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Abstract. In this paper we study the generalized Burgers equation
u + (u?/2)y = f(t)uge, where f(t) > 0 for t > 0 . We show the
existence and uniqueness of classical solutions to the initial value
problem of the generalized Burgers equation with rough initial data
belonging to L>*(R), as well it is obtained the decay rates of u in

LP norm are algebra order for p € [1, 0.
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1. Introduction

In this paper we will consider the following initial value problem for the generalized
Burgers equation

e+ (u?)2)y = f() gy, TER, >0 (1)



with the initial data
u(z,0) = up(x), ug € L>*(R), (2)

where f(t) is positive for ¢ > 0.

The equation (1) is the mathematical model of the propagation of the finite-amplitude
sound waves in variable-area ducts (see Crighton [1]), where u is an acoustic variable,
with the linear effects of changes in the duct area taken out, and the coefficient f(t) is
a positive function that depends on the particular duct chosen. It also can be derived
from the system of compressible Navier-Stokes equations with planar, cylindrical, sub-
cylindrical, super-cylindrical and spherical symmetry, when the method of multiple scales
is used, see Sachdev [12], Leibovich and Seebass [10]. The long time behavior of solutions
to the initial value problem has been studied, e.g. by Crighton and Scott [2] as well as
Scott [14] under the assumption of the well-posedness of the initial value problem (1), (2)
without verification. It is well known that in general solutions to the initial value problem
for the inviscid Burgers equation u; + (u*/2), = 0 will develop singularity in finite time
even the corresponding initial data is smooth. The equation (1) is a uniformly parabolic
equation if f(t) > v > 0 for t > 0. The well-posedness of the corresponding initial value
problem is well known (see [4][8]). Particularly the Burgers equation u; + (u?/2), = ptt,
has been used by Hopf [7] to study the inviscid Burgers equation by letting u tend to zero.
But the equation (1) is a non-uniformly parabolic equation if f(¢) has no positive lower
bound. To our knowledge, there is no general theory to guarantee the well-posedness of
the classical solution of the generalized Burgers equation as a non-uniformly parabolic
equation . Wang and Warnecke [16] show the existence and uniqueness of the classical
solution to the initial value problem of the generalized Burgers equation with f(t) = t.
The case f(t) = t is called the cylindrical case in the model equation of nonlinear acoustics
(see Crighton [1]). As a next natural step we consider the equation (1) with general form
of f(t) in this paper. Then the super-cylindrical case e.g. f(t) = t* where 1 < a < oo and
the sub-cylindrical case e.g. f(t) = t* where 0 < o < 1 and cylindrical case serve as its
concrete subcases of physical meaning. In fact we will show the initial value problem of
the generalized Burgers equation with L initial data admits a unique classical solution if

f(t) is positive for ¢ > 0. In other words, the positivity of f(t) prevents the corresponding



solution from developing singularity and has a smooth effect on the solution when the
initial data is rough no matter how fast f(¢) tends to zero as t tends to zero.

In this paper we will show the existence and uniqueness of classical solutions to the
initial value problem (1),(2) when the initial data only belong to L*(R). It is straight-
forward to extend the results obtained in this paper to the type of the equation (1) with
a general convex flux function in its convection term instead of the quadratic function
considered here. Meanwhile, it is shown that decay rates of v in some norms are algebra
order.

In the Section 2, we first show that in the definition of weak solutions to the initial
value problem (1), (2) we may use more general test functions that do not have compact
support. This allows us to use solutions to the adjoint problem as test functions.The
corollary 2.3 describes the relation between the forenamed more general test functions
and the test functions with compact support.Although the proof of the corollary is given
in [16] we have included it in order make our exposition self-contained. Secondly, the
section 2 is devoted to the uniqueness of weak solution. It is shown by a nonlinear
version of the Holmgren method, which was used by Oleinik [11] and Hoff [5] for convex
conservation laws. We estimate the decay rates of solutions, as well as their derivatives,
to the adjoint parabolic equation for the difference of two solutions to the initial value
problem (1), (2). Finally we show that the weak solutions of the initial value problem
(1), (2) are classical solutions in the sense that they have all of the continuous derivatives
occurring in equation (1). The slightly stronger version of a one-sided Lipschitz condition
that was given by Tadmor [15] is used in the process of the proof.

The Section 3 is devoted to the decay rates of the solution obtained in the above
sections in L? norm for p €]1, c0. It is strongly motivated by the work of M.E. Schonbek
[13]. We show that the decay rates are the same as the ones of the solution to the
equation without the nonlinear term (u?/2), in the case 0 < f’(t) < 1 for ¢t > 1. But in
the case f'(t) > 0 and f”(t) > 0 we have not obtained the decay rates as sharp as ones
in aforementioned case. These results are given in Theorem 3.3 and 3.5.

In the last section, we indicate how the existence of the weak solutions to the initial

value problem (1), (2) may also be obtained via a finite difference scheme with variable



time steps. As matter of fact the scheme can be used as a numerical method for the
computation of approximate solutions to this problem. It is interesting to note that for
the cylindrical case f(t) = ¢, considered in [16], the first ng steps of the scheme proposed
here use a constant time step when the Lax-Friedrichs scheme is taken to approximate
conservation laws. This number ny depends only on the supremum norm of the initial
data. The first ng steps of the scheme deal with the non-uniform parabolicity as t tends
to 0 and ensure that the scheme satisfies the CFL stability condition. Thereafter variable
time steps are used in order to be consistent with the generalized Burgers equation (1).

(e}

But for the super-cylindrical case f(t) = t* where 1 < o < oo, the number ny with
constant time step is order of lé_l, here [ is space mesh length and for sub-cylindrical

case f(t) =t where 0 < a < 1 the variable time steps begin at the second step.

2. Existence and uniqueness of the classical solution

In this section we will investigate the existence and uniqueness of the classical solution to
the initial value problem (1) and (2). It is the way that we first obtain the existence and

uniqueness of the weak solutions, and then improve the regularity of the weak solution.

2.1 Definition of weak solutions

Definition 2.1 A bounded measurable function u is called a weak solution of the initial
value problem (1) and (2) if it satisfies the following conditions:
to ) U2 [e%¢] ;
[ ot o+ o] dode— [ (wé)o. )l do =0 Q
1 J—oo -0

for any 0 < t; <ty and all ¢ € CZ(R x R,) where R, = [0, 00[. Additionally we assume

that the solution u satisfies for any t > 0 the one-sided Lipschitz condition

) —uly,t)\" 1
Lt [u(-,t)] := esssup (u(w, ) — uly, )) < - (4)
zy T —y t
and for the initial data we require that u(-,t) tends to ug in L}, (R) ast — 0. O



2.2 Existence of weak solutions

Theorem 2.2. Let ug € L*(R). Then there exists a weak solution u of the initial value
problem (1), (2) having the properties that u(-,t) converges in L (R) to ug fort — 0, it

loc

satisfies a one-sided Lipschitz condition (4) and the bound
|u(z, )] < [Juol|Lee = M.

Proof. We use the vanishing viscosity method. Consider for ¢ > 0 the nonsingular

parabolic equation

ug + (U?)2)e = (f(t) +€)tpe, 0<e <1,

The existence of weak solutions for the uniformly parabolic case € > 0 and the properties
of the singular limit ¢ — 0 follow by standard theory along the lines of Oleinik [11] and
Kruzkov [9] analogously as in the case of conservation laws with convex flux functions.
The proof of the one-sided Lipschitz condition can be given along the line of the argument

by Tadmor [15] with slight modifications. O

Corollary 2.3. If equality (3) holds for ¢ € CZ(R x R,) this implies that the equality
(3) holds for all

e C’R X R,),
B, Py Guw and ¢y belonging to LY(R X [ty,ts]) for any ty > t; > 0.

Proof. We introduce for N > 0 a cut-off function

En(z) = /_oo x(z —y)nn(y) dy

by taking a standard non-negative mollifying function x € C§°(R) with unit mass sup-
ported in the interval [—1, 1]. The function ny is the characteristic function of the interval
[N —1,N + 1], i.e.

1, for|z| < N+1

0, for |z| > N+ 1.

nn(z) =



It is easy to see that

v € O (R)
1, for |z| <N
En(e) = { (6)
0, for|z| > N +2.
Ev(@)| <1, (@) <0 =1, [§(@)] < O
where
C ::/_ IX'(s)|ds+1, ::/_ IX"(s)] ds. (7)

Now consider the quantity @Q(u,¢) obtained by substituting ¢ with the properties (5),
instead of a ¢ € C3(R x R,), into the left hand side of (3), i.e.

Qo) = [ [ ot ot 0w e~ [~ ool do
= Qu06x) + Qu,6(1 — E)) ©

It is easy to see from (5), (6) that ¢p&y € C3(R). Therefore it follows by the assumption

of the corollary that it is an admissible test function for which

Qu, o) = / / u(én),

+§(¢€N)x + f(O)u(PEN)ze) dadt — /_OO (uptn)(z, )2 da
- 0. 9)

Now let us estimate Q(u, (1 — &y)) as follows

/t/ o1 — &)

+5 5 (61— Ex))e + FOu(G(1 — Ex))] dadt

- / " (b1 — Ex))(a, )| da

/t /||>N ¢(1—&w)) |+|%<¢<1—§N))z|
+HFOu(d(1 — En)) ]| ddt

n /| Ntz i )] o

’Q(u> ¢(1 - €N>>’ =

IN



where (6) was used. We consider the properties of ¢ given by (5), the bound of u, and
the estimates on &y in (6). Then we have for any given ¢ > 0, taking N = N(¢) large
enough,

|Q(u, ¢(1 = &n))| <& (10)

It follows from (8), (9) and the arbitrariness of ¢ in (10) that Q(u, ¢) = 0. O

2.4 Uniqueness of the weak solution

We will show that weak solutions of the initial value problem (1), (2) which satisfy Defi-
nition 2.1 are unique. The method of proof we give is a nonlinear version of the method
of Holmgren that Hoff [5] and Oleinik [11] used for convex scalar conservation laws.

We take two solutions u and v and modify them using a standard nonnegative molli-

fying function y € C{°(R) with unit mass that is supported in [—1, 1] to obtain for any

d €]0,t4]
us(w,t) = %/_Z/_Zx(xgy>x(t_57)u(y,r) dydr,

vs(,t) = 6—12/(:/(:)((zgy)x(t;T)v(y,T)dydT.

Then we consider the adjoint problem, namely the backward initial value problem for any

given 0 < t1 < tg

b+ 5 (s 05)0e + (e =0, tEltr b, (1)

oz, t2) = ¥(x), (12)

where 1 € C§°(R) is any given function. The equation (11) is a linear uniformly parabolic
equation with smooth coefficients. It has smooth solutions and satisfies the maximum

principle, see Friedman [4]. We take

Mo = {[r()llzoe,  My:= ([ ( )l e,

My = |[¢" ()=, and  suppy C [-K, K].



First we give the following properties of the solution to the adjoint problem. Its proof is

in the appendix.

Lemma 2.4. If f(t) is a nondecreasing positive function of t for t > 0 then the solution

of the adjoint problem (11) and (12) satisfies the following estimates for t € [ty, o]

|6z, 1)] <
: B (M +1)(ta—t)+ K +2— |z

My min {1, exp (C(t2 t)+ () ) } , (13)
s (2, t)] <

lo : (M+1)(ty—t)+ K +2— ||

EMl min {1, exp (C’(tg —t)+ () > } . (14)
ot = (B CEIAY

exp (C(tg—t)+ (M +1)(ty —fg;)tK%—Q—]x\) (15)

and
|Ge(z, t)| < f(t2)@uo(, )] + Mlda(,t)], (16)

where the constants C' as well as Cy were specified in (7) and M in Theorem 2.2. Then
by Corollary 2.3 the function ¢ is admissible as a test function in (3).

Theorem 2.5. Let u and v be two solutions of the initial value problem (1), (2) as ob-
tained in Theorem 2.2. Then u = v almost everywhere fort > 0 as f(t) is a nondecreasing
positive function of t fort > 0.

Proof. Since u and v are weak solutions of the initial value problem (1), (2) we have by
(3)
00 to o] uQ
[Cworelzde = 7] o ot w06 dut
- t1 —00

o

0o to o) 2
/_ (v6)(z, )2 dr = / /_ (060 + 2 6u + 0 (1)) ddt

[e.9]

We subtract these two equations and set d = v — v. Then we get

[ o e = [ [ o "ok )0 dri

and therefore using the adjoint equation (11)

| @oa i o= / / L 2 0) ot a7




Since |ul, |v|, |us| and |vs| are bounded by the constant M considered in Theorem 2.2 and

¢, tends to 0 exponentially in z uniformly for ¢ € [t1,ts] by Lemma 2.4, we have for any

to o
/ / Pl Gt ) A (18)
t1 |I‘ZN

given € > ()

2

provided that N is large enough. From the estimate (14) for ¢, we also obtain on the

complementary set Sy = {(z,t) € R x Ry| |z| < N,t; <t <t} the estimate

to o
/ / P + v — (us + vs) b, dd
tr Jlel<n 2

< MH‘beLoo(Sjvlh) (Hu - ué“;;l(sf\}@) + [Jv — UJHLl(sj\}'t?))

t
< iMMl (Hu - uéHLl(SR}‘t?) + v - U‘s“Ll(S?vl’tg)) ' )

Applying (18) and (19) to (17) and letting § — 0 gives
/OO (d6)(x, )12 du < e.
JFrom the arbitrariness of ¢ we infer that
| @l dr <o

or

/OO (do)(x,t3) dx < /00 (do)(x,ty) dx. (20)

—00 —0o0

We observe that u and v — ug in L}, (R) for ¢ — 0 by Theorem 2.2 and deduce from (13)

the estimate

6(x,0) < My oxp (Ctzf(tz) + Mty +to+ (K +2— |a;\)) |

f(t2)
Then we obtain that the right hand side of (20) tends to zero as t; — 0 and therefore

/00 d(z,ta)(z) de <0.

By the arbitrariness of 5 and the fact that the inequality must be satisfied by any test
function ¢ as well as by — this implies that w(z,t) = v(z,t) almost everywhere on

R xR,. a



2.5 The regularity of the weak solution

In this subsection we will show that the weak solutions of the initial value problem (1), (2)
have all continuous derivatives occurring in equation (1) even for initial data uy € L*(R).
Theorem 2.6. Assume ug € L®(R) and f(t) is a nondecreasing positive function of t for
t > 0. Then the weak solution w to the initial value problem (1), (2) has all continuous
derivatives occurring in the equation (1).

Proof. For any given ¢, > 0 consider the function

N( t) U<I',t)7 O<t§t07
ul\x, =
a(z,t), to<t.

Here u(x,t) is the solution of the following initial value problem

U + (0 )2)s = fF()Upe, T ER, t > 1y, (21)

(z, to) = ula, o). (22)

The function u(x,t), as the solution of a uniformly parabolic equation (21), has all con-
tinuous derivatives occurring in (21), i.e. Uy, Uy, and W, are continuous.

Now we shall prove that @ is a weak solution of the initial value problem (1), (2).
According to Definition 2.1 we only have to prove that u satisfies the one-sided Lipchitz

condition (4). To the initial value problem (21), (22) we can easily obtain that

1

LT (a(-,t) < — :
rracey T~ to)

for t > to. (23)

along the line of argument given by Tadmor [15, Theorem 3.1] for a parabolic equation.

Since wu is a weak solution of the initial value problem (1), (2) we have

1
L+<U(‘, to)) S %

(24)
Substituting (24) into (23) gives
. 1
LT (u(-,t)) < i for t > t.
By the uniqueness shown in Theorem 2.5 we deduce that

u(z,t) = a(z,t), t > 0.

10



Therefore, the derivatives u,, ., u; are continuous for t > to. The arbitrariness of t5 > 0

implies that u, t,,, u; are continuous for ¢ > 0. O

3. Decay rates of the solution

In this section we will obtain decay rates of the solution of (1) and (2) in LP-norm.

Lemma 3.1 The solution u(x,t) obtained in Theorem 2.6 satisfies

/OO lu(z, t)|dx < /OO |uo(z)|dz, t >0 (25)

if ug € L'(R).

Proof. Let g be the solution of the adjoint equation 0,9 + u/20,g + f(t)0?g = 0
with the Cauchy data g(z,T) = v(x) € C§° and variable T'— t. By using the maximum
principle in chapter 3 of [6], we have if |y(x)| < 1 then |g(z,t)| < 1. Since

/OT /Z Oy (ug)dzdt = /OO u(z, T)y(z)dr — - u(z,0)g(z, 0)dx

o0 —00

and the equations satisfied by ¢ and u give

T [ T 00
/ / O(ug)dxdt = / / gOyu + udrgdzdt = 0.
0 —o0o 0 —00

/Oo u(z, T)y(v)dx = /OO u(z, 0)g(z, 0)dz.

o0 —00

We have

Therefore

| wtetn@is < [ s (26)

e} —0o0

holds for any given y(x) such that v(z) € C5° and |y(z)| < 1. The arbitrariness of v and
(26) implies (25). O

3.1 The case f'(t) > 0 and f"(t) >0

Lemma 3.2If uy € L', then for all p = 2° with s > 1 positive integers, the following

estimate holds for the sufficiently large t
Ol < 27 ol (F/(2) 207 (F(1)2 + 1) 20 (27)

11



as

f'(t) >0 and f'(t) >0

(28)

Proof. We will prove it by using the inductive method. First we show (27) is true for

s = 1. Multiplying (1) by u and integrating in space yields

d OO’U|2 > 2
%/ g ——f(t)/_ g 2.

Let

u(&,t) = /_00 u(z,t)e” " da

oo

and
—{e1 el > (O + )7V ()2}

Applying the Fourier transform and the Plancherel’s equality, we have

i > Jal? _ 22 _ 21412
i e = s [ 1ePipas<—po [ et

fOf@) e
= f2) +1 /A(t) afdt.

That is,

d [ |a]
T

dé +

FOIW [*
f2(t)+1/ g

Multiplying (31) by (f(¢)? + 1) yields

F(0F()
2 B e

7wy [ <2rope [ jarae

By (30) and Lemma 3.1, we have

o0 o0
il < / fuldz < / o d.
—0o0 —0o0

By using (33), we can obtain the further estimate of (32)

%[W”l) /_Z\Wdf} < 2wl [ d

AC(t)

<A@ F@) ol (f(1)? + 1)~

12

(29)

(30)

(32)

(33)



Integrating from 0 to ¢ yields

oo

(1) + 1) / e, 1)[de

—00

< /_OO ’%(5)!2d£+/0 4(f’(5))3/2f(5>Hu()”%l(f(S)Q + 1>71/2d8.

o0

= /_Oo | (€)[2d€ + 4]uol[3: (f/ ()" /0 F()f'()(f(s)* + 1) ?ds

o0

</ @) Pde + AlfuollZ (F ()2 (F(? + 1),

o0

By the Plancherel’s equality, we have

lu(- 0172 < [lluollZe + 4lluolZ (F/(0)2(f()* + DYZ(f(2)* + 1)

< OLa(fO? + 17+ dluol 7 (F ()2 (£ (1) + 1) 772,

where C'; is positive constant depending on ||ugl|z~ and ||uo||p:.

At first we set
2||u. , s =1;
Cp _ H OHLI (34)
2(2"‘38/2)/2501?/27 s> 2.

Next we suppose that for any t € [0, 0o,

00 s—1
/ u(z, )|%dz < > Cora(f/(£)" 2 (f(1)? + 1)1/
o i=1
+Cg(f/(t))(q_1)/2(f(t)2 + 1)_(‘1_1)/27 (35)

are true for ¢ = 2°7!(s > 2). Here C,_;; are positive constants depending on s — 1, ug

and as_1,bs_1, also positive constants only depending on s. For example,
01,1 = HUOHLOOHUOHLla aj; =0, 51,1 = 2;

Cz,l = QHUOHiOOHUOHLla 21 = 0, b2,1 =4,
02,2 = 3201,1, A2 = 3, b2,2 = 9.

Moreover

g1, <q—1, be; >q—1.

13



We will prove

+CP(f' () PVR(f(1)? + 1)V, (36)
and
as; <p—1, bg;>p—1.
Multiplying (1) by ©?~! and integrating in space implies

1d o0 00 up+1 e8]
- Pd dr = Pt xx -
di _Oo|u| x+/_oo(p+1>x T f(t)/_oou Uy dT

The second integral on the left-hand side vanishes, hence after an integration by parts in

the right-hand, we have

d o0 o0
& | rde = po =150 [ wtian
Noting that
P2 = () = (D), = (), )
x — T — q T q2 T

It follows that

47 upde = 2@ DID [t < —sa) [ fwn.pa,

at J o ¢
where the last inequality follows since p(p — 1)g=2 > 1 for s > 2. Applying Plancherel’s

—00 —00

theorem to the last inequality yields

d

& [t < -1 [ lePupas 37)

where we have let w = u?. Let

, 1/2
A= {|§| > () } (39

We now split the integral on the right-hand side of (37) into an integral over A, and one

over Ag and obtain

d oo
— [ wl?dg

il ~rte) [ lePlulds = —1(0) ( |+ qc) € g

) /A € uwf2de

20 OfE) [ e 20O [
< T /OO| 1°d¢ + FOP+1 /ch| |“d¢

14

IA

IN



The last inequality is now multiplied by the integrating factor (f ()% + 1)9,
d

Hence

Sl [
<

(P02 + 1wl 20 0)7() O e

F02+
sy el 20 OF0) ( 2a5'(0) 2

< 20702 + Dl 22T ()

= 2(20)*F (B0 (F(1) + 1) ]

By (35) we have

ol < () fupan?
< 2s— 1) (Z fra))e (2 + 1) )

F2029(f/ () () + 1)@,

Therefore,
& | [ porag
< 420" FO(F )£ + 1)
(s=1) <Z ' (f(t)2+1)‘b5‘”)

FAQPECR (O (f (1) 1)

Integrating with respect to ¢ from 0 to ¢, we have
[ pir < 3o cays? - e
Z+212*‘°’S“C§<f’<t>><p1>/2<f<t>2 +1)7e2,

And

asi =2a5-1;,+1<2(¢g—1)+1=p—1,

bsi:2bs—1,i+1>2(q_1)+1:p_1-

15

i (e [ upae] < or e G [ e

(39)

(40)

(41)

(42)



Therefore, the sufficiently large ¢, from (34) and (42)-(44) we have
11 11
(- 6)lle < 2" ol (F/(1)) 24 (f (1) + 1) 72070, (45)

O
Theorem 3.3 Under the conditions in Lemma 3.2, for p €]1,00[, the following esti-

mate holds for the sufficiently large t
-, Ol < 27 gl (F(£)) 2079 (F()2 +1) 72070, (46)

Proof. For m €lp,2p[(p = 2°, s = 0,1,2,--+) by the following standard Sobolev

interpolation inequality for L™ spaces:

laall g < [uall G2 ™l 20,
46) can be easily obtained from Lemma 3.1 and 3.2. O
y

Remark 3.1. When t is sufficiently large and p €]1, oo the decay rate for the super-

cylindrical case is
(- )| e < @YYy || prt 20D

for f(t) = t*/a for @« > 1. Generally, if f(t) = Const.t*(Const.,a > 0), it can be
transformed into this form by setting 2’ = Sz and ¢ = (3t with the restriction /41 =

Const.a.

3.2 Thecase 0 < f/(t) <1fort>1

Lemma 3.41f uy € L' N L, then for all p = 2° with s > 1 positive integers, the following

estimate holds for the sufficiently large t
(e, 0) 1o < 274 luoll o (£(0)* +1)720 7, (47)

as

0< f'(t) <1 fort>1. (48)

16



Proof. The proof is similar to Lemma 3.2. In virtue of (29) we have for ¢ > 1

(f'() <1
d o] 2 oo
G| s = o [ ieptarac< o) [ ilasa
TRV, 212 SO () 12
< s [ i< 5t [ il
where
B(t) ={&: |¢] > (F(8)* + 1)} (49)
That is,
d [>lal? . fOf(0 f@)f ) 12
i) ey [ e o
Multiplying (50) by (f(¢)* + 1) yields
d < , .
i Jowren [T i <erreo [ jarac 51
By (33) and (51), we can obtain the further estimate of (51)
d oo
7wy [T < arosona. [ o

< AF OO luoll7 (F()* +1)7H2.

Integrating from 1 to ¢ yields

[e.e]

(1) + 1) / e, 1)[de

e D+ [ A7) unlla( (57 + 1) s,

< Clldo| 2 + 4lluol7: v/ (1) + 1.

< (FO?+1) /

—00

where we utilized the fact ||u||zz < ||uo||zz from (29). By the Plancherel’s equality, we

have
lu(-O)l[72 < CllluollF2 + 4lluoll: (f(£)* + 1)) (f (1) + 1)~

where C'is a positive constant depending on ||ug||~ and ||ug||z: and f(1).

The remaining arguments are similar to the proof of Lemma 3.2 by using

By - {|s| > () 1/2}
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instead of (38) and integrating with respect to ¢ from 1 to ¢, instead of form 0 to t.
Meanwhile (48) is utilized by the way as the proof of ||u]| . O
Theorem 3.5 Under the conditions in Lemma 3.4, for p €]1,00|, the following esti-

mate holds for the sufficiently large t

s O)le < 27 ol (f (1) + 1) 72075, (52)
The proof of Theorem 3.5 is the same as Theorem 3.3.
Remark 3.2. When t is sufficiently large, and p €]1,00[ the decay rate for the

sub-cylindrical case and cylindrical case is
|u(-, )|l < al_l/p217/4||Uo||L1t*(1*%)a’

for f(t) =t*/a for 0 < a < 1.
Remark 3.3 The decay rate (52) is the same as one of the linear parabolic equation
Uy = f(t)uy. For example, v(z,t) = (1 + t2/2)7/2e#*/(1+1°/2) g the solution of the

Cauchy problem

t
vy = va, v(z,0) = e

By simple calculation, we know
loC, )llee < 274+ 2/2)707), p el oo

Remark 3.4. The decay rate obtained in Theorem 3.4 is not optimal. Moreover,due
to the nonlinear term, the decay rates in LP norm of the derivatives of u(x,t) with respect

to x can not been obtained in the similar way . We will address these two issues in future.

4. A finite difference method

In this section we shall give an alternative proof of the existence theorem for weak solutions
to the initial value problem (1), (2) by a finite difference method. This also gives a means
to compute approximate solutions numerically.Consider a fixed mesh size [ in space. Using

variable time steps h,, n € N, let the upper-half plane ¢ > 0 be discretized using the grid

18



points (x;,t,) with z; = jl, t, = > .+ h;, for j € Z, n € N. Consider the Laz-Friedrichs

scheme

u,  Fu
it = ML ()22 — (un )22

h, 21

with discrete initial data obtained as the point values given by averaging over the spatial

=0, (53)

cells [( — 3)1, (j + 3)I] centered around z;, i.e.
1 U+
u) = —/ up(z) dx. (54)
G-ty
We take the bound M for the data, as considered in Theorem 2.2. It is well known and

easily seen that the scheme (53) is monotone and stable if the CFL-condition

M
Zhn <1 forn=1,2,--- (55)

holds. For simplicity of notation we will consider the following two typical cases instead
of f(t) in general form:

Case 1, f(t) =t*/a for 1 < a < o0;

Case 2, f(t) =t*/a for 0 < a < 1.

The case for a = 1 has been considered in [16]. We first consider case 1. Now we fix

1
the time step ng := [(%%) a] + 1 € N. The time steps h,, will be defined as follows

h,=1/M for n<ng (56)
12 12
hy, = = = for  n > ng. 57)
25 b 2/ (E) : (
It follows from (57) that ¢, — t,_1 = #2“ le. t, — #in) = t,_1. For the function
2 / 2 2
F(t)=t- #(t) —tp_1 we have F'(t) =1+ % > 1 and F(t,—1) = —m. So for any

given t = t,,_; we can find a unique t,, > t,,_; such that F(t,) =0, i.e.
l2

hn - tn - tn—l — m > 0 (58)
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For any n > ny we have by (56) and (57) that

? 2
hn = n < no
2f(Zi:1 h%) 2f(2¢:1 hi)
_ al?
2(7”LOM)O‘
al?
< i &
a Moty |
2 ((5 ) M)
)
< — (59)

M

It follows from (56) and (59) that the CFL stability condition (55) is satisfied. The
difference scheme (53) can be rewritten in the following equivalent form using (56) and
(57) respectively

w Tt —l ()2 — (uly)?/2 —2u}) + u

_ u?—kl j—1
W 57 = Ml o2 for n < ng (60)
and for ng <n
U;H —uj n (ufy)?/2 = (uj_y)?/2 _ EU?H — 2uf +uj,
hy, 21 hy, 202
ut o —2ut +u?
= fltn)TH—L 1= (61)

12
The scheme (61) is obviously consistent with the equation (1). Following the same line of
arguments given by Oleinik [11, Sections 3 and 5] we can obtain the weak solution u of the
initial value problem (1), (2) in the sense of Definition 1.2 as the limit of a subsequence
of approximate solutions U, constructed by the scheme (53) and (54) as step functions by
setting

1 1
Uz, t) =uj for (j—é)l§x<(j+§)l, tn <t <tpi1,

except for the fact that the weak solutions obtained here satisfy the slightly different
one-sided Lipschitz condition

B +
ess sup (u(a:,t) uly. t)) < 2 (62)
wFty r—y t

instead of (4). It is easy to see that the weak solutions of the initial value problem (1),

(2) satisfying (62) are also unique and that (4) implies (62). So the weak solutions of
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(1), (2) obtained by the viscosity method in Section 2.2 and the difference scheme in this
section are identical and are the unique classical solutions of (1), (2), due to the results
of Sections 2.3 and 2.4.

We would like to remark that for any [ > 0 the solutions of the difference scheme (53)
and (54) with time steps given by (56), (57) are well defined for all ¢ > 0. Indeed suppose

there exists a finite number 7' > 0 such that ¢,,,, — T as n — co. From (57) we have

l2
tn n — tn n— — .
o+ o+n—1 + 2f(tn0+n)

(63)

Letting n — oo in (63) gives
l2
2f(T)

which contradicts the assumption that 7' is finite.

T=T+

Further, all previous arguments remain true with the time steps taken to be (56) and

2 2
T ) T (64

The time step h,, given by (64) is slightly simpler than (58).

Now we consider case 2, i.e. f(t) =1t“/a for 0 < a < 1. In this case we assume

5 1/(1—a)
I < (aMa“) : (65)

The time step h,, will be defined as

12

b = 57
2f (X7 hi)

n=1,2.3--.

It is easy to prove the scheme satisfies the CFL condition (55). Since h,, < hi(n > 1) by
the definition of h,,, we only have to prove that the CFL condition holds for hA;. Now by
the definition of h; we have Mt = p7(eL2)1/(+@) < 1 here we used the restriction (65).
The remaining arguments in this case are the same as the case 1.

It is interesting that the solution of the non-uniformly parabolic equation (1) with
the initial data (2) can be approximated by the Lax-Friedrichs scheme in the form (53),
(54) if the first finite number of constant finite difference steps are given by (60). These

steps deal with the non-uniform parabolicity of the equation (1). Then afterwards the

use of specifically chosen variable time steps makes the scheme consistent with equation
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(1). By (57) the time steps are decreased with the order 1 for fixed mesh size [ in order
to compensate for the growing diffusion coefficient. This is needed to keep the scheme
stable. As is usual for second order parabolic equations, the time step is also of the order

2 for | — 0 to remain stable.

Acknowledgement: The work of Jinghua Wang is supported by the National Natural
Science Foundation of China. Hui Zhang acknowledges the financial assistance of the

Post-Doctor Science Foundation of China.

5. Appendix

Proof. The estimate (13): First let us transform the backward initial value problem

(11), (12) into the following forward initial value problem

L(6) = 6= 200~ f(ta = 1) =0, 70,12~ 11, (66)

¢(z,0) = () (67)

with 7 =t — t. Let us introduce an auxilliary function

(68)

®(z,7) = exp (CT n (M + 1)1+ G(z) + 1)

f(t2)
where

G(z) = / " X(@— ) (K — Jy]) dy.

[e.e]

Here x is the mollifying function introduced above. Using (7) the function G is easily

seen to satisfy the estimates

G <l [6"@)] < / T W) ds=C 1.

A similar type of function ® as in (68) was considered by Kruzkov [9], see also Hormander

[6]. One may also show that
K—-|z|<G@)+1 < K+2— |z
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Since 7 = t9 — ¢t we have

M+ 1)(te—t)+ K+ 2 — |z|
f(t2)

Therefore in order to get the estimate (13) it is enough to prove that

exp <C(t2 Syl ) > (z, 7). (69)

|p(z,7)| < Momin(1, ®(z,7)). (70)

By straightforward calculation we have

- M+1 u+uG@ o G
L(Mo® £ ¢) = Mo (C * f(t2) 2 f(t) flt: ) f(t2)?
G”(Q?)

for 7 €]0,ty — t1]. Since ||¢(-)||L~ < My implies that

Hlﬂf%(Mo@ + ¢)|T:0 Z mzn( (MO(I) + ¢)‘T:0, | llgij(Mo(I)”T:()) 2 0
Tre z|Z

inf
o] <K
we obtain (My® + ¢)(x,7) are the super-solutions of (66) and (67). Therefore (70) is

proved.

The estimate (14): We have to prove that
lo :
|z (z, 7)| < t_Ml min(1, &(x, 7)).
1

Differentiating L(¢) in (66) with respect to x and setting b = ¢, gives

éﬂ' - %(U(S + U(s)éx - M& - f(tQ - T)é:)::r = Oa

¢(x,0) = ¢'(2).
Then using the transformation qz; = t;—fTa we have

— — Us + Vs— <U5 +U5)x 1 —
L1<¢)2¢7_ 9 z ) _t2_7.

o(,0) = 9'(2). (73)

The one-sided Lipschitz condition (4) in Definition 2.1 implies that

1
t2_7-'

(U5 + Ug)x
2

1
<=
—t
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This allows us to apply the maximum principle to (72), see Friedman [4, Chapter 2.

Therefore we obtain
|o(z, 7)| < (|9 (:)llzee = My (74)

and analogously to (71)
Li(Mi® 4+ ¢) > Mi® >0, 7€]0,t, —ty].

By the maximum principle we know that a non-positive minimum of M;® =+ ¢ cannot be

taken for 7 €]0,ty — ¢1]. But we have
. i _ > . . / . B —0.
;gﬂg(Ml@ + @)|r=0 > m1n(|zl|r%fK M, £/ (z), |x1\ng M, ®)|,—9)=0

Therefore, we get

9] < M ®. (75)

The inequalities (74), (75) and the transformation give
- / .
’¢$(x77—)| = |¢(:C>T)| < t_2M1m1n<17q))7 (76)
1

which implies the estimate (14) by (69).
The estimate (15): Differentiating L(¢), satisfying (66), twice with respect to z and
setting QAS = Qe gives

~ ~ ~ - 1

¢r — 5(”5 + U5)¢Cc - (U5 + U5)a:¢ - f(tQ - T)Qsara: = 5(“6 + U6)$x¢za

~

¢(x,0) =" ().
Then using transformation gfg = %Q we have

L9) = 0,00 — | (us+vp)e -

1 to —71)2
= 5(“6"‘7}5)133925:}0%7
t2

¢(x,0) = ¢"(z).

¢—flta—T7)o

t2_7— - -

First we consider the case of a homogeneous right hand side



The one-sided Lipschitz condition (4) in Definition 2.1 implies that
2

tQ—T

— (U5 + 115)35 — > O. (77)

Similar to the arguments to obtain (74) and (75) we get the estimate

‘@1(" MNre < Mymin(1, (z,7)). (78)
Now we consider the case of homogeneous initial data
1 (tg — T)2
LQ(?Q = §(U§ + U&)zm¢xTa
?2(1', 0) = 0. (79)
It follows from the inequality (76) that
1 (tg - 7)2 OthMMl
Y zxPx >~ d
505+ 15)ast = (50)

where C) was defined in (7). Straightforward calculation and the inequalities (77), (79)
give

CitaM M,y
Ly | ———@ +
’ < 1102 (@) ?2)

CitaM M,y
1102

for 7 €]0,ty — ¢1]. This implies by the maximum principle that a non-positive minimum

(ta — 1)

>0,
ta

1
O(x,7) £ §(u(5 + V§)zr G

of the quantity %@(z, T) £ ¢, cannot exist for 7 €]0, ¢, — ¢1]. But we have

inf (%@(:p, 0) + o, (. 0)) >0,
Therefore we obtain
6,0, < 8
It follows from (78) and (80) that
sl = | Bmsoten)| < 3 (1ol + )
(to — 7)%2+ t3 \' -1 =2

t2 Cita M M,
< 2 (Mz + T@(%T) :

Then the estimate (15) follows from (69).
The estimate (16): This follows from the equation (11) and the fact that ||us||p~ < M

and |[|vs]|p~ < M. O
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