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Abstract
We investigate the numerical artifact known as a carbuncle, in the solution of
the shallow water equations. We propose a new Riemann solver that is based on
a local measure of the entropy residual and aims to avoid carbuncles while main-
taining high accuracy. We propose a new challenging test problem for shallow
water codes, consisting of a steady circular hydraulic jump that can be physi-
cally unstable. We show that numerical methods are prone to either suppress the
instability completely or form carbuncles. We test existing cures for the carbun-
cle. In our experiments, only the proposed method is able to avoid unphysical
carbuncles without suppressing the physical instability.
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1 INTRODUCTION

1.1 Numerical shock instabilities

In Reference 1 a numerical instability was observed to appear near the symmetry plane in the simulation of a bow shock.
This phenomenon, subsequently dubbed “carbuncle", has been observed by many researchers in similar numerical exper-
iments for the Euler equations, and many remedies have been proposed, mainly in the form of additional numerical
dissipation.2-7 Most notably, dissipative Riemann solvers like HLLE and Rusanov suppress the carbuncle instability.2 For
a recent review of numerical shock instability and work to alleviate it, we refer to References 8(section 2.5) and 9. The
slowly-moving shock anomaly is another important unphysical behavior that might be present with some numerical
schemes. We refer to Reference 9 for a comprehensive discussion about this phenomenon. In Reference 10, the authors
focus on this problem when solving the shallow water equations.

Given the similarity of structure between the Euler equations and the shallow water equations, it is not surprising
that carbuncles appear in numerical solutions of the latter as well.11 The shallow water carbuncle behaves similarly to
the Euler carbuncle; for instance, it appears when the Roe solver is used, but not when the HLLE or Rusanov solver is
used, and can also be suppressed by particular modifications of the Roe solver.11,12 Another approach to avoid shallow
water carbuncles has been proposed in Reference 10, where it is studied together with the slowly-moving shock anomaly
and in the presence of varying bathymetry. In this work, we propose a new Riemann solver that blends those of Rusanov
and Roe. Since Rusanov’s solver does not suffer from carbuncle instabilities, our aim is to use it near shocks without
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degrading the good accuracy of Roe’s solver. To do this, we need to find a blending criteria that can robustly and sharply
locate shocks. The entropy residual has proven to be a successful tool for this task; see for instance.13-15 By doing this, our
blended solver induces dissipation of entropy. Entropy dissipative Riemann solvers have been used to produce carbuncle
free solvers for the Euler equations; see for instance.6,16,17 However, to the best of our knowledge, this idea has not been
used before to suppress carbuncle instabilities for the shallow water equations.

Using this Riemann solver (within the second-order Lax–Wendroff–LeVeque finite volume scheme18,19) suppresses
the formation of carbuncles while maintaining an accuracy similar to that of Roe solver. Based on our numerical exper-
iments, the Rusanov’s solver does not perturb the location of steady shocks. Our blended solver inherits the same
property.

The most common test problems used to investigate carbuncle formation are that of bow shock formation or a steady,
grid-aligned planar shock. In both of these problems, the correct behavior is the formation of a stable shock profile without
carbuncles. This is achieved by certain methods designed specifically to avoid carbuncles, but also by typical first-order
accurate methods. Thus these test problems are not adequate on their own to evaluate methods for practical calculations.
Elling20 proposed instead a problem specifically designed to feature a carbuncle as the physical solution. This has been
used as a test problem to identify methods that impose excessive dissipation.

Herein we introduce a new and more exacting test problem that arises in a common physical setting. Like some of
the problems above, it includes an equilibrium solution consisting of a steady shock. Similar to the Elling problem, the
equilibrium is unstable. However, the correct manifestation of the instability is different from the carbuncle. This allows
us to distinguish schemes that yield correct behavior from both those that are too dissipative and those that generate
carbuncles.

In this article, we provide a test problem that possesses a genuine instability that leads to carbuncles in many
numerical approximations. This is an ideal test for assessing numerical methods, since neither the presence of carbun-
cles nor the complete absence of instability represents the correct behavior. This test problem is the circular hydraulic
jump.

1.2 The circular hydraulic jump

Perhaps the first reference to the observation of the circular hydraulic jump comes from Lord Rayleigh,21 who wrote that
it “may usually be seen whenever a stream of water from a tap strikes a horizontal surface”. This phenomenon that is
familiar in the everyday kitchen sink, is in fact highly nonlinear and unintuitive. Near the jet, the flow is shallow and
supercritical, while further away it is deeper and subcritical. The transition from supercritical to subcritical flow occurs
in a very narrow region and takes the form of a jump or bore that is roughly circular if the surface is flat; we refer to it
herein as a circular hydraulic jump (CHJ).

Early experimental work on the CHJ began some time later.22-24 Watson24 derived the jump radius implied by
Rayleigh’s approach and the vertical velocity profile in the supercritical region, assuming a no-slip boundary condition
at the bottom. He also studied the turbulent flow case and performed experiments. More detailed experiments revealed
different qualitative classification of jumps.25,26 Although later work incorporated more physical details (such as surface
tension) into the models,27 Bohr et al. showed that important properties of the jump (particularly its radius) could be
reasonably predicted using a simple shallow water model.28

While the jump is roughly circular, under appropriate conditions it may deviate from this shape and deform rapidly
and chaotically in time. Instability of the jump was observed from fairly early on Reference 26. Under special circum-
stances with more viscous fluids, the jump instability may lead to the formation of curious shapes such as polygons,29

but for a low-viscosity fluid like water the behavior is generally chaotic. The strength of the instability increases with the
jet velocity and with the depth at the outside of the jump. For fluids with finite viscosity, the flow can also be completely
steady for sufficiently small velocities and depths.

As we will see, carbuncles can appear in the numerical solution of the shallow water circular hydraulic jump. This
is natural, since the solution involves a standing shock wave. Dealing with the carbuncle in this context is particularly
interesting and challenging, since this standing shock should (at least in an appropriate flow regime) be unstable, and
some research has suggested that the carbuncle is the manifestation of a true physical instability.20,30

In this work, we describe and study the circular hydraulic jump as a new test problem for shallow water discretizations.
We solve this test problem using a novel Riemann solver that suppresses the formation of carbuncles without dissipating
important features of the solution.
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1.3 Outline

In Section 2, we review some existing numerical methods for the shallow water equations, focusing on certain Riemann
solvers. In Section 3, we propose a new Riemann solver that blends those of Roe and Rusanov in order to avoid
carbuncles without being excessively dissipative. In Section 4, we use Clawpack to compare the performance of
the new Riemann solver to existing solvers on several standard shallow water test problems. In Section 5, we
study the circular hydraulic jump using the newly proposed solver. We find that although some existing methods
behave acceptably on previous test problems, they are not capable of providing accurate solutions for the circular
hydraulic jump across the range of flow regimes we study. Some conclusions and future directions are discussed in
Section 6.

2 NUMERICAL METHODS FOR THE SHALLOW WATER EQUATIONS

We consider the shallow water model in two horizontal dimensions:

ht + (hu)x + (hv)y = 0, (1a)

(hu)t +
(

hu2 + 1
2

gh2
)

x
+ (huv)y = 0, (1b)

(hv)t + (huv)x +
(

hv2 + 1
2

gh2
)

y
= 0. (1c)

Here h,u, and v are respectively the depth and the x- and y-components of velocity, which are functions of the two spatial
coordinates (x, y) as well as time t. The gravitational force is proportional to g. The system (1) can be written in vector
form as

qt + ∇ ⋅ f (q) = 0, (2)

where q = [h, hu, hv]T and the flux function f is defined in accordance with (1).
In this work we study the behavior of certain shock-capturing finite volume methods based on the use of Rie-

mann solvers. For simplicity, we discuss these solvers in the context of a 1-dimensional problem and mesh. In
the numerical experiments in Section 4 we use second-order Strang splitting31 to extend the method to multiple
dimensions.

2.1 Wave propagation methods

Let Qi represent the average value of the set of conserved quantities over cell i, which extends from xi−1∕2 to xi+1∕2. At
each time step and at each interface xi−1∕2, we approximately solve the Riemann problem with initial states (Qn

i−1,Q
n
i ).

The approximate solution consists of a set of traveling discontinuities or waves p
i−1∕2 and corresponding speeds sp

i−1∕2.
We use the wave propagation framework developed by LeVeque18,19 and employed in the Clawpack software,32,33 which
implements the Lax–Wendroff–LeVeque (LWL) scheme

Qn+1
i = Qn

i − Δt
Δx

[+ΔQi−1∕2 +−ΔQi+1∕2
]
− Δt

Δx
[
F̃i+1∕2 − F̃i−1∕2

]
. (3)

Upon defining z+∶= 1
2
(z + |z|) and z−∶= 1

2
(z − |z|), the fluctuations are given by

+ΔQi−1∕2 ∶=
∑

p

(
sp

i−1∕2

)+p
i−1∕2, −ΔQi+1∕2 ∶=

∑
p

(
sp

i+1∕2

)−p
i+1∕2, (4)

and represent the effect (to first order accuracy) of waves coming from the solution of the Riemann problem at each of
the neighboring interfaces. Meanwhile, F̃i±1∕2 are correction fluxes that make the method second-order accurate:
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F̃i±1∕2 = 1
2
∑

p
|sp

i±1∕2| (1 − Δt
Δx

|sp
i±1∕2|) ̃p

i±1∕2. (5)

Here ̃p
i±1∕2 is a limited version of p

i±1∕2, usually based on a total variation diminishing limiter function.
We note that, for the conservative Riemann solvers we use herein, the LWL scheme (3) can be written equivalently in

flux-differencing form:

Qn+1
i = Qn

i − Δt
Δx

[
Fi+1∕2 − Fi−1∕2

]
− Δt

Δx
[
F̃i+1∕2 − F̃i−1∕2

]
, (6)

with appropriately chosen first order fluxes Fi+1∕2 and correction fluxes F̃i−1∕2. We will sometimes work with the first-order
method obtained by setting the correction fluxes to zero:

Qn+1
i = Qn

i − Δt
Δx

[+ΔQi−1∕2 +−ΔQi+1∕2
]
= Qn

i − Δt
Δx

[
Fi+1∕2 − Fi−1∕2

]
. (7)

Next we briefly review two commonly-used Riemann solvers: those of Rusanov and Roe. We refer to Reference 34 and
references therein for a detailed description of these two Riemann solvers in the context of the shallow water equations.
Neither of these solvers deals with the carbuncle instability in a fully satisfactory way. Rusanov’s solver suppresses the
carbuncle but (unless the mesh is highly refined) is known to also suppress related real instabilities, while Roe’s solver
exhibits carbuncles. Later we will combine these two solvers in order to better deal with shock instability. Both of these
solvers satisfy the conservation property

−ΔQi−1∕2 ++ΔQi−1∕2 = f (Qi) − f (Qi−1). (8)

2.2 Rusanov’s Riemann solver

Rusanov’s solver approximates the Riemann solution with a single wave traveling in each direction. Both waves are
assumed to travel with speed 𝜆max

i−1∕2, which is an upper bound on the wave speeds appearing in the true solution of the
Riemann problem. In this article, we take 𝜆max

i−1∕2 to be the upper bound from Reference 35(prop. 3.7). The waves are then
given by

1,Rus
i−1∕2 = Qi−1∕2 − Qi−1, 2,Rus

i−1∕2 = Qi − Qi−1∕2, (9)

where the intermediate state ui−1∕2 is determined by imposing conservation:

− 𝜆max
i−1∕21,Rus

i−1∕2 + 𝜆
max
i−1∕22,Rus

i−1∕2 = f (Qi) − f (Qi−1). (10)

The fluctuations are given by (4) with s1
i−1∕2 = −𝜆max

i−1∕2 and s2
i−1∕2 = 𝜆max

i−1∕2, and the first- and second-order methods based
on Rusanov’s solver are given by (7) and (3), respectively. The second-order method can also be written in flux-differencing
form (6), where

Fi+1∕2 =
f (Qi+1) + f (Qi)

2
−
𝜆max

i+1∕2

2
(Qi+1 − Qi). (11)

2.3 Roe’s Riemann solver

The Roe Riemann solver is based on evaluating the flux Jacobian using Roe’s average

hi−1∕2 = 1
2
(hi−1 + hi), ûi−1∕2 =

√
hi−1ui−1 +

√
hiui√

hi−1 +
√

hi

, v̂i−1∕2 =
√

hi−1vi−1 +
√

hivi√
hi−1 +

√
hi

. (12)
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The waves and speeds are given by the eigenvectors and eigenvalues of the approximate flux Jacobian obtained using
these averages, resulting in

𝜆̂
1
i−1∕2 = ûi−1∕2 −

√
ghi−1∕2, 𝜆̂

2
i−1∕2 = ûi−1∕2, 𝜆̂

3
i−1∕2 = ûi−1∕2 +

√
ghi−1∕2.

and p,Roe
i−1∕2 = 𝛼

p
i−1∕2r̂p

i−1∕2, with

r̂1
i−1∕2 =

⎡⎢⎢⎢⎢⎣
1

ûi−1∕2 −
√

ghi−1∕2

v̂i−1∕2

⎤⎥⎥⎥⎥⎦
, r̂2

i−1∕2 =
⎡⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎦ , r̂3
i−1∕2 =

⎡⎢⎢⎢⎢⎣
1

ûi−1∕2 +
√

ghi−1∕2

v̂i−1∕2

⎤⎥⎥⎥⎥⎦
and the factors 𝛼p

i−1∕2 obtained by solving

∑
p
p,Roe

i−1∕2 =
[

r̂1
i−1∕2 r̂2

i−1∕2 r̂3
i−1∕2

] ⎡⎢⎢⎢⎣
𝛼1

i−1∕2

𝛼2
i−1∕2

𝛼3
i−1∕2

⎤⎥⎥⎥⎦ = ΔQi−1∕2 ∶= Qi − Qi−1. (13)

The first-order Roe’s fluxes used in (6) and (7) are given as follows:

Fi+1∕2 =
f (Qi+1) + f (Qi)

2
− 1

2
|Âi+1∕2|(Qi+1 − Qi). (14)

2.4 Kemm’s Riemann solver

Several specialized Riemann solvers have been proposed in order to deal with carbuncles. Among them, only that pro-
posed by Kemm has been implemented and tested on the shallow water equations.11,12 The idea behind that solver, known
as the HLLEMCC solver, is to combine the HLLE and Roe solvers in such a way that the resulting method behaves like
Roe’s away from potential carbuncle instabilities, and like HLLE where the potential for such instabilities arises. This is
done using an indicator function based on the local residual of the Rankine–Hugoniot condition for the shear wave. The
method requires some parameters that may need to be tuned for a specific problem. We will consider this method in the
numerical tests below.

3 AN ENTROPY-BASED BLENDING OF RUSANOV AND ROE

As we discussed in the introduction, finite volume methods that use a Roe Riemann solver are prone to exhibit the
carbuncle instability. In contrast, methods that use Rusanov’s Riemann solver exhibit no carbuncles. However, such
methods tend to dissipate other important physical features of the solution, unless the grid is highly refined. In this
section we propose a Riemann solver that is carbuncle-free but avoids dissipating important features of the solution.
To do so we first use a combination of Rusanov’s and Roe’s solvers, switching between them based on a local mea-
sure of the entropy residual. Previous works have also proposed blending Riemann solvers with different amounts
of dissipation in the context of the Euler equations (see References 36-41), the shallow water equations (see Refer-
ences 11 and 12), and even the Navier–Stokes equations (see References 36 and 39). Our approach differs from those
just cited in that it is based on the local entropy; for a related approach in the context of the Euler equations, see
References 6 and 16.

Since Roe’s solver is not entropy stable, the blended solver is also not guaranteed to be entropy stable. We there-
fore include an additional term that is chosen to give entropy stability, at least if the second-order correction fluxes are
neglected. The complete proposed scheme can be written in flux-differencing form (6) using the first-order fluxes

Fi+1∕2 =
f (Qi+1) + f (Qi)

2
− 1

2

(
𝜃i+1∕2𝜆

max
i+1∕2I + (1 − 𝜃i+1∕2)|Âi+1∕2| + 𝜆min

i+1∕2I
)
(Qi+1 − Qi) (15)
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and correction fluxes (5) based on the Roe waves with modified speeds

sp
i+1∕2 = sgn(𝜆̂p

i+1∕2)𝜆
p
i+1∕2, (16)

where

𝜆
p
i+1∕2 ∶= 𝜃i+1∕2𝜆

max
i+1∕2 + (1 − 𝜃i+1∕2)|𝜆̂p

i+1∕2| + 𝜆min
i+1∕2. (17)

Here I ∈ R3×3 is the identity matrix, 𝜆max
i+1∕2 is the upper bound on the wave speed used in Rusanov’s Riemann solver (see

Section 2.2), and Âi+1∕2 is Roe’s averaged flux Jacobian (see Section 2.3).
In the following sections we describe the properties of this solver and explain how 𝜃i+1∕2 and 𝜆min

i+1∕2 are chosen.

3.1 The entropy residual

Let 𝜂′(q) and g(q) denote the entropy variable and entropy flux. Recall that q = [h, hu, hv]T . We use the total energy as
entropy; that is,

𝜂(q) = 1
2

gh2 + (hu)2 + (hv)2

2h
, g(q) =

𝜂(q)
h

[
hu
hv

]
.

Based on Reference 13, we consider

∫Si

𝜂′(q) ⋅
[
𝜕q
𝜕t

+ ∇ ⋅ f (q)
]

dx = ∫Si

[
𝜕𝜂(q)
𝜕t

+ 𝜂′(q) ⋅ ∇ ⋅ f (q)
]

dx (18)

as a measurement of the entropy production in cell i (here Si = [xi−1∕2, xi+1∕2]). To avoid the need to compute the time
derivative of the entropy, we follow References 14 and 15 and use ∫ 𝜕𝜂(q)

𝜕t
dx = − ∫ ∇ ⋅ g(q)dx, which holds in smooth

regions. Then we define

𝜃i ∶=
Ri

Di
, (19)

with

Ri =
|||||∫Si

[
𝜂′(q) ⋅ ∇ ⋅ f (q) − ∇ ⋅ g(q)

]
dx
||||| ,

and Di being an upper bound on Ri so that 0 ≤ 𝜃i ≤ 1. Note that Ri ≈ 0 if q is smooth in Si. In our implementation, we use
the approximation

Ri ≈
|||||𝜂′(Qi) ⋅ ∫Si

∇ ⋅ f (q)dx − ∫Si

∇ ⋅ g(q)dx
||||| =

|||||𝜂′(Qi) ⋅ ∫𝜕Si

ni(s) ⋅ f (q)ds − ∫𝜕Si

ni(s) ⋅ g(q)ds
||||| , (20)

where ni denotes the unit vector normal to 𝜕Si pointing outward from cell i. To compute the boundary integrals,
we approximate q on each cell edge ij by the average of the two neighboring cell averages Qij = (Qi + Qj)∕2,
resulting in

Ri =
||||||
∑

ij∈𝜕Si

|ij| [𝜂′(Qi) ⋅
(

nij ⋅ f
(

Qij

))
− nij ⋅ g

(
Qij

)]|||||| , (21a)

where |ij| is the length of ij and nij is the unit vector normal to ij pointing outward from cell i. The normalization
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factor is similarly computed as

Di =
d+1∑
k=1

|||𝜂′k (Qi)
||| ||||||
∑

ij∈𝜕Si

|ij| (nij ⋅ f
(

Qij

))
k

|||||| +
||||||
∑

i∈𝜕Si

|ij|nij ⋅ g
(

Qij

)|||||| , (21b)

where (z)k denotes the kth component of z ∈ Rd+1, and d is the number of physical dimensions. In (15) we need values
of 𝜃 at the cell interfaces, for which we use

𝜃i+1∕2 = max(𝜃i, 𝜃i+1).

We expect that 𝜃i+1∕2 ≈ 0 in smooth regions, while 𝜃i+1∕2 ≈ 1 near shocks. The value of 𝜃i+1∕2 controls whether the
first-order flux (15) behaves more like that of Rusanov or Roe. Specifically, if 𝜆min

i+1∕2 = 0 and 𝜃i+1∕2 = 1, the flux (15) is
equivalent to that of Rusanov (11), while if 𝜆min

i+1∕2 = 0 and 𝜃i+1∕2 = 0, it is equivalent to that of Roe (14). With 0 < 𝜃 < 1
the blended solver is more dissipative than Roe’s but less than Rusanov’s. With the choice (16), the correction fluxes also
match those of Rusanov or Roe in the appropriate limit, as shown in the next section.

3.2 The correction fluxes

In this section we explain the choice of wave speeds (16). For the moment, we consider (15)–(17) without entropy stabi-
lization; that is, we set 𝜆min

i+1∕2 = 0 for now. We use p,Rus to denote the waves in the Rusanov solver and p,Roe to denote
the waves in the Roe solver. The first-order method given by (7) with the numerical flux (15) can also be written in terms
of fluctuations:

+ΔQi−1∕2 = 1
2
∑

p

(
𝜆̂

p
i−1∕2 + 𝜆

p
i−1∕2

)p,Roe
i−1∕2 , (22a)

−ΔQi+1∕2 = 1
2
∑

p

(
𝜆̂

p
i+1∕2 − 𝜆

p
i+1∕2

)p,Roe
i+1∕2 . (22b)

To implement the correction fluxes required for the second-order scheme (3), we must also define a set of waves and
corresponding speeds. Using only the waves from the Roe solver, it is in general not possible to choose speeds that yield
the fluctuations (22), and we instead use (16). Using this in (5) and (22) in (3), we obtain (in the absence of limiting) the
second-order scheme

Qn+1
i = Qn

i − Δt
2Δx

∑
p

[(
𝜆̂

p
i+1∕2 −

Δt
Δx

(𝜆p
i+1∕2)

2
)p,Roe

i+1∕2 +
(
𝜆̂

p
i−1∕2 +

Δt
Δx

(𝜆p
i−1∕2)

2
)p,Roe

i−1∕2

]
, (23)

It is clear again that if 𝜃i±1∕2 = 0 we recover the standard second-order Lax–Wendroff method based on Roe’s Riemann
solver. We now show that if 𝜃i±1∕2 = 1, we recover the Lax–Wendroff method based on Rusanov’s Riemann solver.

To see this, first consider (10) and rewrite the right-going fluctuation as follows:

+,RusΔQi−1∕2 ∶= 𝜆max
i−1∕22,Rus

i−1∕2 = f (Qi) − f (Qi−1) + 𝜆max
i−1∕2

(1,Rus
i−1∕2 +2,Rus

i−1∕2

)
− 𝜆max

i−1∕22,Rus
i−1∕2. (24)

From (9) and (13) we get 1,Rus
i−1∕2 +2,Rus

i−1∕2 = Qi − Qi−1 =
∑

p p,Roe
i−1∕2. Using (8) and (22), (24) becomes

𝜆max
i−1∕22,Rus

i−1∕2 =
∑

p

(
𝜆̂

p
i−1∕2 + 𝜆max

i−1∕2

)p,Roe
i−1∕2 − 𝜆

max
i−1∕22,Rus

i−1∕2,

which implies that

+,RusΔQi−1∕2 = 1
2
∑

p

(
𝜆̂

p
i−1∕2 + 𝜆max

i−1∕2

)p,Roe
i−1∕2 , (25a)
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and similarly,

−,RusΔQi+1∕2 = 1
2
∑

p

(
𝜆̂

p
i+1∕2 − 𝜆max

i+1∕2

)p,Roe
i+1∕2 . (25b)

To get the second-order Lax–Wendroff method based on Rusanov’s Riemann solver, plug the fluctuations (25) into (3)
where F̃i±1∕2 is given by (5) with |sp

i±1∕2| = 𝜆max
i±1∕2 and ̃p

i±1∕2 = p,Roe
i±1∕2. By doing this, we get (23) (since 𝜃i±1∕2 = 1 ⇒

𝜆
p
i±1∕2 = 𝜆max

i±1∕2).

3.3 Entropy stabilization

In the previous section we neglected the term 𝜆min
i+1∕2 in (15). In this section, we follow References 42 and show how this

term is computed, in order to guarantee local entropy stability of the scheme given by using (15) in (7).
Let 𝜂′i = 𝜂′(Qi) and gi = g(Qi) denote the entropy variable and the (one-dimensional) entropy flux at cell i, respectively.

Also let 𝜓 = 𝜂′(Qi) ⋅ f (Qi) − g(Qi) be the entropy potential at cell i. From Reference 43(section 4), if the numerical fluxes
satisfy

(𝜂′i − 𝜂
′
i−1) ⋅ Fi−1∕2 ≤ 𝜓i − 𝜓i−1, (𝜂′i+1 − 𝜂

′
i ) ⋅ Fi+1∕2 ≤ 𝜓i+1 − 𝜓i, (26)

then we have the entropy inequality

d𝜂(Qi)
dt

+ 1
Δx

[
Gi+1∕2 − Gi−1∕2

] ≤ 0, (27)

where

Gi+1∕2 = 1
2
(
𝜂′i + 𝜂

′
i+1
)

Fi+1∕2 −
1
2
(𝜓i + 𝜓i+1),

is a discretization of the entropy flux. If (27) holds with equality, the scheme is entropy-conservative.44

The approach in Reference 44, is based on first developing an entropy-conservative scheme and then adding entropy
dissipation to enforce (27). On the other hand, herein we have added dissipation (as described in Section 3.1) that does
not guarantee (27). Indeed, some linear stabilization techniques that add artificial dissipation of the conserved variables
are known to produce entropy; see for example, References 45 and 46. To guarantee (27), we add extra dissipation of the
conserved variables via (28). Doing this counteracts entropy production created by any component of the Riemann solver;
see for example, Reference 46 (in the context of C0 finite elements).

Plugging (15) into the condition (26) yields the required value

𝜆min
i+1∕2 = max

⎧⎪⎨⎪⎩0,
1
2
(𝜂′i+1 − 𝜂

′
i ) ⋅

[
f (Qi+1) + f (Qi) −

∑
p 𝜆

p,EV
i+1∕2p,Roe

i+1∕2

]
− (𝜓i+1 − 𝜓i)

1
2
(𝜂′i+1 − 𝜂

′
i ) ⋅

∑
p p,Roe

i+1∕2

⎫⎪⎬⎪⎭ , (28)

where

𝜆
p,EV
i+1∕2 = 𝜃i+1∕2𝜆

max
i+1∕2 + (1 − 𝜃i+1∕2)|𝜆̂p

i+1∕2|.
With this choice, (15) guarantees (26), and therefore (27). Note that here we have used the identities

|Âi+1∕2|(Qi+1 − Qi) =
∑

p
|𝜆̂p

i+1∕2|p,Roe
i+1∕2 , Qi+1 − Qi =

∑
p
p,Roe

i+1∕2 .

Since the blended Riemann solver described in Section 3 already tends to introduce entropy dissipation, we expect con-
dition (26) to be fulfilled most of the time even with 𝜆min

i+1∕2 = 0. But (28) is used as a safeguard to guarantee entropy
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stability of the first-order method. Extra modifications would be needed to guarantee entropy stability of the second-order
LWL method (3) and its multidimensional extension via Strang splitting. We do not pursue such modifications in
this work.

We close this section with two remarks. First, note that the entropy stability condition (26) can be written equivalently
in terms of fluctuations:

(𝜂′i − 𝜂
′
i−1) ⋅

⎛⎜⎜⎜⎜⎝
f (Qi) −+ΔQi−1∕2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Fi−1∕2

⎞⎟⎟⎟⎟⎠
≤ 𝜓i − 𝜓i−1, (𝜂′i+1 − 𝜂

′
i ) ⋅

⎛⎜⎜⎜⎜⎝
f (Qi) +−ΔQi+1∕2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Fi+1∕2

⎞⎟⎟⎟⎟⎠
≤ 𝜓i+1 − 𝜓i.

Second, the additional dissipation introduced by 𝜆min
i±1∕2 can also serve independently as an entropy fix for Roe’s solver, as

we demonstrate via a numerical experiment in Section 4.1.

4 NUMERICAL RESULTS

In this section we present one- and two-dimensional numerical experiments to demonstrate the behavior of the blended
Riemann solver from Section 3 with the extra entropy dissipation from Section 3.3. We compare the behavior of the
blended solver against the standard Roe’s and Rusanov’s solvers. In most of the experiments we use these Riemann solvers
with the LWL method reviewed in Section 2.1. When the exact solution is available, we report convergence results based
on the L1-error for the water height

E1 =
∑

i
|Ki| |hi − he(xi)|,

where |Ki| is the length or area of cell i, hi is the cell average of the water height at cell i, and he(xi) is the exact water
height evaluated at the center of cell i. Since the methods under consideration are at most second order accurate, com-
parison of cell averages with centered point values is a sufficient way to test their accuracy. In all experiments we
use g = 1.

We consider a total of five problems. We start in Section 4.1 with a one-dimensional Riemann problem over a dry
bed. For this problem we use the first-order methods (7), to avoid negative depth values. Although only Rusanov’s
solver is proven to guarantee positivity, we do not get negative values for the water height with any of the first-order
methods. In Section 4.2 we apply the second-order methods to a dam-break problem with a wet bed. This problem
contains strong shocks. We observe similar accuracy with the blended solver or the Roe solver; this suggests that the
extra numerical entropy dissipation that the blended solver introduces near the shocks does not degrade the accu-
racy of the underlying Roe solver. This extra dissipation, however, prevents the formation of carbuncles in other
experiments, which we demonstrate in Sections 4.3 and 5.4. In Section 5.2 we consider a one-dimensional problem
with a smooth steady state solution. We observe the expected second-order accuracy of method (3) with Roe’s and
the blended solvers. Using Rusanov’s Riemann solver degrades the accuracy to first-order. The overall accuracy of
the blended solver is not degraded since the extra dissipation is not applied in smooth regions. The main focus of
this work is in the formation of carbuncle instabilities in the two-dimensional CHJ. We present an extensive set of
experiments for this problem in Section 5.4. We consider not only Roe’s, Rusanov’s and the blended solvers, but also
the solver proposed in Reference 11, which is designed to remove the carbuncle instabilities in the shallow water
equations.

4.1 Dam break problem on a dry bed

We start with the one-dimensional dam break problem on a dry bed. This problem is a canonical example that demon-
strates the “entropy glitch” of Roe’s solver at transonic rarefactions. Since the baseline Roe solver we use (see Section 2.3)
does not contain an entropy fix, it is important to demonstrate that the blended Riemann solver fixes the entropy glitch.
We follow the setup in Reference 47(section 4.1.2). The domain is given by x ∈ (0, 10), and the initial condition is
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u(x, 0) = 0 and

h(x, 0) =

{
hl x ≤ x0 = 5
hr x > x0,

with hl = 5 × 10−3. In our experiments we use hr = 1 × 10−15 to avoid division by zero. If we use Rusanov’s solver with the
first-order method (7), the water height is guaranteed to remain positive. Using Roe or the blended solvers can introduce
violations of positivity. Alternatively, if we consider the second-order scheme (3), the water height could become negative
regardless of the Riemann solver. To reduce the occurance of loss of positivity, we only use the first-order method (7) for
this test problem. Although using Roe or the blended solvers might still lead to loss of positivity, we did not observe that
in our experiments. The exact solution, which can also be found in Reference 47 and references therein, is

h(x, t) =

⎧⎪⎪⎨⎪⎪⎩
hl,

4
9g

(√
ghl −

x−x0
2t

)2
,

0,

u(x, t) =
⎧⎪⎨⎪⎩

0, if x ≤ xA(t),
2
3

(√
ghl +

x−x0
t

)
, if xA(t) < x ≤ xB(t),

0, if xB(t) < x,

with xA(t) = x0 − t
√

ghl and xB = x0 + 2t
√

ghl. We solve the problem up to t = 10. In Figures 1A–C, we show the solution
using method (7) with Roe’s solver, Rusanov’s solver and the blended solver, respectively. The entropy glitch, which is
manifested as a nonphysical shock at x = x0, is present with Roe’s solver. Using Rusanov’s and the blended solvers fixes the
entropy glitch. In Table 1, we summarize the results of a convergence test. Due to the entropy glitch, we do not converge
to the right solution with Roe solver, hence the drop in rate of convergence. Using any of the other solvers, we converge
to the correct solution. Note that using the blended solver leads to more accurate results. Since the method we use is
first-order accurate, we get no better than first-order convergence.

For this particular problem, using method (7) with the blended Riemann solver leads to 𝜆min
i±1∕2 = 0 for all the experi-

ments. We can artificially activate the entropy stabilization by imposing 𝜃i = 0 in (17), which is equivalent to using Roe’s
solver with extra dissipation given by 𝜆min

i±1∕2. In Figure 1D we show the solution, and in the last column of Table 1 we
summarize the results of a convergence test. The entropy glitch is still noticeable but greatly reduced compared to the solu-
tion from Roe’s method without entropy stabilization. To remove completely the entropy glitch we could add high-order
entropy dissipation following Reference 44 and references therein.

F I G U R E 1 Dam break problem over a dry bed using method (7) with different Riemann solvers. We show the numerical solution and
the exact solution (in dashed black) at t = 10. We consider different refinements with (cyan) Δx = 1∕400, (red) Δx = 1∕800, (blue)
Δx = 1∕1600 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


KETCHESON and DE LUNA 665

T A B L E 1 Grid convergence study for the dam break problem over a dry bed using method (7) with different Riemann solvers

Roe’s solver Rusanov’s solver Blended solver Roe’s with 𝝀
min
i±1∕2

𝚫x E1 Rate E1 Rate E1 Rate E1 Rate

1/50 6.21E-04 – 6.95E-04 – 5.08E-04 – 5.95E-04 –

1/100 4.70E-04 0.40 5.27E-04 0.40 3.39E-04 0.58 4.06E-04 0.55

1/200 3.91E-04 0.26 3.88E-04 0.44 2.30E-04 0.56 2.83E-04 0.52

1/400 3.16E-04 0.30 2.64E-04 0.55 1.49E-04 0.62 1.89E-04 0.58

1/800 2.35E-04 0.42 1.67E-04 0.66 9.24E-05 0.68 1.20E-04 0.65

1/1600 2.00E-04 0.23 1.01E-04 0.72 5.66E-05 0.70 7.42E-05 0.68

4.2 Dam break problem on a wet bed

We consider now a one-dimensional dam break problem on a wet domain. We follow the setup in Reference 47(section
4.1.1). The domain is x ∈ (0, 10) and the initial condition is given by u(x, 0) = 0 and

h(x, 0) =

{
hl x ≤ x0

hr x > x0

with x0 = 5, hl = 0.005, and hr = 0.001. The exact solution, which can be found in Reference 47 and references therein, is
given by

h(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

hl,

4
9g

(√
ghl −

x−x0
2t

)2
,

c2
m
g
,

hr,

u(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if x ≤ xA(t),
2
3

(√
ghl +

x−x0
t

)
, if xA(t) < x ≤ xB(t),

2
(√

ghl − cm)
)
, if xB(t) < x ≤ xC(t),

0, if x < xC(t),

where xA(t) = x0 − t
√

ghl, xB(t) = x0 + t
(

2
√

ghl − 3cm

)
, xC(t) = x0 + t

2c2
m

(√
ghl−cm

)
c2

m−ghr
and cm is the solution of −8ghrc2

m(√
ghl − cm

)2
+
(

c2
m − ghr

)2 (c2
m + ghr

)
= 0. We solve the problem up to the final time t = 5 using the second-order

method (3) with Roe’s, Rusanov’s, and the blended solvers. The solution with different refinement levels and each
Riemann solver is shown in Figure 2. In Table 2, we summarize the results of a convergence test. Since the solution is non-
smooth, we expect no more than first order convergence rates. Note that the results with the entropy dissipative blended
solver are comparable to the results using Roe’s solver. That is, imposing entropy dissipation via the blended Riemann
solver does not degrade the high-order accuracy properties of Roe’s solver. In contrast, the accuracy and convergence rates
using Rusanov’s solver are clearly degraded.

4.3 Flow past a cylinder

In this section we consider the formation of a bow shock when a uniform flow encounters a cylindrical obstacle. This
problem has been studied previously in the context of carbuncle formation in several works for the Euler equations and
in References 11 and 12 for the shallow water equations. We present results for existing solvers as a form of verification,
along with results for the new blended solver. The main question of interest is the formation of carbuncles. It is known,
for instance, that the Roe solver incorrectly generates a carbuncle at the center of the bow shock.

We model only the flow on the upstream side of the cylinder, since our interest is in the resolution of the bow shock.
We take the domain [0, 40] × [0,100] with a cylinder of radius 20 centered at (40, 50). Reflecting boundary conditions are
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F I G U R E 2 Dam break problem over a wet bed using method (3) with different Riemann solvers. We show the numerical solution and
the exact solution (in dashed black) at t = 10. We consider different refinements with (cyan) Δx = 1∕400, (red) Δx = 1∕800, (blue)
Δx = 1∕1600 [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 2 Grid convergence study for the dam break problem over a wet bed using method (3) with different Riemann solvers

Roe’s solver Rusanov’s solver Blended solver

𝚫x E1 Rate E1 Rate E1 Rate

1/50 4.22E-04 – 5.73E-04 – 4.24E-04 –

1/100 2.00E-04 1.07 3.35E-04 0.78 1.99E-04 1.08

1/200 1.11E-04 0.85 2.01E-04 0.74 1.10E-04 0.84

1/400 5.05E-05 1.13 1.18E-04 0.77 5.07E-05 1.12

1/800 2.60E-05 0.95 7.08E-05 0.74 2.61E-05 0.95

1/1600 1.29E-05 1.01 3.79E-05 0.90 1.29E-05 1.01

imposed at the surface of the cylinder, along with outflow conditions along the rest of the right edge of the domain. The
depth and velocity are set initially and (for all time) at the other boundaries to h0 = 1, u0 = 5, v0 = 0 for a Froude number
of 5. Therefore, the initial condition does not contain a shock, but due to the presence of the cylinder a bow shock rapidly
forms and travels to its eventual steady-state position. We use a 160 × 400 uniform Cartesian grid. In Figure 3, we show
results at t = 80, after the flow has reached a steady state. With Roe’s solver, negative values (of the water height) are
generated at an early time, leading to failure of the solver. Therefore, we show results only with the second-order method
(3) using Rusanov’s, HLLEMCC by Kemm,11 and the blended solvers. These three methods give carbuncle free results. It
is worth noting that the solution with Rusanov’s solver is the most dissipated solution. For comparison, we also show in
Figure 3D the solution using the first-order method (7) with the blended solver. Let

𝜉(tn+1) ∶= ||hn+1 − hn||𝓁2||h0||𝓁2
(29)

denote the residual based on the water height. In Figure 4B, we plot 𝜉(t) for the solution obtained with each Riemann
solver. With HLLEMCC or the blended solver, the residual stagnates. In Figure 4A we repeat the same experiment but
using the first-order method (7) instead. We obtain similar results with Rusanov and HLLEMCC, but now the solu-
tion with the blended solver continues to converge at a rate similar to that of Rusanov. This suggests that the lack of
convergence for the second-order method with the blended solver is due to the correction terms and not to the Rie-
mann solver itself. We have performed a similar experiment (not shown here) where we ran the simulation up to a
final time of t = 16,000 using the second-order method with the blended solver. Although, the residual 𝜉(t) did not con-
verge to zero, the simulation did not become unstable. Indeed, the final solution is indistinguishable from the solution in
Figure 3C.

In Figure 3C, we show a closeup of the front of the shock and show the grid we use. Note that the grid is Cartesian
and that the shock is resolved across a few cells. Therefore, the ability of the method to deliver carbuncle free solutions
does not depend on the shock being aligned with a grid interface.

In Figure 5A we show the time evolution of the momentum in the region around the shock. We see that the momen-
tum is not monotone across the shock; this is a common feature of numerical shock solutions and in some cases is
associated with a slow displacement of the position of the shock, which is known as slowly-moving shock anomaly; see

http://wileyonlinelibrary.com
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F I G U R E 3 Flow past a cylinder. In (A)–(C), results using (3) with Rusanov’s, HLLEMCC, and the blended solvers. In (D), results using
(7) with the blended solver [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Residual 𝜉(t) (29) with different Riemann solvers for the problem of the flow past a cylinder [Colour figure can be viewed at
wileyonlinelibrary.com]

for instance.9,10 This anomaly is, however, not present in the blended solver solution; the position of the shock appears to
remain constant (once the steady state is achieved). To further confirm this, we run the simulation up to t = 160 and plot
in Figure 5B the location of the shock along y = 50. Note that after t ≈ 55, the location of the shock remains constant.

Another numerical artifact that has been observed in this context is that of spurious oscillations in the transverse
direction, behind the shock; these have been observed for instance when using Roe’s solver.10 Rusanov’s solver adds more
dissipation (than the solvers they use) to the shear waves; therefore, it eliminates the spurious oscillations, as seen in the
right-top panel of Figure 5A. Small oscillations are present with the blended solver.

We have also conducted a more challenging version of this test, in which the velocity within the domain is initially zero.
In that case, Rusanov’s and the blended solvers give carbuncle-free results similar to Figure 7, but HLLEMCC exhibits a
carbuncle.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


668 KETCHESON and DE LUNA

F I G U R E 5 Study of the slowly-moving shock anomaly [Colour figure can be viewed at wileyonlinelibrary.com]

5 NUMERICAL STUDY OF THE CIRCULAR HYDRAULIC JUMP

5.1 Semianalytical steady solution under rotational symmetry

In this section, we consider the initial boundary value problem consisting of the shallow water model (1) in an annular
domain

rjet ≤ r ≤ r∞ (30)

where r =
√

x2 + y2, with prescribed inflow at r = rjet and prescribed outflow at r = r∞. The domain and boundary
conditions are rotationally symmetric. By assuming rotational symmetry in (1), one obtains the system

(rh)t + (rhu)r = 0, (31a)

(rhu)t + (rhu2)r + r
(1

2
gh2

)
r
= 0, (31b)

where the depth h and radial velocity u are functions of r and t. By direct integration one finds that steady-state solutions
of (31) satisfy

rhu = C, (32a)

h′(r) = h(r)
g

C2 r3(h(r))3 − r
= h(r)

r
⋅

(F(r))2

1 − (F(r))2 , (32b)

for some C independent of r. Here F(r) = |u(r)|∕√gh(r) is the Froude number. We see that two types of steady profiles
exist, depending on whether the flow is subcritical (|F| < 1) or supercritical (|F| > 1). No smooth steady solution can
include both regimes, since the right hand side of (32b) blows up when F = 1.

http://wileyonlinelibrary.com
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5.2 Numerical test: Steady outflow

We now test the numerical methods by using a time-dependent simulation to compute the steady flow solution just
described, in the annulus r ∈ (0.1, 1) with constant inflow at r = 0.1 and outflow at r = 1. The initial condition is h(r, t =
0) = 0.1, u(r, t = 0) = 0, the inner boundary condition is h(0.1, t) = 0.3, u(0.1, t) = 0.75, and the outer boundary condition
is set to outflow (see Reference 19(section 21.8.5) for details). The computational mesh is logically quadrilateral, of the
type shown in Figure 6.

Regardless of the initial condition, the exact solution converges to a steady state profile given by one of the two solu-
tions of (32), corresponding to subcritical or supercritical flow. In the present case we have imposed a supercritical inflow.
In Figure 7, we show the solution and 𝜃i at different times using the second-order method (3) with Roe’s, Rusanov’s and
the blended Riemann solvers. Additionally, in Table 3, we summarize the results of a convergence study based on meth-
ods (7) and (3), using the same Riemann solvers. Although the chosen initial condition leads initially to shock formation,
the steady state is smooth and close to second order convergence is observed for the Roe and blended solvers.

F I G U R E 6 Example of a grid for the problem with the two-dimensional CHJ

F I G U R E 7 Steady outflow problem using method (3) with (cyan) Roe’s, (red) Rusanov’s and (dashed blue) the blended Riemann
solvers. In the second row we plot 𝜃i, which is given by (19). In all simulations we take Δx = 1∕400 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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T A B L E 3 Grid convergence study for the steady outflow problem using methods (7) and (3) with different Riemann solvers

First-order method (7) Second-order method (3)

Roe’s solver Rusanov’s solver Blended solver Roe’s solver Rusanov’s solver Blended solver

𝚫x E1 Rate E1 Rate E1 Rate E1 Rate E1 Rate E1 Rate

1/50 2.16E-4 – 9.97E-4 – 2.16E-4 – 4.13E-5 – 7.32E-4 – 4.15E-5 –

1/100 1.14E-4 0.92 6.38E-4 0.64 1.14E-4 0.92 1.47E-5 1.48 4.43E-4 0.73 1.48E-5 1.48

1/200 5.86E-5 0.95 3.88E-4 0.72 5.87E-5 0.95 4.81E-6 1.61 2.57E-4 0.79 4.83E-6 1.61

1/400 2.98E-5 0.97 2.26E-4 0.78 2.98E-5 0.97 1.42E-6 1.76 1.44E-4 0.83 1.42E-6 1.76

1/800 1.50E-5 0.98 1.27E-4 0.83 1.50E-5 0.98 4.16E-7 1.76 7.81E-5 0.88 4.18E-7 1.76

1/1600 7.53E-6 0.99 6.90E-5 0.88 7.53E-6 0.99 1.14E-7 1.86 4.12E-5 0.92 1.15E-7 1.86

5.3 Location of the jump

The steady, rotationally-symmetric circular hydraulic jump involves supercritical flow for r < r0 and subcritical flow for
r > r0, where r0 is the jump radius. The jump itself takes the form of a stationary shock wave. The Rankine–Hugoniot
jump conditions specify that for such a shock,

h+ − h− =
−3h− +

√
h2
− + 8h−u2

−∕g
2

= 3h−

2

(√
1 + 8

9
(F2

− − 1) − 1

)
, (33)

where the subscripts +,− denote states just inside or outside the jump radius, respectively.
A steady-state, rotationally symmetric solution can be given for an annular region with prescribed flow at the inner

and outer boundaries as follows:

1. Specify the depth and velocity at the inner boundary (near the jet) and outer boundary.
2. Integrate (32b) from both boundaries.
3. Find a radius r0 where the matching condition (33) is satisfied.

Due to the nature of solutions of (32b), it can be shown that the required jump radius r0 always exists if the prescribed
flow is supercritical at the inner boundary and subcritical at the outer boundary.

In this section, we described how the location of the jump for a steady, rotationally-symmetric CHJ is deter-
mined by the boundary conditions. Following similar steps, one can choose inner boundary conditions and find
outflow boundary conditions that lead to a CHJ at a prescribed location. This a convenient approach to con-
struct initial conditions for numerical experiments at different flow regimes. Let us consider two flow regimes
and construct the corresponding CHJs, which we use in the following sections. Consider the following boundary
conditions:

h(x, y, t) = hjet, u(x, y, t) = |ujet| ( x
rjet

)
, v(x, y, t) = |ujet| ( y

rjet

)
,

√
x2 + y2 = rjet, (34a)

h(x, y, t) = hout, u(x, y, t) = 𝛽

routh

(
x

rout

)
, v(x, y, t) = 𝛽

routh

(
y

rout

)
,

√
x2 + y2 = rout, (34b)

where hjet = 0.3, rjet = 0.1, rout = 1 and 𝛽 = rjethjet|ujet|. We choose |ujet| and hout such that the steady
rotationally-symmetric solution involves a symmetric shock at rs = 0.3; see Table 4. In Figure 8, we show the water depth
h along y = 0 for these regimes.

Numerical tests suggest that the solution of (31) rapidly approaches that just described under general initial conditions
as long as the inflow at the jet is supercritical and the outflow at r∞ is subcritical. Subcritical outflow can be enforced by
an appropriate outer boundary condition. This solution remains steady if the rate of inflow and outflow are matched. The
stability of this solution in the face of nonrotationally-symmetric perturbations is an important question not only in the
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T A B L E 4 Boundary data |ujet| and hout which along with (34) produce CHJs located at rs = 0.3 for
two different flow regimes

F(rjet) |ujet| hout

Regime I 1.37 0.75 0.37387387318873766

Regime II 27.39 15 6.6845019298155357

F I G U R E 8 Radially symmetric CHJs created by solving (32) with a jump given by (33). We show a slice along y = 0. In Section 5.4.1,
we consider the CHJ in (A) as initial condition; and in Sections 5.4.2 and 5.4.3, we consider the CHJ in (B) as initial condition [Colour figure
can be viewed at wileyonlinelibrary.com]

shallow water context but for more realistic fluid models and physically. It will play an important role in the results we
present below. The rotationally-symmetric steady state is a useful initial condition for studies of CHJ stability.

5.4 The circular hydraulic jump in two dimensions

Let us finally consider the numerical experiments for the CHJ in two dimensions. The domain is again given by the
annulus (30), but now we solve the fully 2D shallow water Equations (1). For all of the following experiments, we use a
mesh with 1000 cells in each (radial and angular) direction. The boundary conditions at the jet and the outer boundary
are given by (34). By adjusting the boundary conditions |ujet| and hout we can study different flow regimes. We focus on the
two cases in Table 4. For most of the experiments we show a Schlieren plot for the water height. That is, we plot ||∇h||𝓁2

with a greyscale logarithmic colormap.

5.4.1 Regime I (Fjet ≈ 1.37)

In this case, the boundary conditions are given by (34) with

|ujet| = 0.75, hout = 0.37387387318873766. (35)

The initial condition is a circular hydraulic jump located at rs = 0.3; see Figure 8A. In Figure 9A, we show the solution at
different times using method (3) with Roe’s Riemann solver. The solution clearly develops carbuncle instabilities, which
are evident in the inset figure. In Figure 9B, we show solutions at t = 3 for Rusanov’s, HLLEMCC, and the blended
Riemann solvers. For this test case, these three solvers give qualitatively similar solutions, all of which are free from
carbuncles. In Figure 9C, we plot the water height and the x-momentum along y = 0. Clearly, the solution based on
Rusanov’s solver is more dissipated. From the plot, it is also clear the presence of the nonphysical spike in the momentum.
Just as in Section 4.3, in our numerical experiments, this spike does not lead to a slowly-moving shock.

http://wileyonlinelibrary.com
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F I G U R E 9 Simulation of a CHJ with boundary conditions given by (34) and (35). We consider method (3) with different Riemann
solvers. In (A) and (B) we show the Schlieren plot for the water height h [Colour figure can be viewed at wileyonlinelibrary.com]

Next we perform a set of experiments similar to those of Reference 48(Section III B). In these experiments, we perturb
the initial condition in just one layer of cells, immediately behind the shock. We use an annular mesh (see Figure 6)
with 90 elements in the radial direction and 90 elements in the angular direction. Let h(r) denote the exact solution of
the ODE (32), and let ri denote the radius of a given cell center. Then for all cells away from the shock (i.e., those with
ri ∉ [0.3 + Δr]) we use the exact solution averaged over the grid:

hi =
1
Δr∫

ri+Δr∕2

ri−Δr∕2
h(r)dr, ui =

𝛽

hiri

(
xi

ri

)
, vi =

𝛽

hiri

(
yi

ri

)
,

where 𝛽 = rjethjet|ujet| and (xi, yi) are the Cartesian coordinates of the cell center. For the layer of cells just behind the
shock (with 0.3 ≤ r ≤ 0.3 + Δr), we set

hi = 𝛿hL + (1 + 𝛿)hR, ui =
𝛽

hiri

(
xi

ri

)
, vi =

𝛽

hiri

(
yi

ri

)
,

where 𝛿 = {0, 0.1, 0.2, … , 0.9, 1} and hL and hR are the values of the water height at the left and right cells from the cell
with ri = rs + Δr∕2, respectively. In Figure 10A, we plot representative results of these experiments, showing the initial
data in the first column and solutions at t = 3 in the second and third columns. We show only the results using 𝛿 =
{0, 0.5, 1} since other results were similar. The solution obtained with the Roe solver, in which the carbuncle instability
appears, is sensitive to the perturbation just described, while the solution obtained with the blended solver is radially
symmetric and essentially the same for all values of 𝛿.
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KETCHESON and DE LUNA 673

F I G U R E 10 Simulation of a CHJ with boundary conditions given by (34) and (35), using the second-order method (3) with two
Riemann solvers. The depth h is shown as a function of r. Note that the plots in the third column include lines for each angle along the grid,
but only a single line is visible due to the solution’s symmetry [Colour figure can be viewed at wileyonlinelibrary.com]

5.4.2 Regime II (Fjet ≈ 27.39)

We now consider a higher-Froude number regime. The boundary conditions are given by (34) with

|ujet| = 15, hout = 6.6845019298155357. (36)

The initial condition is a circular hydraulic jump located at rs = 0.3; see Figure 8B. In Figure 11A, we show the solution
at different times using method (3) with Roe’s Riemann solver. Again the solution develops carbuncle instabilities, which
are clearly seen in the inset figure at t = 3. For this regime, we obtained negative values for the water height with the
HLLEMCC solver, which lead to failure of the solver. Therefore, in Figure 11B we only show results with Rusanov’s and
the blended solvers.

The solutions obtained with these solvers show no carbuncles. Note that, similar to the experiments in Section 4.3,
the nonphysical spike in the momentum is present in the numerical solution. The Rusanov solution remains very close
to the initial symmetric equilibrium state, whereas the blended solver solution includes perturbations that appear just
downstream from the jump. In Figure 12, we show the Rusanov and blended solutions at a much later time of t = 5. In
addition to the Schlieren plot of the water height, we superimpose a color plot of the magnitude of the momentum. It is
evident that the visible perturbations in the blended solution are completely dissipated in the Rusanov solution, at least
when using the grid employed here.

It is natural to ask whether these perturbations are meaningful; that is, whether the symmetric equilibrium is unstable.
To investigate this, we conduct one more test.

5.4.3 Regime II with random perturbations

Given the symmetry of the grid and initial data in the section above, the nonrotationally-symmetric perturbations seen
when using the blended solver above must arise due to the influence of numerical errors. In order to understand whether
these are evidence of a true instability, we now introduce a nonsymmetric perturbation at the inflow boundary. We use
the same mean values (36), but now we set

http://wileyonlinelibrary.com
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F I G U R E 11 CHJ with boundary conditions given by (34) and (36). We consider method (3) with different Riemann solvers. In all cases
we show the Schlieren plot for the water height h. The inset figures show the momentum in the radial direction [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 12 CHJ at t = 5 with boundary conditions given by (34) and (36). We consider method (3) with (left) Rusanov’s and (right)
the blended solvers. In all cases we superimpose the Schlieren plot for the water height h an the magnitude of the momentum with a uniform
(white-to-blue) colormap. The scale for colormap is (white) 0.45 to (blue) 4.5, which corresponds to the minimum and maximum values at
t = 0. The inset figure shows the momentum in the radial direction [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 CHJ at different times with a random perturbation at the inflow boundary. We consider method (3) with different
Riemann solvers. In all cases we show the Schlieren plot for the water height h. The inset figure shows the momentum in the radial direction
[Colour figure can be viewed at wileyonlinelibrary.com]

h(x, y, t) = h̃jet, u(x, y, t) = |ũjet| ( x
rjet

)
, v(x, y, t) = |ũjet| ( y

rjet

)
, r = rjet, (37a)

with h̃jet =
hjet

1+𝜀(x,y,t)
and |ũjet| = |ujet|(1 + 𝜀(x, y, t)). Here 𝜀(x, y, t) is chosen at each inflow boundary ghost cell and at each

time step as an i.i.d. random variable from the uniform distribution [−0.01, 0.01].
Solutions are shown in Figures 13A,B, obtained with Rusanov’s method and the blended solver, respectively. It is

known from experiments that the circular hydraulic jump in a low-viscosity fluid exhibits instability at large Froude
number; see for example, Reference 26(figure 2). Although the physics of this instability is still a matter of study, the
blended solver produces a solution that bears a qualitative similarity to what is seen in experiments, without generating
carbuncles. The Rusanov solver, on the other hand, appears to suppress the manifestation of this instability.

In the right panel of Figure 13B, we show an inset figure with the momentum in the radial direction. Note that
even though the solution is highly unstable (with the blended Riemann solver), no visible carbuncle instabilities are
developed.

6 CONCLUSIONS

In this article, we have introduced a new Riemann solver for the shallow water equations, described in Section 3. Through
numerical tests we have shown that the solver gives accuracy similar to that of Roe’s method and robustness similar to
that of Rusanov’s method. Using this Riemann solver with the first-order method (7) we prove that the discrete entropy
inequality (27) holds. In principle, we could apply the same idea to further modify the artificial dissipation via 𝜆min

i+1∕2 to
guarantee the inequality holds when using the second-order method (3). However, in our numerical experiments, we
obtained the desired behavior so, to avoid further complexity, we did not pursue this idea. Although the full second-order
method we have proposed is not positivity preserving, it gives improved results for test problems where this property is
important. The approach used in Section 3 could be applied to enforce entropy stability for any Riemann solver of the
type used in Clawpack. The same techniques could also be used more generally to avoid carbuncles in the solution of
the Euler equations. For future work, we plan to extend these results to the shallow water equations with source terms
that model nonflat bathymetry and friction. In addition, we are interested in guaranteeing positivity preservation for the
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water height via algebraic flux limiters, like those proposed by Boris and Book49 and later extended by Zalesak.50 We are
also interested in obtaining a method that converges (up to machine precision) to steady states. To do this we plan to use
the monolithic limiter from Reference 51. Finally, we are interested in reducing (or eliminating) the nonphysical spike in
the momentum. To do this we plan to modify Rusanov’s solver based on Reference 10(section 5.1).

We have introduced two new test problems for numerical shallow water solvers, both consisting of flow in an annulus,
with inflow from a jet at the center and outflow at the outer boundary. The first test problem, described in Section 5.2, has a
smooth solution that can be computed by solving an ODE and thus serves as a useful test of accuracy. The second problem,
the circular hydraulic jump, involves a standing shock wave that can be physically unstable but is also susceptible to the
numerical carbuncle instability. Additionally, it involves high-velocity low-depth flow regions where it is challenging to
maintain positivity. This makes it an excellent problem for testing that schemes are both robust and not overly dissipative.
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