methods
that give a high order approximation to smooth solutions, and for comparison, one first
order method that is simple and easy to implement. The first order method is Godunov’s
method, and the higher order methods are ENO schemes and the spectral viscosity method.
We now give short descriptions of these methods.

2.3.1. Godunov’s method.Again, we use the notationun
j = u( jh, n1t). Let ũ(x, 0) be

defined by

ũ(x, 0) = un
j for ( j − 1/2)h ≤ x < ( j + 1/2)h,

for j = −N − 1, . . . , N, and whereun
−N−1 = un

N . Godunov’s method is based on using
ũ(x, 0) as initial data for the conservation law (13), and solving for a time step1t , and
subsequently defining

un+1
j =

1

h

∫ ( j+1/2)h

( j−1/2)h
ũ(x,1t) dx, (39)

whereũ(x,1t) is the solution with initial datãu(x, 0). Using the conservation law, we find
that

un+1
j = un

j −
1t

h

(
F
(
un

j , u
n
j+1

)− F
(
un

j−1, u
n
j

))
,
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provided1t max f ′ < h, and where the so-called numerical flux functionF is defined by

F(a, b) =
{

mina≤u≤b f (u) if a ≤ b,

maxb≤u≤a f (u) if a > b.
(40)

In the KdV case, wheref (u) = u2/2, this simplifies to

F(a, b) = 1

2


0 if a ≤ 0≤ b,

min[a2, b2] if ab> 0 anda < b,

max[a2, b2] if a > b.

We label this method “Godunov.”

2.3.2. ENO schemes.ENO (Essentially Non-oscillatory) schemes are finite difference
schemes based on interpolation of discrete data using polynomials. As long as the data are
smooth inside the approximation stencil, the order of the method is high. To circumvent the
problem of discontinuities arising in the solution of conservation laws, a variable stencil is
used.

If cell averages of a functionu(x) are given by

ū j = 1

h

∫ ( j+1/2)h

( j−1/2)h
u(x) dx,

we find a polynomialpj (x) of degree at mostk − 1 such that it is akth order accurate
approximation ofu inside the cellI j = [( j − 1/2)h, ( j + 1/2)h],

pj (x) = u(x)+O(hk) for x ∈ I j .

Let u−j andu+j be defined as

u±j = pj (( j ± 1/2)h).

If we choose a stencil based onr cells to the left, ands cells to the right,r + s+ 1 = k,
then there are constantscr j andc̃r j , depending only onr , s, andk, such that

u−j =
k−1∑
i=0

cri ū j−r+i , u+j =
k−1∑
i=0

c̃r i ū j−r+i .

For the actual values of the constantscri andc̃r i , see [28].
The basic idea of ENO methods is to avoid including discontinuities in the stencil.

Therefore, for a fixedj , all possible stencils are compared, and the one with the “smoothest”
data is used.

The conservation law is then approximated by a system of ordinary differential equations,

duj

dt
= −1

h
[F(u+j+1, u

−
j+1)− F(u+j , u

−
j )],

=: L j (u), (41)
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whereF is the numerical flux function. We have used a Godunov numerical flux (40). To
integrate (41) we have used a third order TVD Runge–Kutta method reported in [29],

v1
j = un

j −1t L j (u
n),

v2
j =

3

4
un

j +
1

4

[
v1

j −1t L j (v
1)
]
, (42)

un+1
j = 1

3
un

j +
2

3

[
v2

j −1t L j (v
2)
]
,

for j = −N, . . . , N andn = 0, 1, 2, . . .. This method is TVD if1t/h < 1. The reason
for choosing a third order method rather than a fourth or higher order method, is that there
are no higher (>3) order methods that are TVD. Also, good higher order methods are more
complicated to implement and demand significantly more storage and computer time.

Since we have used a third order integration in time, we also use a third order ENO
interpolation in space.

2.3.3. The spectral viscosity method.The conservation law is not a linear equation, and
therefore not obviously suited for spectral methods. However, the spectral viscosity method,
developed by Tadmor [30], has proven to be a good method for conservation laws.

Consider a periodic functionu with period 1. LetPN be defined as the truncated Fourier
expansion, that is,

PNu(x) =
N∑

k=−N

ûk e2π ikx. (43)

Now, instead of trying to solve the conservation law, (13), we modify this as

[ PNu]t + [ PN f (PNu)]x = εN(QN(x, t) ∗ (PNu)x)x, (44)

whereQN augments high frequency oscillations, i.e.,̂QNk ≈ 0 for |k|<<< N andQ̂Nk ≈ 1
for |k| close toN. Furthermore, the numerical viscosity coefficient behaves likeεN =
O(1/
√

N). In Fourier space, (44) is a system of ordinary differential equations

(ûk)t + 2π ik f̂ k = −εN(2πk)2 Q̂Nk ûk, (45)

where f̂ = ̂f (PNu). This system of equations can be solved by the Euler method, i.e.,

ûn+1
k = ûn

k −1t
(
2π ik f̂ n

k + εN(2πk)2 Q̂k ûk
)
,

for n = 0, 1, . . . andk = −N, . . . , N. For brevity we writeQ̂k = Q̂Nk.
We found that this method of integrating (45) was not suitable, due to severe restrictions

on the time step1t . Instead we integrated (45) by a Crank–Nicholson scheme, at the cost
of having to solve a nonlinear system of equations,

ûn+1
k =

[
1− εN Q̂k

(2πk)2

2
1t

]−1

×
{[

1+ εN Q̂k
(2πk)2

2
1t

]
ûn

k −
1t

2
(2π ik)

(
f̂ n

k + f̂ n+1
k

)}
, (46)
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at each time step. This system can be solved by fixpoint iteration. We iterated until
maxk(û

n+1,r+1
k − ûn+1,r

k ) was less than1t2; herer denotes the number of iterations taken.
Usually, this required two or three iterations when the initial guess wasûn+1,0 = ûn. For
the parametersQ andεN we used

εN = 1√
N
, Q̂k =

{
0 for k ≤ √N,
1
2

(
1+ tanh

(
1
2(k−

√
N)
))

otherwise.

This method is labeled “SpVi.”

2.3.4. An implicit method. In the paper [34], Tappert used an implicit method for the
conservation law, and the method FFT for the dispersive equation. Implicit methods for
conservation laws are rarely used since they tend to be unsuitable for discontinuous solutions.
Here, at least for small time steps, the solution of the conservation law will be continuous.
In [34] the following Crank–Nicholson scheme was proposed for the conservation law,

un+1
j = un

j −
1

2

(
Qn+1

j + Qn
j

)
, (47)

whereQn
j approximatesf (u)x. We use the Lax–Friedrichs approximation

Qn
j =

1

2h

(
f
(
un

j+1

)− f
(
un

j−1

))
. (48)

The resulting nonlinear system of equations is solved by fixpoint iteration, iterating until
the difference between two successive approximations is less than1t2. We label this
method CN.

2.3.5. A comparison method.For comparison with other tested methods for solving the
KdV equation, we also implemented the implicit spectral method of Wineberget al. [38].
This method is based on the Fourier transform of (12),

(ûk)t + (2π ik) f̂ k − εi (2πk)3 ûk = 0. (49)

Again, the numerical integration is done with a Crank–Nicholson method, iterating to find
the solution of the system of equations

ûn+1
k =

[
1− 1t

2
εi (2πk)3

]−1 {[
1+ 1t

2
εi (2πk)3

]
ûn

k −
1t

2

(
f̂ n

k + f̂ n+1
k

)}
. (50)

In [38] it is shown that iterating twice gives a second order accurate scheme; consequently
we also iterate twice. We label this method “Spectral.”

Note that integrating (49) by splitting the linear term and the nonlinear term is not good,
since solving the nonlinear term amounts to using a spectral method for the conservation
law withoutspectral viscosity, and this leads to spurious oscillations, which in turn create
instabilities in the numerical solution of the linear part of (49).
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3. NUMERICAL RESULTS

In practice, we do not use the Godunov splitting (15), but rather the Strang splitting

un+1 = [S1t/2 ◦ A1t ◦ S1t/2]un, (51)

whereun denotes the numerical approximation att = n1t andA andSare the numerical
methods for the linear dispersive equation (14) and the conservation law (13), respectively.

In order to test our methods, we use exact one-soliton and two-soliton solutions for the
KdV equation

ut + 1

2
(u2)x + εuxxx = 0. (52)

The one-soliton solution is given by

u(x, t) = 3csech2
(√

c

4ε
(x − ct)

)
. (53)

We usedε = 0.0013020833 andc = 1/3. This solution is a scaled version of the one-soliton
in [4, p. 22].

The formula for the two-soliton is more involved (properly scaled from [4, pp. 74ff.]),

u(x, t) = 2
k2

1 eθ1 + k2
2eθ2 + 2(k2− k1)eθ1+ θ2 + a2

(
k2

2eθ1 + k2
1eθ2
)
eθ1+ θ2

(1+ eθ1 + eθ2 + a2eθ1+ θ2)2
, (54)

where the constants are given by

k1 = 3

2
, k2 = 1, a2 =

(
k1− k2

k1+ k2

)2

= 1

25
,

θ1 = k1
x

6
√
ε
− k3

1
t

63/2
√
ε
− 3,

θ2 = k2
x

6
√
ε
− k3

2
t

63/2
√
ε
+ 3.

Experimenting with various combinations of the methods for the linear dispersive equa-
tion and the conservation law, we found that not all combinations were equally well suited.
After extensive testing, we were left with the combinations: Diff–Godunov, Diff–ENO,
FFT–ENO, and FFT–CN–SpVi as the most stable and accurate. Below we show how these
combinations perform on the one-soliton case; i.e., we use (53) witht = 0 as initial data.
Figure 1 shows the numerical results att = 2, when the peak of the soliton has moved about
0.7 units. In these computations we used 64 grid points in the interval [−1, 2] and periodic
boundary data. In the figure we see that the combinations seem to rank from Diff–Godunov
to FFT–CN–SpVi in terms of accuracy.

This is also what we found when measuring how the methods compared in terms of
CPU-time versus error. The errors reported here are relative percentage errors, i.e.,

error= 100
‖uapprox− uexact‖
‖uexact‖ ,
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FIG. 1. Numerical solution of the one-soliton case. The dashed line indicates the exact solution.

where‖ · ‖ is theL∞ norm or theL2 norm. In Fig. 2 we show the logarithms of CPU-time4

andL2 error, respectively, for the four combinations and for the spectral method (Spectral).
Again we use the one-soliton case (53), but we have used 25–211 grid points. This figure
more or less confirms the ranking of the methods from the previous example. The methods
Diff–ENO, FFT–ENO, and FFT–CN seem to perform slightly worse than Spectral, and
FFT–CN–SpVi slightly better. The method Diff–Godunov, although it seems to converge,
uses significantly more time to reach the same error. Using 210 grid points, it has roughly
the same error as the other methods using 27 grid points.

Regarding convergence rates in1x, by using linear regression on the above example, we
obtained Table I. The first column gives the numerical convergence rates, and the second,

4 The CPU-time is 100·CPU-time for the calculations,not the initial memory allocations and setup of the initial
data. The computations were carried out on a Power Macintosh G3/266.
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FIG. 2. L2 error vs CPU-time.

estimates of how well the variance in the data is explained by the linear model. A low value
for χ2 indicates good linear fit. The values indicate that Diff–Godunov has a convergence
rate of 1/2, while all the other methods seem to converge at a rate of 1. Remarkably, this
also holds for the second order spectral method Spectral.

We also remark that theL2 errors are extremely well correlated with the supremum errors.
Hence, using supremum errors would give virtually identical results.

As a more complicated case, we use the two-soliton solution (54). Figures 3 and 4 show
how the four splitting methods resolved an interaction between these two solitons. Again
Diff–Godunov ranks poorest; we see that the solitons appear somewhat smeared after the
interaction, while the three other methods are similar. We used 27 grid points in thex interval
[−0.5, 3.0] and CFL number 1 for all methods except FFT–CN–SpVi, where we used CFL
number 0.5. This gives 244 time steps for CFL= 1 and 488 for CFL= 0.5.

The computations were calculated up tot = 6.0, well past the interaction.

TABLE I

Convergence Rates in∆x

Rate χ2

Spectral 0.76 0.367
Diff–Godunov 0.52 0.0001
Diff–ENO 1.05 0.077
FFT–ENO 0.96 0.003
FFT–CN 0.94 0.0001
FFT–CN–SpVi 0.89 0.024
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FIG. 3. A two-soliton interaction.

FIG. 4. A two-soliton interaction.
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FIG. 5. Supremum error as a function ofx andt .

In Fig. 5 we show the supremum error for these four methods as a function ofx andt . In
this connection we remark that we can see that the main source of error in Diff–Godunov
is that the location of the solitons is wrong after the interaction.

4. CONCLUSIONS

We have applied the method of operator splitting to the generalized KdV equation

ut + f (u)x + εuxxx = 0, u(x, 0) = u0(x),

by sequentially solving the hyperbolic conservation law,

ut + f (u)x = 0, u(x, 0) = u0(x), (55)

and the linear dispersive equation,

ut + εuxxx = 0, u(x, 0) = u0(x). (56)

The two simpler equations have quite distinct and incompatible properties, making conver-
gence results difficult. However, we have proved that if the approximation does converge,
then the limit is a weak solution of the generalized KdV equation. Numerical computations
reveal, with the certainty such computations offer, that the method does indeed converge.
The operator splitting method is easy to implement on a computer, and one can combine
a variety of methods for each of the equations. We have tested the method numerically by
applying selected numerical techniques to each of them. We find that all methods converge
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numerically, but at different rates. Numerical results are presented for one- and two-soliton
solutions of the KdV equations. For these and other examples we find that a combination
of the fast Fourier transform with a Crank–Nicholson scheme (for Eq. (56)) and spectral
viscosity method (for Eq. (55)) is the most accurate.
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