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Abstract. In this paper we study the generalized Burgers equation

ut + (u2/2)x = f(t)uxx, where f(t) > 0 for t > 0 . We show the

existence and uniqueness of classical solutions to the initial value

problem of the generalized Burgers equation with rough initial data

belonging to L∞(R), as well it is obtained the decay rates of u in

Lp norm are algebra order for p ∈ [1,∞[.
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1. Introduction

In this paper we will consider the following initial value problem for the generalized

Burgers equation

ut + (u2/2)x = f(t)uxx, x ∈ R, t > 0 (1)
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with the initial data

u(x, 0) = u0(x), u0 ∈ L∞(R), (2)

where f(t) is positive for t > 0.

The equation (1) is the mathematical model of the propagation of the finite-amplitude

sound waves in variable-area ducts (see Crighton [1]), where u is an acoustic variable,

with the linear effects of changes in the duct area taken out, and the coefficient f(t) is

a positive function that depends on the particular duct chosen. It also can be derived

from the system of compressible Navier-Stokes equations with planar, cylindrical, sub-

cylindrical, super-cylindrical and spherical symmetry, when the method of multiple scales

is used, see Sachdev [12], Leibovich and Seebass [10]. The long time behavior of solutions

to the initial value problem has been studied, e.g. by Crighton and Scott [2] as well as

Scott [14] under the assumption of the well-posedness of the initial value problem (1), (2)

without verification. It is well known that in general solutions to the initial value problem

for the inviscid Burgers equation ut + (u2/2)x = 0 will develop singularity in finite time

even the corresponding initial data is smooth. The equation (1) is a uniformly parabolic

equation if f(t) ≥ ν > 0 for t > 0. The well-posedness of the corresponding initial value

problem is well known (see [4][8]). Particularly the Burgers equation ut + (u2/2)x = µuxx

has been used by Hopf [7] to study the inviscid Burgers equation by letting µ tend to zero.

But the equation (1) is a non-uniformly parabolic equation if f(t) has no positive lower

bound. To our knowledge, there is no general theory to guarantee the well-posedness of

the classical solution of the generalized Burgers equation as a non-uniformly parabolic

equation . Wang and Warnecke [16] show the existence and uniqueness of the classical

solution to the initial value problem of the generalized Burgers equation with f(t) = t.

The case f(t) = t is called the cylindrical case in the model equation of nonlinear acoustics

(see Crighton [1]). As a next natural step we consider the equation (1) with general form

of f(t) in this paper. Then the super-cylindrical case e.g. f(t) = tα where 1 < α < ∞ and

the sub-cylindrical case e.g. f(t) = tα where 0 < α < 1 and cylindrical case serve as its

concrete subcases of physical meaning. In fact we will show the initial value problem of

the generalized Burgers equation with L∞ initial data admits a unique classical solution if

f(t) is positive for t > 0. In other words, the positivity of f(t) prevents the corresponding
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solution from developing singularity and has a smooth effect on the solution when the

initial data is rough no matter how fast f(t) tends to zero as t tends to zero.

In this paper we will show the existence and uniqueness of classical solutions to the

initial value problem (1),(2) when the initial data only belong to L∞(R). It is straight-

forward to extend the results obtained in this paper to the type of the equation (1) with

a general convex flux function in its convection term instead of the quadratic function

considered here. Meanwhile, it is shown that decay rates of u in some norms are algebra

order.

In the Section 2, we first show that in the definition of weak solutions to the initial

value problem (1), (2) we may use more general test functions that do not have compact

support. This allows us to use solutions to the adjoint problem as test functions.The

corollary 2.3 describes the relation between the forenamed more general test functions

and the test functions with compact support.Although the proof of the corollary is given

in [16] we have included it in order make our exposition self-contained. Secondly, the

section 2 is devoted to the uniqueness of weak solution. It is shown by a nonlinear

version of the Holmgren method, which was used by Oleinik [11] and Hoff [5] for convex

conservation laws. We estimate the decay rates of solutions, as well as their derivatives,

to the adjoint parabolic equation for the difference of two solutions to the initial value

problem (1), (2). Finally we show that the weak solutions of the initial value problem

(1), (2) are classical solutions in the sense that they have all of the continuous derivatives

occurring in equation (1). The slightly stronger version of a one-sided Lipschitz condition

that was given by Tadmor [15] is used in the process of the proof.

The Section 3 is devoted to the decay rates of the solution obtained in the above

sections in Lp norm for p ∈]1,∞[. It is strongly motivated by the work of M.E. Schonbek

[13]. We show that the decay rates are the same as the ones of the solution to the

equation without the nonlinear term (u2/2)x in the case 0 < f ′(t) ≤ 1 for t ≥ 1. But in

the case f ′(t) ≥ 0 and f ′′(t) ≥ 0 we have not obtained the decay rates as sharp as ones

in aforementioned case. These results are given in Theorem 3.3 and 3.5.

In the last section, we indicate how the existence of the weak solutions to the initial

value problem (1), (2) may also be obtained via a finite difference scheme with variable
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time steps. As matter of fact the scheme can be used as a numerical method for the

computation of approximate solutions to this problem. It is interesting to note that for

the cylindrical case f(t) = t, considered in [16], the first n0 steps of the scheme proposed

here use a constant time step when the Lax-Friedrichs scheme is taken to approximate

conservation laws. This number n0 depends only on the supremum norm of the initial

data. The first n0 steps of the scheme deal with the non-uniform parabolicity as t tends

to 0 and ensure that the scheme satisfies the CFL stability condition. Thereafter variable

time steps are used in order to be consistent with the generalized Burgers equation (1).

But for the super-cylindrical case f(t) = tα where 1 < α < ∞, the number n0 with

constant time step is order of l
1
α
−1, here l is space mesh length and for sub-cylindrical

case f(t) = tα, where 0 < α < 1 the variable time steps begin at the second step.

2. Existence and uniqueness of the classical solution

In this section we will investigate the existence and uniqueness of the classical solution to

the initial value problem (1) and (2). It is the way that we first obtain the existence and

uniqueness of the weak solutions, and then improve the regularity of the weak solution.

2.1 Definition of weak solutions

Definition 2.1 A bounded measurable function u is called a weak solution of the initial

value problem (1) and (2) if it satisfies the following conditions:

∫ t2

t1

∫ ∞

−∞
[uφt +

u2

2
φx + f(t)uφxx] dxdt−

∫ ∞

−∞
(uφ)(x, ·)|t2t1 dx = 0 (3)

for any 0 < t1 < t2 and all φ ∈ C2
0(R× R+) where R+ = [0,∞[. Additionally we assume

that the solution u satisfies for any t > 0 the one-sided Lipschitz condition

L+[u(·, t)] := ess sup
x 6=y

(
u(x, t)− u(y, t)

x− y

)+

≤ 1

t
(4)

and for the initial data we require that u(·, t) tends to u0 in L1
loc(R) as t → 0. 2
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2.2 Existence of weak solutions

Theorem 2.2. Let u0 ∈ L∞(R). Then there exists a weak solution u of the initial value

problem (1), (2) having the properties that u(·, t) converges in L1
loc(R) to u0 for t → 0, it

satisfies a one-sided Lipschitz condition (4) and the bound

|u(x, t)| ≤ ‖u0‖L∞ = M.

Proof. We use the vanishing viscosity method. Consider for ε > 0 the nonsingular

parabolic equation

ut + (u2/2)x = (f(t) + ε)uxx, 0 < ε ≤ 1.

The existence of weak solutions for the uniformly parabolic case ε > 0 and the properties

of the singular limit ε → 0 follow by standard theory along the lines of Oleinik [11] and

Kružkov [9] analogously as in the case of conservation laws with convex flux functions.

The proof of the one-sided Lipschitz condition can be given along the line of the argument

by Tadmor [15] with slight modifications. 2

Corollary 2.3. If equality (3) holds for φ ∈ C2
0(R × R+) this implies that the equality

(3) holds for all

φ ∈ C2(R× R+),

φ, φx, φxx and φt belonging to L1(R× [t1, t2]) for any t2 > t1 > 0.
(5)

Proof. We introduce for N > 0 a cut-off function

ξN(x) =

∫ ∞

−∞
χ(x− y)ηN(y) dy

by taking a standard non-negative mollifying function χ ∈ C∞
0 (R) with unit mass sup-

ported in the interval [−1, 1]. The function ηN is the characteristic function of the interval

[−N − 1, N + 1], i.e.

ηN(x) =





1, for |x| ≤ N + 1

0, for |x| > N + 1.
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It is easy to see that

ξN ∈ C∞
0 (R),

ξN(x) =





1, for |x| ≤ N

0, for |x| ≥ N + 2.
(6)

|ξN(x)| ≤ 1, |ξ′N(x)| ≤ C − 1, |ξ′′N(x)| ≤ C1,

where

C :=

∫ ∞

−∞
|χ′(s)| ds + 1, C1 :=

∫ ∞

−∞
|χ′′(s)| ds. (7)

Now consider the quantity Q(u, φ) obtained by substituting φ with the properties (5),

instead of a φ ∈ C2
0(R× R+), into the left hand side of (3), i.e.

Q(u, φ) =

∫ t2

t1

∫ ∞

−∞
(uφt +

u2

2
φx + f(t)uφxx) dxdt−

∫ ∞

−∞
(uφ)(x, ·)|t2t1 dx

= Q(u, φξN) + Q(u, φ(1− ξN)). (8)

It is easy to see from (5), (6) that φξN ∈ C2
0(R). Therefore it follows by the assumption

of the corollary that it is an admissible test function for which

Q(u, φξN) =

∫ t2

t1

∫ ∞

−∞
(u(φξN)t

+
u2

2
(φξN)x + f(t)u(φξN)xx) dxdt−

∫ ∞

−∞
(uφξN)(x, ·)|t2t1 dx

= 0. (9)

Now let us estimate Q(u, φ(1− ξN)) as follows

|Q(u, φ(1− ξN))| =
∣∣∣
∫ t2

t1

∫ ∞

−∞
[u(φ(1− ξN))t

+
u2

2
(φ(1− ξN))x + f(t)u(φ(1− ξN))xx] dxdt

−
∫ ∞

−∞
(uφ(1− ξN))(x, ·)|t2t1 dx

∣∣∣

≤
∫ t2

t1

∫

|x|≥N

|[u(φ(1− ξN))t|+ |u
2

2
(φ(1− ξN))x|

+|f(t)u(φ(1− ξN))xx]| dxdt

+

∫

|x|≥N

|(uφ(x, ·)|t2t1(1− ξN))| dx
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where (6) was used. We consider the properties of φ given by (5), the bound of u, and

the estimates on ξN in (6). Then we have for any given ε > 0, taking N = N(ε) large

enough,

|Q(u, φ(1− ξN))| ≤ ε. (10)

It follows from (8), (9) and the arbitrariness of ε in (10) that Q(u, φ) = 0. 2

2.4 Uniqueness of the weak solution

We will show that weak solutions of the initial value problem (1), (2) which satisfy Defi-

nition 2.1 are unique. The method of proof we give is a nonlinear version of the method

of Holmgren that Hoff [5] and Oleinik [11] used for convex scalar conservation laws.

We take two solutions u and v and modify them using a standard nonnegative molli-

fying function χ ∈ C∞
0 (R) with unit mass that is supported in [−1, 1] to obtain for any

δ ∈]0, t1[

uδ(x, t) =
1

δ2

∫ ∞

−∞

∫ ∞

−∞
χ

(
x− y

δ

)
χ

(
t− τ

δ

)
u(y, τ) dydτ,

vδ(x, t) =
1

δ2

∫ ∞

−∞

∫ ∞

−∞
χ

(
x− y

δ

)
χ

(
t− τ

δ

)
v(y, τ) dydτ.

Then we consider the adjoint problem, namely the backward initial value problem for any

given 0 < t1 < t2

φt +
1

2
(uδ + vδ)φx + f(t)φxx = 0, t ∈]t1, t2[, (11)

φ(x, t2) = ψ(x), (12)

where ψ ∈ C∞
0 (R) is any given function. The equation (11) is a linear uniformly parabolic

equation with smooth coefficients. It has smooth solutions and satisfies the maximum

principle, see Friedman [4]. We take

M0 := ‖ψ(·)‖L∞ , M1 := ‖ψ′(·)‖L∞ ,

M2 := ‖ψ′′(·)‖L∞ , and suppψ ⊂ [−K, K].
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First we give the following properties of the solution to the adjoint problem. Its proof is

in the appendix.

Lemma 2.4. If f(t) is a nondecreasing positive function of t for t > 0 then the solution

of the adjoint problem (11) and (12) satisfies the following estimates for t ∈ [t1, t2]

|φ(x, t)| ≤
M0 min

{
1, exp

(
C(t2 − t) +

(M + 1)(t2 − t) + K + 2− |x|
f(t2)

)}
, (13)

|φx(x, t)| ≤
t2
t1

M1 min

{
1, exp

(
C(t2 − t) +

(M + 1)(t2 − t) + K + 2− |x|
f(t2)

)}
, (14)

|φxx(x, t)| ≤
(

t22
t21

M2 +
C1t

3
2MM1

t31δ
2

)

· exp

(
C(t2 − t) +

(M + 1)(t2 − t) + K + 2− |x|
f(t2)

)
(15)

and

|φt(x, t)| ≤ f(t2)|φxx(x, t)|+ M |φx(x, t)|, (16)

where the constants C as well as C1 were specified in (7) and M in Theorem 2.2. Then

by Corollary 2.3 the function φ is admissible as a test function in (3).

Theorem 2.5. Let u and v be two solutions of the initial value problem (1), (2) as ob-

tained in Theorem 2.2. Then u = v almost everywhere for t > 0 as f(t) is a nondecreasing

positive function of t for t > 0.

Proof. Since u and v are weak solutions of the initial value problem (1), (2) we have by

(3)
∫ ∞

−∞
(uφ)(x, ·)|t2t1 dx =

∫ t2

t1

∫ ∞

−∞
(uφt +

u2

2
φx + uf(t)φxx) dxdt,

∫ ∞

−∞
(vφ)(x, ·)|t2t1 dx =

∫ t2

t1

∫ ∞

−∞
(vφt +

v2

2
φx + vf(t)φxx) dxdt.

We subtract these two equations and set d = u− v. Then we get
∫ ∞

−∞
(dφ)(x, ·)|t2t1 dx =

∫ t2

t1

∫ ∞

−∞
d(φt +

u + v

2
φx + f(t)φxx) dxdt

and therefore using the adjoint equation (11)
∫ ∞

−∞
(dφ)(x, ·)|t2t1 dx =

∫ t2

t1

∫ ∞

−∞
d
u + v − (uδ + vδ)

2
φx dxdt. (17)
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Since |u|, |v|, |uδ| and |vδ| are bounded by the constant M considered in Theorem 2.2 and

φx tends to 0 exponentially in x uniformly for t ∈ [t1, t2] by Lemma 2.4, we have for any

given ε > 0 ∣∣∣∣
∫ t2

t1

∫

|x|≥N

d
u + v − (uδ + vδ)

2
φx

∣∣∣∣ dxdt ≤ ε (18)

provided that N is large enough. From the estimate (14) for φx we also obtain on the

complementary set St1,t2
N = {(x, t) ∈ R× R+| |x| ≤ N, t1 ≤ t ≤ t2} the estimate

∫ t2

t1

∫

|x|≤N

d
u + v − (uδ + vδ)

2
φx dxdt

≤ M‖φx‖L∞(S
t1,t2
N )

(
‖u− uδ‖L1(S

t1,t2
N )

+ ‖v − vδ‖L1(S
t1,t2
N )

)

≤ t2
t1

MM1

(
‖u− uδ‖L1(S

t1,t2
N )

+ ‖v − vδ‖L1(S
t1,t2
N )

)
. (19)

Applying (18) and (19) to (17) and letting δ → 0 gives
∫ ∞

−∞
(dφ)(x, ·)|t2t1 dx ≤ ε.

¿From the arbitrariness of ε we infer that
∫ ∞

−∞
(dφ)(x, ·)|t2t1 dx ≤ 0

or ∫ ∞

−∞
(dφ)(x, t2) dx ≤

∫ ∞

−∞
(dφ)(x, t1) dx. (20)

We observe that u and v → u0 in L1
loc(R) for t → 0 by Theorem 2.2 and deduce from (13)

the estimate

φ(x, 0) ≤ M0 exp

(
Ct2f(t2) + Mt2 + t2 + (K + 2− |x|)

f(t2)

)
.

Then we obtain that the right hand side of (20) tends to zero as t1 → 0 and therefore
∫ ∞

−∞
d(x, t2)ψ(x) dx ≤ 0.

By the arbitrariness of t2 and the fact that the inequality must be satisfied by any test

function ψ as well as by −ψ this implies that u(x, t) = v(x, t) almost everywhere on

R× R+. 2
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2.5 The regularity of the weak solution

In this subsection we will show that the weak solutions of the initial value problem (1), (2)

have all continuous derivatives occurring in equation (1) even for initial data u0 ∈ L∞(R).

Theorem 2.6. Assume u0 ∈ L∞(R) and f(t) is a nondecreasing positive function of t for

t > 0. Then the weak solution u to the initial value problem (1), (2) has all continuous

derivatives occurring in the equation (1).

Proof. For any given t0 > 0 consider the function

ũ(x, t) =





u(x, t), 0 < t ≤ t0,

u(x, t), t0 < t.

Here u(x, t) is the solution of the following initial value problem

ut + (u2/2)x = f(t)uxx, x ∈ R, t > t0, (21)

u(x, t0) = u(x, t0). (22)

The function u(x, t), as the solution of a uniformly parabolic equation (21), has all con-

tinuous derivatives occurring in (21), i.e. ux, uxx and ut are continuous.

Now we shall prove that ũ is a weak solution of the initial value problem (1), (2).

According to Definition 2.1 we only have to prove that u satisfies the one-sided Lipchitz

condition (4). To the initial value problem (21), (22) we can easily obtain that

L+(u(·, t)) ≤ 1
1

L+(u(·,t0))
+ (t− t0)

, for t > t0. (23)

along the line of argument given by Tadmor [15, Theorem 3.1] for a parabolic equation.

Since u is a weak solution of the initial value problem (1), (2) we have

L+(u(·, t0)) ≤ 1

t0
. (24)

Substituting (24) into (23) gives

L+(u(·, t)) ≤ 1

t
for t > t0.

By the uniqueness shown in Theorem 2.5 we deduce that

u(x, t) = ũ(x, t), t > 0.
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Therefore, the derivatives ux, uxx, ut are continuous for t > t0. The arbitrariness of t0 > 0

implies that ux, uxx, ut are continuous for t > 0. 2

3. Decay rates of the solution

In this section we will obtain decay rates of the solution of (1) and (2) in Lp-norm.

Lemma 3.1The solution u(x, t) obtained in Theorem 2.6 satisfies
∫ ∞

−∞
|u(x, t)|dx ≤

∫ ∞

−∞
|u0(x)|dx, t > 0 (25)

if u0 ∈ L1(R).

Proof. Let g be the solution of the adjoint equation ∂tg + u/2∂xg + f(t)∂2
xg = 0

with the Cauchy data g(x, T ) = γ(x) ∈ C∞
0 and variable T − t. By using the maximum

principle in chapter 3 of [6], we have if |γ(x)| ≤ 1 then |g(x, t)| ≤ 1. Since
∫ T

0

∫ ∞

−∞
∂t(ug)dxdt =

∫ ∞

−∞
u(x, T )γ(x)dx−

∫ ∞

−∞
u(x, 0)g(x, 0)dx

and the equations satisfied by g and u give
∫ T

0

∫ ∞

−∞
∂t(ug)dxdt =

∫ T

0

∫ ∞

−∞
g∂tu + u∂tgdxdt = 0.

We have ∫ ∞

−∞
u(x, T )γ(x)dx =

∫ ∞

−∞
u(x, 0)g(x, 0)dx.

Therefore
∫ ∞

−∞
u(x, T )γ(x)dx ≤

∫ ∞

−∞
|u0(x)|dx (26)

holds for any given γ(x) such that γ(x) ∈ C∞
0 and |γ(x)| ≤ 1. The arbitrariness of γ and

(26) implies (25). 2

3.1 The case f ′(t) ≥ 0 and f ′′(t) ≥ 0

Lemma 3.2If u0 ∈ L1, then for all p = 2s with s ≥ 1 positive integers, the following

estimate holds for the sufficiently large t

‖u(·, t)‖Lp ≤ 217/4‖u0‖L1(f ′(t))
1
2
(1− 1

p
)(f(t)2 + 1)−

1
2
(1− 1

p
) (27)
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as

f ′(t) ≥ 0 and f ′′(t) ≥ 0. (28)

Proof. We will prove it by using the inductive method. First we show (27) is true for

s = 1. Multiplying (1) by u and integrating in space yields

d

dt

∫ ∞

−∞

|u|2
2

dx = −f(t)

∫ ∞

−∞
|ux|2dx. (29)

Let

û(ξ, t) =

∫ ∞

−∞
u(x, t)e−ixξdx (30)

and

A(t) =
{
ξ : |ξ| > (f(t)2 + 1)−1/2(f ′(t))1/2

}
.

Applying the Fourier transform and the Plancherel’s equality, we have

d

dt

∫ ∞

−∞

|û|2
2

dξ = −f(t)

∫ ∞

−∞
|ξ|2|û|2dξ ≤ −f(t)

∫

A(t)

|ξ|2|û|2dξ

≤ − f(t)f ′(t)
f 2(t) + 1

∫

A(t)

|û|2dξ,

That is,

d

dt

∫ ∞

−∞

|û|2
2

dξ +
f(t)f ′(t)
f 2(t) + 1

∫ ∞

−∞
|û|2dξ ≤ f(t)f ′(t)

f 2(t) + 1

∫

AC(t)

|û|2dξ. (31)

Multiplying (31) by (f(t)2 + 1) yields

d

dt

[
(f(t)2 + 1)

∫ ∞

−∞
û2dξ

]
≤ 2f ′(t)f(t)

∫

AC(t)

|û|2dξ. (32)

By (30) and Lemma 3.1, we have

‖û‖L∞ ≤
∫ ∞

−∞
|u|dx ≤

∫ ∞

−∞
|u0|dx. (33)

By using (33), we can obtain the further estimate of (32)

d

dt

[
(f(t)2 + 1)

∫ ∞

−∞
|û|2dξ

]
≤ 2f ′(t)f(t)‖û‖2

L∞

∫

AC(t)

dξ

≤ 4(f ′(t))3/2f(t)‖u0‖2
L1(f(t)2 + 1)−1/2.
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Integrating from 0 to t yields

(f(t)2 + 1)

∫ ∞

−∞
|û(ξ, t)|2dξ

≤
∫ ∞

−∞
|û0(ξ)|2dξ +

∫ t

0

4(f ′(s))3/2f(s)‖u0‖2
L1(f(s)2 + 1)−1/2ds.

≤
∫ ∞

−∞
|û0(ξ)|2dξ + 4‖u0‖2

L1(f ′(t))1/2

∫ t

0

f(s)f ′(s)(f(s)2 + 1)−1/2ds

≤
∫ ∞

−∞
|û0(ξ)|2dξ + 4‖u0‖2

L1(f ′(t))1/2(f(t)2 + 1)1/2,

By the Plancherel’s equality, we have

‖u(·, t)‖2
L2 ≤ [‖u0‖2

L2 + 4‖u0‖2
L1(f ′(t))1/2(f(t)2 + 1)1/2](f(t)2 + 1)−1

≤ C1,1(f(t)2 + 1)−1 + 4‖u0‖2
L1(f ′(t))1/2(f(t)2 + 1)−1/2,

where C1,1 is positive constant depending on ‖u0‖L∞ and ‖u0‖L1 .

At first we set

Cp =





2‖u0‖L1 , s = 1;

2(2+3s/2)/2s
Cp/2, s ≥ 2.

(34)

Next we suppose that for any t ∈ [0,∞[,

∫ ∞

−∞
|u(x, t)|qdx ≤

s−1∑
i=1

Cs−1,i(f
′(t))as−1,i/2(f(t)2 + 1)−bs−1,i/2

+Cq
q (f

′(t))(q−1)/2(f(t)2 + 1)−(q−1)/2, (35)

are true for q = 2s−1(s ≥ 2). Here Cs−1,i are positive constants depending on s − 1, u0

and as−1,i, bs−1,i also positive constants only depending on s. For example,

C1,1 = ‖u0‖L∞‖u0‖L1 , a1,1 = 0, b1,1 = 2;

C2,1 = 2‖u0‖3
L∞‖u0‖L1 , a2,1 = 0, b2,1 = 4,

C2,2 = 32C1,1, a2,2 = 3, b2,2 = 5.

Moreover

as−1,i < q − 1, bs,i > q − 1.
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We will prove
∫ ∞

−∞
|u(x, t)|pdx ≤

s∑
i=1

Cs,i(f
′(t))as,i/2(f(t)2 + 1)−bs,i/2

+Cp
p(f ′(t))(p−1)/2(f(t)2 + 1)−(p−1)/2, (36)

and

as,i < p− 1, bs,i > p− 1.

Multiplying (1) by up−1 and integrating in space implies

1

p

d

dt

∫ ∞

−∞
|u|pdx +

∫ ∞

−∞

(
up+1

p + 1

)

x

dx = f(t)

∫ ∞

−∞
up−1uxxdx.

The second integral on the left-hand side vanishes, hence after an integration by parts in

the right-hand, we have

d

dt

∫ ∞

−∞
|u|pdx = −p(p− 1)f(t)

∫ ∞

−∞
up−2u2

xdx.

Noting that

up−2u2
x = (uq−1ux)

2 = [(
uq

q
)x]

2 =
1

q2
[(uq)x]

2.

It follows that

d

dt

∫ ∞

−∞
|u|pdx = −p(p− 1)f(t)

q2

∫ ∞

−∞
[(uq)x]

2dx ≤ −f(t)

∫ ∞

−∞
[(uq)x]

2dx,

where the last inequality follows since p(p − 1)q−2 ≥ 1 for s ≥ 2. Applying Plancherel’s

theorem to the last inequality yields

d

dt

∫ ∞

−∞
|w|2dξ ≤ −f(t)

∫ ∞

−∞
|ξ|2|w|2dξ, (37)

where we have let w = ûq. Let

Aq =

{
|ξ| : |ξ| >

(
2qf ′(t)

f(t)2 + 1

)1/2
}

. (38)

We now split the integral on the right-hand side of (37) into an integral over Aq and one

over AC
q and obtain

d

dt

∫ ∞

−∞
|w|2dξ ≤ −f(t)

∫ ∞

−∞
|ξ|2|w|2dξ = −f(t)

(∫

Aq

+

∫

AC
q

)
|ξ|2|w|2dξ

≤ −f(t)

∫

Aq

|ξ|2|w|2dξ

≤ −2qf ′(t)f(t)

f(t)2 + 1

∫ ∞

−∞
|w|2dξ +

2qf ′(t)f(t)

f(t)2 + 1

∫

AC
q

|w|2dξ

14



The last inequality is now multiplied by the integrating factor (f(t)2 + 1)q,

d

dt

[
(f(t)2 + 1)q

∫ ∞

−∞
|w|2dξ

]
≤ (f(t)2 + 1)q 2qf ′(t)f(t)

f(t)2 + 1

∫

AC
q

|w|2dξ. (39)

Hence

d

dt

[
(f(t)2 + 1)q

∫ ∞

−∞
|w|2dξ

]

≤ (f(t)2 + 1)q‖w‖2
L∞

2qf(t)f ′(t)
f(t)2 + 1

∫

Aq

dξ

≤ 2(f(t)2 + 1)q‖w‖2
L∞

2qf(t)f ′(t)
f(t)2 + 1

(
2qf ′(t)

f(t)2 + 1

)1/2

= 2(2q)3/2f(t)(f ′(t))3/2(f(t)2 + 1)q−3/2‖w‖2
L∞ . (40)

By (35) we have

‖w‖2
L∞ ≤ (

∫ ∞

−∞
|u|qdx)2

≤ 2(s− 1)

(
s−1∑
i=1

C2
s−1,i(f

′(t))as−1,i(f 2 + 1)−bs−1,i

)

+2C2q
q (f ′(t)q−1(f(t)2 + 1)−(q−1).

Therefore,

d

dt

[
(f(t)2 + 1)q

∫ ∞

−∞
|w|2dξ

]

≤ 4(2q)3/2f(t)(f ′(t))3/2(f(t)2 + 1)q−3/2 ·

(s− 1)

(
s−1∑
i=1

C2
s−1,i(f

′(t))as−1,i(f(t)2 + 1)−bs−1,i

)

+4(2q)3/2C2q
q f(t)(f ′(t))q−1+3/2(f(t)2 + 1)−1/2. (41)

Integrating with respect to t from 0 to t, we have

∫ ∞

−∞
|u(x, t)|pdx ≤

s∑
i=1

Cs,i(f
′(t))as,i/2(f(t)2 + 1)−bs,i/2

+22+3s/2Cp
q (f ′(t))(p−1)/2(f(t)2 + 1)−(p−1)/2. (42)

And

asi = 2as−1,i + 1 < 2(q − 1) + 1 = p− 1, (43)

bsi = 2bs−1,i + 1 > 2(q − 1) + 1 = p− 1. (44)
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Therefore, the sufficiently large t, from (34) and (42)-(44) we have

‖u(·, t)‖Lp ≤ 217/4‖u0‖L1(f ′(t))
1
2
(1− 1

p
)(f(t)2 + 1)−

1
2
(1− 1

p
). (45)

2

Theorem 3.3 Under the conditions in Lemma 3.2, for p ∈]1,∞[, the following esti-

mate holds for the sufficiently large t

‖u(·, t)‖Lp ≤ 217/4‖u0‖L1(f ′(t))
1
2
(1− 1

p
)(f(t)2 + 1)−

1
2
(1− 1

p
). (46)

Proof. For m ∈]p, 2p[(p = 2s, s = 0, 1, 2, · · · ) by the following standard Sobolev

interpolation inequality for Lm spaces:

‖u‖Lm ≤ ‖u‖(2p−m)/m
Lp ‖u‖2−2p/m

L2p ,

(46) can be easily obtained from Lemma 3.1 and 3.2. 2

Remark 3.1. When t is sufficiently large and p ∈]1,∞[ the decay rate for the super-

cylindrical case is

‖u(·, t)‖Lp ≤ α1−1/p217/4‖uo‖L1t−
1
2
(1− 1

p
)(α+1)

for f(t) = tα/α for α > 1. Generally, if f(t) = Const.tα(Const., α > 0), it can be

transformed into this form by setting x′ = βx and t′ = βt with the restriction βα−1 =

Const.α.

3.2 The case 0 < f ′(t) ≤ 1 for t ≥ 1

Lemma 3.4If u0 ∈ L1∩L∞, then for all p = 2s with s ≥ 1 positive integers, the following

estimate holds for the sufficiently large t

‖u(·, t)‖Lp ≤ 217/4‖u0‖L1(f(t)2 + 1)−
1
2
(1− 1

p
), (47)

as

0 < f ′(t) ≤ 1 for t ≥ 1. (48)

16



Proof. The proof is similar to Lemma 3.2. In virtue of (29) we have for t > 1

(f ′(t) ≤ 1)

d

dt

∫ ∞

−∞

|û|2
2

dξ = −f(t)

∫ ∞

−∞
|ξ|2|û|2dξ ≤ −f(t)

∫

B(t)

|ξ|2|û|2dξ

≤ −f(t)f ′(t)
∫

B(t)

|ξ|2|û|2dξ ≤ − f(t)f ′(t)
f 2(t) + 1

∫

B(t)

|û|2dξ,

where

B(t) = {ξ : |ξ| > (f(t)2 + 1)−1/2}. (49)

That is,
d

dt

∫ ∞

−∞

|û|2
2

dξ +
f(t)f ′(t)
f 2(t) + 1

∫ ∞

−∞
|û|2dξ ≤ f(t)f ′(t)

f 2(t) + 1

∫

BC(t)

|û|2dξ. (50)

Multiplying (50) by (f(t)2 + 1) yields

d

dt

[
(f(t)2 + 1)

∫ ∞

−∞
û2dξ

]
≤ 2f ′(t)f(t)

∫

BC(t)

|û|2dξ. (51)

By (33) and (51), we can obtain the further estimate of (51)

d

dt

[
(f(t)2 + 1)

∫ ∞

−∞
|û|2dξ

]
≤ 2f ′(t)f(t)‖û‖2

L∞

∫

BC(t)

dξ

≤ 4f ′(t)f(t)‖u0‖2
L1(f(t)2 + 1)−1/2.

Integrating from 1 to t yields

(f(t)2 + 1)

∫ ∞

−∞
|û(ξ, t)|2dξ

≤ (f(1)2 + 1)

∫ ∞

−∞
|û(ξ, 1)|2dξ +

∫ t

1

4f ′(s)f(s)‖u0‖2
L1(f(s)2 + 1)−1/2ds.

≤ C‖û0‖L2 + 4‖u0‖2
L1

√
f(t)2 + 1.

where we utilized the fact ‖u‖L2 ≤ ‖u0‖L2 from (29). By the Plancherel’s equality, we

have

‖u(·, t)‖2
L2 ≤ C[‖u0‖2

L2 + 4‖u0‖2
L1(f(t)2 + 1)1/2](f(t)2 + 1)−1.

where C is a positive constant depending on ‖u0‖L∞ and ‖u0‖L1 and f(1).

The remaining arguments are similar to the proof of Lemma 3.2 by using

Bq =

{
|ξ| : |ξ| >

(
2q

f(t)2 + 1

)1/2
}
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instead of (38) and integrating with respect to t from 1 to t, instead of form 0 to t.

Meanwhile (48) is utilized by the way as the proof of ‖u‖L2 . 2

Theorem 3.5Under the conditions in Lemma 3.4, for p ∈]1,∞[, the following esti-

mate holds for the sufficiently large t

‖u(·, t)‖Lp ≤ 217/4‖u0‖L1(f(t)2 + 1)−
1
2
(1− 1

p
). (52)

The proof of Theorem 3.5 is the same as Theorem 3.3.

Remark 3.2. When t is sufficiently large, and p ∈]1,∞[ the decay rate for the

sub-cylindrical case and cylindrical case is

‖u(·, t)‖Lp ≤ α1−1/p217/4‖u0‖L1t−(1− 1
p
)α,

for f(t) = tα/α for 0 < α ≤ 1.

Remark 3.3 The decay rate (52) is the same as one of the linear parabolic equation

ut = f(t)uxx. For example, v(x, t) = (1 + t2/2)−1/2e−x2/(1+t2/2) is the solution of the

Cauchy problem

vt =
t

4
vxx, v(x, 0) = e−x2

.

By simple calculation, we know

‖v(·, t)‖Lp ≤ 217/4
√

π(1 + t2/2)−
1
2
(1− 1

p
), p ∈]1,∞[.

Remark 3.4. The decay rate obtained in Theorem 3.4 is not optimal. Moreover,due

to the nonlinear term, the decay rates in Lp norm of the derivatives of u(x, t) with respect

to x can not been obtained in the similar way . We will address these two issues in future.

4. A finite difference method

In this section we shall give an alternative proof of the existence theorem for weak solutions

to the initial value problem (1), (2) by a finite difference method. This also gives a means

to compute approximate solutions numerically.Consider a fixed mesh size l in space. Using

variable time steps hn, n ∈ N, let the upper-half plane t ≥ 0 be discretized using the grid
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points (xj, tn) with xj = jl, tn =
∑n

i=1 hi, for j ∈ Z, n ∈ N. Consider the Lax-Friedrichs

scheme
un+1

j − un
j+1+un

j−1

2

hn

+
(un

j+1)
2/2− (un

j−1)
2/2

2l
= 0, (53)

with discrete initial data obtained as the point values given by averaging over the spatial

cells [(j − 1
2
)l, (j + 1

2
)l] centered around xj, i.e.

u0
j =

1

l

∫ (j+ 1
2
)l

(j− 1
2
)l

u0(x) dx. (54)

We take the bound M for the data, as considered in Theorem 2.2. It is well known and

easily seen that the scheme (53) is monotone and stable if the CFL-condition

Mhn

l
≤ 1 for n = 1, 2, · · · (55)

holds. For simplicity of notation we will consider the following two typical cases instead

of f(t) in general form:

Case 1, f(t) = tα/α for 1 < α < ∞;

Case 2, f(t) = tα/α for 0 < α < 1.

The case for α = 1 has been considered in [16]. We first consider case 1. Now we fix

the time step n0 := [
(

α
2

Mα+1

lα−1

) 1
α
] + 1 ∈ N. The time steps hn will be defined as follows

hn = l/M for n ≤ n0 (56)

hn =
l2

2f(
∑n

i=1 hi)
=

l2

2f(tn)
for n > n0. (57)

It follows from (57) that tn − tn−1 = l2

2f(tn)
i.e. tn − l2

2f(tn)
= tn−1. For the function

F (t) = t− l2

2f(t)
− tn−1 we have F ′(t) = 1 + f ′(t)l2

f2(t)
> 1 and F (tn−1) = − l2

f(tn−1)
. So for any

given t = tn−1 we can find a unique tn > tn−1 such that F (tn) = 0, i.e.

hn = tn − tn−1 =
l2

2f(tn)
> 0. (58)
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For any n > n0 we have by (56) and (57) that

hn =
l2

2f(
∑n

i=1 hi)
<

l2

2f(
∑n0

i=1 hi)

=
αl2

2(n0
l

M
)α

≤ αl2

2
((

α
2

Mα+1

lα−1

) 1
α l

M

)α

≤ l

M
. (59)

It follows from (56) and (59) that the CFL stability condition (55) is satisfied. The

difference scheme (53) can be rewritten in the following equivalent form using (56) and

(57) respectively

un+1
j − un

j

hn

+
(un

j+1)
2/2− (un

j−1)
2/2

2l
= Ml

un
j+1 − 2un

j + un
j−1

2l2
for n ≤ n0 (60)

and for n0 ≤ n

un+1
j − un

j

hn

+
(un

j+1)
2/2− (un

j−1)
2/2

2l
=

l2

hn

un
j+1 − 2un

j + un
j−1

2l2

= f(tn)
un

j+1 − 2un
j + un

j−1

l2
. (61)

The scheme (61) is obviously consistent with the equation (1). Following the same line of

arguments given by Oleinik [11, Sections 3 and 5] we can obtain the weak solution u of the

initial value problem (1), (2) in the sense of Definition 1.2 as the limit of a subsequence

of approximate solutions Ul constructed by the scheme (53) and (54) as step functions by

setting

Ul(x, t) = un
j for (j − 1

2
)l ≤ x < (j +

1

2
)l, tn ≤ t < tn+1,

except for the fact that the weak solutions obtained here satisfy the slightly different

one-sided Lipschitz condition

ess sup
x 6=y

(
u(x, t)− u(y, t)

x− y

)+

≤ 2

t
(62)

instead of (4). It is easy to see that the weak solutions of the initial value problem (1),

(2) satisfying (62) are also unique and that (4) implies (62). So the weak solutions of

20



(1), (2) obtained by the viscosity method in Section 2.2 and the difference scheme in this

section are identical and are the unique classical solutions of (1), (2), due to the results

of Sections 2.3 and 2.4.

We would like to remark that for any l > 0 the solutions of the difference scheme (53)

and (54) with time steps given by (56), (57) are well defined for all t > 0. Indeed suppose

there exists a finite number T > 0 such that tn+n0 → T as n →∞. From (57) we have

tn0+n = tn0+n−1 +
l2

2f(tn0+n)
. (63)

Letting n →∞ in (63) gives

T = T +
l2

2f(T )

which contradicts the assumption that T is finite.

Further, all previous arguments remain true with the time steps taken to be (56) and

hn =
l2

2f(
∑n−1

i=1 hi)
=

l2

2f(tn−1)
for n > n0. (64)

The time step hn given by (64) is slightly simpler than (58).

Now we consider case 2, i.e. f(t) = tα/α for 0 < α < 1. In this case we assume

l <

(
2

αMα+1

)1/(1−α)

. (65)

The time step hn will be defined as

hn =
l2

2f(Σn
i=1hi)

, n = 1, 2, 3, · · · .

It is easy to prove the scheme satisfies the CFL condition (55). Since hn < h1(n > 1) by

the definition of hn, we only have to prove that the CFL condition holds for h1. Now by

the definition of h1 we have Mh1

l
= M(αl1−α

2
)1/(1+α) < 1, here we used the restriction (65).

The remaining arguments in this case are the same as the case 1.

It is interesting that the solution of the non-uniformly parabolic equation (1) with

the initial data (2) can be approximated by the Lax-Friedrichs scheme in the form (53),

(54) if the first finite number of constant finite difference steps are given by (60). These

steps deal with the non-uniform parabolicity of the equation (1). Then afterwards the

use of specifically chosen variable time steps makes the scheme consistent with equation
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(1). By (57) the time steps are decreased with the order 1
t

for fixed mesh size l in order

to compensate for the growing diffusion coefficient. This is needed to keep the scheme

stable. As is usual for second order parabolic equations, the time step is also of the order

l2 for l → 0 to remain stable.
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5. Appendix

Proof. The estimate (13): First let us transform the backward initial value problem

(11), (12) into the following forward initial value problem

L(φ) = φτ − uδ + vδ

2
φx − f(t2 − τ)φxx = 0, τ ∈]0, t2 − t1[, (66)

φ(x, 0) = ψ(x) (67)

with τ = t2 − t. Let us introduce an auxilliary function

Φ(x, τ) = exp

(
Cτ +

(M + 1)τ + G(x) + 1

f(t2)

)
(68)

where

G(x) =

∫ ∞

−∞
χ(x− y)(K − |y|) dy.

Here χ is the mollifying function introduced above. Using (7) the function G is easily

seen to satisfy the estimates

|G′(x)| ≤ 1, |G′′(x)| ≤
∫ ∞

−∞
|χ′(s)| ds = C − 1.

A similar type of function Φ as in (68) was considered by Kružkov [9], see also Hörmander

[6]. One may also show that

K − |x| ≤ G(x) + 1 ≤ K + 2− |x|.

22



Since τ = t2 − t we have

exp

(
C(t2 − t) +

(M + 1)(t2 − t) + K + 2− |x|
f(t2)

)
≥ Φ(x, τ). (69)

Therefore in order to get the estimate (13) it is enough to prove that

|φ(x, τ)| ≤ M0 min(1, Φ(x, τ)). (70)

By straightforward calculation we have

L(M0Φ± φ) = M0Φ
(
C +

M + 1

f(t2)
− uδ + vδ

2

G′(x)

f(t2)
− f(t2 − τ)

G′(x)2

f(t2)2

−f(t2 − τ)
G′′(x)

f(t2)

)
> M0Φ > 0 (71)

for τ ∈]0, t2 − t1]. Since ‖ψ(·)‖L∞ ≤ M0 implies that

inf
x∈R(M0Φ± φ)|τ=0 ≥ min( inf

|x|≤K
(M0Φ± φ)|τ=0, inf

|x|≥K
(M0Φ)|τ=0) ≥ 0

we obtain (M0Φ ± φ)(x, τ) are the super-solutions of (66) and (67). Therefore (70) is

proved.

The estimate (14): We have to prove that

|φx(x, τ)| ≤ t2
t1

M1 min(1, Φ(x, τ)).

Differentiating L(φ) in (66) with respect to x and setting φ̃ = φx gives

φ̃τ − 1

2
(uδ + vδ)φ̃x − (uδ + vδ)x

2
φ̃− f(t2 − τ)φ̃xx = 0,

φ̃(x, 0) = ψ′(x).

Then using the transformation φ̃ = t2
t2−τ

φ we have

L1(φ) = φτ −
uδ + vδ

2
φx −

[
(uδ + vδ)x

2
− 1

t2 − τ

]
φ− f(t2 − τ)φxx = 0, (72)

φ(x, 0) = ψ′(x). (73)

The one-sided Lipschitz condition (4) in Definition 2.1 implies that

(uδ + vδ)x

2
≤ 1

t
=

1

t2 − τ
.
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This allows us to apply the maximum principle to (72), see Friedman [4, Chapter 2].

Therefore we obtain

|φ(x, τ)| ≤ ‖ψ′(·)‖L∞ = M1 (74)

and analogously to (71)

L1(M1Φ± φ) > M1Φ > 0, τ ∈]0, t2 − t1].

By the maximum principle we know that a non-positive minimum of M1Φ± φ cannot be

taken for τ ∈]0, t2 − t1]. But we have

inf
x∈R(M1Φ± φ)|τ=0 ≥ min( inf

|x|≤K
M1 ± ψ′(x), inf

|x|≥K
M1Φ)|τ=0)=0.

Therefore, we get

|φ| ≤ M1Φ. (75)

The inequalities (74), (75) and the transformation give

|φx(x, τ)| = |φ̃(x, τ)| ≤ t2
t1

M1 min(1, Φ), (76)

which implies the estimate (14) by (69).

The estimate (15): Differentiating L(φ), satisfying (66), twice with respect to x and

setting φ̂ = φxx gives

φ̂τ − 1

2
(uδ + vδ)φ̂x − (uδ + vδ)xφ̂− f(t2 − τ)φ̂xx =

1

2
(uδ + vδ)xxφx,

φ̂(x, 0) = ψ′′(x).

Then using transformation φ̂ =
t22

(t2−τ)2
φ we have

L2(φ) = φ
τ
− uδ + vδ

2
φ

x
−

[
(uδ + vδ)x − 2

t2 − τ

]
φ− f(t2 − τ)φ

xx

=
1

2
(uδ + vδ)xxφx

(t2 − τ)2

t22
,

φ(x, 0) = ψ′′(x).

First we consider the case of a homogeneous right hand side

L2(φ1
) = 0,

φ(x, 0) = ψ′′(x).
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The one-sided Lipschitz condition (4) in Definition 2.1 implies that

−
[
(uδ + vδ)x − 2

t2 − τ

]
≥ 0. (77)

Similar to the arguments to obtain (74) and (75) we get the estimate

‖φ
1
(·, ·)‖L∞ ≤ M2 min(1, Φ(x, τ)). (78)

Now we consider the case of homogeneous initial data

L2(φ2
) =

1

2
(uδ + vδ)xxφx

(t2 − τ)2

t22
,

φ
2
(x, 0) = 0. (79)

It follows from the inequality (76) that
∣∣∣∣
1

2
(uδ + vδ)xxφx

(t2 − τ)2

t22

∣∣∣∣ ≤
C1t2MM1

t1δ2
Φ (80)

where C1 was defined in (7). Straightforward calculation and the inequalities (77), (79)

give

L2

(
C1t2MM1

t1δ2
Φ(x, τ)± φ

2

)

>
C1t2MM1

t1δ2
Φ(x, τ)± 1

2
(uδ + vδ)xxφx

(t2 − τ)2

t2
> 0,

for τ ∈]0, t2 − t1]. This implies by the maximum principle that a non-positive minimum

of the quantity C1t2MM1

t1δ2 Φ(x, τ)± φ
2

cannot exist for τ ∈]0, t2 − t1]. But we have

inf
x∈R

(
C1t2MM1

t1δ2
Φ(x, 0)± φ

2
(x, 0)

)
≥ 0.

Therefore we obtain

|φ
2
(x, τ)| ≤ C1t2MM1

t1δ2
Φ(x, τ).

It follows from (78) and (80) that

|φxx(x, τ)| =

∣∣∣∣
t22

(t2 − τ)2
φ(x, τ)

∣∣∣∣ ≤
t22
t21

(
|φ

1
(x, τ)|+ |φ

2
(x, τ)|

)

≤ t22
t21

(
M2 +

C1t2MM1

t1δ2
Φ(x, τ)

)
.

Then the estimate (15) follows from (69).

The estimate (16): This follows from the equation (11) and the fact that ‖uδ‖L∞ ≤ M

and ‖vδ‖L∞ ≤ M . 2
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