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Bjorn Jawerth and Mario Milman

Lecture notes from Prague

Chapter 5

The Fundamental Lemma
and Multiscale
Approximation of Images

5.1 Introduction

The motivation for our discussion in this lecture comes from Image Processing.
Let us agree that generally speaking we can represent the greyscale of given
image as a function f € L?(R?). Further characteristics of an image can be found
by splitting f in terms of functions in different subspaces of L?. A known strategy
for analysis of images, apparently initiated by Munford-Shah [39], are the so
called “u + v models”. An example of such a model was given in a celebrated
papers by Rudin-Osher-Fatemi [47] and Rudin-Osher [46] In these models, the
authors split an image as , f = u + v, so that the contour discontinuities are
carried by u € BV = (bounded variation!) and the noisy part is carried by
v. Apparently independently from interpolation/approximation theory, Rudin-
Osher-Fatemi set up a penalty scheme in order to offset one characteristic versus
the other. Their penalty has the form

OR(N) = inf {llull gy + A lellz:), 1)

where A is some fixed parameter, which acts as a threshold or filter to cut off
the noisy part of f. Of course the reader of these notes will recognize OR(A) as

1Using the homogeneous norm

If(z +R) = f@)lLs
hl

||f||Bv = Sup
h
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a K —functional, namely?
OREY — K (s BV (B8R

In their scheme Rudin-Osher-Fatemi® call Hv]lQLo the“fidelity” term and ||ul| 5,
is the regularizing term. For a given A, this model produces a unique minimizer
(ct. [36])

it

To proceed further one needs to fine tune the value of the crucial parameter
A. For example, if the value of the parameter X is too small most of the image
will be kept in the L? component, vy that will be very close to the original f
and as a result we will achieve very little compression. On the other hand if A
is very large we will end up keeping only a cartoon like representation of the
image uy € BV while the texture and oscillatory details will be kept in the vy
component. Good choices of A can be estimated using statistical information
on the noise if is known. The limitation of the scheme is that one is limited by
one scale determined by A. .

For the computation of OR(\) a very precise analysis of the optimal decom-
position was given by Meyer [36]

Theorem 28 (i) Let f € L*(R?), and suppose that

5 1
£l = = inf{lllgllloo : f = Bzg1 + 8yg2,9 = (91,92), lgl = (97 +93)'*} < o

Then the optimal decomposition of f achieving (5.1) is given by
fi=0 7

(ii) If on the other hand Hf||”;1 > 5%,
f =wu+v achieving (5.1) is characterized by

then the optimal decomposition of

il 1
Iollwe: = 550 [ wlei@de = 55 lullpy

This result plays a fundamental role in the next development due to Tadinor-
Nezzar-Vese [51]. These authors deviced a multiscale approach to the optimiza-
tion problem (5.1). The idea of these authors is that if we have a decomposition
at level A

= O (52)

2The main reason for using (L?)? rather than L? is that the variational problem is casicr
to work with (L2)2. We also note that while (L?)? is not normed: ||u||§ is not homogencous
and fails the triangle inequality. But Hu”% is a “quasi norm” (cf. [1]): Hfu[|§ — ]]u}]g >

(Jl[u[[:i =0 etal — 0 fand Hu+v”é S <||u||g + Hv”%) Such objects have been studied
intensively and incorporated to Interpolation theory (cf. [1]). In fact by means of using the
Aoki-Rolewicz theorem one can always replace a quasi-norm by another one that satisfies the
triangle inequality.

3Meyer [36] has interpreted this method observing that uy extracts the edges from f while
vy captures the textures.
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we can further improve the resolution by extracting the edges of the L2 com-
ponent v, at the next level say 2) (remember that this increases the filter and
thus makes the next L? component smaller by placing more of the decompo-
sition (edges) on the BV component: in other words starting with (5.2) we
proceed to find an optimal decomposition of vy :

Ux = Uoy +way for K(2X, vy, BY, (LQ)Q) = inf+ {“u”BV + 2\ “UHQLQ}
va=u+tv

Continuing in this fashion leads to a “multiscale hierarchical decomposition” of

the image f
=5 s, (5.3)

where the “dyadic blocks” u; = u;(f), capture different scales of the original
image. In their work [51] Tadmor-Nezzar-Vese have quantified the multiscale
nature of the expansion and studied its convergence. The analysis of the con-
vergence of the algorithm is based on careful applications of Theorem 28.

In this lecture we take up to further extend and clarify the analysis of [5il]:
First we will show that very much like the Rudin-Osher-Fatemi scheme OR(N)
is a K —functional penalty method, the Tadmor-Nezzar-Vese is based on a vari-
ant of the J—method which we develop in detail. As a consequence we treat
the multilevel decomposition as a variant of the Fundamental Lemma of Inter-
polation Theory. As a consequence we can treat general pairs of spaces rather
than the pair (BV, L?) and we avoid the use of Hilbert methods or duality (cf.
Theorem 28 above).

Moreover, the realization that the approximation scheme of [51] is connected
with the Fundamental Lemma has other advantages. In particular we compare
the Tadmor et al method with the usual Fundamental Lemma. The experimen-
tal results show apparently little difference between the Tadmor et al funda-
mental lemma and the usual fundamental lemma. In particular we note that
the usual fundamental lemma allows us to achieve rapid convergence given the
telescoping nature of the decompositions.

One drawback of the results of Tadmor-Nezzar-Vese [51] is that the conver-
gence of the “multiscale hierarchical decomposition” given by (5.3) can only be
achicved for f that belong to real interpolation spaces between BV and L2, the
convergence for general f € L? was left open. Using the strong form of the
fundamental lemma one can easily achieve convergence even in the limiting casc
e 12 e resolving a question asked in [51].

The last sections of this Chapter include the results of the numerical exper-
iments. We refer to a forthcoming paper [14] for further details.

9.2 Multiscale Decompositions and the Funda-
mental Lemma
In this section we set up a general real interpolation/approximation theory ap-

proach to the analysis of convergence of “multiscale hierarchical decomposition”
of Tadmor-Nezzar-Vese [51].




We start by briefly reviewing the basic idea of [51]. As noted above in their
work [51] Tadmor-Nezzar-Vese deal with the pair (BV (R?), L*(R?)). Let us also
remark that by the Sobolev embedding theorem we have BV(R2) € LECR2).
Moreover (cf. [36], for each f € L2, and for each t > 0 we can always find an
optimal decomposition f = fyu + f2,s such that

K(t, f; BV(R?), L*(B?) = I foutll gy + tll 2l 2 - (5.4)

Let us now replace the pair (BV(R?), L3(R?)) by a pair of quasi-Banach
spaces (Xo, X1), such that Xo C X;. We will assume that the quasi norms satisfy
the 1—triangle inequality; moreover we assume that for each z € X;,¢ > 0, we
can always find an optimal decomposition such that = = zq¢ + Z1,¢,

K(t,z; X0, X1) = llzoell x, +tlz1ellx, -

In fact, it is easy to eliminate these extra restrictions (cf. [14] for more details).
For a fixed A > 0, let f € Xg and let f = o x+x1x be an optimal decomposition
for the computation of

KA f; Xo, X1) = f:i;ggm{llatono + Azl 3

We with this decomposition at hand we continue the spliting by solving
K(2X, 1,5 X0, X1) = llzo2allx, +2A 11,20l x, » Z1,0 = To,2a+T120, Tion € X1 =0, 1.

Continuing in this fashion we obtain a sequence x; gk-1 = Zg ok \+T1 2k ), Tiorx €
such that

K (28X, zy g5-12; Xo, X1) = H%,zk,\HXO + A28 ||z 20 (5.5)

S
For future reference we also note that form the definitions it follows that
s ok B g k
K (25X, 2y gn1x Xo, Xp) £ 250 |y gieaf] o K = 1,
Observe that
Zo o\ T T1 A= Zoa T Zo2) F 21,26
in other words
Lo N Ll 28 = L0 o0
More generally we have

T gk-1) — L1 okx = Tookx, k=1, (5.7)

Therefore following the usual construction of the fundamental lemma we are led
to define
U = Il’Qk—l)\ S fL'LQIc)\ & Xo,k = 1,

Moreover, since Xo C X1, we complete the sequence by setting

Uy = To, -
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Then we have

N g N N

E L Pt = E Uk = $0,A+Z($1,2k—1,\ —1260) = Tox + 21,0 —zyony. (5.8)
k=0 k=0 k=1

Therefore,

N
= § Uk = Ty 2N,
k=0
Therefore the convergence of the decomposition
[e.e]
S~ g Uk,
k=0

hinges on the study of the convergence of zj on,x, to zero in suitable norms.
We now study the convergence in the sum space (in our case X))

3wl =l

k=0 e

)

We collect a number of inequalities that will be useful in our analysis

T k
Lemma 29 (i) Let f € Xy, then the series e IL%# 1s convergent and
mn fact .

N

’|$O,2k)\ X
EO e il

(i) "For allfk— 01

lz1,265ll 5, < ClIfllx, -

(i) If f € Xg, then
H%.Qk,\on — @2 Il x, -

(i) I f & X, hen
|‘171,2k/\HX9'q < C2FA 1fllx,,, -

(v) [Holmstedt’s formula)

BEgin, o {/O

In particular,

tl/l—Q

1/q
qd
<K<s.f;Xo,X1>s‘9)’§} :

el ik ) = B X )
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Proof. (i) Combining (5.5) and (5.6) we see that
[lz0,26allx, + 22 o120l x, < 25 [l 251 x, -

Therefore,

N—1

N T .
sl e B L, e
=1l

T
: Oy:\\HXO +llz1ally, = [lz12v-11 %,

K(A,
= e

=l

(i1) To prove (5.12) we proceed by induction. The case k = 0 is trivial since
we have
(/\ f)

Ile,Allx, = < Al - (5.17)

Using (5.17) we find
2 H“’L?/\”Xl = K@ w0 s 2l s 250 f)
Thus,
2M |zl x, < 2K (A, f),

proving the case k = 1. The argument that k — 1 implies k is the same for
arbitrary k.

(iii) When f € Xo then from the definitions it follows that z1 9xy € Xo, then
from (5.9) and (5.11) we sce that

H%,z‘w\”xo =
Xo
= o
Hises 20D -
3=0
111, + 25X 1£ 11,
k

C2AM [ fllx, -

(iv) Follows mutatis mutandi the proof of (iii).

v) For Holmstedt’s formula see [1]. The inequality (5.15) follows readily by
J
monotonicity. =

Proposition 30 Suppose that f € Xo, then Hf Zk o“ka — 0.
3l
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Proof. Repeat (5.9) at level 2NV, then

2N N
Tyo2Ny T § Uk = Ty oNy) + E U,
k=0 k=0

and therefore we find that
2N
Ty e = Z Uk = $1’2N)\.
k=N+1

Now from (5.9) and (5.18) write

2N
f—g Up = L 2Ny
k=0

2N
=5 = Z Uk + T1 oN )
k=N+1

Also from (5.5) we have
H]I0322N)\HXO + 22N “1171,22N/\HX1 = K(QQN/\, SC1’22N—1)\),

Therefore since
220 Hl?],gzNAHXI = K(QQN)\, $1‘22N—1)\)
we can continue with
2N -1
K@ 0 g pnv-1) = K@A— > ue+ 2 om))
k=N+1

T E U + 1}1’2N/\

k=N+1 X
2N -1
Z Uk o Hml,ﬂ"’/\llxo
k=N+1 |y,
2N -1

Z ukllx, + ”IMNA”,‘{O :
k=N+1

H 2N-1

Putting together these estimates we have

2N-1
— 2 Ty 9N g
et = ZA_N;;]J|UkI|AO | 1;;3H/\0

= =

Now by Lemma 29 (iii) we have

C2V M If 1l x,

e

— 0, as N — co.

60




while on account of (5.11) we also have

2N -1 2N -1

! flukll x
22N ) Z fluk XOS Z Qk)\o —0as N — co.
k=N+1 k=N+1

This concludes the proof. m
We now consider convergence in the case when f € Xy 4. It will be convenient
to collect the corresponding estimates in a Lemma

Proposition 31 Let 0 < 0 < 1, and let f € Xg 4. Then

N
f—Zuk — 0.
k=0 \

Xighy

Proof. Assume first that § < 1/2, we shall indicate later the trivial modifica-
tions to deal with the general case. We start once again with the representation

2N -1
i T = § Ug + L1 oN )
k=N

Then, proceeding as in the proof of Proposition 30 (cf. (5.20)), we have

. RS LSE g e N
lzroev-ally, = 92N )

K(QQN)H* 2N——luk) i K(QQN)HII,QN/\)

k=N
22]\’)\ QQIVA

— e
“As before on account of Lemina 29 (i)

; 2N—-1
92N Z Uk
k=N SE0
2N-1

L
. el _, o
22N

k=N
On the other hand by Lemma 29 (v)
92N6 6 QY e X )
22N

/L
92NO-2N 301 HIL?N/\HXO
DAl Ao Xo, (Py Lemma 29 (iv)).
The right hand side goes to zero since 2N8 — 2N + N < 0.
To deal with the case 6 > 1/2 we simply apply the same argument writing
TygaN-1) = — fi;; Uk + 1 oNay, Where « is chosen so that 2Naf — 2Na +
Na<0 =
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