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Abstract. This paper deals with a system of 2N semilinear transport equations with a boundary
condition of imposed flux. The right-hand side models some kinetic exchange between two phases. It
is thus a stiff term involving a small parameter which will tend to 0. Using compensated compactness,
one proves, under some assumptions on the flux, that the solution to this system converges to a
solution to a system of N quasilinear equations, a solution which satisfies a set of entropy inequalities.
Thus the reflux boundary condition for the quasi-linear system is given a meaning.

Key words. hyperbolic systems, boundary conditions, relaxation, entropy, compensated com-
pactness, chromatography, distillation

AMS subject classifications. 35L65, 35L67, 35Q20

PII. S003614109630793X

1. Introduction. We are interested in the following system of 2N equations,
N ≥ 1, {

∂tc
1
ε + ∂xuc

1
ε = 1

ε

(
c2
ε − h(c1

ε)
)
,

∂tc
2
ε + ∂xvc

2
ε = − 1

ε

(
c2
ε − h(c1

ε)
)
,

(1.1)

which is a simplified model of diphasic propagation arising in chemical engineering.
In this kind of problem, two phases labelled 1 and 2 are in motion with respective
velocities u > 0 and v ≤ 0, which are assumed here to be constant. The case v = 0
corresponds to a model of chromatography (a mobile phase and a stationary one),
and the case v < 0 corresponds to distillation (two phases moving countercurrent).

In equations (1.1), c1
ε and c2

ε are related to the concentrations in phase 1 and
2, respectively, and therefore should be nonnegative. The right-hand side rules the
matter exchanges between the two phases. Without motion, the two phases would
reach a state of thermodynamical equilibrium: the concentration in phase 2 is there-
fore related to the concentration in phase 1 by the function h, which enjoys several
properties coming from the thermodynamics.

In the case we are considering, the equilibrium cannot be reached because of the
motion. The time needed to reach the equilibrium is not negligible with respect to
the characteristic times induced by the velocities u and v. This phenomenon is known
as a finite exchange kinetic: the actual concentration c2

ε in phase 2 differs from h(c1
ε).

The right-hand side of the equations quantifies the attraction of the system to the
equilibrium state: it is a pulling-back force, and the constant parameter 1/ε is the
“velocity” of exchange between the two phases.

A natural question arises here: how do the solutions of (1.1) behave when ε tends
to 0, that is, when the exchange kinetic becomes instantaneous (the process is then
quasi-static)? The limit system is obtained in a natural way by summing the 2N
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equations in (1.1) and by putting c1
ε = c, c2

ε = h(c), which means indeed that the
concentration in phase 2 is actually the equilibrium concentration. We are led to the
following nonlinear hyperbolic system, which expresses the conservation of matter:

∂t (c + h(c)) + ∂x (uc + vh(c)) = 0.(1.2)

The aim of this paper is to analyze the behavior of the solutions of (1.1) when ε
tends to 0, when it is provided with boundary conditions

(1.3)

c1
ε(0, t) = a(t) ∈ L∞(]0,+∞[)N , uc1

ε(1, t) + vc2
ε(1, t) = b(t) ∈ L∞(]0,+∞[)N ,

together with Cauchy data in L∞(]0, 1[)N . To avoid any initial layer, we shall assume
that the initial data are at equilibrium, that is, c1

ε(·, 0) = c0 ∈ L∞(]0, 1[)N and
c2
ε(·, 0) = h(c0). From the point of view of distillation, the boundary conditions are

natural: the first one is a Dirichlet-like “injection” at one end of a column and acts
only on the incoming variable (u > 0); the second one looks like a Neumann condition
on the other end and imposes v < 0 (it is a simplified model of the “reflux” in a
distillation column).

Concerning the standard Cauchy problem in the scalar case, i.e., c(0, x) = c0(x),
x ∈ R, c0 ∈ L∞, the analysis is straightforward, and the solution of (1.1) tends to
the entropy solution of (1.2), thus providing an alternative to the artificial viscosity
method. Such results were obtained, for instance, by Tveito and Winther in [29],
where the rate of convergence is estimated, and by Natalini [22]. Let us mention also
the work by Katsoulakis and Tzavaras [19], where they give contraction properties
for the solution of the system with relaxation. For systems of conservation laws, we
refer to Chen, Levermore, and Liu [7], where a convergence result is proved for a 2×2
genuinely nonlinear system. This point of view can be successfully used for numerical
purpose, see Jin and Xin [16] for a general setting for systems and Aregba-Driollet
and Natalini [2] for convergence results in the scalar case.

On the other hand, the problem with boundary conditions is not as well behaved
when ε tends to 0: it is well known that the setting of a Dirichlet boundary condition
for a nonlinear hyperbolic scalar equation is difficult. Bardos, Leroux, and Nédélec [3]
gave such a setting in the Kružkov sense, using the artificial viscosity method in the
context ofBV functions. We shall not recover this formulation here, since the Dirichlet
data act only on incoming variables. For systems, the first existence result was given
by Benabdallah and Serre [4] for systems of two equations. We refer also to works by
Dubois and LeFloch [8], where the Dirichlet boundary condition appears as a Riemann
problem on a half-plane, Gisclon [10], and Gisclon and Serre [11]. We mention also
Goodman’s work [12], where global existence is proved for strictly hyperbolic systems
of conservation laws with initial and boundary data of small BV norm. The solutions
also have small total variation and therefore have strong traces on the boundary. On
the other hand, in [18] Kan, Santos, and Xin consider a general system of conservation
laws and compare various notions of boundary conditions (vanishing viscosity, half-
space Riemann problem). Their solution is built by a Godunov method. In the same
spirit, we also mention the paper by Joseph and LeFloch [17], who also compare
different approximations and the resulting boundary layers.

The reflux boundary condition at x = 1 seems to have been very little studied.
For the scalar Burgers equation with the boundary condition u2(., t) = 0, Gisclon
proved in [9] that the solution satisfies u(., t) ≤ 0 on the boundary (which coincides
with the solution in the sense of [3]).
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Finally, let us mention one work which is concerned with both relaxation and
boundary conditions. Wang and Xin [30] consider a 2 × 2 system with relaxation.
The boundary condition is chosen so that uniform BV estimates hold, and they prove
convergence to a scalar conservation law satisfying a boundary-entropy condition, for
which uniqueness holds.

We are going to prove that, under suitable conditions on the flux uc+vh(c) with
respect to b, there exists a subsequence of solutions of (1.1) which converges to a
weak solution of (1.2). This solution is characterized by a set of entropy inequalities.
Since we have no BV estimates for the solution with ε > 0, we are led to work with
bounded measurable functions, and use the compensated compactness method. This
can be done in two cases: first for scalar equations with any smooth function h and
then for a system of N equations, for a specific h, the so-called Langmuir isotherm.
Notice that the Langmuir system is not hyperbolic on the whole physical domain
of interest. However, we use a specific set of entropies, namely the so-called kinetic
entropies, which were introduced in [14], that allows us to achieve compactness.

Finally, we prove that the weak solutions are indeed solutions in the sense of
distributions and that they satisfy in a strong sense the initial condition as well as
the reflux boundary condition at x = 1. The incoming boundary condition seems to
be lost in the limiting system. This is not very surprising, since we fall from a 2N
equations system to N equations. Some boundary layer phenomena probably occur
at x = 0, which we do not investigate here. This may indicate that the system of
conservation laws with the reflux boundary condition is well-posed, but the precise
study of this is left for future research.

The paper is organized as follows. In section 2 we state a few results and notations
which hold for both the scalar equation and the system. Section 3 and 4 are devoted to
the proof of a priori estimates and compactness, respectively, for the scalar equation
and the system. Section 5 deals with boundary conditions.

2. Preliminary results. We state here a few results and remarks that are com-
mon to both the scalar equation and the Langmuir model. Namely, we prove that
equation (1.1) is well-posed for ε > 0, and we also define a particular set of entropies,
which appears to be natural from the structure of the equations. In the following, we

shall set Ω
def
= ]0, 1[×]0, T [.

2.1. Existence for ε > 0. Theorem 2.1. For a given T > 0, assume that a
and b are in L∞(]0, T [)N , c0 ∈ L∞ ∩ L1(]0, 1[)N , and that the function h is of class
C1. Then there exists a unique solution to (1.1), which lies in L∞(]0, T [;L1(]0, 1[)).

Proof. We first rewrite (1.1) in an equivalent integral form by using Duhamel’s
principle; then we prove a contraction estimate to apply a fixed point theorem. This is
rather tedious, because of the initial and boundary conditions. The set [0, 1]× [0,+∞[
is indeed divided into four zones, namely, Z1 = {(x, t) | x ≥ ut, x ≤ 1 + vt},
Z2 = {(x, t) | x ≥ ut, x ≥ 1 + vt}, Z3 = {(x, t) | x ≤ ut, x ≤ 1 + vt}, Z4 =
{(x, t) | x ≤ ut, x ≥ 1+vt}, depending upon whether the characteristics encounter
{t = 0}, {x = 0}, or {x = 1}.

We shall fully write the contraction estimate for t large enough so that (x, t) ∈ Z4

for every x ∈ [0, 1]. We omit in this proof the dependence in ε. Taking into account
the reflux boundary condition on x = 1, Duhamel’s principle writes, for almost every
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(x, t) ∈ Z4,




c1(x, t) = a
(
t− x

u

)
+ 1

ε

∫ t
t− x

u

[
c2(x+ u(s− t), s)− h(c1(x+ u(s− t), s))

]
ds,

c2(x, t) = 1
vb
(
t+ 1−x

v

)− u
v a
(
t+ 1−x

v − 1
u

)
−u

v
1
ε

∫ t+ 1−x
v

t+ 1−x
v − 1

u

[
c2(1 + u(s− t− 1−x

v ), s)− h(c1(1 + u(s− t− 1−x
v ), s))

]
ds

− 1
ε

∫ t
t+ 1−x

v

[
c2(x+ v(s− t), s)− h(c1(x+ v(s− t), s))

]
ds.

(2.1)

Denote by T the application from X = L∞(]0, T [;L1
x)

2N into itself which associates
the right-hand side of the equations in (2.1) with a pair C = (c1, c2) ∈ X. For two
elements C and Ĉ in X, with the same initial and boundary data, the terms involving
a and b in (2.1) disappear when computing T (C) − T (Ĉ), so, for a given (x, t), we
have

|T (C)(x, t)− T (Ĉ)(x, t)| ≤ 1

ε
max(|T1(x, t)|, |T2(x, t)|),

where Ti follows from the difference of the integral terms and | · | is a norm on R
2N .

One has easily

|T1(x, t)| ≤
∫ t

t− x
u

∣∣c2(x+ u(s− t), s)− ĉ2(x+ u(s− t), s)
∣∣ ds

+

∫ t

t− x
u

∣∣h(c1(x+ u(s− t), s))− h(ĉ1(x+ u(s− t), s))
∣∣ ds

≤
∫ t

t− x
u

∣∣c2(x+ u(s− t), s)− ĉ2(x+ u(s− t), s)
∣∣ ds

+K

∫ t

t− x
u

∣∣c1(x+ u(s− t), s)− ĉ1(x+ u(s− t), s)
∣∣ ds

if K is the Lipschitz constant of h. We can estimate ‖T1(., t)‖L1
x

by Fubini’s theorem,
which gives

‖T1(., t)‖L1
x
≤
∫ t

t−1/u

‖c2(., s)− ĉ2(., s)‖L1
x
ds+K

∫ t

t−1/u

‖c1(., s)− ĉ1(., s)‖L1
x
ds

≤ t

(
max
s∈[0,t]

‖c2(., s)− ĉ2(., s)‖L1
x

+K max
s∈[0,t]

‖c1(., s)− ĉ1(., s)‖L1
x

)
.

A similar formula can be obtained for T2, involving the quantity u/|v|.
Now, if (x, t) changes zone with x, we proceed in the same way in each zone

and separate the integral for the L1
x norm. We do not write these straightforward

computations, which lead to the existence of a constant M > 0, which depends on K
and u/|v|, such that

‖T (C)− T (Ĉ)‖L∞(]0,t[;L1
x)2N ≤ tM

ε
‖C − Ĉ‖L∞(]0,t[;L1

x)2N .

Now, choose T0 such that T0M/ε < 1, and apply the fixed point theorem on
L∞(]0, T0[;L

1
x)

2N . This gives existence and uniqueness of the solution on [0, T0].
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Since the contraction estimate does not depend on the initial data, we can perform
again the same argument on [T0, 2T0], and so on, to finally reach any prescribed T > 0.
Thus the theorem is proved.

2.2. Diphasic entropies. We introduce here a set of entropies which is quite
natural in view of the structure of the equations. They are actually a discrete version
(with two velocities only) of the kinetic entropies introduced by Perthame and Tadmor
in [23].

Definition 2.1. We shall say that a function η : R
N −→ R is a “diphasic

entropy” for (1.2) if there exist two convex functions η1, η2 : R
N −→ R satisfying

∇cη1(c) = ∇cη2

(
h(c)

) ∀c ∈ R
N ,(2.2)

such that η(c) = η1(c) + η2

(
h(c)

)
.

Remark 2.1. The function h itself is, in general, defined by such a pair of func-
tions, which are given, for instance, by statistical thermodynamics models (see [15]
and the quoted references therein for examples and more information). Actually, the
pair (c,h(c)) is a stable state of equilibrium for the diphasic system. Thus it achieves
the infimum of η1(c1) + η2(c2) under the constraint that the total amount of matter
c1 +c2 is constant. The relation (2.2) is nothing but the characterization of the mini-
mum and is a generalized version of the well-known “chemical potential equalities” in
thermodynamics. Consequently, h′(c) is positive in the scalar case and is diagonable
with positive eigenvalues for a system. This leads also to the existence of a natural
“physical” entropy for such systems.

Our main concern in the following is to obtain a priori estimates on the solution
(c1

ε, c
2
ε) to (1.1) which are uniform in ε. The classical method here is to prove that

the entropy production associated with (1.1) is nonpositive for several well-chosen
entropies. Consider any pair (η1, η2) satisfying (2.2); multiply the two equations in
(1.1), respectively, by ∇cη1(c

1
ε) and ∇cη2(c

2
ε); sum; then use (2.2). We formally

obtain the following law for the entropy production:

∂t
(
η1(c

1
ε) + η2(c

2
ε)
)

+ ∂x
(
uη1(c

1
ε) + vη2(c

2
ε)
)

(2.3)

=
1

ε

[(
∇cη2

(
h(c1

ε)
)−∇cη2(c

2
ε)

)
· (c2

ε − h(c1
ε)
)]
.

It remains to notice that the right-hand side is always nonpositive, since η2 is convex.
Integrating on [0, 1] therefore gives, at least formally,

d

dt

∫ 1

0

[
η1(c

1
ε(x, t)) + η2(c

2
ε(x, t))

]
dx ≤ − [uη1(c

1
ε(., t)) + vη2(c

2
ε(., t))

]∣∣1
0
,(2.4)

and all the technical work is now to estimate the boundary terms. To give a pre-
cise meaning to this differential inequality, we have to rewrite it in a weak form by
multiplying by a test function ϕ ≥ 0 and integrating by parts.

Provided we have enough entropies, (2.4) will give a priori estimates as well as
compactness of a subsequence of solutions to (1.1). We can exhibit such entropies
in the scalar case on the one hand and for the system of chromatography with the
Langmuir isotherm on the other hand. In both cases, the local solution of Theorem 2.1
is therefore global for fixed ε.
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2.3. Subcharacteristic condition. Before proceeding to estimates, we would
like to relate system (1.1) with the usual form of systems with relaxation. This
is done easily in the particular case v = −u by setting Uε = c1

ε + c2
ε ∈ R

N and
Vε = uc1

ε − uc2
ε ∈ R

N . System (1.1) is therefore rewritten as

∂tU
ε + ∂xV

ε = 0, ∂tV
ε + u2∂xU

ε =
2

ε

(
Vε − u(c1

ε − h(c1
ε))
)
.(2.5)

Now, we notice that, since by Remark 2.1 h′(c) has positive eigenvalues, the function
c + h(c) is one-to-one. Let us denote U = c + h(c), its inverse by c = g(U), and

F(U)
def
= u[g(U) − h(g(U))]. The usual form of this kind of system should involve

F(U) instead of u(c1
ε − h(c1

ε)) in (2.5). This discrepancy appears because the right-
hand side of system (1.1) is not symmetric with respect to c1 and c2. Another possible
writing would make use of the “Maxwellians” M1(U) = g(U) and M2(U) = h(g(U)).
The convergence results would not be affected by this change.

In [21], Liu introduced a necessary condition on F′(U) to ensure the convergence
of a subsequence of solutions of (1.1) to a solution of (1.2). This condition is known
as the subcharacteristic condition, and we would like to point out that it is satisfied
here because the function h is, in some sense, monotone (see Remark 2.1). Indeed,
we have

F′(U) = [IN + h′(g(U))]g′(U),

where IN stands for the identity matrix in R
N . However, g′(U) = (IN +h′(g(U)))−1,

so F′(U) is diagonable, and its eigenvalues are given for general values of u and v by

λi(U) =
u+ vµi(U)

1 + µi(U)
,

where µi > 0 are the eigenvalues of h′, 1 ≤ i ≤ N . It is readily seen that v < λi(U) <
u, which is the specific version of Liu’s condition in this context.

3. Scalar equation. This section is devoted to the proof of the strong conver-
gence of a subsequence of solutions to (1.1) in the scalar case. The function h is
therefore a scalar function, which satisfies

h(0) = 0 and h′(c) > 0 ∀c.(3.1)

Also, for any given convex η2, we can define η1 by η1(c) =
∫ c
0
η′2
(
h(σ)

)
dσ. We have,

obviously, η′1(c) = η′2
(
h(c)

)
and η′′1 (c) = η′′2

(
h(c)

)
h′(c) > 0. Two particular cases are

interesting. These are nonsmooth entropies, but a classical regularization argument,
omitted in the following, allows us to deal with them.
• “Kružkov-like” entropies. For k ∈ R, we set

ϕk1(c1) = |c1 − k|, ϕk2(c2) = |c2 − h(k)|.

It is easily checked that ϕk1 and ϕk2 satisfy (2.2), since h is increasing.
• L∞ entropies. For k ∈ R, we define

ψk
1 (c1) = (c1 − k)+, ψk

2 (c2) =
(
c2 − h(k)

)+
.

With these last entropies, the entropy estimates on ciε become L∞ estimates.
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We begin in a classical way with some entropy and a priori estimates and first
notice that, to prove entropy estimates for a given pair (η1, η2) giving a diphasic
entropy, we need the condition

f(c)
def
= uc+ vh(c) ≤ min

t>0
b(t) for c ≥M.(3.2)

This is not a very satisfactory condition to impose, since it is not satisfied by such an
usual isotherm as the Langmuir one,

h(c) = Kc/(1 + c), K > 0.(3.3)

Condition (3.2) actually implies some restrictions on the initial and boundary data,
which lead to uniform L∞ estimates for the solution to (1.1), for a broader class of
fluxes.

Theorem 3.1. Assume a ≥ 0, b ≤ 0, c0 ≥ 0, and

c?
def
= sup{c ≥ 0;∃c′ ≤ c, f(c′) ≤ min b(t)} ≥ max[‖a‖∞, ‖c0‖∞].(3.4)

Then there exists a constant C depending only on c01, a, and b such that 0 ≤ ciε(t, .) ≤
C, i = 1, 2.

Remark 3.1. Of course the result is meaningful only if c? > 0. This occurs only
if f(c) becomes nonpositive for some c. For instance, consider again the case of the
Langmuir isotherm (3.3). It is easily seen that for b = 0, c? > 0 only if u/|v| < K.
More generally, f achieves its minimum for cmin =

√
K|v|/u− 1, which is positive if

u/|v| < K, and c? > 0 if we have f(cmin) ≤ b, that is, (
√
K|v| − √

u)2 ≥ −b.
Remark 3.2. The choice k = max(‖a‖, ‖c0‖) is possible only if f(a(t))− b(t) ≥ 0

and f(c0(x)) − b(x) ≥ 0 for all t > 0 and a.e. x ∈]0, 1[. Otherwise, the L∞ norm of
the solution may not be bounded by the initial and Dirichlet boundary data.

From the above L∞ estimate, we can easily obtain a weak convergence result
by considering the weak form of the first equation in (1.1). Since c1ε is L∞ bounded
uniformly in ε, and ε tends to 0, then c2ε−h(c1ε) tends to 0 in the sense of distributions
on Ω when ε tends to 0. But we actually have the following stronger result.

Lemma 3.2. Under the assumptions of Theorem 3.1, ensuring the L∞ bounds on
the solution, c2ε − h(c1ε) tends to 0 in L2

loc(Ω).
From this result we can deduce, using the compensated compactness method, the

following main result of this section.
Theorem 3.3. Consider a, b ∈ L∞(]0, T [), and c0 ∈ L1 ∩ L∞(]0, 1[). Under the

assumptions of Theorem 3.1, that is,

a ≥ 0, b ≤ 0, c0 ≥ 0, c? ≥ max[‖a‖∞, ‖c0‖∞],

there then exists a subsequence of solutions to (1.1), still denoted by c1ε, which converges
a.e. and strongly in ]0, 1[×]0, T [ to c ∈ L∞(]0, T [;L1(]0, 1[)). Moreover, c satisfies,
for any ϕ ∈ D(Ω), ϕ ≥ 0, k ∈ R,

−
∫ T

0

∫ 1

0

[(|c− k| + |h(c)− h(k)|)∂tϕ+
(
u|c− k|+ v|h(c)− h(k)|)∂xϕ

]
dxdt

≤
∫ T

0

u|a(t)− k|ϕ(0, t)dt+

∫ T

0

|b(t)− f(k)|ϕ(1, t)dt(3.5)

−
∫ 1

0

(|c0(x)− k|+ |h(c0(x))− h(k)|)ϕ(x, 0)dx.
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Section 3.1 contains the entropy estimates and the proof of Theorem 3.1, while section
3.2 is devoted to the convergence results. Finally, we give a few remarks on viscous
regularization is section 3.3.

3.1. A priori estimates. First we briefly show how condition (3.2) gives gen-
eral entropy estimates. Consider a pair (η1, η2) which satisfies (2.2), and assume for
simplicity that η2 is bounded from below by 0. We start from equation (2.4) and
estimate the boundary terms.

At x = 0, we have c1ε(0, ·) = a(·). We have, since v < 0,
[
uη1(c

1
ε) + vη2(c

2
ε)
]∣∣

0
≤

uη1(a) ≤ C if a ∈ L∞. Next at x = 1, we rewrite the boundary condition in the form

c2ε =
u

|v|c
1
ε −

b

|v| .

We want to make −[uη1(c
1
ε) + vη2(

u
|v|c

1
ε − b

|v| )] ≤ K, K being a constant. A sufficient

condition to ensure this is

ζ(c)
def
= −

[
uη1(c) + vη2

(
u

|v|c−
b

|v|
)]

≤ K,

or ζ ′(c) ≤ 0, for c large. Differentiating ζ and using (2.2) shows that this occurs if
η′1(c) = η′2(h(c)) ≤ η′2(

u
|v|c− b

|v| ). Now, the fact that η′2 is nondecreasing and condition

(3.2) lead to

d

dt

∫ 1

0

[
η1(c

1
ε(x, t)) + η2(c

2
ε(x, t))

]
dx ≤ C(a, b, η1, η2,M,K),

where K = sup0≤c≤M ζ(c). By integration, this leads to∫ 1

0

[
η1(c

1
ε(x, t)) + η2(c

2
ε(x, t))

]
dx

≤
∫ 1

0

[
η1(c

0(x)) + η2(h(c0)(x))
]
dx+ C(a, b, η,M,K)t.

We point out again the fact that condition (3.2) is not to be used as it stands,
since it depends on the flux. We prefer to put restrictions on the initial and boundary
data, as in Theorem 3.1, which we are going to prove now. Actually, we perform the
same computations as above, with two particular choices for ηi.

Proof of Theorem 3.1. (i) We first take ηj(c
j) = [cj ]−, which happens to be a

diphasic entropy since h is increasing. With this choice, the right-hand side of (2.4) is
clearly bounded by ua(t)−− [uc1ε(1, t) + vc2ε(1, t)]

− = ua(t)− + [−b(t)]− (by using the
boundary condition at x = 1). This becomes nonnegative provided a ≥ 0 and b ≤ 0.
Integrating in time now gives∫ 1

0

[
η1(c

1
ε(x, t)) + η2(c

2
ε(x, t))

]
dx ≤

∫ 1

0

[
(c01(x))− + (c02(x))−

]
dx ≤ 0

if the initial data are nonnegative. Thus (1.1) preserves the positivity.
(ii) We now choose ηi = ψk

i , for an adequate k, which will give the upper bound.
Indeed, the ψk

i are bounded from below (by 0!), and for k ≥ ‖a‖∞, the term on x = 0
becomes nonpositive. Now, for x = 1, we have with our choice for ηi,

ζ(c) = − u(c− k)+ − v

[
u

v
c+

b

v
− h(k)

]+

≤ [f(k)− b]+
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by a triangle inequality. To make the right-hand side nonpositive, we must find k such
that f(k) ≤ b. This implies k ≤ c? and is compatible with the constraint at x = 0
only if ‖a‖∞ is less than c?.

Finally, by integration, provided k satisfies c? ≥ k ≥ ‖a‖∞, we have

∫ 1

0

[
(c1ε(x, t)− k)+ +

(
c2ε(x, t)− h(k)

)+]
dx

≤ C(b, k)t+

∫ 1

0

[
(c0(x)− k)+ +

(
h(c0(x))− h(k)

)+]
dx.

Now, provided c? ≥ max[‖a‖∞, ‖c0‖∞], we can choose k such that the right-hand side
is nonpositive.

3.2. Strong convergence. We turn to the proof of the convergence results.
Proof of Lemma 3.1. We begin from (2.3) with the diphasic entropy given by

η2(c2) = (1/2)c22, η1(c1) =
∫ c1
0
h(σ) dσ, then multiply by ϕ with compact support in

]0, 1[×]0, T [, and integrate by parts:

−
∫ T

0

∫ 1

0

(
[η1(c

1
ε) + η2(c

2
ε)]∂tϕ + [uη1(c

1
ε) + vη2(c

2
ε)]∂xϕ

)
dx dt

= − 1

ε

∫ T

0

∫ 1

0

(
c2ε − h(c1ε)

)2
ϕdx dt.

Since c1ε and c2ε are L∞-bounded uniformly in ε, multiplying this relation by ε gives
the result.

We now wish to prove a strong convergence property on ciε by using Murat–
Tartar’s compensated compactness argument [27].

Proof of Theorem 3.2. Step 1. First we prove that, up to a subsequence, c1ε
converges strongly. Since c1ε is L∞ bounded uniformly in ε, and the functions h and
ηi are smooth, the sequences c1ε, h(c1ε), and ηi(c

i
ε) converge in L∞ −w∗, respectively,

to c̄, h̄, and η̄i, i = 1, 2. Now consider the following two quantities:

Sε
def
= ∂t

(
c1ε + h(c1ε)

)
+ ∂x

(
uc1ε + vh(c1ε)

)
,

T ε def
= ∂t

(
η1

(
c1ε
)

+ η2

(
h(c1ε)

))
+ ∂x

(
uη1

(
c1ε
)

+ vη2

(
h(c1ε)

))
.

We want to apply the classical div-curl lemma, which asserts that the quantity

(c1ε + h(c1ε))[uη1

(
c1ε
)

+ vη2

(
h(c1ε)

)
]− [η1

(
c1ε
)

+ η2

(
h(c1ε)

)
](uc1ε + vh(c1ε))

passes to the L∞ weak-∗ limit (see [27]), provided Sε and T ε are compact in H−1
loc (Ω).

But, for any pair (η1, η2) of diphasic entropies (in particular for the trivial entropies
(c1ε, c

2
ε) which give back Sε), T ε = µε + gε, where

µε
def
= ∂t

(
η1(c

1
ε) + η2(c

2
ε)
)

+ ∂x
(
uη1(c

1
ε) + vη2(c

2
ε)
)
,

gε
def
= ∂t

(
η2(h(c1ε))− η2(c

2
ε)
)

+ ∂xv
(
η2(h(c1ε))− η2(c

2
ε)
)
.

Now, T ε is bounded in W−1,∞ since c1ε is bounded in L∞, and µε is a nonpositive
measure (it is actually 0 for the trivial entropies). By Lemma 3.1, we have that



CONVERGENCE RESULTS FOR CONSERVATION LAWS 1209

c2ε − h(c1ε) tends to 0 in L2
loc(Ω); hence η2(c

2
ε) − η2(h(c1ε)) also tends to 0 in L2

loc(Ω).
Since the operators ∂t and ∂x are continuous from L2

loc(Ω) to H−1
loc (Ω), gε tends to

0, and hence is compact, in H−1
loc (Ω). Thus, by Murat’s lemma, T ε is compact in

H−1
loc (Ω).

With the obvious notation denoting the weak-∗ limit with an overline, we obtain,
after trivial simplifications,

h(c1)η1(c1)− h η1 = c1η2

(
h(c1)

)− c̄1η2.(3.6)

We now proceed classically by introducing the Young measure ν = νx,t associated
with the sequence c1ε: for every function α,

α(c1ε) ⇀ α =

∫
R

α(ξ) dν(ξ) = 〈α(ξ), ν〉 in L∞ − w ∗ .

Equation (3.6) therefore becomes

〈
(ξ − c̄)η2

(
h(ξ)

)− (h(ξ)− h(c)
)
η1(ξ), ν

〉
= 0.

If we now introduce the aforementioned Kružkov-like entropies η1(c1) = |ξ − c1|,
η2(c2) = |h(ξ)− c2|, the preceding equality becomes

〈
(ξ − c̄)|h(ξ)− h(c̄)| − (h(ξ)− h(c)

)|ξ − c̄|, ν
〉

= 0.

But the fact that h is increasing implies easily that (ξ− c̄)|h(ξ)−h(c̄)| = |ξ− c̄|(h(ξ)−
h(c̄)

)
, so we finally obtain

(
h(c)− h(c̄)

) 〈|ξ − c̄|, ν〉 = 0.

The conclusion now follows exactly in the same way as in [27]: ν is a Dirac mass,
except where h is affine.

Proof of Theorem 3.2. Step 2. First notice that any solution (c1ε, c
2
ε) to (1.1) with

the boundary conditions (1.3) satisfies

(3.7)

−
∫ T

0

∫ 1

0

[(|c1ε − k| + |c2ε − h(k)|)∂tϕ+
(
u|c1ε − k|+ v|c2ε − h(k)|)∂xϕ

]
dxdt

≤
∫ T

0

u|a(t)− k|ϕ(0, t)dt+

∫ T

0

|b(t)− f(k)|ϕ(1, t)dt

−
∫ 1

0

(|c0(x)− k|+ |h(c0(x))− h(k)|)ϕ(x, 0)dx.

Indeed, rewrite (2.3) with η1(c
1) = |c1 − k| and η2(c

2) = |c2 − h(k)|, multiply by
ϕ(x, t) ≥ 0, and integrate by parts with respect to x and t. We obtain, using the
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boundary condition on x = 0 and the fact that v < 0,

−
∫ T

0

∫ 1

0

[(|c1ε − k| + |c2ε − h(k)|)∂tϕ+
(
u|c1ε − k|+ v|c2ε − h(k)|)∂xϕ

]
dxdt

≤
∫ T

0

u|a(t)− k|ϕ(0, t)dt

−
∫ T

0

(
u|c1ε(1, t)− k|+ v|c2ε(1, t)− h(k)|)ϕ(1, t)dt

−
∫ 1

0

(|c0(x)− k|+ |h(c0)(x)− h(k)|)ϕ(x, 0)dx.

For x = 1, we use the boundary condition to get

∫ T

0

(u|c1ε(1, t)− k|+ v|c2ε(1, t)− h(k)|)ϕ(1, t)dt

=

∫ T

0

(
u|c1ε(1, t)− k|+ v

1

|v| |b(t)− uc1ε(1, t)− vh(k)|
)
ϕ(1, t)dt.

Again since v < 0, v/|v| = −1, we add and subtract uk in the second term of the
right-hand side, and we use the triangle inequality to conclude. Finally, the first step
of this proof allows us to pass to the limit in the left-hand side of (3.7).

3.3. Remarks on viscous regularization. We consider here another possible
perturbation of the hyperbolic equation, by means of a viscous regularization. We go
back to the classical form of conservation law,

∂tw + ∂xf(w) = ε∂xxw, x < 1,(3.8)

provided with a perturbed Neumann condition on x = 1:

− ε∂xw(t, 1) + f
(
w(t, 1)

)
= b(t).

This is exactly the context considered by Gisclon in [9] for the Burgers equation.
We drop the Dirichlet condition on x = 0: it has been fully considered by Bardos,

Leroux, and Nédélec in [3] and cannot be treated without a priori BV estimates,
since the entropy condition on the boundary involves the trace of the solution. Notice
that our boundary condition differs from the one in [3], since we do not impose the
equilibrium at the boundary.

We are going to formally recover the L∞ estimate from this perturbation, under
the same assumptions as in Theorem 3.1, that is, b ≤ 0 and condition (3.4). After
that, classical compactness arguments can be performed in order to obtain strong
convergence of the sequence wε to a weak solution.

Indeed, multiply (3.8) by η′(w), where (η, q) is any pair entropy-flux; then inte-
grate in x. We obtain

d

dt

∫ 1

−∞
η(w(x, t)) dx+ q(w(1, t)) = (εη′(w(1, t))∂xw(1, t))(3.9)

−ε
∫ 1

−∞
η′′(w(x, t))(∂xw(x, t))2 dx
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Now, the term involving η′′ is nonnegative since η is convex, and we wish to control
the quantity q(w) − εη′(w)∂xw on the boundary. Using the boundary condition, we
have q(w) − εη′(w)∂xw = q(w) + η′(w) (b− f(w)). But, assuming f(0) = 0, we can
write

q(w) =

∫ w

0

η′(v)f ′(v) dv = −
∫ w

0

η′′(v)f(v) dv + η′(w)f(w),

so that

d

dt

∫ 1

−∞
η(w(x, t)) dx ≤

∫ w(1,t)

0

η′′(v) [f(v)− b] dv.(3.10)

Now, for a general η, if we assume that

f(w) ≤ min
t>0

b(t) if |w| ≥M,(3.11)

for some M > 0 then, since η′′ ≥ 0, the right-hand side in (3.10) is bounded by

inf
w≤M

∫ w

0

η′′(v) (f(v)− b) dv
def
= C.

This proves an entropy estimate for any entropy η, provided (3.11) is satisfied. Notice
that, in the particular case f(w) = ug(w)+vh

(
g(w)

)
, condition (3.11) is exactly (3.2).

Notice also that such a flux condition on a Burgers-like equation does not satisfy the
assumption, since the function w 7→ w2 is not bounded.

To recover the L∞ estimates, we first consider η(w) = w−. Then we have η′′(w) =
−δ0(w), so that (3.10) becomes

d

dt

∫ 1

−∞
w(x, t)− dx ≤ b(t) ≤ 0.

Hence w(x, t) ≥ 0 if w(x, 0) ≥ 0. For the upper bound, we choose η(w) = (w − k)+,
for a given k ∈ R, which gives η′′(w) = δk(w). Thus

d

dt

∫ 1

−∞
[w(x, t)− k]+ dx ≤

{
0 if k 6∈ [0, w(1, t)],
f(k)− b(t) if k ∈ [0, w(1, t)].

If one can choose k such that f(k) − b(t) ≤ 0, then we are done. This can be done
precisely if condition (3.4) is satisfied.

4. The Langmuir model. We now consider an N ×N system which appears
in chemical engineering both in chromatography and distillation. The unknowns are
N functions ci(x, t) solutions of

∂t
(
ci + hi(c)

)
+ ∂x

(
uci + vhi(c)

)
= 0, t ≥ 0, x ∈]0, 1[, 1 ≤ i ≤ N,(4.1)

ci(x, 0) = c◦i (x) ≥ 0,

where the vector-valued function h is the so-called Langmuir isotherm (see [20]),

hi(c) =
kici
D

.(4.2)
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The ki’s given here are numbers 0 < k1 < k2 < · · · < kN and D = 1+c1+c2+· · ·+cN .
Function h is defined for D > 0, which contains the “physical domain” {ci ≥ 0, 1 ≤
i ≤ N}. We set in the following c(x, t) = (c1(x, t), . . . , cN (x, t)).

System (4.1) of partial differential equations has been treated by Rhee, Aris, and
Admundson in [24] for chromatography, which corresponds to v = 0, and in [25] for
a countercurrent model of chromatography, which is very close to the system we deal
with. Canon and James also studied both systems [5], [6], respectively, for distillation
and chromatography. Serre [26] studied a variant of this system, which emphasizes
the structure of the function h. On the same variant, a kinetic formulation was
obtained in [14], which led to L∞ estimates and strong convergence properties for
bounded sequences of solutions, even though system (4.1) is not hyperbolic on the
whole physical domain. The entropies we are about to use are very similar to those
in [14], and before defining them, we recall without proof some fundamental algebraic
properties of h (see [5], [24], [26]).

Lemma 4.1. (i) If ci ≥ 0 for 1 ≤ i ≤ N , then A(c) = ∇ch(c) has N real

eigenvalues µi(c), and wi
def
= Dµi satisfies

0 < w1 ≤ k1 ≤ w2 ≤ k2 ≤ · · · ≤ kN−1 ≤ wN ≤ kN ;

(ii) wi is a strong i-Riemann invariant, in the sense that ∇cwi is a left eigenvector
of A(c);

(iii) D =

N∏
i=1

ki
wi

;

(iv) ci
∏
j 6=i

(
1− ki

kj

)
= −

N∏
j=1

(
1− ki

wj

)
;

(v) σ0
def
=

N∏
i=1

ki, σj(c)
def
=

∑
1≤i1,... ,ij≤N

1

wi1 . . . wij

for 1 ≤ j ≤ N,

are N + 1 independent affine functions of (c1, . . . , cN ).
These properties are very strong. (i) and (ii) give the so-called richness (Serre

[26]): system (4.1) admits a diagonal form for smooth solutions, namely,

(1 + µi)∂twi + (u+ vµi)∂xwi = 0.(4.3)

Moreover, this system also belongs to the Temple class [28] for which some existence
and uniqueness results are known in BV when they are strictly hyperbolic (see [26],
[13]).

Remark 4.1. Let us point out an important point (see [6] for further details).
Property (i) allows a degeneracy of the system (two equal eigenvalues). This can
happen only for wi = wi+1 = ki, then µi = µi+1, and ci = 0. It requires that,
initially, w0

i (x) = w0
i+1(x) = ki for some x ∈ R.

Section 4.1 is devoted to some technical devices to generalize the kinetic entropies
of [14] for system (4.1). Next, we establish some invariants regions in section 4.2. In
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particular, we prove that the domain {ci ≥ 0} is invariant. Finally, we prove strong
convergence results in section 4.3. In the following, we shall say that a vector z is
nonnegative, z ∈ R

N
+ (respectively, nonpositive, z ∈ R

N
− ), if all its components are

nonnegative (respectively, nonpositive). We denote by w1 (respectively, wa
i , w

0
i ) the

i-Riemann invariant associated by Lemma 4.1(ii) with c1
ε (respectively, with the data

on x = 0, with the initial data).

4.1. Some specific entropies. Now, we define a first trivial (i.e., affine) dipha-
sic entropy for system (4.1), from which we shall build a specific family of nontrivial
(i.e., convex) diphasic entropies. This set of entropies was already mentioned by Serre
[26]. For ξ ∈ R+ and c1 ∈ R

N
+ , we set

E0(ξ; c
1) =

N∏
i=1

(
1− ξ

w1
i

)
, γ(ξ) = E0(ξ; 0) =

N∏
i=1

(
1− ξ

ki

)
,

where w1
i are the Riemann invariants corresponding to c1.

Lemma 4.2. The function E0 is affine with respect to c1. Let ∇cE0(ξ) denote
its gradient. We now define, for ξ ∈ R

+ and c2 ∈ R
N ,

F0(ξ; c
2) = ∇cE0(ξ) · c2 + ξγ(ξ).(4.4)

Then the pair of functions (E0, F0) defines a diphasic entropy for (4.1), and we have

F0(ξ;h(c1)) =
ξE0(ξ; c

1)

D
.(4.5)

Proof. First notice that, if E0 is affine and F0 is given by (4.4), then obviously
the pair (E0, F0) defines a diphasic entropy, since ∇c2F0(ξ;h(c1)) = ∇cE0(ξ).

We are going to prove that E0 satisfies


E0(ki; c
1) = βic

1
i , where βi =

∏
j 6=i(1− ki/kj),

E0(ξ; c
1) = − γ(ξ)

[∑N
i=1

kic
1
i

ki−ξ −D
]

= − γ(ξ)
[
ξ
∑N

i=1
c1i

ki−ξ − 1
]

for ξ 6= ki,

(4.6)

so that for ξ 6= ki, ∇cE0(ξ) = −ξγ(ξ)( 1
ki−ξ )1≤i≤N . To prove (4.6), recall that the

Riemann invariants w1
i are the roots of the algebraic equation ϕ(ξ) = 0, where

ϕ(ξ) =

N∑
i=1

kici
ki − ξ

−D = ξ
N∑
i=1

ci
ki − ξ

− 1.(4.7)

But ϕ is also a rational fraction with poles ki and roots w1
i ; thus an easy computation

gives

ϕ(ξ) = −D
N∏
i=1

ξ − w1
i

ξ − ki
= −

N∏
i=1

ξ
w1
i
− 1

ξ
ki
− 1

= − E0

γ(ξ)
(4.8)

by Lemma 4.1(iii) and the definitions of E0 and γ(ξ). Putting together (4.7) and (4.8)
gives (4.6). Finally, (4.5) is obtained by playing with the two definitions of E0, since

∇cE0(ξ) · h(c1) = − ξγ(ξ)
N∑
i=1

kic
1
i

D

1

ki − ξ
=

ξ

D
E0(ξ; c

1)− ξγ(ξ),
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and this completes the proof.
Remark 4.2. We state here a few useful properties of F0. First, it is a polynomial

of degree N + 1 in ξ, very similar to E0: if c2i ∈ R
N
+ , it has roots 0, w2

1, . . . , w
2
N , with

0 < w2
1 ≤ k1 ≤ · · · ≤ w2

N ≤ kN . We easily obtain also that, for any z ∈ R
N ,

F0(ki; z) = ∇cE0(ki) · z = βizi, 1 ≤ i ≤ N.(4.9)

A crucial point now is to remark that E0(ξ; c) and F0(ξ;h(c)) vanish simulta-
neously for ξ = w1

i = w2
i , 1 ≤ i ≤ N . Thus, taking the convention wj

0 = 0 and

wj
N+1 = +∞, we easily deduce the following.

Corollary 4.3. For 0 ≤ i ≤ N , c1 ∈ R
N
+ , c2 ∈ R

N
+ , let w1

i (respectively, w2
i ) be

the roots of E0 (respectively, the nonzero roots of F0). Define

χ1
i (ξ; c

1) = |E0(ξ; c)|1I{ξ∈]w1
i ,w

1
i+1[},(4.10)

χ2
i (ξ; c

2) = |F0(ξ; c
2)|1I{ξ∈]w2

i ,w
2
i+1[}.

Then the pair (χ1
i , χ

2
i ) defines a diphasic entropy for (4.1).

Notice that χ1
i (respectively, χ2

i ) is actually convex with respect to c1 (respec-

tively, to c2), as the absolute value of an affine function. Thus the function ηi(ξ; c)
def
=

χ1
i (ξ; c) + χ2

i (ξ;h(c)) is indeed a nontrivial convex diphasic entropy for (4.1).
The class of entropies we consider now is defined as follows. Set, for j = 1, 2,

cj ∈ R
N
+ , and a fixed 0 ≤ i ≤ N ,

Sj(cj) =

∫
R+

g(ξ)χji (ξ; c
j) dξ, j = 1, 2.

The functions S(c) = S1(c)+S2(h(c)) are diphasic entropies for (1.2), for any nonneg-
ative function g such that gχji is integrable at +∞ in ξ (recall that χji is a polynomial
in ξ). The corresponding entropy flux is Q(c) = uS1(c) + vS2(h(c)). We have to
complement these functions by using for g a Dirac mass, g(ξ) = δξ∗(ξ). To justify
this, consider a sequence of nonnegative g’s which converge to such a Dirac mass.
These entropies will appear in the proof of the maximum principle below. Let us
denote by E the set of all these entropies for 0 ≤ i ≤ N .

Remark 4.3. The entropies in E are defined only on R
N
+ and therefore cannot be

used to prove the invariance of R
N
+ . But it is easily checked that the pairs ([c1i ]

−, [c2i ]
−),

where r− is the negative part of r ∈ R, define diphasic entropies on the domain D > 0.

4.2. Invariant regions. In this subsection, we shall prove that the solution
(c1

ε, c
2
ε) to (4.1) is bounded in L∞ uniformly in ε, thus giving rise to a weakly conver-

gence subsequence. In the next subsection, we prove that this subsequence actually
converges almost everywhere to a solution in the sense of (4.14) below.

Theorem 4.4. Assume c0 ∈ L1 ∩ L∞(]0, 1[)N , a ∈ L∞(R+)N , b ∈ L∞(R+)N ,
c0,a nonnegative, and b nonpositive. Let 0 < w− ≤ k1 satisfy w− ≤ wa

1 (t), w0
1(x) ≤

k1 for all (t, x). Define

ψ(ξ)
def
= ∇cE0(ξ) · b + (u+ vξ)γ(ξ),

and assume that

ξ?
def
= inf{ξ ≤ k1;∃ξ′ ≤ ξ, ψ(ξ′) ≤ 0} > w−.(4.11)
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Let (c1
ε, c

2
ε) be a solution of (1.1). Then there exists a constant C independent of ε

such that 0 ≤ ciε(x, t) ≤ C, 1 ≤ i ≤ N , ∀(t, x) ∈ [0, T ]× [0, 1].

Remark 4.4. Once again, one can choose ξ0 = w− only if w− satisfies ψ(w−) ≤ 0.

Remark 4.5. The existence of ξ∗ relies on the nonpositivity of the polynomial ψ
on [0, k1] (one has ψ(0) = u > 0 and ψ(k1) = − k1b1

∏
i>1(ki − k1) ≥ 0, so this is not

trivially satisfied). This leads to a condition on u, v,b, and k1, which is actually not
very explicit, except for N = 1 (see Remark 3.1). However, one can rewrite things as
follows. For 0 < ξ < k1, define c(ξ) ∈ R

N
+ by

ci(ξ) =
ki − ξ

Nξ
, 1 ≤ i ≤ N.

Then a few easy algebraic computations prove

∇cE0(ξ) · c(ξ) = − γ(ξ), ∇cE0(ξ) · h(c(ξ)) = − ξγ(ξ),

so that ψ(ξ) ≤ 0 rewrites ∇cE0(ξ) · [b − (uc(ξ) + ξγ(ξ))] ≤ 0. Thus condition
(4.11) can be compared to (3.4) in a more consistent way. Notice that this can
also be read as an entropy inequality, since ∇cE0(ξ) · [b − (uc(ξ) + ξh(c(ξ)))] =
E0(ξ;b)− E0(ξ;uc(ξ) + ξh(c((ξ))) = F0(ξ;b)− F0(ξ;uc(ξ) + ξh(c((ξ))).

Proof of Theorem 4.1. To lighten the notations a bit, we omit the index ε in
this proof. First notice that w− exists since a and c0 are nonnegative and uniformly
bounded.

Let us prove first that for a given index i, if ai ≥ 0, bi ≤ 0, and c0i ≥ 0, then cji ≥ 0
for j = 1, 2. For this purpose we make use of the entropy introduced in Remark 4.3.
Inequality (2.4) can be rewritten here as

d

dt

∫ 1

0

(
[c1i (x, t)]

− + [c2i (x, t)]
−) dx ≤ [c1i (0, t)]

−+v[c2i (0, t)]
−−u[c1i (1, t)]

−−v[c2i (1, t)]−.

Now, as in the scalar case, we notice that v < 0 and (cji )
− ≥ 0, so u[c1(0, t)]− +

v[c2(0, t)]− ≤ u[ai(t)]
− by the boundary condition at x = 0. Since ai(t) ≥ 0 for

1 ≤ i ≤ N , [ai(t)]
− = 0, and the same occurs for the initial data.

For x = 1, we have to prove that F
def
= − u[c1(1, t)]− − v[c2(1, t)]− ≤ 0. This

clearly occurs if (bi−uc1i (1, t))/v ≥ 0. If this is not the case, we have 0 ≥ bi(t) ≥ uci(t)
since v < 0 so that F = bi(t)|βi| ≤ 0. Hence the following differential inequality holds:

d

dt

∫ 1

0

(
[c1(x, t)]− + [c2(x, t)]−

)
dx ≤ 0.

The conclusion now follows easily: the components of c1
ε and c2

ε remain nonnegative
for any t > 0.

We turn now to the proof of the upper bound. For simplicity, we assume the
nonnegativity. In view of formula (iv) in Lemma 4.1, we have to prove that there
exists ξ0 > 0 such that wj

1 ≥ ξ0 for all (t, x). We consider the diphasic entropy
(S1, S2),

S1(c1) =

∫ w1
2

w1
1

|E0(ξ; c
1)|g(ξ)dξ, S2(c2) =

∫ w2
2

w2
1

|F0(ξ; c
2)|g(ξ)dξ.
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The usual trick of convexity of S1 and S2 leads to

d

dt

∫ 1

0

[S1(c1(x, t)) + S2(c2(x, t))] dx ≤ − [uS1(c1(x, t)) + vS2(c2(x, t))]

∣∣∣∣
x=1

x=0

.(4.12)

Set H0 = uS1(c1(0, t))+ vS2(c2(0, t)) and H1 = − [uS1(c1(1, t))+ vS2(c2(1, t))]. We
have

H0 =

∫ w1
2

w1
1

u|E0(ξ; c
1)|g(ξ)dξ +

∫ w2
2

w2
1

v|F0(ξ; c
2)|g(ξ)dξ ≤

∫ wa
2

wa
1

u|E0(ξ;a)|g(ξ)dξ,

since v < 0. For any ξ0 ≤ w−, choosing g = δξ0 cancels the right-hand side of the
preceding inequality.

Concerning H1, we want to take g = δξ0 for a carefully chosen ξ0 ≤ w− such that

H1 = −
∫ w1

2

w1
1

u|E0(ξ; c
1)|δξ0(ξ)dξ −

∫ w2
2

w2
1

v

∣∣∣∣F0

(
ξ;

1

v
[b− uc1]

) ∣∣∣∣δξ0(ξ)dξ ≤ 0.(4.13)

We know, since everything is nonnegative, that 0 < w1
1, w

2
1 ≤ k1 ≤ w1

2, w
2
2, so that

necessarily ξ0 ≤ w1
2, w

2
2. Now, if ξ0 < w2

1, then H1 ≤ 0 by (4.13). If ξ0 ≥ w2
1, we have

by construction F0(ξ0; (b − uc1)/v) ≤ 0 (indeed one can check that F0(ξ = 0) = 0
and ∂ξF0(ξ = 0) ≥ 0). On the other hand, an easy computation shows

vF0

(
ξ;

1

v
[b− uc1]

)
= ψ(ξ0)− uE0(ξ0; c

1).

Since w− ≥ ξ?, one can choose any ξ? ≤ ξ0 ≤ w− such that ψ(ξ0) ≤ 0. The preceding
equality therefore gives E0(ξ0; c) ≤ 0, so that ξ0 ∈ [w1

2p+1, w
1
2p+2] for some p ≥ 1, by

assertion (iv) in Lemma 4.1. Since ξ0 ≤ k1 ≤ w1
2, necessarily ξ0 ∈ [w1

1, w
1
2] so that

finally, H1 can be rewritten, by simple consideration of sign on E0 and F0,

H1 = uE0(ξ0; c
1) + vF0

(
ξ0;

1

v
[b− uc1]

)
= ψ(ξ0) ≤ 0.

The preceding choice of ξ0 cancels the right-hand side of (4.12). When integrating
in t, we introduce the initial data, but the choice of g = δξ0 for ξ0 ≤ w− gives also
S1(c0(x)) = S2(h(c0(x)) = 0, so finally (4.12) gives

∫ 1

0

[S1(c1(x, t)) + S2(c2(x, t))] dx ≤ 0,

which leads to S1(c1(x, t)) = S2(c2(x, t)) = 0, ∀t > 0. A simple contradiction argu-
ment then gives w1

1(x, t) ≥ ξ0 and w2
1(x, t) ≥ ξ0 for a.e. x, ∀t > 0.

4.3. Strong convergence. The L∞ estimate leads obviously to the following
weak convergence result: c2

ε − h(c1
ε) tends to 0 in D′(Ω)N when ε tends to 0. We

actually have a stronger convergence result.
Lemma 4.5. Under the above assumptions ensuring the L∞ bounds on the solu-

tion, c2
ε − h(c1

ε) tends to 0 in L2
loc(Ω)N .

From (1.1), we can obtain the following inequality for the entropies (χ1
i , χ

2
i ):

∂t
(
χ1
i (ξ; c

1
ε) + χ2

i (ξ; c
2
ε)
)

+ ∂x
(
uχ1

i (ξ; c
1
ε) + vχ2

i (ξ; c
2
ε)
) ≤ 0.
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The negative sign holds since ∇cχ
2
i (ξ; ·) is a monotone operator, as before. Now,

multiply this inequality by any nonnegative ϕ ∈ D(Ω), integrate by parts, and treat
the boundary conditions as in the above proof. One obtains

−
∫ T

0

∫ 1

0

[
∂tϕ

(
χ1
i (ξ; c

1
ε(x, t)) + χ2

i (ξ; c
2
ε(x, t))

)
+∂xϕ

(
uχ1

i (ξ; c
1
ε(x, t)) + vχ2

i (ξ; c
2
ε(x, t))

)]
dx dt

≤
∫ T

0

ϕ(0, t)uχ1
i (ξ;a(t)) dt−

∫ 1

0

ϕ(x, 0)S(c0(x)) dx

−
∫ T

0

[
uχ1

i (ξ; c
1
ε(1, t)) + vχ2

i (ξ; c
2
ε(1, t))

]
ϕ(1, t) dt.

Once again, some considerations of sign allow us to prove that for the boundary term
on x = 1, we have for any ξ, since c2

ε(1, t) = (b(t)− uc1
ε(1, t))/v,

uχ1
i (ξ; c

1
ε(1, t)) + vχ2

i (ξ; c
2
ε(1, t)) ≤ |∇cE0(ξ) · b(t)− (u+ vξ)γ(ξ)| def

= B(t).

The resulting entropy estimate is analogous to (3.7). Now, following the lines of
[14], we can apply compensated compactness to obtain the following result of strong
convergence.

Theorem 4.6. We make the same assumptions as in Theorem 4.1. Then there
exists a subsequence of solutions to (1.1), still denoted by c1

ε, which converges almost
everywhere and strongly in ]0, 1[×]0, T [ to c ∈ L∞(]0, T [;L1(]0, 1[))N . Moreover, c
satisfies, for any ϕ ∈ D(Ω), ϕ ≥ 0, ξ > 0,

(4.14)

−
∫ T

0

∫ 1

0

[S(c)∂tϕ + Q(c)∂xϕ] dx dt

≤
∫ T

0

uχ1
i (a(t))ϕ(0, t) dt−

∫ T

0

B(t)ϕ(1, t) dt−
∫ 1

0

S(c0(x))ϕ(x, 0) dx,

with B(t) = |∇cE0(ξ) · b(t) − (u + vξ)γ(ξ)|, for S(c) = χ1
i (c) + χ2

i (h(c)), Q(c) =

uχ1
i (c) + vχ2

i (h(c)), and χji being defined by (4.10).

Proof of Lemma 4.3. Consider the pair of entropies (η1, η2) obtained by choosing,
for a given i, g = 1I[0,ki]. Their gradients are given by

∇cη1(c
1) =

∫ ki

w1
i

sign(E0(ξ; c
1))∇cE0(ξ)dξ,

∇cη2(c
2) =

∫ ki

w2
i

sign(F0(ξ; c
2))∇cE0(ξ)dξ.

Omitting here the dependence in ε, we take the scalar product of the two equations in
(1.1), respectively, by ∇cη1(c

1) and ∇cη2(c
2), sum the two equations, and integrate

dx dt with a nonnegative test function ϕ ∈ D(Ω). We obtain, after integration by
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parts and multiplication by ε,

Aε def
= ε

∫ T

0

∫ 1

0

(
∂tϕ(x, t)

[
c1(x, t) + c2(x, t)

]
+ ∂xϕ(x, t)

[
uc1(x, t) + vc2(x, t)

])
dx dt

= −
∫ T

0

∫ 1

0

[∫ ki

w1
i

sign(E0(ξ; c
1))∇cE0(ξ)dξ −

∫ ki

w2
i

sign(F0(ξ; c
2))∇cE0(ξ)dξ

]

· (c2 − h(c1))dx dt.

Notice that Aε ≥ 0 by the second equality and the convexity of ηi. Obviously, since
c1 and c2 are bounded in L∞, Aε tends to 0 when ε goes to zero. We have to work
from now on with

P (x, t)
def
= −

[ ∫ ki

w1
i

sign(E0(ξ; c
1))∇cE0(ξ)dξ −

∫ ki

w2
i

sign(F0(ξ; c
2))∇cE0(ξ)dξ

]

·(c2 − h(c1)).

It is easy to check that signE0(ξ; c
1) = signF0(ξ,h(c1)) = signF0(ξ; c

2) for ξ ∈
[w1

i , ki] ∩ [w2
i , ki]. We are thus left with an integral over [min(w1

i , w
2
i ),max(w1

i , w
2
i )].

Let us assume that w1
i ≤ w2

i ; the computations are the same if the converse holds.
We have, by considerations of sign on F0,

P (x, t) = 2

∫ w2
i

w1
i

[|F0(ξ; c
2)|+ |F0(ξ;h(c1))|] dξ.

Now, we write for N ≥ 4,

|F0(ξ; c
2)| = (ξ − w2

i−1)(ξ − w2
i )(w

2
i+1 − ξ)

∏
j 6∈{i−1,i,i+1} |w2

j − ξ|∏N
i=1 w

2
j

.

The fourth term is greater than some K > 0 (K depending on k1, . . . , kN and ξ0),
since either w2

j ≤ ki−2 or w2
j ≥ ki+1, and ki−1 ≤ ξ ≤ ki. For the first three terms, we

simply write (ξ − w2
i−1)(ξ − w2

i )(w
2
i+1 − ξ) ≥ (ξ − w2

i )
2(w2

i+1 − w2
i ), which leads by

integration to

∫ w2
i

w1
i

|F0(ξ; c
2)|dξ ≥ K

3
(w1

i − w2
i )

3(w2
i+1 − w2

i ) ≥
K

3
(w1

i − w2
i )

4.

For N = 3, we have a similar estimate, since the fourth term reduces to K/(w2
1w

2
2w

2
3).

Because the same holds for |F0(ξ;h(c1))|, we have finally that for some C > 0,
depending only on k1, . . . , kN ,

∫ T

0

∫ 1

0

|w1
i (x, t)− w2

i (x, t)|4ϕ(x, t)dx dt ≤ C

∫ T

0

∫ 1

0

P (x, t)ϕ(x, t)dx dt = Aε

tends to zero. Thus |w1
i−w2

i | tends to 0 in L4
loc(Ω) and therefore in L2

loc(Ω). ForN = 2,
the same computations lead to convergence in L3

loc(Ω) and hence in L2
loc(Ω). Finally,

if N = 1, we directly obtain L2
loc(Ω). Since the function (w1, . . . , wN ) 7→ (c1, . . . , cN )

is Lipschitz continuous, we are done.
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Proof of Theorem 4.2. We merely give the sketch of the proof, referring to [14] for
the detailed computations, which are identical. Summing the equations for 0 ≤ i ≤ N ,
we obtain, with the same notations as in the scalar case,

(4.15)

T ε(ξ) = ∂t[G0(ξ, c
1) +H0(ξ,h(c1))] + ∂x[uG0(ξ, c

1) + vH0(ξ,h(c1))] = µε(ξ) + gε(ξ),

with G0 = |E0| and H0 = |F0|. Since η1 and η2 are convex, the usual computa-
tion proves that µε(ξ) is a nonpositive measure. By Lemma 4.3, gε(ξ) is compact in
H−1

loc (Ω); thus, again applying Murat’s lemma, we can apply the compensated com-
pactness lemma to (4.15), for two different values ξ and ξ′. We obtain, after some
easy simplifications,

G0(ξ) ξ′G0(ξ′)/D −G0(ξ′) ξG0(ξ)/D = (ξ′ − ξ)G0(ξ)G0(ξ′)/D.

Dividing by G0(ξ) G0(ξ′) (ξ′ − ξ) and letting ξ′ go to ξ, we get

∂ξ
ξG0(ξ)/D

G0(ξ)
=
G0(ξ)2/D

G0(ξ)
2 .(4.16)

Of course (4.16) has to be justified at points where G0(ξ) = 0. This occurs when
G0(ξ0, w) = 0 for all w in the support of ν, that is, wj = ξ0 for some j. If wj is a simple
eigenvalue, the formula is justified by applying l’Hospital’s rule in a neighborhood of
ξ0 to G′

0, which is not zero since the root is simple. When we have a double root,
that is, ξ0 = kj , the same technique can be used with G′′

0 , which in no case can be
zero, since the root cannot be triple.

Equation (4.16) is not completely satisfactory because its right-hand side does not
vanish when dν is a Dirac mass. Therefore, we again apply compensated compactness
to (4.15) for a given ξ and

∂t

(
D +

α

D

)
+ ∂x

(
uD + v

α

D

)
= 0, α = k1u1 + · · ·+ kNuN .

This yields G0(ξ) α/D − ξG0(ξ)/D D = G0(ξ)α/D − ξG0(ξ). After dividing it by
D G0(ξ), we can combine it with the left-hand side of (4.15) to get

−∂ξG0(ξ)α/D

G0(ξ)
=
G0(ξ)2/D

G0(ξ)
2 − 1

D
≥ 0,(4.17)

this last inequality being just Cauchy–Schwarz. Inequality (4.17) is the keystone to
proving that dν is in fact a Dirac mass.

Indeed, if in (4.17) the inequality is strict at some point, we obtain a contradiction
by comparing the values of the nonincreasing function

G0(ξ)α/D

G0(ξ)

at the points ξ = 0 and ξ = +∞, then ξ = ki and ξ = ∞. This means that the
inequality in (4.17) is just an equality for all ξ ≥ 0, so that the equality case in
Cauchy–Schwarz applies. We obtain the existence of a function λ(ξ) such that, for
all ξ ≥ 0, G0(ξ, c

1) = λ(ξ)D(c1) a.e. in the support of dν(c1). From this we deduce
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that, for two possible elements c1, c
′1 of the support of dν(c1), we have necessarily

G0(ξ, c
1) = G0(ξ, c

′1). Thus σj(c
1) = σj(c

′1), and by Lemma 4.1 (v) this proves that

c1 = c
′1 and the support of ν is a single point.

Remark 4.6. Notice that formula (4.14) is exactly the kinetic formulation obtained
in [14], but the boundary terms forbid us to write it in the usual way, with some
nonnegative measure on the right-hand side.

5. Boundary conditions. So far, we have defined in Theorems 3.2 and 4.2
kinds of weak solutions. The aim of this section is to prove that these solutions are
actually solutions to (1.2) in the sense of distributions, and to give a meaning to the
reflux boundary condition at x = 1. It seems that we lose the Dirichlet-like boundary
condition at x = 0 when passing to the limit. This is not really surprising, since we
pass from 2N equations to N equations: the system becomes overdetermined.

Before precisely stating our results, we need to introduce some material. Indeed,
we want to precisely state the meaning of the boundary conditions. But we deal with
L∞ functions, which usually do not have any trace on the boundary. The following
result, which we state as a lemma, follows easily by choosing the test functions ϕ ∈
D(Ω) in (3.5) or (4.14).

Lemma 5.1. Let (η1, η2) be any pair of convex functions defining a diphasic
entropy. Let c ∈ L∞(Ω) be a weak solution as in Theorems 3.2 or 4.2. Then the

vector-valued function ψ = (ψ1, ψ2)
def
= (η1(c) + η2(h(c)), uη1(c) + vη2(h(c))) is in

L∞(Ω), and divψ = ∂tψ1 + ∂xψ2 is a nonnegative measure in Ω.
We are thus in a position to apply a result by Anzellotti [1, Theorems 1.2 and

1.9], which essentially states that ψ has a trace on ∂Ω, in some sense. We recall this
result here without proof.

Theorem 5.2. Let Ω ⊂ R
n be a bounded domain with locally Lipschitz boundary

∂Ω. Set X(ω) = {ψ ∈ L∞(Ω; Rn); divψ is a bounded measure in Ω}. Then there
exists a trace operator

γ : X(Ω) → L∞(∂Ω),

such that, for any ϕ ∈ BV (Ω) ∩ L∞(Ω) ∩ C0(Ω),∫
Ω

ϕ divψ dx+

∫
Ω

(ψ,ϕ) dx =

∫
∂Ω

γψ ϕdσ,(5.1)

where σ is the superficial measure on ∂Ω.
In this result, (ψ,ϕ) has to be defined as a measure (Definition 1.4 in [1]). We de-

note by γ0 the trace on ]0, 1[×{0}, by γ0 and γ1 the traces, respectively, on {0}×]0, T [
and {1}×]0, T [. Since γψ is, by construction, a weak trace on ∂Ω of the normal
component of ψ, we have

at t = 0, γψ = γ0[η1(c) + η2(h(c))],
at x = 0, 1, γψ = γ0,1[uη1(c) + vη2(h(c))].

In particular, for the trivial entropies, we recover the conservative variables so that,
for 1 ≤ i ≤ N , ci + hi(c) has a trace on t = 0, and uci + vhi(c) has traces on x = 0
and x = 1. Notice that this trace is attained in a weak sense (see [18]), in contrast
with the traces of BV functions, which are attained in L1.

Theorem 5.3. (i) Let c be a solution as in Lemma 5.1. Then it is a solution to
(1.2) in D′(Ω), and we have, for 1 ≤ i ≤ N ,{

γ1[uci + vhi(c)] = bi, a.e. t ∈]0, T [;
γ0[ci + hi(c)] = c0i + hi(c

0), a.e. x ∈]0, 1[.
(5.2)
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(ii) For any pair (η1, η2) denoting the Kružkov entropies in the scalar case, the kinetic
entropies for the Langmuir system, define ψ as in Lemma 5.1. Then the following
entropy inequalities hold for a.e. t ∈]0, T [:{

γ0[uη1(c) + vη2(h(c))] ≤ uη1(a),
γ1[uη1(c) + vη2(h(c))] ≤ B(t),

(5.3)

where B(t) = |b(t) − f(k)| in the scalar case and is defined in Theorem 4.2 for the
Langmuir system.

Remark 5.1. This theorem shows that the initial condition and the reflux bound-
ary condition are satisfied in a strong sense (in L∞(∂Ω), actually). We have no
information about the input boundary condition at x = 0, except for the entropy in-
equalities (5.3). Notice that, even for the conservative variables themselves, we loose
some information. Indeed, we know that there is a trace for uc + vh(c) at x = 0,
but this function is not one-to-one, so we cannot compare c to a. Moreover, even if
uc + vh(c) is one-to-one, a boundary layer phenomenon will very likely occur here,
as the following easy computation shows.

Consider a stationary solution to (1.1) in the scalar case, for a linear function
f(c) = (u + vk)c, with k > u/|v|. The system boils down to the single ordinary
differential equation

dc

dx
=

1

εuv
[b− f(c)], c(0) = a.

There exists a unique equilibrium point c∗ such that f(c∗) = b, and it is attractive.
The solution cε is computed explicitly:

cε(x) =
b

u+ kv
+

(
a− b

u+ kv

)
exp

(
−u+ kv

εuv
x

)
= c∗ + (a− c∗) exp

(
−u+ kv

εuv
x

)
.

Obviously, the trace of the limit solution is c∗, which has no reason to coincide with a.
We do not wish to investigate this boundary layer now, and leave it for future work.

Proof of Theorem 5.2. To prove part (i) of the theorem, we sum the two equations
in (1.1), which gives the conservation of matter, and proceed exactly as in the proof
of the convergence theorems. Provided we choose a test function ϕ ∈ D(]0, 1]× [0, T [),
that is, if the test function does not see the boundary condition at x = 0, we obtain
a weak formulation with an equality sign:

−
∫ 1

0

∫ T

0

[(c + h(c))∂tϕ+ (uc + vh(c))∂xϕ]dx dt(5.4)

=

∫ 1

0

[c0 + h(c0)]ϕ(x, 0)dx−
∫ T

0

b(t)ϕ(1, t)dt,

since the boundary condition at x = 1 is satisfied exactly.
As a first consequence, we obtain, by taking ϕ ∈ D(Ω), that c is actually a solution

to (1.2) in D′(Ω). Therefore we can apply (5.1) with ψ = (ci + hi(c), uci + vhi(c)),
1 ≤ i ≤ N , and ϕ ∈ D(]0, 1]× [0, T [). The left-hand side of (5.4) is exactly

∫
Ω
(ψ,ϕ),

and divψ = 0, so we are left with∫ 1

0

γ0[ci + hi(c)]ϕ(x, 0)dx−
∫ T

0

γ1[uci + vhi(c)]ϕ(1, t)dt

=

∫ 1

0

[c0i + hi(c
0)]ϕ(x, 0)dx−

∫ T

0

bi(t)dt.
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Since this holds for any ϕ, we obtain (5.2).

Now, (5.3) follows from (3.5) or (4.14). By Lemma 5.1, for any pair (η1, η2),
ψ = (η1(c)+η2(h(c)), uη1(c)+vη2(h(c))) satisfies that divψ is a nonnegative measure.
Thus we can apply (5.1) in both formulae, with ϕ ∈ D([0, 1]× [0, T [), and obtain

∫ 1

0

γ0[η1(c) + η2(h(c))]ϕ(x, 0)dx−
∫ T

0

γ1[uη1(c) + vη2(h(c))]ϕ(1, t)dt

≤
∫ 1

0

[η1(c
0) + η2(h(c0))]ϕ(x, 0)dx−

∫ T

0

B(t)dt.

Since this holds for any ϕ, we obtain (5.3).
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[18] P. T. Kan, M. Santos, and Z. Xin, Initial boundary value problem for conservation laws,

Comm. Math. Phys., 186 (1997), pp. 701–730.



CONVERGENCE RESULTS FOR CONSERVATION LAWS 1223

[19] M. Katsoulakis and A. Tzavaras, Contractive relaxation systems and the scalar multidimen-
sional conservation law, Comm. Partial. Differential Equations, 22 (1997), pp. 195–233.

[20] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Amer.
Chem. Soc., 40 (1918), pp. 1361–1403.

[21] T. P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108 (1987),
pp. 153–175.

[22] R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation
laws, Comm. Pure Appl. Math., 49 (1996), pp. 795–823.

[23] B. Perthame and E. Tadmor, A kinetic equation with kinetic entropy functions for scalar
conservation laws, Comm. Math. Phys., 136 (1991), pp. 501–517.

[24] H. K. Rhee, R. Aris, and N. R. Amundson, On the theory of multicomponent chromatography,
Phil. Trans. Roy. Soc. London, Ser. A, 267 (1970), pp. 419–455.

[25] H. K. Rhee, R. Aris, and N. R. Amundson, Multicomponent exchange in continuous coun-
tercurrent exchangers, Phil. Trans. Roy. Soc. London, Ser. A, 269 (1971), pp. 187–215.

[26] D. Serre, Richness and the classification of quasilinear hyperbolic systems, in Multidimen-
sional Hyperbolic Problems and Computations, Math. Appl. 29, J. Glimm and A. Majda,
eds., Springer-Verlag, Heidelberg, 1991, pp. 315–333.

[27] L. Tartar, Compensated compactness and applications to partial differential equations, in
Nonlinear Analysis and Mechanics, Heriot-Watt Sympos., vol. 4, Pitman Res. Notes in
Math. Ser. 39, R. J. Knopps, ed., Pitman Press, London, Boston, 1975, pp. 136–211.

[28] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. AMS, 280 (1983),
pp. 781–795.

[29] A. Tveito and R. Winther, On the rate of convergence to equilibrium for a system of con-
servation laws including a relaxation term, SIAM J. Math. Anal., 28 (1997), pp. 136–161.

[30] W. C. Wang and Z. Xin, Asymptotic limit of the initial boundary value problem for conser-
vation laws with relaxational extensions, Comm. Pure Appl. Math., 1998, to appear.


