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THE MINIMUM ENTROPY PRINCIPLE FOR COMPRESSIBLE FLUID FLOWS
IN A NOZZLE WITH DISCONTINUOUS CROSS-SECTION
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Abstract. We consider the Euler equations for compressible fluids in a nozzle whose cross-section is
variable and may contain discontinuities. We view these equations as a hyperbolic system in noncon-
servative form and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [J. Math.
Pures Appl. 74 (1995) 483–548]. Observing that the entropy equality has a fully conservative form,
we derive a minimum entropy principle satisfied by entropy solutions. We then establish the stability
of a class of numerical approximations for this system.
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1. Introduction

Compressible flows in a nozzle with variable cross-section a = a(x) are described by the Euler equations,
which under symmetry assumptions take the following form [6]

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(aρu2) + a ∂xp = 0,

∂t(aρe) + ∂x(au(ρe + p)) = 0, x ∈ R, t > 0,

(1.1)

where the main unknowns are the fluid velocity u and the thermodynamic variables ε and ρ. Here, e = ε+u2/2
is the total energy, and we also define the specific volume v = 1/ρ and the pressure p, the temperature T , and
the specific entropy S. These variables are related via the equation of state of the fluid under consideration, for
instance in the form

p = p(ρ, S).
Provided p is a monotone increasing function of ρ (for fixed S), the system above is a hyperbolic system of
balance law with variable coefficients.
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To deal with discontinuous cross section, following [17] we supplement (1.1) with the “trivial” equation

∂ta = 0, (1.2)

so that the whole set of equations can be written as a hyperbolic system in nonconservative form

∂tU + A(U) ∂xU = 0. (1.3)

In consequence, at least within the regime where the system is strictly hyperbolic, the theory of such systems
developed by LeFloch and co-authors (see [7] and also [16–22]) applies, and provide the existence of entropy
solutions to the Riemann problem (a single discontinuity separating two constant states as an initial data), as
well as to the Cauchy problem (for solution with sufficiently small total variation). More recently, LeFloch and
Thanh [21,22] solved the Riemann problem for arbitrary data, including the regime where the system fails to
be globally strict hyperbolicity (i.e., the resonant case). The Riemann problem was also solved by a different
approach by Andrianov and Warnecke [1]. For earlier work on resonant systems, see also [8,12,13,23].

In the present paper, we pursue the analysis of the Euler equations in a general nozzle, and establish several
properties of solutions. We derive the entropy inequality that must be satisfied by weak solutions. The entropy
inequality is found to have a fully conservative form, so that the notion in nonconservative product is not
needed to state the entropy inequality. In turn, we can obtain a generalization of the so-called minimum
entropy principle, originally established by Tadmor [25] (see also [24]) for plane symmetric fluid flows. In
particular, it follows that the specific entropy is non-increasing in time.

These properties are important as far as the stability of numerical schemes is concerned, and one of our main
results is a proof that a scheme proposed by Kröner and Thanh [15] satisfies a variant of the minimum entropy
principle. Recall that the discretization of systems of balance laws is particularly delicate, and was addressed
by many authors [2–5,9,10]. We show that the scheme under consideration not only preserve equilibrium states,
but also preserves the positivity of the density and the minimum entropy principle.

2. Entropy inequality for nozzle flows

Consider the system (1.1) supplemented with a given equation of state p = p(ρ, ε), and set U = (ρ, ρu, ρe).
The flux function and the right-hand side in (1.1) can be expressed as functions of U :

(ρu, ρu2 + p(ρ, ε), u(ρe + p(ρ, ε))) := f(U),

(0, p(ρ, ε), 0) := g(U).

The system under consideration can therefore be written as

∂t(aU) + ∂x(af(U)) = g(U)
da

dx
·

Recall that weak solutions to this nonconservative systems are defined in the sense of Dal Maso, LeFloch and
Murat. (See [16] and [7]). On the other hand, as we will see later on, the (mathematical) entropy inequality
associated with this system has a conservative form and does make sense in the framework of distributions.

Consider first the one-dimensional gas dynamics equations corresponding to a constant function a (x ∈ R,
t > 0)

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρe) + ∂x(u(ρe + p)) = 0.

(2.1)

On one hand, the notion of entropy is motivated from physics, and the physical entropy is U = ρS, where S is
the specific entropy. On the other hand, as was shown by Harten et al. [11], necessary and sufficient conditions
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for a twice differentiable function Uc of the form

Uc = ρg(S), (2.2)

to be an entropy of the usual gas dynamics equations is that g(S) satisfies the following properties:
(i) g(S) is strictly decreasing as function of S;
(ii) g(S) is strictly convex as function of (1/ρ, ε).

Moreover, the system under consideration is strictly hyperbolic if and only if it admits an entropy of the
form (2.2).

Consider the Navier-Stokes equations describing a viscous fluid flow in a nozzle with smooth area function
aν = aν(x)

∂t(aνρν) + ∂x(aνρνuν) = 0,

∂t(aνρνuν) + ∂x(aν(ρνu2
ν + pν)) = pν∂xaν + ν ∂x(bν∂xuν),

∂t(aνρνeν) + ∂x(aνuν(ρνeν + pν)) = ν ∂x(bνuν∂xuν),

(2.3)

where bν = bν(x) ≥ 0 is given and ν denotes the viscosity coefficient.
We consider the limit as ν tends to zero. For simplicity, we drop the subscript ν and derive the equation for

the specific entropy. To this end, we assume that the internal energy is given by an equation of state ε = ε(ρ, S).
On one hand, thanks to the equation of conservation of mass of (2.3), the equation of momentum in (2.3) can
be written as

aρ(ut + uux) + pxa − ν (b ux)x = 0. (2.4)

On the other hand, the equation of energy in (2.3) can be written as

aρet + e
(
(aρ)t + (aρu)x

)
+ aρuex + (aup)x = ν (b uux)x. (2.5)

The second term on the left-hand side of (2.5) is equal to zero due to the conservation of mass. Using the
thermodynamical identity dε = T dS − p dv and v = 1/ρ, we can re-write the equation (2.5) as

aρT (St + uSx) +
ap

ρ
(ρt + uρx) + (aup)x + aρu(ut + uux) = ν (bν uux)x.

Or, after arranging terms, we obtain the equation of energy

aρT (St + uSx) +
p

ρ

(
(aρ)t + (auρ)x

)
+ u
(
aρ(ut + uux) + apx − ν (b ux)x

)
= ν b u2

x. (2.6)

The second and the third term on the left-hand side of (2.6) are equal to zero by the conservation of mass
of (2.3) and the momentum equation (2.4). Thus, we deduce from (2.6) that the specific entropy S should
satisfy

∂tS + u∂xS =
bν

aρT
u2

x.

Let g(S) be any smooth function of S satisfying g′(S) ≤ 0. Multiplying the above equation by aρg′(S), we
obtain

aρ∂tg(S) + aρu∂xg(S) = ν aρg′(S)
( b

aρT
u2

x

)
.

Multiplying the conservation of mass of (2.3) by g(S) and then summing up with the above equation, we find

∂t(aρg(S)) + ∂x(aρug(S)) = ν ρg′(S)
( b

ρT
u2

x

)
.
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It is clear that if the system (2.3) admits a sequence of smooth solution Uν uniformly bounded in amplitude
and converging almost everywhere to a limit U = (ρ, ρu, ρe) when ν tends to zero, then, the function U satisfies
the entropy inequality

∂t(aρg(S)) + ∂x(aρug(S)) ≤ 0, (2.7)

where g is any function satisfying the above items (i)–(ii). Recall that a weak solution of (1.1) satisfying the
entropy inequality (2.7) in the distributional sense is called an entropy solution.

3. Minimum entropy principle for nozzle flows

We always assume that the fluid is in local thermodynamic equilibrium, so that:

The function (v, ε) �→ ε(v, S) is strictly convex.

This assumption is equivalent to the requirement that the function (v, ε) �→ S(v, ε) is strictly concave.
Thanks to the divergence form of the entropy inequality (2.7), we can establish a minimum entropy principle.

We begin with the entropy inequality in a generalized form and check that the entropy inequality for (1.1)–(1.2)
coincides with (2.7) for the entropy pair

(U ,F) = (aρg(S), aρug(S)), (3.1)

where the functions g satisfy the assumptions (i)–(ii) in Section 2.
Consider the hyperbolic system in nonconservative form

∂tU + A(U) ∂xU = 0. (3.2)

The entropy inequality for (3.2) has the form

∂tU(U) +
[
DUU(U)A(U(., t))∂xU(., t)

]
φ
≤ 0,

where φ is a given Lipschitz family of paths, and U is a convex function satisfying

D2
UU(U)A(U) = A(U)T D2

UU(U).

Basic properties of the nonconservative product imply that if there exists a function F such that

DUU A(U) = DUF(U), (3.3)

then the nonconservative product
[
DUU(U)A(U(., t))∂xU(., t)

]
φ

reduces to the usual one in divergence form,

and is independent of the path φ. Consequently, the entropy inequality takes the divergence form

∂tU(U) + ∂xF(U) ≤ 0 (3.4)

in the sense of distributions.
We now check that the entropy inequality for (1.1) can be reduced to the divergence form (3.4) for all entropy

pairs of the form (3.1). This will establish (3.3).
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The system (1.1)–(1.2) can be written in the nonconservative form (3.2), with U = (aρ, aρu, aρe, a) :=
(w1, w2, w3, w4). Replacing the expression of U in the system (1.1)–(1.2), we obtain

∂tw1 + ∂xw2 = 0,

∂tw2 +
w2

w1
∂xw2 + w2∂x

(w2

w1

)
+ w4∂xp = 0,

∂tw3 + w2∂x

(w3

w1

)
+

w3

w1
∂xw2 + ∂x(aup) = 0,

∂tw4 = 0.

After a tedious but straightforward calculation, we arrive at the following system

∂tw1 + ∂xw2 = 0,

∂tw2 +
(
pρ − pεw3w4

w2
1

+
pεw

2
2w4

w3
1

− w2
2

w2
1

)
∂xw1 +

(2w2

w1
− pεw2w4

w2
1

)
∂xw2

+
pεw4

w1
∂xw3 − pρw1

w4
∂xw4 = 0,

∂tw3 +
(w2w4

w1

( pρ

w4
− pεw3

w2
1

+
pεw

2
2

w3
1

− p

w1

)
− w2w3

w2
1

)
∂xw1

+
(w3 + pw4

w1
− pεw

2
2w4

w3
1

)
∂xw2 +

(pεw2w4

w2
1

+
p + w2

w1

)
∂xw3

+
w2

w1

(
p − pρw1

w4

)
∂xw4 = 0,

∂tw4 = 0, x ∈ R, t > 0.

This system has the canonical form (3.2), where the matrix A(U) =
(
aij(U)

)
is given by:

a11 = 0, a12 = 1, a13 = 0, a14 = 0,

a21 = pρ − pεw3w4

w2
1

+
pεw

2
2w4

w3
1

− w2
2

w2
1

= pρ − u2 +
pε

ρ
(u2 − e),

a22 =
2w2

w1
− pεw2w4

w2
1

= 2u − pεu

ρ
,

a23 =
pεw4

w1
=

pε

ρ
,

a24 = −pρw1

w4
= −pρρ,

a31 =
w2w4

w1

( pρ

w4
− pεw3

w2
1

+
pεw

2
2

w3
1

− p

w1

)
− w2w3

w2
1

= u

(
pρ − e +

pε(u2 − e) − p

ρ

)
,

a32 =
w3 + pw4

w1
− pεw

2
2w4

w3
1

= e +
p

ρ
− pεu

2

ρ
,

a33 =
pεw2w4

w2
1

+
p + w2

w1
=

pεu

ρ
+ u,

a34 =
w2

w1

(
p − pρw1

w4

)
= u(p − pρρ),

a41 = a42 = a43 = a44 = 0. (3.5)

These coefficients will be needed in the proof of the forthcoming theorem.



430 D. KRÖNER, P.G. LEFLOCH AND M.-D. THANH

Proposition 3.1. Consider the system (1.1)–(1.2) in the form (3.2), (3.5). Let g be any function satisfying the
hypotheses (i) and (ii) in Section 2. Then the function U = aρg(S) of the conservative variables (aρ, aρu, aρe, a)
is convex. Moreover, it satisfies

DUU A(U) = DUF(U), F(U) = aρug(S),

which implies that (U ,F) is an entropy-pair of the Euler system. Consequently, the entropy inequality in the
sense of nonconservative products can be written in the divergence form

(aρg(S))t + (aρug(S))x ≤ 0. (3.6)

Proof. First, as is shown in [11], the function ρg(S) is convex in the variable (ρ, ρu, ρe). Therefore, the function
aρg(S) = ρ̄g(S), ρ̄ := aρ, is convex in the variable (ρ̄, ρ̄u, ρ̄e). Since this function ρ̄g(S) can be seen as dependent
only on the first three variables (ρ̄, ρ̄u, ρ̄e), it can thus be seen as independent of a. Therefore, it is also convex
in the variable (ρ̄, ρ̄u, ρ̄e, a) = (aρ, aρu, aρe, a).

Second, the equation of state for the specific entropy being written as S = S(ρ, ε), a straightforward calcu-
lation shows that

U(U) = aρg(S) = w1g
(
S
(w1

w4
,
w3

w1
− 1

2
(w2

w1

)2))
, F(U) = uU(U). (3.7)

Using the thermodynamic identity dε = T dS − p dv = T dS + p
ρ2 dρ, we have

Sε =
1
T

, Sρ =
−p

Tρ2
·

Note also that

Uw3 =
g′(S)

T
, Uw4 = p

g′(S)
T

·

Therefore, it follows that

DUU(U) =

(
g(S) + w1g

′(S)
(

Sρ

w4
+

Sε

w2
1

(w2

2
− w3

))
,

− g′(S)Sε
1
2
, g′(S)Sε,−g′(S)Sρ

w2
1

w2
4

)

=
(

g(S) +
g′(S)

T

(
−p

ρ
− e + u2

)
,−g′(S)

2T
,
g′(S)

T
,
g′(S)p

T

)
(3.8)

and

DUF(U) = uDUU(U) + U(U)DU

(
w2

w1

)

=
(

uUw1 −
w2

w2
1

U(U), uUw2 +
U(U)
w1

, uUw3 , uUw4

)
.

(3.9)

From (3.5), (3.8), and (3.9), we claim that

B := DUU A(U) − DUF(U) = 0. (3.10)
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Actually, setting B = (b1, b2, b3, b4), we have

b1 = −w1g
′(S)Sε

w2

w1
a21 + w1g

′(S)
Sε

w1
a31 − uUw1 +

w2

w2
1

U

= g′(S)Sε

(
a31 − w2

w1
a21

)
− uUw1 +

w2

w2
1

U

= g′(S)Sε

(−pw2w4

w2
1

+
w3

2

w3
1

− w2w3

w2
1

)
− uUw1 +

w2

w2
1

U ,

thus

b1 = g′(S)Sε

(
u3 − pu

ρ
− ue

)
− uUw1 +

w2

w2
1

U

=
g′(S)u

T

(
u2 − p

ρ
− e

)
− u

(
g(S) +

g′(S)
T

(−p

ρ
+ u2 − e

))
+ ug(S)

= 0,

and

b2 = g(S) +
g′(S)

T

(−p

ρ
+ u2 − e

)
− g′(S)u

T

(
2u − pε

u

ρ

)
+

g′(S)
T

(
e +

p

ρ
− pε

u2

ρ

)

−
(

uUw2 +
U
w1

)

= g(S) − g′(S)u2

T
− uUw2 −

U
w1

= 0,

and finally

b3 = −g′(S)u
T

pε

ρ
+

g′(S)
T

(
pεu

ρ
+ u

)
− uUw3

b4 = pρρ
g′(S)u

T
+ u(p − pρρ)

g′(S)
T

− uUw4 = 0.

From the above relations we easily check (3.10), which completes the proof of the proposition. �

We are now in a position to establish the minimum entropy principle for gas flows in a nozzle.

Theorem 3.2. If U is a bounded entropy solution to the system (1.3), then it satisfies the minimum entropy
principle:

inf
|x|≤R

S(x, t) ≥ inf
|x|≤R+t||u||L∞

S(x, 0).

We will need:

Lemma 3.3. Given a real p > 1, consider the function g(S) := (S0 − S)p, where S0 is a constant such that
S0 − S > 0 for all S in the domain under consideration. Then:

(i) g(S) is strictly decreasing and strictly convex as a function of S,
(ii) g(S) is strictly convex as a function of (v, ε).

Proof. We have g′(S) = −p(S0 − S)p−1 < 0 and g′′(S) = p(p − 1)(S0 − S)p−2 > 0, so (i) follow immediately.
Next, since the function S(v, ε) is strictly concave as a function of (v, ε) for 0 < λ < 1, for (v1, ε1) �= (v2, ε2)

we have
S(λ(v1, ε1) + (1 − λ)(v2, ε2)) > λS(v1, ε1) + (1 − λ)S(v2, ε2).
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Thus, by (i) it follows

g
(
S(λ(v1, ε1) + (1 − λ)(v2, ε2))

)
< g
(
λS(v1, ε1) + (1 − λ)S(v2, ε2)

)
< λg

(
S(v1, ε1)

)
+ (1 − λ)g

(
S(v2, ε2)

)
,

which establishes (ii). �

Proof of Theorem 3.2. Let g = g(S), where S is the specific entropy, be any function satisfying the conditions (i)
and (ii) stated earlier. We claim that any bounded entropy solution of the system (1.1) satisfies

∫
|x|≤R

ρ(x, t)g(S(x, t))dx ≤
∫
|x|≤R+t||u||L∞

ρ(x, 0)g(S(x, 0))dx, (3.11)

for any nonnegative decreasing function g(S).
We follow the arguments in the proof of Lemma 3.1 of [25]. We integrate the entropy inequality in the

divergence form (3.6) over the truncated cone C = {(x, t)||x| ≤ R + (t − τ)||u||L∞ , 0 ≤ τ ≤ t}. Denoting
by (nx, nt) the unit outer normal of C, Green’s formula yields

∫
∂C

aρg(S)(nt + unx)ds ≤ 0.

The integrals over the top and bottom lines of ∂C give the difference between the left- and the right-hand sides
of (3.11). It follows from the last inequality that this term is bounded from above by

−
∫

mantle of C
a ρg(S) (nt + unx) ds.

We will show that the last quantity is non-positive. Indeed, on the mantle we have

(nx, nt) = (1 + ||u||2L∞)−1/2(x/|x|, ||u||L∞),

thus
nt + unx = (1 + ||u||2L∞)−1/2

(
||u||L∞ + ux/|x|

)
≥ 0.

By the condition g(S) > 0, we obtain the desired conclusion.
Now, consider the family of function g(S) = (S0−S)p, where p > 1 and S0 is a constant satisfying S+S0 > 0;

for instance, S0 = ||S||L∞ + 1. To proceed, we use Lemma 3.3. The inequality (3.11) yields
∫
|x|≤R

ρ(x, t)(S0 − S(x, t))pdx ≤
∫
|x|≤R+t||u||L∞

ρ(x, 0)(S0 − S(x, 0))pdx,

or ( ∫
|x|≤R

ρ(x, t)(S0 − S(x, t))pdx
)1/p

≤
( ∫

|x|≤R+t||u||L∞
ρ(x, 0)(S0 − S(x, 0))pdx

)1/p

.

This means that

||ρ1/p(., t)(S0 − S(., t))||Lp[−R,R] ≤ ||ρ1/p(., 0)(S0 − S(., 0))||Lp[−R−t||u||L∞ ,R+t||u||L∞ ]. (3.12)

Letting p → +∞ in the above inequality we obtain

||S0 − S||L∞[−R,R] ≤ ||S0 − S||L∞[−R−t||u||L∞ ,R+t||u||L∞ ].
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By definition, we can write this in the form

sup
|x|≤R

(S0 − S(x, t)) ≤ sup
|x|≤R+t||u||L∞

(S0 − S(x, 0)),

or, suppressing the large constant S0,

S0 + sup
|x|≤R

(−S(x, t)) ≤ S0 + sup
|x|≤R+t||u||L∞

(−S(x, 0)).

Eliminating S0 and using (for instance) sup (−S(x, t)) = −inf S(x, t), we arrive at the desired result and the
proof of Theorem 3.2 is completed. �

4. An entropy stable and well-balanced scheme for fluid flows

in a nozzle

4.1. Equilibrium states and admissibility criterion

In this section we investigate various properties of approximate solutions generated by a finite difference
scheme for the Euler equations in a nozzle; this scheme was first proposed in [14,15]. For definiteness and clarity
in the presentation, we consider stiffened gases described by

p = (γ − 1)ρ(ε − ε∞) − γp∞, 1 < γ < 5/3, (4.1)

where ε∞, p∞ are constants depending on the material under consideration with p∞ ≥ 0.
One key property of the well-balanced scheme under consideration is that it preserves equilibrium states.

In this subsection, we will recall some basic facts and explain our selection criterion in the construction of the
right-hand state that can be connected to a given left-hand state by a stationary wave.

Let us observe first that the system (1.1)–(1.2) is non-strictly hyperbolic. More precisely, the phase domain
is divided into three sub-domains so that in each of these domains the system is strictly hyperbolic, and along
the phase boundary the characteristic fields coincide. We express here all other thermodynamics variables in
term of (ρ, S). For smooth solutions, the system (1.1)–(1.2) is equivalent to

ρt + uρx + ρux +
ρu

a
ax = 0,

ut +
pρ

ρ
ρx + uux +

pS

ρ
Sx = 0,

St + uSx = 0,

at = 0.

(4.2)

Thus, in the variable U = (ρ, u, S, a) the system (1.1)–(1.2) for smooth flows can be written in the nonconser-
vative form Ut + A(U)Ux = 0, where

A(U) =

⎛
⎜⎜⎜⎜⎝

u ρ 0
uρ

apρ

ρ
u

pS

ρ
0

0 0 u 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The matrix A(U) admits four real eigenvalues, provided pρ(ρ, S) > 0. Therefore, for pρ(ρ, S) > 0 the sys-
tem (1.1)–(1.2) has four characteristic fields associated with the eigenvalues

λ0 = 0, λ1 = u −
√

pρ(ρ, S), λ2 = u, λ3 = u +
√

pρ(ρ, S).
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The phase space is decomposed in several regions:

G1 = {U : λ1(U) < λ2(U) < λ3(U) < λ0(U)},
G2 = {U : λ1(U) < λ2(U) < λ0(U) < λ3(U)},
G3 = {U : λ1(U) < λ0(U) < λ2(U) < λ3(U)},
G4 = {U : λ0(U) < λ1(U) < λ2(U) < λ3(U)},

(4.3)

together with isolated surfaces along which the system fails to be strictly hyperbolic:

Σ+ = {U : λ1(U) = λ0(U)},
Σ0 = {U : λ2(U) = λ0(U)},
Σ− = {U : λ3(U) = λ0(U)}.

(4.4)

Note that the matrix of the hyperbolic system is diagonalizable on ΣO too. (This property is relevant for a flow
at rest for which u = 0 even on a discontinuity of a.)

Next, we consider some properties of equilibrium states. The entropy is constant across any stationary wave.
So, we may talk about states by ignoring the component S. Suppose that a left-hand state U− = (ρ−, u−, a−)
is given, where a = a− is the value of the cross-section. A state U+ = (ρ+, u+, a+) (with the cross-section a+)
which can be connected with U− via a stationary wave is determined by the system

S = S− = S+,

p = p(ρ, S−),

[aρu] = 0,[u2

2
+ h(ρ, S−)

]
= 0.

(4.5)

Here, h = ε + pv is the specific enthalpy which satisfies

∂

∂ρ
h(ρ, S−) = v

∂

∂ρ
p(ρ, S−). (4.6)

To solve the system of equations (4.5) for ρ+ = ρ, we find the roots of the equation

Φ(ρ) := (u2
− + 2h(ρ−, S−))ρ2 − 2ρ2h(ρ, S−) =

(a−u−ρ−
a+

)2

· (4.7)

A basic calculation implies that the equation (4.7) has a root if and only if

a+ ≥ amin(U−) :=
a−u−ρ−√
Φ(ρmax)

, (4.8)

where ρmax is the (unique) value such that dΦ(ρmax)
dρ = 0. Moreover, in this case, (4.7) has two roots ϕ1(U−, a+) ≤

ϕ2(U−, a+), which coincide if and only if a+ = amin(U−).
Next, we address the question of how to select the right states between ϕ1(U−, a+) and ϕ2(U−, a+). First,

given a state U− we observe that the last equation of (4.5) also determines a stationary curve u = u(ρ) in the
plane (ρ, u). Hence, the third equation of (4.5) implies that the component a can be expressed as a function
a = a(ρ) of the variable ρ along this curve. We then postulate the following admissibility criterion (see [12,21]).
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Monotonicity Criterion. Along the stationary curve in the (ρ, u)-plane and between the left- and right-
hand states of any stationary wave, the component a determined by (4.5) and expressed as a function of ρ must
be monotone in ρ.

It is checked in [21] that:

Lemma 4.1. The Monotonicity Criterion is equivalent to the condition that any stationary wave remains in
(the closure of) a single phase.

4.2. Definition of the well-balanced scheme

The numerical scheme considered in the present paper is defined as follows. The mesh-size is chosen to be
uniform, i.e., xj+1 − xj = ∆x = l, and we introduce standard notation

1
λ
≥ max

j,n

{
|un

j | +
√

2pρ(ρn
j , Sn

j )
}

,

∆t = λ∆x,

U := (ρ, ρu, ρe), f(U) := (ρu, (ρu2 + p), u(ρe + p)),

Un+1
j = Un

j − λ(gLF(Un
j , Un

j+1,−) − gLF(Un
j−1,+, Un

j )),

=
Un

j−1,+ + Un
j+1,−

2
+

λ

2
(f(Un

j−1,+) − f(Un
j+1,−)),

(4.9)

where gLF(U, V ) is the Lax-Friedrichs numerical flux:

gLF(U, V ) =
1
2
(f(U) + f(V )) − 1

2λ
(V − U). (4.10)

The description of the states

Un
j+1,− = (ρ, ρu, ρe)n

j+1,−, Un
j−1,+ = (ρ, ρu, ρe)n

j−1,+ (4.11)

will be given shortly.

Remark 4.2. Although the mesh-size is chosen to be uniform, the arguments below still hold for non-uniform
meshes. For example, one may take ∆t = λ infi∈Z{|xi+1 − xi|}, provided the infimum is not zero.

In the scheme (4.9), the states

Un
j+1,− = (ρ, ρu, ρe)n

j+1,−, Un
j−1,+ = (ρ, ρu, ρe)n

j−1,+

are defined as follows.
First, we observe that the entropy is constant across each stationary jump, and we set εn

j+1,− = ε(ρn
j+1,−,

Sn
j+1), e

n
j+1,− = εn

j+1,− + (un
j+1,−)2/2, and so on. Then, we determine ρn

j+1,−, un
j+1,− from the equations

an
j+1ρ

n
j+1u

n
j+1 = an

j ρn
j+1,−un

j+1,−,

(un
j+1)

2

2
+ h(ρn

j+1, S
n
j+1) =

(un
j+1,−)2

2
+ h(ρn

j+1,−, Sn
j+1),

(4.12)

where h denotes the specific enthalpy defined by dh = T dS + v dp, and is expressed as a function h = h(ρ, S)
of the density and the specific entropy. In fact, we have

hρ(ρ, S) =
pρ(ρ, S)

ρ
,

for any fixed S, and the stationary jump always remains in a given region Gi.
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Similarly, we determine ρn
j−1,+, un

j−1,+ from the equations

an
j−1ρ

n
j−1u

n
j−1 = an

j ρn
j−1,+un

j−1,+,

(un
j−1)

2

2
+ h(ρn

j−1, S
n
j−1) =

(un
j−1,+)2

2
+ h(ρn

j−1,+, Sn
j−1),

(4.13)

by requiring that the stationary jump always remains in a given region Gi. This definition selects the state in
the same phase. Observe from (4.13) that we have two states, one belongs to the same phase (or region) and
one belongs to another phase.

4.3. Preservation of steady states

Our well-balanced scheme is stable and maintains the equilibrium (steady) states [15]. Considering a sta-
tionary wave, then one has

an
j+1ρ

n
j+1u

n
j+1 = an

j ρn
j un

j ,

(un
j+1)

2

2
+ h(ρn

j+1) =
(un

j )2

2 + h(ρn
j ).

It follows from (4.12) and (4.14) that

ρn
j+1,− = ρn

j , un
j+1,− = un

j ,

ρn
j−1,+ = ρn

j , un
j−1,+ = un

j ,

i.e.
Un

j+1,− = Un
j , Un

j−1,+ = Un
j ,

and, thus
Un+1

j = Un
j .

This means that the scheme generates the true steady states.
On the other hand, in the special case that a is a constant, then

Un
j+1,− = Un

j+1, Un
j−1,+ = Un

j−1,

and our scheme reduces to a rather standard scheme.
Let us next illustrate via some numerical experiments the property that the scheme (4.9) preserves steady

states. Consider the Riemann problem for (1.1) where we take γ = 1.4 and the Riemann data are such that the
left-hand side state is

UL = (ρL, uL, pL, aL) = (2, 0.5, 2γ, 1),
and the right-hand side state

UR = (ρR, uR, pR, aR) = (2.080 717 229 626 240, 0.320 402 338 758 170, ργ
R, 1.5),

which is chosen so that these two states are connected by a stationary wave:

U(x, t) =
{

UL, if x < 0
UR, if x > 0.

(4.14)

We compare here the approximations of the stationary wave (4.14) given by our scheme (4.9) and a standard
scheme based on a direct discretization of the right-hand side (using central difference, forward difference, or
backward difference). With the latter, stationary waves are not preserved. For definiteness, we choose the
Lax-Friedrichs (LF) scheme.
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Figure 1. Density of the stationary wave (4.14) – proposed scheme with 1000 mesh points.
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Figure 2. Velocity of the stationary wave (4.14) – proposed scheme with 1000 mesh points.

First, we note that the scheme (4.9) with 1000 mesh points gives the approximate density, velocity, and
pressure which are virtually the ones of the exact stationary wave, respectively; see Figures 1–3.

Second, with the Lax-Friedrichs scheme, the density, velocity, and pressure corresponding to the stationary
wave under consideration are not well approximated; see Figures 4–6. The solution exhibits large spikes near
the discontinuity since the equilibrium states are forced out of their equilibrium positions and generate new
waves.

4.4. Positivity and minimum entropy principle

Consider stiffened gases, where the local sound speed c :=
√

pρ(ρ, S) is real. We show that if the initial
density if non-negative, then the density of the approximate solution is non-negative. We also establish the
minimum entropy principle for approximate solutions.
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Figure 3. Pressure of the stationary wave (4.14) – proposed scheme with 1000 mesh points.
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Figure 4. Density of the stationary wave (4.14) – LF scheme with 500, 1000, 2000, and
4000 mesh points.

Theorem 4.3. The scheme (4.9) satisfies the following:
1. Positivity property: If ρ0

j ≥ 0 for all j, then ρn
j ≥ 0 for all j and n.

2. Minimum entropy principle: For all j and n

Sn+1
j ≥ min{Sn

j−1, S
n
j+1}.
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Figure 5. Velocity of the stationary wave (4.14) – LF scheme with 500, 1000, 2000, and
4000 mesh points.
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Figure 6. Pressure of the stationary wave (4.14) – LF scheme with 500, 1000, 2000, and
4000 mesh points.

Proof. 1. We need only show that for any given integer n, if ρn
j ≥ 0 for j, then ρn+1

j ≥ 0 for all j. Indeed, the
scheme (4.9) provides the density

ρn+1
j =

ρn
j−1,+ + ρn

j+1,−
2

+
λ

2
(ρn

j−1,+un
j−1,+ − ρn

j+1,−un
j+1,−)

≥ ρn
j−1,+ + ρn

j+1,−
2

− λ

2
max{|un

j−1,+|, |un
j+1,−|}(ρn

j−1,+ + ρn
j+1,−)

≥ ρn
j−1,+ + ρn

j+1,−
2

(
1 − λmax

(|un
j−1,+|, |un

j+1,−|
))

.

(4.15)



440 D. KRÖNER, P.G. LEFLOCH AND M.-D. THANH

Since stationary waves provided by (4.12) and (4.14) always connect states with non-negative densities, it follows
from the inequality (4.15) that

ρn+1
j > 0 whenever 1 − λmax{|un

j−1,+|, |un
j+1,−|} > 0. (4.16)

Besides, the hypothesis implies that the function h in (4.13) is concave in ρ:

hρρ(ρ, S) = (γ − 2)
pρ(ρ, S)

ρ2
≤ 0.

It follows from (4.12) and the concavity of the function h that

1
2
(un

j+1,−)2 − 1
2
(un

j+1)
2 = −(h(ρn

j+1,−, Sn
j+1) − h(ρn

j+1, S
n
j+1))

≤ −hρ(ρn
j+1, S

n
j+1)(ρ

n
j+1,− − ρn

j+1)

≤ −pρ(ρn
j+1, S

n
j+1)

ρn
j+1

(ρn
j+1,− − ρn

j+1)

≤ pρ(ρn
j+1, S

n
j+1).

Therefore, we get

|un
j+1,−| ≤

√
(un

j+1)2 + 2pρ(ρn
j+1, S

n
j+1) ≤ |un

j+1| +
√

2pρ(ρn
j+1, S

n
j+1). (4.17)

Similarly,

|un
j−1,+| ≤ |un

j−1| +
√

2pρ(ρn
j−1, S

n
j−1). (4.18)

From (4.9), (4.16), (4.17), and (4.18), we conclude that

ρn+1
j > 0 for all j, n,

which establishes the first statement of the theorem.
2. The proof of the second statement is based on the following classical result: assume that U is a strictly

convex function in R
N , and that there exists a function F and a vector-valued map f such that DF = DU Df .

If U is a vector defined by

U =
V + W

2
+

λ

2
(f(V ) − f(W )), (4.19)

then

U(U) ≤ U(V ) + U(W )
2

+
λ

2
(F(V ) −F(W )). (4.20)

Now, comparing (4.9) and (4.19), we deduce from (4.20) that the scheme (4.9) satisfies the numerical entropy
inequality

U(Un+1
j ) ≤ U(Un

j−1,+) + U(Un
j+1,−)

2
+

λ

2
(F(Un

j−1,+) −F(Un
j+1,−)),

for any entropy pair of the form (4.1). Thus, we have

an+1
j ρn+1

j g(Sn+1
j ) ≤1

2

(
an

j ρn
j−1,+g(Sn

j−1) + an
j ρn

j+1,−g(Sn
j+1)

)
+

λ

2
(an

j ρn
j−1,+un

j−1,+g(Sn
j−1) − an

j ρn
j+1,−un

j+1,−g(Sn
j+1)),
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or
an+1

j

an
j

ρn+1
j g(Sn+1

j ) ≤ 1
2
ρn

j−1,+(1 + λun
j−1,+)g(Sn

j−1) +
1
2
ρn

j+1,−(1 − λun
j+1,−)g(Sn

j+1).

In view of Theorem 4.3, ρn+1
j is non-negative. Taking g(S) = (S0 − S)p, p > 1, where S0 is some constant

such that S0 − S > 0, and recalling Lemma 3.3 we obtain

an+1
j

an
j

ρn+1
j (S0 − Sn+1

j )p ≤ 1
2
ρn

j−1,+(1 + λun
j−1,+)(S0 − Sn

j−1)
p

+
1
2
ρn

j+1,−(1 − λun
j+1,−)(S0 − Sn

j+1)
p.

Thus, we get

(an+1
j

an
j

ρn+1
j

)1/p

(S0 − Sn+1
j ) ≤

(1
2
ρn

j−1,+(1 + λun
j−1,+)(S0 − Sn

j−1)
p

+
1
2
ρn

j+1,−(1 − λun
j+1,−)(S0 − Sn

j+1)
p
)1/p

≤
(1

2
ρn

j−1,+(1 + λun
j−1,+) +

1
2
ρn

j+1,−(1 − λun
j+1,−)

)1/p

× max{S0 − Sn
j−1, S0 − Sn

j+1}.

Letting p → +∞ in this inequality we obtain

S0 − Sn+1
j ≤ max{S0 − Sn

j−1, S0 − Sn
j+1} = S0 − min{Sn

j−1, S
n
j+1},

or
Sn+1

j ≥ min{Sn
j−1, S

n
j+1},

which completes the proof. �
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