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Abstract
We propose a spectral viscosity method to approximate the two-dimensional Euler
equations with rough initial data and prove that the method converges to a weak
solution for a large class of initial data, including when the initial vorticity is in the
so-called Delort class, i.e., it is a sum of a signed measure and an integrable function.
This provides the first convergence proof for a numerical method approximating the
Euler equations with such rough initial data and closes the gap between the available
existence theory and rigorous convergence results for numerical methods. We also
present numerical experiments, including computations of vortex sheets and confined
eddies, to illustrate the proposed method.

Keywords Incompressible Euler · Spectral viscosity · Vortex sheet · Convergence ·
Compensated compactness

Mathematics Subject Classification 65M12 · 65M70

1 Introduction

Flow of incompressible fluids at (very) high Reynolds numbers is often approximated
by the incompressible Euler equations that model the motion of an ideal (incom-
pressible and inviscid) fluid, [33] and references therein. The incompressible Euler
equations are nonlinear partial differential equations of the form,
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⎧
⎪⎨

⎪⎩

∂tu + u · ∇u + ∇ p = 0,

div(u) = 0,

u|t=0 = u0.

(1.1)

Here, the velocity field is denoted by u ∈ R
d (for d = 2, 3), and the pressure is denoted

by p ∈ R+. The pressure acts as a Lagrange multiplier to enforce the divergence-free
constraint. The equations need to be supplemented with suitable boundary conditions.
For simplicity, we will only consider the case of periodic boundary conditions in this
paper.

1.1 Mathematical Results

Although short-time (or small data) well-posedness results are classical [26], the ques-
tions of well-posedness, i.e., existence, uniqueness, stability and regularity, of global
solutions of the three-dimensional Euler equations are largely open. Notable excep-
tions are provided by the striking results of [22,23,35,36], where it is established that
weak solutions, even Hölder continuous ones (with Hölder exponent < 1

3 ), are not
necessarily unique.

On the other hand, the analysis of the Euler equations (1.1) in two space dimensions
is significantly more mature. This is mainly due to the fact that, in two dimensions, the
vorticity ω = curl(u) of a solution u to the PDE (1.1) satisfies a transport equation

∂tω + u · ∇ω = 0, (1.2)

providing a priori control on various norms of ω, such as L p-norms [33].
Global existence and uniqueness results for the two-dimensional incompressible

Euler equations with smooth initial data are classical [7,33]. For nonsmooth initial
conditions, the work by Yudovich [49] has established existence and uniqueness for
bounded initial vorticity, i.e., ω0 ∈ L∞. The uniqueness result of [49] has later been
extended to vorticities belonging to slightly more general spaces [47,48,50]. An exis-
tence result for vorticity ω0 ∈ L p , 1 < p < ∞ has been obtained by Diperna and
Majda [7]. It is shown in [7] that the sequence obtained by solving the Euler equations
for mollified initial data is strongly compact in L2. The existence of a weak solution
for ω0 ∈ L p is then established by passing to the limit. Further extensions of the result
of Diperna and Majda can be obtained by compensated compactness methods for ini-
tial vorticity ω0 belonging to e.g., Orlicz spaces such as ω0 ∈ L log(L)α , α ≥ 1/2,
which are compactly embedded in H−1 [2,3,30,34]. These methods break down for
ω0 ∈ L1.

In his celebrated work [6], Delort has shown the existence of solutions to the Euler
equations with initial vorticity ω0 = ω′

0 +ω′′
0 , where ω′

0 is a finite, nonnegative Radon
measure belonging also to H−1, and ω′′

0 ∈ L p, for some p > 1. These initial data
correspond to the interesting case of vortex sheets, i.e., vorticity concentrated on curves
in the two-dimensional spatial domain [33]. In [6], it is remarked that the proof can
be extended to allow for ω′′

0 ∈ L1. A detailed proof of this claim has subsequently
been provided by Vecchi and Wu [46]. The results of Delort [6], and Vecchi and Wu
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[46], remain the most general existence results for the incompressible Euler equations
in two dimensions. The question of existence of solutions beyond this Delort class,
for instance, when ω0 is an arbitrary signed bounded measure, remains open. The
uniqueness question also remains open, even for vorticities ω0 ∈ L p, p < ∞.

1.2 Numerical Schemes

It is not possible to represent solutions of the incompressibleEuler equations in termsof
analytical solution formulas, even in two space dimensions. Hence, numerical approx-
imation of (1.1) is a necessary and key ingredient in the study of the incompressible
Euler equations. Awide variety of numerical methods have been developed to robustly
approximate the incompressible Euler equations. These include spectral methods [5],
finite difference projection methods [4,17], finite element methods [40] and vortex
methods [19,20,33].

Although finite difference and finite element methods are very useful when dis-
cretizing the Euler equations in domains with complex geometry, spectral methods
based on projecting (1.1) into a finite number of Fourier modes are the method of
choice for approximating (1.1) with periodic boundary conditions. These methods are
very efficient to implement [aided by the fast Fourier transform (FFT)], fast to run and
have spectral, i.e., superpolynomial convergence rates for smooth solutions of (1.1)
[5]. Consequently, spectral methods arewidely used in the simulation of homogeneous
and isotropic turbulence [14,18].

Rigorous convergence results for numerical approximations of the incompressible
Euler equations are mostly available when the underlying (continuous) solution is
sufficiently smooth, see [1] for spectral methods, [10] for finite difference projec-
tion methods, [40] for discontinuous Galerkin methods and [33] for vortex methods.
This represents a significant gap between the existence results for the underlying weak
solutions (at least for the two-dimensional case) and convergence results for numerical
methods. In particular, it is essential to design (and prove) convergent numerical meth-
ods for the two-dimensional Euler equations with rough initial data such as with initial
vorticity in L p, for 1 ≤ p < ∞, or even for initial vorticity in the aforementioned
Delort class.

In this context, we survey a few available results for convergence of numerical
methods approximating (1.1) with rough initial data. A notable result in this regard is
the convergence of a central finite difference scheme [25] for the vorticity formulation
(1.2) of the two-dimensional Euler equations [25]. This scheme was shown to possess
a discrete maximum principle for the vorticity. Hence, one can prove that it converges
to a weak solution of (1.2), as long as the initial vorticity ω0 ∈ L p for 1 < p ≤ ∞
[30]. However, it is unclear whether the convergence analysis for this scheme can be
extended to the case where the initial data ω0 ∈ L1, let alone in the Delort class.
Similarly for spectral methods and for finite difference projection methods, the only
available results for (1.1) are of convergence to the significantly weaker solution
framework of dissipative measure-valued solutions in [21] and in [24], respectively.

Whenω0 ∈ M∩H−1 is a bounded measure, the best available convergence results
to date have been achieved by Liu and Xin for the vortex blob method in [27] and by

123



1312 Foundations of Computational Mathematics (2020) 20:1309–1362

Schochet for both the vortex point and blob methods in [39] (see also the related work
by Liu and Xin [28]). In [27,28,39], it is shown that for initial data with vorticity ω0 ∈
H−1 a finite, nonnegative Radon measure in M+, the vortex methods will converge
weakly to aweak solution of the incompressible Euler equationswithω ∈ M+∩H−1.
The assumption on the definite sign (either positive or negative in the whole domain)
of the initial vorticity appears to be an essential ingredient in these convergence results
[27,28,39]: If ω0 has a definite sign, then the conserved Hamiltonian of these vortex
methods can be leveraged to provide a priori control on the concentration of the
discretized vorticity. When the initial vorticity ω0 is not necessarily of definite sign,
then the Hamiltonian no longer provides control on vorticity concentration and the
available convergence results are somewhat weaker in this case. Without any sign
restriction, convergence of the vortex point/blobmethods has been shown by Schochet
[39] for initial data with vorticity ω0 ∈ L(log L).

The fundamental difficulty that prevents the convergence results of vortex methods
to be extended to initial data of the form ω0 = ω′

0 + ω′′
0 , ω

′
0 ∈ M+ ∩ H−1, ω′′

0 ∈ L1

considered by Delort [6,46], apparently lies in the fact that at the continuous level,
concentration of ω′′

0 ∈ L1 is prevented by the incompressibility of the advecting flow.
However, in the case of vortex methods, incompressibility of the advecting flow is
not known to be sufficient to prevent concentration of the discretized vortices. In the
definite sign case (ω′′

0 = 0), it turns out that the discrete energy conservation can be
used to circumvent this issue [27,28,32,39].Without any sign restriction, but assuming
thatω0 ∈ L(log L), the conservation of phase-space volume (Liouville’s theorem) can
be used to show that no concentration occurs for suitable vortex approximations to
the initial data ω0 [39]. Therefore, a considerable gap remains between the available
convergence results for vortex methods and the existence result of Delort.

1.3 Aims and Scope of this Paper

Our main aim in this paper is to design a suitable numerical method to approximate
the two-dimensional version of the Euler equations (1.1) and to prove convergence
to the underlying weak solutions, when the initial data for (1.1) are rough, i.e., for
instance the initial vorticity ω0 ∈ L p, for 1 ≤ p < ∞ or when the initial vorticity is
in the Delort class. We focus on spectral methods in this paper. However, it is well
known that spectral methods may not suffice to approximate weak solutions of the
incompressible Euler equations in a stable manner and need to be modified.

This situation is somewhat analogous to the much simpler case of the Burgers’
equation or in general, for scalar conservation laws. Given the formation of singu-
larities such as shock waves for these problems, spectral methods do not contain
enough numerical diffusion to damp down oscillations that arise on account of Gibbs’
phenomena [43]. Consequently, one modifies spectral methods by adding numerical
diffusion to a sufficient number of (high) Fouriermodes to stabilize solutionswhile still
maintaining (superpolynomial) spectral accuracy for smooth problems. Such spectral
viscosity (SV) methods were first proposed by Tadmor [43] and have been shown to
converge to entropy solutions of the underlying scalar conservation laws in a series

123



Foundations of Computational Mathematics (2020) 20:1309–1362 1313

of papers [31,37,43–45]. Spectral viscosity methods have been employed to robustly
approximate turbulent flow in [15,18] and references therein.

In this paper, we will modify the spectral viscosity method of Tadmor to approxi-
mate the Euler equations with rough initial data and prove convergence to underlying
weak solutions when the initial vorticity belongs to L p for 1 ≤ p ≤ ∞, or more
generally if it belongs to the Delort class, i.e.,

ω0 ∈
(
M+ + L1

)
∩ H−1. (1.3)

Ourmain ingredients in the present workwill be the equivalence between the primi-
tive and vorticity formulations for the spectral viscosity method and the determination
of sufficient conditions on the free parameters of the spectral viscositymethod, namely
the strength of the numerical diffusion and the number of modes to which the diffu-
sion is applied, from a rigorous stability analysis of the scheme. Moreover, we also
introduce a novel modification of the standard Fourier discretization of the initial data
that allows us to handle its roughness. The resulting scheme is carefully analyzed, and
sharp estimates are derived that allow us to apply compensated compactness argu-
ments of [30] for ω0 ∈ L p, with 1 < p ≤ ∞ and of [6,46] when the initial vorticity
is in the Delort class, in order to show convergence to weak solutions.

Thus, we close the aforementioned gap between existence results and rigorous con-
vergence results for numerical approximations of the two-dimensional Euler equations
and provide the first rigorous proof of convergence for any numerical method to the
weak solutions of the Euler equations with rough initial data in the Delort class (1.3).

This paper is organized as follows: In Sect. 2, we describe the spectral vanishing
viscosity method for the incompressible Euler equations (1.1) and point out the equiv-
alence of the spectral approximation in primitive variable form and the formulation
in terms of the vorticity. In Sect. 3, we review the notion of approximate solution
sequences and prove that the vanishing viscosity method provides an approximate
solution sequence. We also recall some notions of compensated compactness for uni-
formly bounded vorticities. In Sect. 4, we establish simple a priori L2 bounds. These
L2 estimates will be used to prove a spectral decay result, allowing us to control
the discretization error. Refined estimates providing L p-control will be based on the
spectral decay result established in Sect. 4. These spectral decay estimates must be
complemented by short-time estimates, providing control of the L p-norm of the vor-
ticity over a short initial interval of time. During this initial time interval, viscosity
will dampen out higher-order modes and provide the required spectral decay. The
short-time estimates are the subject of Sect. 5. In Sect. 6, we prove convergence of
the spectral viscosity method in the case when the initial vorticity, ω0 ∈ L p, with
1 < p ≤ ∞ and when it is in the Delort class (1.3). Numerical experiments illus-
trating the theory are presented in Sect. 7. “Appendix A” collects some known results
from the literature, which are needed throughout this work.
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2 Spectral Viscosity Method

The incompressible Euler equations (1.1) are to be understood in the weak (distribu-
tional) sense. The notion of a weak solution to the incompressible Euler equations is
made precise in the following definition [33]:

Definition 2.1 A vector field u ∈ L∞([0, T ]; L2(T2; R
2)) is a weak solution of the

incompressible Euler equations with initial data u0 ∈ L2(T2; R
2), if

∫ T

0

∫

T2
u · ∂tφ + (u ⊗ u) : ∇φ dx dt = −

∫

T2
u0 · φ(x, 0) dx, (2.1)

for all test vector fields, φ ∈ C∞(T2 × [0, T ]; R
2), div(φ) = 0, and

∫

T2
u · ∇ψ dx = 0, (2.2)

for all test functions ψ ∈ C∞(T2).

Given the fact that we consider the incompressible Euler equations in a periodic
domain and in order to ensure equivalence between the primitive (velocity–pressure)
and vorticity formulations of the underlying equations, henceforth, we assume that

∫

T2
u0 dx = 0. (2.3)

In the following, we will consider the spectral vanishing viscosity (SV) scheme for
the incompressible Euler equations: We write uN (x, t) = ∑

|k|∞≤N ûk(t)eik·x , where
|k|∞:=max(|k1|, |k2|), and consider the following approximation of the incompress-
ible Euler equations

⎧
⎪⎨

⎪⎩

∂tuN + PN (uN · ∇uN ) + ∇ pN = εN�(QN ∗ uN ),

div(uN ) = 0,

uN |t=0 = KaN ∗ u0,

(2.4)

with periodic boundary conditions. Here,PN is the spatial Fourier projection operator,
mapping an arbitrary function f (x, t) onto the first N Fourier modes: PN f (x, t) =∑

|k|∞≤N f̂k(t)eik·x . QN is a Fourier multiplier of the form

QN (x) =
∑

mN<|k|≤N

Q̂ke
ik·x, (2.5)

and we assume

0 ≤ Q̂k ≤ 1, Q̂k =
{
0, |k| ≤ mN ,

1, |k| > 2mN .
(2.6)
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TheparametersmN and εN already appear in the original formulation of the SVmethod
as applied to scalar conservation laws [43]. Their dependence on N will be specified
later. The idea behind the SV method is that dissipation is only applied on the upper
part of the spectrum, i.e., for |k| > mN , thus preserving the formal spectral accuracy of
the spectral method, while at the same time enabling us to enforce a sufficient amount
of energy dissipation on the small-scale Fourier modes needed to stabilize the method
and ensure its convergence to a weak solution.

Remark 1 In Eq. (2.6), we have assumed that the coefficients Q̂k change only in
the interval |k| ∈ [mN , 2mN ]. This assumption could have been replaced by taking
[mN , cmN ], for any constant c > 1, without changing the results of this paper. We
have chosen c = 2 here for simplicity, and in order not to introduce further parameters
into the numerical scheme. In practice, a different choice may be more suitable.

As a slight extension to [43], we have introduced an additional Fourier kernel KaN .
This kernel gives an another degree of freedom in our numerical method and will be
necessary to obtain suitably approximated initial data, providing further control on
the numerical solution. The Fourier kernel KaN is a trigonometric polynomial of the
form

KaN (x) =
∑

|k|≤aN

K̂ke
ik·x, |K̂k| ≤ 1.

The exact form of the kernel KaN and the choice of parameters aN will be specified
later. However, we shall assume that KaN satisfies a bound of the form

‖KaN ‖L1 ≤ C log(N )2, for all N ∈ N. (2.7)

The above discretization of the initial conditions will be necessary in our convergence
proofs for initial vorticity in spacesω0 ∈ L p with p < 2, or indeed for initial vorticity,
which is a vortex sheet as considered by Delort.

For the numerical implementation, system (2.4) can conveniently be expressed in
terms of the Fourier coefficients:

⎧
⎪⎪⎨

⎪⎪⎩

∂t ûk +
(

1 − k ⊗ k
|k|2

) ∑

|�|,|k−�|≤N

i(� · ûk−�)̂u� = −εN |k|2 Q̂kûk,

ûk|t=0 = K̂k [̂u0]k, (for all 0 < |k| ≤ N ).

(2.8)

Note that we suppress the time dependence ûk = ûk(t) for notational convenience.
From (2.3),we shall assume that [̂u0]|k=0 = 0,which then implies that also û|k=0 = 0,
for all later times. In addition, we shall assume that the initial data are divergence-free
initially, i.e., that [̂u0]k · k = 0 for all |k| ≤ N . Again, this can be shown to imply that
ûk · k = 0 also at later times, as discussed, e.g., in [21].

Remark 2 The SV scheme for the incompressible Euler equations depends on the three
parameter sequences εN ,mN , aN . To fix ideas, we note that we will later on choose
εN → 0, aN ∼ mN ∼ N θ → ∞ for some θ ≤ 1

2 .
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Since the uN are smooth, and since the Fourier projection commutes with dif-
ferentiation, it turns out that we can equivalently write system (2.4) in its vorticity
form

⎧
⎪⎨

⎪⎩

∂tωN + PN (uN · ∇ωN ) = εN�(QN ∗ ωN ),

curl(uN ) = ωN ,

ωN |t=0 = curl
(
KaN ∗ u0

)
.

(2.9)

We recall the following simple result, which will be of fundamental importance for
the current work:

Proposition 2.2 [21, Lemma 3.10] Systems (2.4) for uN and (2.9) for ωN are equiv-
alent.

Remark 3 Proposition 2.2 allows us to focus on the vorticity formulation (2.9). The
strategy is then as follows: The vorticity formulation will be used to obtain uniform
a priori control on the L p-norm of the approximate vorticities ωN , for some 1 ≤
p ≤ ∞. The bounds on ωN in turn provide additional control on the velocity uN ,
which can be used to prove the convergence of the nonlinear terms in the primitive
variable formulation (2.4). The convergence of the nonlinear terms will rely either
on establishing pre-compactness of the sequence uN in L2(T2; R

2), following the
original ideas of Diperna and Majda [7], or by employing compensated compactness
results established by Delort [6,38,46]. It is thus the interplay between the primitive
and the vorticity formulation, which will allow us to obtain convergence proofs even
for rough initial data.

As a first step toward proving the convergence of the SVmethod, we make the error
terms more apparent. We rewrite system (2.9) in the following form

∂tωN + uN · ∇ωN − εN�ωN = (I − PN )(uN · ∇ωN )
︸ ︷︷ ︸

=:err1
+ εN�RmN ∗ ωN

︸ ︷︷ ︸
=:err2

.

(2.10)

The left-hand side corresponds to the vorticity formulation of the Navier–Stokes
equations in 2d with viscosity εN . The right-hand side consists of a projection error
(err1) and a “viscosity” error (err2), which is written in terms of a convolution with
RmN ≡ 1 − QN . We note that RmN (x) has Fourier coefficients

0 ≤ R̂k ≤ 1, R̂k =
{
1, |k| ≤ mN ,

0, |k| > 2mN .
(2.11)

Similar to (2.7), we will assume a bound of the form

‖RmN ‖L1 ≤ C log(N )2, for all N ∈ N, (2.12)

for the kernel RmN .
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It will turn out that for an appropriate choice of εN ,mN , the second error term err2 is
benign, since it is a bounded operator on L p [43]. Our main tool used to obtain bounds
on the projection error err1 will be a spectral decay estimate of the Fourier coefficients
in the range N/2 ≤ |k| ≤ N . This will imply that the coefficients, corresponding to the
high Fourier modes, decay (exponentially) fast. We will then use this spectral decay
estimate, to obtain estimates providing uniform L p-control of the vorticity, provided
that ω0 ∈ L p. The case of Delort-type initial data will pose additional difficulties as
compared to the case 1 < p ≤ ∞. This is discussed in Sect. 6.2.

3 A Brief Overview of Compensated Compactness

In this section, we list some results from the literature that we will use for proving
convergence of the spectral viscosity scheme when the initial vorticity ω0 ∈ L p(T2)

for 1 < p ≤ ∞. The convergence proofs are based on the compensated compactness
method for the incompressible Euler equations developed by Filho et al. [11]. We first
need the following definition:

Definition 3.1 Let {uε} be uniformly bounded in L∞([0, T ]; L2(T2; R
2)). The

sequence {uε} is an approximate solution sequence for the incompressible Euler equa-
tions, if the following properties are satisfied:

1. The sequence {uε} is uniformly bounded in Lip((0, T ); H−L(T2; R
2)), for some

L > 1.
2. For any test vector field Φ ∈ C∞([0, T ) × T

2; R
2) with div(Φ) = 0, we have:

lim
ε→0

∫ T

0

∫

T2
Φ t · uε + (∇Φ) : (uε ⊗ uε) dx dt +

∫

T2
Φ(x, 0) · uε(x, 0) dx = 0.

3. div(uε) = 0 in D′([0, T ] × T
2).

It will be shown in Sect. 4 that the approximations obtained by the spectral vanishing
viscosity method are approximate solutions in this sense.

The authors of [11] introduce the following definition (slightly adapted here to the
case of a domain T

2, rather than R
2):

Definition 3.2 (H−1-stability, [11]) A sequence of divergence-free vector fields uε ∈
L2(T2; R

2) is called H−1-stable if {curl(uε) = ωε} is a precompact subset of
C([0, T ]; H−1(T2)).

For the current purposes, the following remark (which we formulate as a theorem)
will be sufficient.

Theorem 3.3 [11, Rmk. 2. to Thm. 1.1] Let {uε} be an approximate solution sequence
of the incompressible Euler equations. If {uε} is H−1-stable, then there exists a sub-
sequence which converges strongly in C([0, T ]; L2(T2; R

2)) to a weak solution u.

Finally, we recall the following lemma from [11]:

Lemma 3.4 (see, e.g., [11]) L p(T2) is compactly embedded in H−1(T2) for p > 1.
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Now let uε be an approximate solution sequence for the incompressible Euler
equations, with vorticityωε uniformly bounded in L∞([0, T ]; L p(T2)), for some p >

1. We can then apply the Aubin–Lions lemma, which we have stated as Theorem A.6
in Appendix, applied to the family of functions F = {ωε}, and the spaces X ⊂ B ⊂ Y ,
where

X = L p(T2), B = H−1(T2) and Y = H−L−1(T2).

To check the applicability of the Aubin–Lions lemma, we note that the embedding
X → B is compact by Lemma 3.4, F = {ωε} is uniformly bounded in B, by the
assumed L2-boundedness of uε (cf. Definition 3.1), and {ωε} satisfies the equicontinu-
ity property of TheoremA.6, due to the assumed Lipschitz continuity in Definition 3.1.
Applying the Aubin–Lions lemma, we can conclude that {ωε} is relatively compact
in C([0, T ]; H−1(T2)).

In particular, it now follows from Theorem 3.3 that

Corollary 3.5 If uε is an approximate solution sequence of the incompressible Euler
equations, and if ωε is uniformly bounded in L∞([0, T ]; L p(T2)) with p > 1,
then there exists a subsequence ε′ → 0, such that uε′

converges strongly in
C([0, T ]; L2(T2; R

2)) to a weak solution u of the incompressible Euler equations.

4 Spectral Decay Estimate

Before establishing more detailed L p-type estimates for the vorticity, we note that L2

estimates for the approximate solutions, uN and ωN are readily obtained.

Proposition 4.1 If u0 ∈ L2, then the approximation sequence uN satisfies

‖uN (·, t)‖L2 ≤ ‖uN (·, 0)‖L2 ≤ ‖u0‖L2 .

In particular, this implies that we have a uniform bound

‖ωN (·, t)‖H−1 ≤ ‖u0‖L2 .

Proof Multiplying (2.4) by uN and integrating over the spatial variable, we find

d

dt

∫

T2
|uN |2 dx = −

∫

T2
∇uN : ∇(QN ∗ uN ) dx

(Plancherel)
↓= −

∑

k

Q̂k|k|2|(̂uN )k|2 ≤ 0.

Integration over time yields the first inequality. The second inequality follows from

‖uN (·, 0)‖2L2 = ‖KaN ∗ u0‖2L2 =
∑

k

K̂ 2
k |̂(u0)k|2 ≤

∑

k

|̂(u0)k|2 = ‖u0‖2L2 .

The nonlinear terms in (2.4) cancel out after multiplication with uN in the above
estimate. The upper bound for ‖ω‖H−1 is trivial. ��
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And similarly for the vorticity, we also have

Proposition 4.2 If ω0 ∈ L2, then the approximation sequence ωN satisfies

‖ωN (·, t)‖L2 ≤ ‖ωN (·, 0)‖L2 ≤ ‖ω0‖L2 .

Multiplying (2.9) by ωN and integrating over the spatial variable, we can readily
observe that the proof follows analogously to the proof of the previous proposition.

Let us also note that the approximations obtained by the spectral viscosity method
are approximate solutions in the sense ofDefinition 3.1. To show the Lip-boundedness,
we simply note that for any Φ ∈ C∞(T2), and 0 ≤ t1 < t2 ≤ T , we have from (2.4)

〈Φ, uN (·, t2) − uN (·, t1)〉 ≤ C(t2 − t1)‖∇Φ‖L∞(T2)‖uN‖2L∞([0,T ];L2)

+ εN (t2 − t1)‖|∇|2Φ‖L∞(T2)‖uN‖L∞([0,T ];L2)

≤ CE0(t2 − t1)‖∇Φ‖L∞(T2) + εN
√
E0(t2 − t1)‖|∇|2Φ‖L2 ,

where E0 = ∫

T2 |u0|2 dx is the kinetic energy of the initial data u0 (cp. Proposi-
tion 4.1). Now choose L large enough so that, by Sobolev embedding:

HL(T2; R
2) ↪→ W 1,∞(T2; R

2) ∩ H2(T2; R
2).

Then,

〈Φ, uN (·, t2) − uN (·, t1)〉 ≤ C |t2 − t1|‖Φ‖HL (T2),

with a constant C depending on supN εN (assumed finite) and E0, but independent of
N . Taking the supremum of all Φ ∈ HL(T2) ∩C∞(T2) with ‖Φ‖HL ≤ 1 on the left,
we find

‖uN (·, t2) − uN (·, t1)‖H−L (T2) ≤ C |t2 − t1|,

proving that uN ∈ Lip((0, T ); H−L), with a uniformly bounded Lipschitz constant.
The other two properties are easily shown. The consistency property 2 has been shown
in [21, Lemma 3.2], and the divergence-free property 3 is satisfied exactly according
to (2.4). Thus, we have shown.

Theorem 4.3 The sequence uN obtained from the spectral vanishing viscosity approxi-
mation of the incompressible Euler equations forms an approximate solution sequence
in the sense of Definition 3.1.

The main tool employed to prove the convergence results in this paper will be
the decay estimate for the vorticity stated in Proposition 4.4. A similar idea has in
fact been used in the context of the one-dimensional Burgers equation to prove the
uniform L∞-boundedness of the numerical approximations by the SV method [31].
The method employed in [31], which is based on a bootstrap argument adapted from
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[16], does not appear to allow a straightforward extension to the present case. Instead,
we shall adapt a different method from [8].

To state the next proposition, we first need to define the operators eα|∇| for α ∈ R,
and |∇|. They are defined as distributions D′(T2) via their Fourier coefficients as
follows:

(̂
eα|∇|)

k = eα|k|, (̂|∇|)k = |k|. (4.1)

We can now state the spectral decay estimate, based on the method employed in [8].

Proposition 4.4 Let ωN be a solution of the voriticity Eq. (2.9), with arbitrary param-
eters εN ,mN , aN > 0. Let

{
βN = α2 + 8ε2Nm

2
N ,

γN = C log(N ),
(4.2)

where C is a constant such that (k ∈ Z
2)

∑

|k|≤N

1

|k|2 ≤ C log(N ).

Then, for any α > 0, we have the estimate

‖eαt |∇|ωN (·, t)‖2L2 ≤ ‖ωN (·, 0)‖2
L2e

βN t/εN

1 − γN ‖ωN (·,0)‖2
L2

βN

[
eβN t/εN − 1

]
, (4.3)

for all t < t∗, with

t∗ = εN

βN
log

(

1 + βN

γN‖ωN (·, 0)‖2
L2

)

.

Proof To prove the spectral decay estimate, we consider the evolution equation for
eαt |∇|ωN . We find from

∂tωN = εN�ωN + εN�(RmN ∗ ωN ) − PN (uN · ∇ωN ),

that

d

dt

1

2
‖eαt |∇|ωN‖2L2 = 〈eαt |∇|ωN , eαt |∇|∂tωN + αeαt |∇||∇|ωN 〉

= −εN‖eαt |∇|∇ωN‖2L2

+ εN 〈eαt |∇|ωN ,
(
�RmN

) ∗ eαt |∇|ωN 〉
− 〈eαt |∇|ωN , eαt |∇|PN (uN · ∇ωN )〉
+ α〈eαt |∇|ωN , eαt |∇||∇|ωN 〉

(4.4)
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We proceed to estimate the individual terms: Firstly, taking into account that R̂k ≤ 1
and that RmN ∗ ωN is a trigonometric polynomial of degree 2mN at most, we have

εN 〈eαt |∇|ωN ,
(
�RmN

) ∗ eαt |∇|ωN 〉 ≤ εN (2mN )2‖eαt |∇|ωN‖2L2 . (4.5)

To analyze the nonlinear term, we write it out in terms of Fourier series:

−〈eαt |∇|ωN , eαt |∇|PN (uN · ∇ωN )〉 = −
∑

|k|≤N

eαt |k|ω̂∗
k

⎛

⎝eαt |k|
∑

k′+k′′=k

(̂uk′ · k′′)ω̂k′′

⎞

⎠

≤
∑

|k|≤N

eαt |k||ω̂k|
⎛

⎝eαt |k|
∑

k′+k′′=k

|̂uk′ ||k′′||ω̂k′′ |
⎞

⎠

Since k = k′ + k′′ implies by the triangle inequality e2αt |k| ≤ e2αt |k′|e2αt |k′′|, we find
that the last term above is bounded by

∑

|k|≤N

eαt |k||ω̂k|
⎛

⎝
∑

k′+k′′=k

eαt |k′| |̂uk′ | eαt |k′′||k′′||ω̂k′′ |
⎞

⎠ .

Note furthermore that |ûk| = |ω̂k|/|k|. If we define a function

wN :=
∑

|k|≤N

eαt |k||ω̂k|eik·x, (4.6)

then the last expression can be written in terms of wN , as an integral

∫

wN

[
|∇|−1wN

]
[|∇|wN ] dx .

We thus find

−〈eαt |∇|ωN , eαt |∇|(uN · ∇ωN )〉 ≤
∫

wN

[
|∇|−1wN

]
[|∇|wN ] dx

≤ ‖wN‖L2‖
[
|∇|−1wN

]
‖L∞‖ [|∇|wN ] ‖L2 .

(4.7)

Considering the Fourier representation of wN , we have ‖wN‖L2 = ‖eαt |∇|ωN‖L2 and
‖|∇|wN‖L2 = ‖eαt |∇|∇ωN‖L2 . To estimate ‖ [|∇|−1wN

] ‖L∞ , we note that

‖
[
|∇|−1wN

]
‖L∞ ≤

∑

|k|≤N

|ŵk|
|k| ≤

⎛

⎝
∑

|k|≤N

1

|k|2

⎞

⎠

1/2 ⎛

⎝
∑

|k|≤N

|ŵk|2
⎞

⎠

1/2

≤ C1/2 log(N )1/2‖wN‖L2 .
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Combining this with (4.7) and recalling the definition of wN (4.6), we obtain

− 〈eαt |∇|ωN , eαt |∇|PN (uN · ∇ωN )〉
≤ C1/2 log(N )1/2‖eαt |∇|ωN‖2L2‖eαt |∇|∇ωN‖L2

≤ C log(N )

2εN
‖eαt |∇|ωN‖4L2 + εN

2
‖eαt |∇|∇ωN‖2L2 ,

(4.8)

where the last step follows form the inequality

ab ≤ ε

2
a2 + 1

2ε
b2.

Finally, we note that

α〈eαt |∇|ωN , eαt |∇||∇|ωN 〉 ≤ α2

2εN
‖eαt |∇|ωN‖2L2 + εN

2
‖eαt |∇|∇ωN‖2L2 . (4.9)

Combining estimates (4.5), (4.8), (4.9) with (4.4), we obtain

d

dt
‖eαt |∇|ωN‖2L2 ≤

(
βN

εN

)

‖eαt |∇|ωN‖2L2 + C log(N )

εN
‖eαt |∇|ωN‖4L2

where βN :=α2 + 8ε2Nm
2
N .

If we set z:=‖eαt |∇|ωN‖2
L2 and the shorthand notation γN = C log(N ), then we

have the differential inequality

dz

dt
≤ βN

εN
z + γN

εN
z2.

Let y:=ze−βN t/εN , then

dy

dt
≤ e−βN t/εN γN

εN
z2 = eβN t/εN γN

εN
y2.

Integration yields

1

y0
− 1

y
=

∫ y

y0

dy

y2
≤ γN

βN

[
eβN t/εN − 1

]
,

or

y ≤ y0
1

1 − γN y0
βN

[
eβN t/εN − 1

] .
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With y = e−βN t/εN ‖eαt |∇|ωN‖2
L2 and y0 = ‖ωN (·, 0)‖2

L2 , this becomes

‖eαt |∇|ωN‖2L2 ≤ ‖ωN (·, 0)‖2
L2e

βN t/εN

1 − γN‖ωN (·, 0)‖2
L2

βN

[
eβN t/εN − 1

]
.

��

Note that the L2 norm on the left provides a very crude upper bound for the Fourier
coefficients of ωN via

e2αt |k||ω̂k|2 ≤ ‖eαt |∇|ωN‖2L2 . (4.10)

The following corollaries are then immediate.

Corollary 4.5 (L p Fourier decay ; p ≥ 2) With the notation of Proposition 4.4, if
ω0 ∈ L p and p ≥ 2, then there exist absolute constants A, B > 0 such that

|ω̂k(t)|2 ≤ A‖ω0‖2L p

(

1 + βN

B log(N )‖ω0‖2L p

)

e−2αt∗N |k|,

for t ∈ [t∗N , T ], and

t∗N = εN

βN
log

(

1 + βN

B log(N )‖ω0‖2L p

)

.

Proof Fix t0 ≥ 0. We note that Proposition 4.4 applied to (x, t) �→ ωN (x, t0 + t)
together with the simple estimate (4.10) yields

e2α|k|(t0+t∗N )|ω̂k(t0 + t∗N )|2 ≤ ‖ωN (·, t0)‖2L2e
βN t∗N /εN

1 − γN ‖ωN (·,t0)‖2L2
βN

[
eβN t∗N /εN − 1

] , (4.11)

The right-hand side of this estimate is a nondecreasing function of ‖ωN (·, t0)‖2L2 .

Since ‖ωN (·, t0)‖2L2 ≤ ‖ωN (·, 0)‖2
L2 for all t0 ≥ 0, it follows that (4.11) remains true

if we replace ‖ωN (·, t0)‖2L2 on the right by ‖ωN (·, 0)‖2
L2 . Since the right-hand side is

then independent of t0 ≥ 0, we find that for any t ≡ t0 + t∗N ∈ [t∗N , T ]:

e2α|k|t |ω̂k(t)|2 ≤ ‖ωN (·, 0)‖2
L2e

βN t∗N /εN

1 − γN ‖ωN (·,0)‖2
L2

βN

[
eβN t∗N /εN − 1

] . (4.12)

If ω0 ∈ L p, p ≥ 2, then we have a simple estimate

‖ωN (·, 0)‖L2 ≤ ‖ω0‖L2 ≤ K‖ω0‖L p (4.13)
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where the last estimate follows from the Holder’s inequality applied to ωN = 1 · ωN .
(In fact K = (2π)4 provides a uniform bound for all 2 ≤ p ≤ ∞.) Again, by the
monotonicity of the right-hand side in (4.12), we finally obtain

e2α|k|t |ω̂k(t)|2 ≤ K‖ω0‖2L peβN t∗N /εN

1 − KγN ‖ω0‖2L p
βN

[
eβN t∗N /εN − 1

] .

Replacing t∗N by its definition in the statement of this corollary, we find

eβN t∗N /εN = 1 + βN

2γN‖ω0‖2L p

,

and we also recall that γN = C log(N ). Hence, for t∗N ≤ t :

e2αt
∗
N |ω̂k(t)|2 ≤ e2αt |ω̂k(t)|2 ≤ 2K‖ω0‖2L p

(

1 + βN

2KC log(N )‖ω0‖2L p

)

.

The claim thus follows with A = 2K = 2(2π)4 and B = 2KC . ��
On the other hand, considering now 1 < p < 2, our bound worsens and depends

on aN (which defines the projection of the initial data via KaN ).

Corollary 4.6 (L p Fourier decay ; 1 < p < 2) With the notation of Proposition 4.4;
if ω0 ∈ L p and 1 < p < 2, then there exist absolute constants A, B > 0 such that

|ω̂k(t)|2 ≤ Aa
2
(
2
p −1

)

N ‖ω0‖2L p

⎛

⎜
⎝1 + βN

B log(N )a
2
(
2
p −1

)

N ‖ω0‖2L p

⎞

⎟
⎠ e−2αt∗N |k|,

for t ∈ [t∗N , T ], and

t∗N = εN

βN
log

⎛

⎜
⎝1 + βN

B log(N )a
2
(
2
p −1

)

N ‖ω0‖2L p

⎞

⎟
⎠ .

Proof The proof is a repetition of the proof of Corollary 4.5, except that the estimate
(4.13) is replaced by the Bernstein inequality in Theorem A.1, yielding an estimate

‖ωN (·, 0)‖2L2 = ‖KaN ∗ ω0‖2L2 ≤ Ka
2
(
2
p −1

)

N ‖ω0‖2L p ,

with a constant K > 0 depending only on p. ��
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Note that when ω0 ∈ L1(T2), the Bernstein inequality which was used to prove
Corollary 4.6 is no longer available. Instead, we can prove the following result, which
is valid for general initial data ω0 ∈ H−1:

Corollary 4.7 (General Fourier decay)With the notation of Proposition 4.4, if u0 ∈ L2

(and hence ω0 ∈ H−1), then there exist absolute constants A, B > 0 such that

|ω̂k(t)|2 ≤ Aa2N‖u0‖2L2

(

1 + βN

B log(N )a2N‖u0‖2L2

)

e−2αt∗N |k|,

for t ∈ [t∗N , T ], and

t∗N = εN

βN
log

(

1 + βN

B log(N )a2N‖u0‖2L2

)

.

Proof The proof is again essentially a repetition of the proof of Corollary 4.5, except
that the estimate (4.13) is replaced by the a priori estimate

‖ωN (·, 0)‖2L2 = ‖KaN ∗ ω0‖2L2 ≤ (2aN )2‖u0‖2L2 . ��
Let us combine these corollaries in a single theorem:

Theorem 4.8 Let u0 ∈ L2 be given initial data for the incompressible Euler equations.
Then, there exist constants A, B depending only on the initial data, such that the
approximations, ωN = curl(uN ), obtained from the spectral viscosity method satisfy
the following estimate on their Fourier coefficients:

|ω̂k(t)|2 ≤ Aaν(p)
N

(

1 + βN

Baν(p)
N log(N )

)

e−2αt∗N |k|,

for all t ∈ [t∗N , T ] and α > 0. Here βN = α2 + 8ε2Nm
2
N , and we have defined

t∗N = εN

βN
log

(

1 + βN

Baν(p)
N log(N )

)

,

and

ν(p) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ω0 ∈ L p, 2 ≤ p ≤ ∞,

2
(
2
p − 1

)
, if ω0 ∈ L p, 1 < p < 2,

2, for arbitrary ω0 ∈ H−1. ��
We next observe that we can choose the sequences εN → 0, mN , aN → ∞ in a

suitable manner, such that the Fourier coefficients in the range N/2 ≤ |k| ≤ N decay
superpolynomially in N . Suitable conditions on the asymptotic behavior are described
in the lemma below.
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Lemma 4.9 We follow the notation of Theorem 4.8. If

{
βN ∼ aν(p)

N log(N )r , α ∼ √
βN ,

εN ∼ aν(p)/2
N log(N )s

N ,
(4.14)

with s + 2 < r ≤ 2s − 4, then

t∗N = o

(
1

aν(p)
N N log(N )2

)

→ 0, (4.15)

and

αt∗N N � log(N )2. (4.16)

Proof We follow the notation of Proposition 4.4. We recall that t∗N is defined as

t∗N = εN

βN
log

(

1 + βN

BγNa
ν(p)
N

)

.

Under the assumptions of this lemma, we have

t∗N ∼ 1

aν(p)/2
N N

(log N )s−r (log log N ).

Therefore, if r > s + 2, it follows that

t∗N � 1

aν(p)/2
N N (log N )2

.

At the same time,

αt∗N N ∼ εN N

β
1/2
N

(log log N ) ∼ (log N )s−r/2(log log N ),

satisfies

αt∗N N � (log N )2,

for s − r/2 ≥ 2 (or equivalently r ≤ 2s − 4), as claimed. ��
Based on Lemma 4.9, we can now deduce the following proposition.

Theorem 4.10 With the notation of Theorem 4.8. Choose the free parameters
εN , aN ,mN as follows
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mN � N θ , where 0 ≤ θ <
(
2 + ν(p)

2

)−1
,

aN ∼
{
N θ , (ν(p) �= 0),

N , (ν(p) = 0),

εN ∼ aν(p)/2
N log(N )s

N , (s > 6)

(4.17)

Then, α in Theorem 4.8 can be chosen such that the assumptions of Lemma 4.9 are
satisfied, and for any σ > 0, there exists a constant Cσ > 0, such that

|ω̂k(t)| ≤ Cσ N
−σ , for N/2 ≤ |k| ≤ N , t ∈ [t∗N ,∞), (4.18)

where t∗N → 0, at a convergence rate

t∗N � 1

aν(p)/2
N N log(N )2

. (4.19)

Proof We begin by proving that the assumptions of Lemma 4.9 are satisfied. To this
end, we choose the free parameter α such that α ∼ aν(p)/2

N log(N )r/2 with exponent
r satisfying s + 2 < r ≤ 2s − 4 (this requires s > 6). Note that, by our choice of the
other parameters, we now have

εNm
2
N �

m2
Na

ν(p)/2
N log(N )s

N
∼ N θ(2+ν(p)/2)) log(N )s

N
.

Since θ < (2 + ν(p)/2)−1 (with a strict inequality), it follows that the term on the
right-hand side converges to 0 as N → ∞. In particular, this implies that α2 ∼
mν(p)

N log(N )r � ε2Nm
2
N . So that

βN = α2 + 8ε2Nm
2
N ∼ aν(p)

N log(N )r .

Thus, the assumptions of Lemma 4.9 can be satisfied, and it follows that

αt∗N N � log(N )2.

From the spectral decay estimate of Theorem 4.8, it follows that (for |k| ≥ N/2 and
t ≥ t∗N ):

|ω̂k(t)|2 � AB−1aν(p)
N log(N )r−1e−2 log(N )2|k|/N

� Ne− log(N )2

= N 1−log(N ),
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with a uniform implied constant. In particular, for any σ > 0, we will have for
log(N ) > 2σ + 1, and any |k| ≥ N/2:

|ω̂k(t)|2 � N−2σ , for t ≥ t∗N .

The convergence rate of t∗N has already been estimated in Lemma 4.9. ��
It will be convenient to state the following definition:

Definition 4.11 We will say that a choice of parameters εN ,mN , aN and Fourier ker-
nels QN , KaN for the SVmethod ensures spectral decay, provided that the conclusions
[estimates (4.18), (4.19)] of Theorem 4.10 hold true.

As a consequence of Theorem 4.10, we next show that the projection error vanishes
in the limit N → ∞.

Lemma 4.12 If the parametrization for the SV method ensures spectral decay, then
the projection error can be bounded from above, i.e., there exists a constant C > 0
depending on the initial data u0, but independent of N , such that for all t ∈ [t∗N ,∞)

and for any 1 ≤ p < ∞:

‖(I − PN )(uN (t) · ∇ωN (t))‖L p ≤ CN−1‖ωN (t)‖L p .

Alternatively, one can find a constant C ′ > 0, again depending on the initial data, but
independent of N , such that

‖(I − PN )(uN (t) · ∇ωN (t))‖L p ≤ C ′N−1.

Proof The basic idea of this lemma is that the trigonometric polynomial (I−PN )(uN ·
∇ωN ) can be written as a sum

(I − PN )(uN · ∇ωN ) = (I − PN )
(
uN · ∇ω

>N/2
N

)
+ (I − PN )

(
u>N/2
N · ∇ω

≤N/2
N

)

where (. . .)>N/2 is a sum over Fourier modes |k| > N/2, and (. . .)≤N/2 over Fourier
modes |k| ≤ N/2. Due to the spectral decay of the (. . .)>N/2-factors, very rough
estimates on the ω

>N/2
N and u>N/2

N can then be used to prove the lemma. We proceed
to provide the details.

For 1 ≤ p < ∞:

‖(I − PN )(uN · ∇ωN )‖L p ≤ ‖uN · ∇ω
>N/2
N ‖L p + ‖u>N/2

N · ∇ω
≤N/2
N ‖L p

≤ C‖uN ‖L∞‖∇ω
>N/2
N ‖L∞ + C‖u>N/2

N ‖L∞‖∇ω
≤N/2
N ‖L∞ .

We further estimate

‖uN‖L∞ ≤
∑

|k|≤N

|̂uk| ≤
⎛

⎝
∑

|k|≤N

12

⎞

⎠

1/2 ⎛

⎝
∑

|k|≤N

|̂uk|2
⎞

⎠

1/2

≤ CN‖uN‖L2 ,
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and, similarly, using also Bernstein’s inequality,

‖∇ω
<N/2
N ‖L∞ ≤ CN‖ω<N/2

N ‖L∞ ≤ CN 2‖ω<N/2
N ‖L2 ≤ CN 3‖uN‖L2 .

We thus obtain an estimate of the form

‖(I − PN )(uN · ∇ωN )‖L p ≤ CN‖uN‖L2

(
‖∇ω

>N/2
N ‖L∞ + N 2‖u>N/2

N ‖L∞
)

We proceed to (crudely) estimate, for either of the two cases we have,

‖uN‖L2 ≤
{ ‖ωN‖L2

‖u0‖L2

}

≤
{
C‖ωN‖L∞
‖u0‖L2

}

≤
{
CN 2‖ωN‖L p

‖u0‖L2

}

.

We finally note that due to the spectral decay (4.18), that for any σ > 0 there exists
Cσ > 0 such that

‖∇ω
>N/2
N ‖L∞ + N 2‖u>N/2

N ‖L∞ � N−σ .

In particular, we can choose σ sufficiently large and find constants C,C ′ depending
only on the initial data, to ensure that

‖(I − PN )(uN · ∇ωN )‖L p ≤
{
C ′N−1‖ωN‖L p ,

CN−1. ��
Next, we show that the second discretization error can also be bounded from above.

Lemma 4.13 For any 1 ≤ p ≤ ∞, we have

‖�(RmN ∗ ωN )‖L p ≤ 2m2
N‖RmN ‖L1‖ωN‖L p .

For suitably chosen RmN , the L1 norm on the right-hand side can furthermore be
bounded by

‖RmN ‖L1 ≤ C log(N )2.

For the last estimate, see Maday and Tadmor [31, Appendix].

Based on Lemmas 4.12 and 4.13, we can now control the error terms on the right-
hand side. We conclude this section by proving the following theorem, stating that the
L p-norm is uniformly controlled for t ≥ t∗N .

Theorem 4.14 (L p control after short time ) If the numerical parameters ensure spec-
tral decay, then for any 1 ≤ p < ∞, there exists a sequence cN → 0 such that

‖ωN (·, t)‖L p ≤ (1 + cN t) ‖ωN (·, t∗N )‖L p , for all t ≥ t∗N .
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Proof We start from Eq. (2.10):

∂tωN + uN · ∇ωN − εN�ωN = (I − PN )(uN · ∇ωN ) + εN�RmN ∗ ωN .

Multiplyingby |ωN |p−1sign(ωN ) (or a smooth approximation thereof), and integrating
over x , we find

d

dt
‖ωN (·, t)‖p

L p ≤ 〈|ωN |p−1, |err1|〉 + 〈|ωN |p−1, |err2|〉

From Holder’s inequality, we obtain for either of the two numerical error terms on
the right: 〈|ωN |p−1, |err|〉 ≤ ‖ωN‖p−1

L p ‖err‖L p . Using Lemmas 4.12 and 4.13, and

dividing by ‖ωN (·, t)‖p−1
L p on both sides, we obtain (for t ≥ t∗N )

d

dt
‖ωN (·, t)‖L p ≤ C

[
N−1‖u0‖L2 + εNm

2
N log(N )2

]
‖ωN (·, t)‖L p .

After an integration over [t∗N , t], it follows that

‖ωN (·, t)‖L p ≤ ‖ωN (·, t∗N )‖L p exp (cN t) ,

where cN = C
[
N−1‖u0‖L2 + εNm2

N log(N )2
] → 0. ��

5 Short-Time Estimates

In the last section, we have shown that the numerical parameters can be chosen to
ensure the spectral decay of the Fourier modes N/2 ≤ |k| ≤ N for t ∈ [t∗N ,+∞),
where

t∗N � 1

aν(p)/2
N N log(N )2

.

As a consequence, we have proven L p-control of the vorticity for t ≥ t∗N in terms of
‖ωN (·, t∗N )‖L p . In this section, we will bridge the gap [0, t∗N ] and prove short-time L p

control of the vorticity for the initial interval 0 ≤ t ≤ t∗N in terms of ‖ωN (·, 0)‖L p .
We will prove the following theorem,

Theorem 5.1 If ωN (·, 0) ∈ L p, 1 ≤ p < ∞, then there exists a sequence cN → 0
(depending only on the initial data and p), such that

‖ωN (·, t)‖L p ≤ (1 + cN ) ‖ωN (·, 0)‖L p + cN , for all t ∈ [0, t∗N ].

Proof This will follow from Lemma 5.2 for p = 1, Lemma 5.3 for 1 < p < 2 and
Lemma 5.4 for p > 2. For p = 2, the result follows from Proposition 4.2. ��
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To complete the proof of Theorem 5.1, we now consider the cases p = 1, 1 < p < 2
and 2 < p < ∞, separately. We begin by observing that

∂tωN = −PN (uN · ∇ωN ) + εN�ωN + εN�(RmN ∗ ωN ), (5.1)

implies that for any 1 ≤ p < ∞:

d

dt
‖ωN‖L p ≤ ‖PN (uN · ∇ωN )‖L p + εN‖�(RmN ∗ ωN )‖L p

≤ C log(N )2‖uN · ∇ωN‖L p + CεNm
2
N log(N )2‖ωN‖L p , (5.2)

for some constant C > 0. Setting δN :=CεNm2
N log(N )2, we note that δN → 0 and

δN ≥ 0 and we find

d

dt

(‖ωN‖L pe−δN t
) ≤ C log(N )2‖uN · ∇ωN‖L p . (5.3)

On the right-hand side, we have used the simple estimate e−δN t ≤ 1.
We will now estimate the nonlinear term separately for the different values of p.

We begin with the case p = 1.

Lemma 5.2 (Short-time L1-control) If ωN (·, 0) ∈ L1, then there exists a constant
C > 0 such that

‖ωN (·, t)‖L1 ≤ ‖ωN (·, 0)‖L1eδN t∗N + C‖u0‖2L2 [aN N log(N )2]t∗N ,

for all t ∈ [0, t∗N ]. Here δN → 0.

Proof We start by noting that

‖uN (t) · ∇ωN (t)‖L1 ≤ C‖uN (t)‖L2‖∇ωN (t)‖L2

≤ CN‖uN (t)‖L2‖ωN (t)‖L2 .

From the a priori L2-bounds for uN , ωN , we can furthermore estimate the right-hand
side by ‖uN (·, t)‖L2 ≤ ‖u0‖L2 , and

‖ωN (·, t)‖L2 ≤ ‖ωN (·, 0)‖L2 = ‖KaN ∗ ω0‖L2 ≤ CaN ‖KaN ∗ u0‖L2 ≤ CaN ‖u0‖L2 .

From (5.3), we now find

d

dt

(‖ωN (·, t)‖L1e−δN t
) ≤ CNaN log(N )2‖u0‖2L2 .

Integrating in time from 0 to t , we find, for some constant C ,

‖ωN (·, t)‖L1 ≤ ‖ωN (·, 0)‖L1eδN t + CNaN e
δN t log(N )2‖u0‖2L2 t .
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The right-hand side is uniformly bounded for t ∈ [0, t∗N ], by

‖ωN (·, t)‖L1 ≤ ‖ωN (·, 0)‖L1eδN t∗N + CNaN e
δN t∗N log(N )2‖u0‖2L2 t .

Furthermore, since δN t∗N → 0, we can absorb the (uniformly bounded) factor eδN t∗N
by increasing constant C , yielding the claimed estimate. ��
Lemma 5.3 If ωN (·, 0) ∈ L p, 1 < p < 2, then there exists a constant C > 0
(depending only on p and on the initial conditions), such that

‖ωN (·, t)‖L p ≤ ‖ωN (·, 0)‖L p exp
(
Caν(p)/2

N N log(N )2t∗N
)

,

for t ∈ [0, t∗N ].
Proof The nonlinear term can be estimated by

‖uN (t) · ∇ωN (t)‖L p ≤ C‖uN (t)‖L p∗ ‖∇ωN (t)‖L2 , (5.4)

with p∗ = 2p/(2− p) > p, chosen so that 1
p∗ + 1

2 = 1
p . Note that this p

∗ corresponds
precisely to the gain we can get by combining the Sobolev embedding W 1,p↪→L p∗

,
and theCalderon–Zygmund estimate for the singular integral operatormappingωN �→
uN ; namely

‖uN‖L p∗ ≤ C‖∇uN‖L p ≤ Cp‖ωN‖L p .

On the other hand, the L2-norm of ∇ωN can be estimated by

‖∇ωN (·, t)‖L2 ≤ N‖ωN (·, t)‖L2 ≤ N‖ωN (·, 0)‖L2 .

The last term can be estimated to yield

‖∇ωN (·, t)‖L2 ≤ Caν(p)/2
N N‖ω0‖L p .

Thus, the nonlinear term is bounded by

‖uN (t) · ∇ωN (t)‖L p ≤ Caν(p)/2
N N‖ω0‖L p‖ωN‖L p .

Referring to (5.3), we obtain

d

dt

(‖ωN‖L pe−δN t
) ≤ Caν(p)/2

N N log(N )2‖ω0‖L p‖ωN‖L p .

Since eδN t is uniformly bounded on [0, t∗N ], we can increase the constant C to find an
estimate

d

dt

(‖ωN‖L pe−δN t
) ≤ Caν(p)/2

N N log(N )2‖ω0‖L p
(‖ωN‖L pe−δN t

)
.
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The claimed estimate for ‖ωN‖L p now follows from Gronwall’s inequality. ��

Finally, we consider the case for p > 2.

Lemma 5.4 If ωN (·, 0) ∈ L p, 2 < p < ∞, then there exists a sequence cN → 0
(depending only on the initial conditions), such that

‖ωN (·, t)‖L p ≤ ‖ωN (·, 0)‖L p (1 + cN ) ,

for all t ∈ [0, t∗N ].

Proof For p > 2, the Sobolev embedding and Calderon–Zygmund inequality give

‖uN‖L∞ ≤ C‖∇uN‖L p ≤ Cp‖ωN‖L p .

Thus, the nonlinear term can be estimated as

‖uN · ∇ωN‖L p � ‖uN‖L∞‖∇ωN‖L p �p ‖ωN‖L p‖∇ωN‖L p � N‖ωN‖2L p .

Estimating the nonlinear term in (5.3) in this manner, we arrive at an estimate of the
form

d

dt

(‖ωN‖L pe−δN t
) ≤ CN

(‖ωN‖L pe−δN t
)2

,

where—once again—we have used that eδN t is uniformly bounded for t ∈ [0, t∗N ], to
include the additional factor e−δN t on the right-hand side. Upon integration in time, it
follows that

‖ωN (·, t)‖L pe−δN t ≤ ‖ωN (·, 0)‖L p

1 − CNt‖ωN (·, 0)‖L p
.

We can furthermore estimate the denominator using

‖ωN (·, 0)‖L p = ‖KaN ∗ ω0‖L p ≤ ‖KaN ‖L1‖ω0‖L p ≤ C log(N )2‖ω0‖L p ,

for some constant C . Since also t∗N � 1/(N log(N )2), it then follows that

‖ωN (·, t)‖L pe−δN t ≤ ‖ωN (·, 0)‖L p
eδN t∗N

1 − C‖ω0‖L p N log(N )2t∗N
≡ ‖ωN (·, 0)‖L p (1 + cN ) ,

where cN → 0 depends only on the initial data. ��
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6 Convergence Results

Combining Theorems 4.14 and 5.1 of the last two sections, we can now conclude that
the L p-norm of the vorticity can be uniformly controlled on compact intervals [0, T ].

Theorem 6.1 (Vorticity L p control) Let u0 ∈ L2(T2; R
2) be given initial data for the

incompressible Euler equations with vorticity ω0 ∈ L p(T2), 1 ≤ p < ∞. Let T > 0
be given. If the parameters for the spectral viscosity approximation ensure spectral
decay, then

‖ωN (·, t)‖L p ≤ (1 + o(1)) ‖ωN (·, 0)‖L p + o(1).

The o(1) error terms converge to 0 as N → ∞, uniformly for t ∈ [0, T ].
Remark 4 Wepoint out that Theorem6.1 provides a bound on the L p-normofωN (·, t),
in terms of the L p-norm of ωN (·, 0), rather than ω0. This is made necessary because
we include the case p = 1, for which the Fourier projection

PaN : L1 → L1, ω0 �→ PaN ω0

is not a bounded operator (while for 1 < p < ∞, it is). Instead, in the case p = 1,
a more careful approximation of the initial data needs to be made to ensure uniform
boundedness in L1 of the approximation sequence ωN with initial data ω0 ∈ L1, i.e.,
we cannot choose the initial data projection kernel KaN = DaN as the Dirichlet kernel,
in this case.

6.1 Convergence for!0 ∈ Lp(T2), 1 < p < ∞

With a suitable choice of the parameters, we can now prove convergence for initial
vorticity ω0 ∈ L p:

Theorem 6.2 If ω0 ∈ L p(T2) with 1 < p < ∞, and if the approximation parameters
ensure spectral decay, then the approximants uN obtained by solving (2.4) converge—
possibly up to the extraction of a subsequence—strongly in C([0, T ]; L2(T2; R

2)) to
a limit u that is a weak solution of incompressible Euler equations. Furthermore, the
L p-norms of the approximants are uniformly bounded ‖ωN (·, t)‖L p ≤ C, and we
have the estimate

‖ω(·, t)‖L p ≤ ‖ω0‖L p , (6.1)

for almost all t ∈ [0, T ].
Proof By Theorem 6.1, the L p-norm of the vorticity satisfies a uniform bound

‖ωN (·, t)‖L p ≤ (1 + cN )‖ωN (·, 0)‖L p + cN ,
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for t ∈ [0, T ], where cN → 0. Additionally, since we have ωN (·, 0) = KaN ∗ ω0 it
follows that

‖ωN (·, 0) − ω0‖L p → 0,

if KaN = DaN is the Dirichlet kernel, corresponding to Fourier projection onto the
first aN modes (this relies on 1 < p < ∞), or KaN is another kernel satisfying similar
properties. In particular, it follows that

‖ωN (·, 0)‖L p → ‖ω0‖L p .

So we have a uniform L p-bound on the vorticity, implying the existence of a conver-
gent subsequence of uN to a weak solution of the incompressible Euler equations by
Corollary 3.5.

Next, we note that the space L∞([0, T ]; L p(T2)) is the dual of L1([0, T ]; Lq(T2)),
where 1 < q < ∞ is chosen such that 1

p + 1
q = 1. The latter space being separable

(here,we use 1 < p < ∞), we can apply the sequential version of theBanach–Alaoglu
theorem to the uniformly bounded sequence {ωN }N∈N. Therefore, passing to a further
subsequence if necessary, we can assume that ωN

∗
⇀ω in L∞([0, T ]; L p(T2)). It then

follows that

ess sup
t∈[0,T ]

‖ω(·, t)‖L p ≤ lim sup
N→∞

ess sup
t∈[0,T ]

‖ωN (·, t)‖L p ≤ ‖ω0‖L p ,

from the weak-∗ lower semicontinuity of the norm. ��

6.2 The Case p = 1 and Delort Solutions

In the last section, we have established convergence results for the numerical approx-
imation for initial data u0 with vorticity ω0 = curl(u0) ∈ L p, for 1 < p < ∞. This
essentially amounted to proving that the vorticity of the numerical approximation ωN

remains uniformly bounded in L p, as N → ∞. Convergence then follows from com-

pactness arguments, using the fact that we have a compact embedding L p c
↪→ H−1.

However, this compactness of the embedding is no longer true, in the case p = 1. Due
to the a priori L2 bound on uN , we still have that ωN ∈ H−1 is uniformly bounded.
However, since L1 is not reflexive, a uniform bound ‖ωN‖L1 ≤ M does not guar-
antee that we can pass (in a weak sense) to a limit ωN → ω with ω ∈ L1. Instead,
the limiting object might be a (signed) measure. We will denote the space of finite,
nonnegative Radon measures on T

2 by M+, in the following.
In this section, we will prove convergence for initial data ω0 = ω′

0 + ω′′
0 ∈ H−1,

where ω′
0 ∈ M+ is a nonnegative measure, and ω′′

0 ∈ L1. Our proof of convergence
will rely on the following fact, first (implicitly) established by Delort [6], and later
explicitly pointed out by Vechhi and Wu [46], see also the discussion in [38].

Theorem 6.3 (Delort [6], Vecchi and Wu [46], Shochet [38]) Let ωN (x, t) be a
sequence of vorticities, satisfying the following conditions:
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(i) ‖ωN (·, t)‖H−1 ≤ M, uniformly for t ∈ [0, T ],
(ii) ‖ωN (·, t)‖L1 ≤ M, uniformly for t ∈ [0, T ],
(iii) for all ε > 0, there exists δ > 0, such that

|A| < δ �⇒
∫

A
ωN ,−(·, t) dx < ε, ∀t ∈ [0, T ], ∀ N ∈ N

where ωN ,−:=max(0,−ωN ) ≥ 0 denotes the absolute value of the negative
part of ωN .

Then, there exists a subsequence (not reindexed), and a measure ω ∈ (M+ + L1
) ∩

H−1, such that ωN⇀ω in the sense of measures. Furthermore, for the corresponding
sequence of velocities uN = (u1N , u2N ), one has uN⇀u weakly in L2, and

{
u1Nu

2
N → u1u2,

(
u1N

)2 − (
u2N

)2 → (
u1

)2 − (
u2

)2

}

in D′([0, T ] × T
2). (6.2)

In particular, under the assumptions of this theorem, this implies that one can pass
to the limit in the nonlinear terms of the weak form of the incompressible Euler
equations (in primitive formulation), i.e., for any divergence-free test function φ ∈
C∞([0, T ] × T

2; R
2), we have

∫ T

0

∫

T2
(uN ⊗ uN ) : ∇φ dx dt →

∫ T

0

∫

T2
(u ⊗ u) : ∇φ dx dt .

For initial data u0 ∈ L2, the uniform H−1-bound on the vorticity is easily estab-
lished. The uniform L1-bound on the vorticity has been established in Theorem 6.1,
provided that ωN (·, 0) remains uniformly bounded in L1. This is a nontrivial issue:
For initial data ω0 ∈ M+ ∩ H−1 (or indeed ω0 ∈ L1), the direct Fourier projections
PNω0 may not necessarily be bounded in L1, since ‖PN‖L1→L1 ∼ log(N )2. In this
case, it is therefore necessary to be more careful in the approximation of the initial
data. A discussion of one possible way to obtain suitable approximations of the initial
data will now be given.

Remark 5 The uniform L1-boundedness of the sequence requires an initial approxi-
mation for which the vorticity does not only converge in H−1, but also in the sense
of (signed) measures with a uniform L1-bound. One way to ensure L1 boundedness
is as follows: Fix a mollifier ψ ∈ C∞ with support in a unit ball B1(0), say. Denote
ψρ(x) := ρ−2ψ(x/ρ). We obtain the initial data for the numerical approximation by
convolution with a smoothing kernel ω0 �→ ψρ ∗ ω0 and subsequently project to the
lowest Fourier modes ≤ N , viz.

ω0 �→ DN ∗ (ψρ ∗ ω0) = (
DN ∗ ψρ

) ∗ ω0,

where DN (x) = ∑
|k|∞≤N exp(ik · x) is the Dirichlet kernel. Since ψρ is smooth, we

are assured that DN ∗ψρ → ψρ uniformly as N → ∞ (for fixed ρ > 0). In particular,
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it follows that ‖DN ∗ ψρ‖L1 → ‖ψρ‖L1 . The idea is now to choose a sequence ρN ,
such that N � ρ−1

N (i.e., such that the convolution kernel is asymptotically resolved
by the numerical approximation). If the convolution is adequately resolved, then we
would expect that KN :=DN ∗ ψρN is a suitable kernel to ensure convergence of the
initial data.

Proposition 6.4 Let Ψ ∈ C∞
c (R2) be a nonnegative function,

∫

R2 Ψ (x) dx = 1, and
assume that Ψ is compactly supported in (−π, π)2. Define Ψρ :=ρ−2Ψ (x/ρ), a com-
pactly supportedmollifier. Letψρ be the periodization ofΨρ , such that we can consider
ψρ as an element in C∞(T2). Let KN :=DN ∗ ψρN for some sequence ρN → 0. If
ρN ∼ N−1+δ with δ > 0, then KN is a good kernel, in the sense that KN ∗φ → φ for
all φ ∈ C∞(T2), and there exists a constant C, such that ‖KN‖L1 ≤ C. In addition,
we have

‖ψρN − KN‖L1 → 0, as N → ∞.

Proof We can associate with Ψρ an element of ψρ ∈ C∞(T2), by considering the
periodization

ψρ(x) =
∑

n∈Z2

Ψρ(x + 2πn).

We now recall that the Fourier coefficients of ψρ are given by evaluating the Fourier

transform (̂Ψρ)(ξ) ∈ C∞(R2) at integer points [42, Chap. VII, Theorem 2.4]:

(̂ψρ)k = (̂Ψρ)(k) = Ψ̂ (ρk), k ∈ N
2.

Next, we note that

‖ψρ − DN ∗ ψρ‖L1 =
∫

T 2

∣
∣
∣
∣

∑

|k|∞>N

(̂ψρ)ke
ik·x

∣
∣
∣
∣ dx

=
∫

T 2

∣
∣
∣
∣

∑

|k|∞>N

Ψ̂ (ρk)eik·x
∣
∣
∣
∣ dx

≤ C

⎛

⎝
∑

|k|∞>N

|Ψ̂ (ρk)|2
⎞

⎠

1/2

.

Since Ψ is a Schwartz function, also its Fourier transform Ψ̂ is a Schwartz function.
In particular, it follows that for any integer m > 0 there exists a constant Cm > 0,
such that, e.g., |Ψ̂ (ξ)| ≤ Cm |ξ |−m , for all ξ ∈ R

2. But then

‖ψρ − DN ∗ ψρ‖L1 � ρ−m

⎛

⎝
∑

|k|∞>N

|k|−2m

⎞

⎠

1/2

∼ ρ−mN−(m−1).
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In particular, if ρN ∼ N−1+δ with δ > 0, then ρ−m
N N−(m−1) ∼ N 1−δm . Choosing

now m sufficiently large such that 1 − δm < 0, it follows that

‖ψρN − KN‖L1 = ‖ψρN − DN ∗ ψρN ‖L1 → 0,

and, hence also

‖KN‖L1 ≤ ‖ψρN ‖L1 + ‖ψρN − KN‖L1 = ‖ψ‖L1 + o(1),

is uniformly bounded by some constant C . ��
We make the following

Definition 6.5 Wewill say that the SV method has suitably approximated initial data,
if ωN (·, 0) = KaN ∗ ω0 is obtained by convolution with a kernel KN as described in
Proposition 6.4.

The following proposition gives us some control on the negative part ωN ,−:=max
(0,−ωN ) of ωN , if the initial approximation is chosen as in Proposition 6.4:

Proposition 6.6 Consider initial data ω0 = ω′
0 + ω′′

0 ∈ H−1, where ω′
0 ∈ M+

is a finite nonnegative measure and ω′′
0 ∈ L1. If ωN (·, 0) is obtained as suitably

approximated initial data for the SV method, then for any ε > 0, there exists c > 0
and N0 ∈ N, such that

∫

T2

[ωN (·, 0) + c]− dx < ε, ∀ N ≥ N0.

Remark 6 Note that [ωN (·, 0) + c]− �= 0, only on the set {x | ωN (x, 0) < −c}. The
above proposition therefore gives us some control on the size of the negative part of
the approximation ωN . The proposition will be used below to show that the negative
vorticity cannot concentrate on small sets.

Proof Note that w �→ [w]− :=max(0,−w) is convex, homogenous and bounded
from above by |w|. From these properties, it follows that

[ωN (·, 0) + c]− ≤ |ωN (·, 0) − ψρN ∗ ω0| + [
ψρN ∗ ω0 + c

]

− .

Next, note that ψρN ≥ 0 and c > 0 implies that

[
ψρN ∗ ω0 + c

]

−

(ω′
0≥0)
↓≤ [

ψρN ∗ ω′′
0 + c

]

−

(Jensen)
↓≤ ψρN ∗ [

ω′′
0 + c

]

− .

Therefore, we obtain upon spatial integration, using also that
∫

T2 ψρN dx = 1:

∫

[ωN (·, 0) + c]− dx ≤ ‖ωN (·, 0) − ψρN ∗ ω0‖L1 +
∫

T2

[
ω′′
0 + c

]

− dx .
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Since ω′′
0 ∈ L1, we can now choose c > 0 large enough to ensure that the second term

is smaller than ε/2. From the estimate

‖ωN (·, 0) − ψρN ∗ ω0‖L1 = ‖(KN − ψρN ) ∗ ω0‖L1

≤ ‖KN − ψρN ‖L1‖ω0‖M,

and the fact that ‖KN − ψρN ‖L1 → 0, by Proposition 6.4, we can find N0 ∈ N, such
that ‖ωN (·, 0) − ψρN ∗ ω0‖L1 < ε/2. For this choice of c > 0 and N0 ∈ N, we then
have

∫

[ωN (·, 0) + c]− dx < ε, for all N ≥ N0. ��
The next goal is to show that the result of Proposition 6.6 remains true also at

later times t > 0. To this end, we first show the following improvement on the mere
L1-boundedness implied by Theorem 6.1.

Proposition 6.7 Let φ ∈ C1 be a convex function, such that

∣
∣φ′(ω)

∣
∣ ≤ D,

for some constant D. If there exists a constant M, such that

∫

|ωN (·, 0)| dx ≤ M, for all N ∈ N,

then the numerical solutions ωN (x, t) (computed with parameters ensuring spectral
decay) satisfy, in addition

∫

φ(ωN (·, t)) dx ≤
∫

φ(ωN (·, 0)) dx + cN , for t ∈ [0, T ], (6.3)

with a sequence cN converging to zero, cN → 0. Furthermore, the sequence cN
depends on φ only via the constant D, i.e., the bound on |φ′|.
Proof The proof again relies on a combination of a short-time estimate on the interval
[0, t∗N ], combined with the spectral decay estimate for t ≥ t∗N . For the short-time
estimate, we multiply the evolution Eq. (5.1) by φ′(ωN ) and integrate by parts to find,
cp. Eq. (5.2):

d

dt

∫

T2
φ(ωN ) dx ≤ −〈φ′(ωN ),PN (uN · ∇ωN )〉

+ 〈φ′(ωN ), εN�(RmN ∗ ωN )〉.

The second term can be estimated (Lemma 4.13), by

〈φ′(ωN ), εN�(RmN ∗ ωN )〉 ≤ DεNm
2
N log(N )2‖ωN‖L1 .
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By Theorem 6.1, there exists a constant C > 0 depending only on the initial data,
such that we have a uniform bound

‖ωN (·, t)‖L1 ≤ C‖ωN (·, 0)‖L1 + C ≤ C(1 + M),

where the second inequality follows from the assumption of the current proposition.
This implies that the second term can be bounded by a constant, uniformly in N .
Estimating the nonlinear term as in the proof of Lemma 5.3, we can then find a
constant C > 0, depending on the initial data (but independent of φ and N ), such that

d

dt

∫

φ(ωN ) dx ≤ CDNaN log(N )2.

In particular, this implies that for 0 ≤ t ≤ t∗N :
∫

φ(ωN (·, t)) dx ≤
∫

φ(ωN (·, 0)) dx + CDNaN log(N )2t∗N︸ ︷︷ ︸
→0 (as N→∞)

.

Again, we note that the last term on the right-hand side converges to 0, by assumption
on the parameters ensuring spectral decay (check from Definition 4.11).

To finish the proof, we observe that for t ≥ t∗N , we find from the evolution equation
for ωN , Eq. (2.10):

d

dt

∫

T2
φ(ωN ) dx ≤ 〈φ′(ωN ), (I − PN )(uN · ∇ωN )〉

+ 〈φ′(ωN ), εN�(RmN ∗ ωN )〉.

The two terms on the right-hand side can be estimated as

〈φ′(ωN ), (I − PN )(uN · ∇ωN )〉 ≤ D‖(I − PN )(uN · ∇ωN )‖L1 .

By Lemma 4.12, there exists a constantC > 0 depending only on the initial data, such
that ‖(I − PN )(uN · ∇ωN )‖L1 ≤ CN−1. It now follows that

d

dt

∫

T2
φ(ωN ) dx ≤ CD(N−1 + εNm

2
N log(N )2)

︸ ︷︷ ︸
→0 (as N→∞)

,

for some constant C , independent of N and φ. Integrating in time, it now follows that
for t ∈ [t∗N , T ]:

∫

T2
φ(ωN (·, t)) dx ≤

∫

T2
φ(ωN (·, t∗N )) dx + c(1)

N

≤
∫

T2
φ(ωN (·, 0)) dx + c(1)

N + c(2)
N ,
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with

c(1)
N :=CD(N−1 + εNm

2
N log(N )2)T → 0, (as N → ∞).

and

c(2)
N :=CDNaN log(N )t∗N → 0, (as N → ∞),

This proves the claim with cN :=c(1)
N + c(2)

N . ��

Lemma 6.8 If ωN is obtained from the SV method, with suitably approximated initial
data and parameters ensuring spectral decay, then for any ε > 0, there exists a c > 0
and N0 ∈ N, such that

∫

T2
[ωN (·, t) + c]− dx < ε, for all t ∈ [0, T ], and for all N ≥ N0.

Proof By Proposition 6.4, there exists c > 0 and N0 ∈ N, such that at time t = 0:

∫

T2
[ωN (·, 0) + c]− dx < ε/2, for all N ≥ N0.

Next, we approximate φ(ξ):= [ξ + c]− by a family of smooth functions φε , ε → 0
(e.g., by mollifying), with

∣
∣φ′

ε

∣
∣ ≤ 1. It follows from a Proposition 6.7 that there exists

a sequence cN → 0, such that for any t ∈ [0, T ]:
∫

φε(ωN (·, t)) dx ≤
∫

φε(ωN (·, 0)) dx + cN ,

where cN is independent of ε. Therefore, passing to the limit ε → 0, it follows that

∫

[ωN (·, t) + c]− dx ≤
∫

[ωN (·, 0) + c]− dx + cN .

By assumption on our choice of c > 0, the first term on the right-hand side is bounded
by ε/2 for all N ≥ N0. Since the second term converges to 0, we can find a larger
N0 ∈ N if necessary, so that also cN < ε/2 for all N ≥ N0. For such a choice of N0,
we conclude that

∫

[ωN (·, t) + c]− dx < ε, for all t ∈ [0, T ] and N ≥ N0. ��

As a consequence of Lemma 6.8, we now prove that the sequence ωN ,− satisfies
the equi-integrability property (iii) of Theorem 6.3.
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Lemma 6.9 Under the assumptions of Lemma 6.8, the sequence ωN ,− is uniformly
equi-integrable on [0, T ], in the following sense: For all ε > 0, there exists a δ > 0,
such that

|A| < δ �⇒
∫

A
ωN ,−(·, t) dx < ε, for all N , and t ∈ [0, T ]. (6.4)

Proof Let ε > 0. We have to find δ > 0, such that (6.4) is satisfied. By Lemma 6.8,
there exists c > 0 and N0 ∈ N, such that

∫

T2
[ωN (·, t) + c]− dx < ε/2,

for all N ≥ N0 and t ∈ [0, T ]. We now observe that for any subset A ⊂ T
2, we have

∫

A
ωN ,−(·, t) dx ≤

∫

A

(
c + [ωN (·, t) + c]−

)
dx = c|A| +

∫

A
[ωN (·, t) + c]− dx .

Since the second term is smaller than ε/2 by our choice of c, it now suffices to choose
δ < ε/(2c), to find

|A| < δ �⇒
∫

A

∣
∣ωN ,−(·, t)∣∣ dx < ε, for all N ≥ N0, and all t ∈ [0, T ].

On the other hand, let M := supN<N0
‖ωN‖L∞([0,T ]×T2). Note that for N =

1, . . . , N0 −1, each ωN is a smooth function on [0, T ]×T
2. In particular, this implies

that M < ∞ is finite. Choosing now δ < ε/M , it follows that we also have

|A| < δ �⇒
∫

A
ωN ,−(·, t) dx < ε, for N = 1, . . . , N0 − 1, and for t ∈ [0, T ].

This proves the claim. ��
Theorem 6.10 Let ωN be obtained by solving the approximate Euler equations, with
parameters ensuring spectral decay, and suitably approximated initial data obtained
from ω0 = ω′

0 + ω′′
0 ∈ H−1, where ω′

0 ∈ M+ and ω′′
0 ∈ L1. Then, the sequence

uN converges weakly (up to the extraction of a subsequence) to a weak solution
u ∈ L2 of the Euler equations. Furthermore, the limiting vorticity ω is an element
of ω ∈ (M+ + L1) ∩ H−1, i.e., ω can be written as a sum ω = ω+ + ω−, where
ω+(·, t) ∈ M+ is a finite, nonnegative measure on T

2, and ω−(·, t) ∈ L1(T2).

Proof By Proposition 4.1, we have ‖uN (·, t)‖L2 ≤ ‖u0‖L2 for all N and t ∈ [0, T ].
Therefore, there exists a subsequence uN , and u ∈ L∞([0, T ]; L2(T2; R

2)), such
that uN⇀u weakly in L2([0, T ] × T

2). By Theorem 6.1, the associated sequence
of vorticities ωN satisfies uniform bounds ‖ωN (·, t)‖L1 ≤ M , for all t ∈ [0, T ].
By Lemma 6.9, we also have uniform equi-integrability. From this, it then follows
that the relevant nonlinear terms in the incompressible Euler equations converge in
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the sense of distributions, according to Delort’s result (Theorem 6.3). Thus, from the
weak consistency of the spectral approximation (cp. Theorem 4.3), we conclude that
uN⇀u in L2 and that u is a weak solution of the incompressible Euler equations.

Furthermore, since thenonnegative partsωN ,+ are uniformlybounded in L1([0, T ]×
T
2), we can extract a subsequence of ωN ,+ dx dt , converging weakly in the sense

of measures to a limiting measure ω+ ≥ 0. Since the sequence ωN ,+ is uniformly
bounded in L∞([0, T ]; L1(T2)), there exists a constant M , such that for any t1 < t2,
t1, t2 ∈ [0, T ]:

∫

(t1,t2)×T2
dω+ ≤ lim inf

N→∞

∫ t2

t1

∫

T2
ωN ,+ dx dt ≤ M(t2 − t1).

In particular, it follows that ω+ is “absolutely continuous with respect to dt ,” in the
sense that we can disintegrate ω+ = ω+(·, t) dt , with ω+(·, t) a finite, nonnegative
measure on T

2 for t ∈ [0, T ], and for any f ∈ C(T2), the mapping

t �→
∫

T2
f (x) dω+(t)

is Lebesgue-measurable.
On the other hand, by the equi-integrability of the negative parts ωN ,−, the

Dunford–Pettis theorem A.5 now implies that the sequence ωN ,− is weakly compact
in L1([0, T ] × T

2). Furthermore, we again have for any t1 < t2, with t1, t2 ∈ [0, T ]:
∫ t2

t1

∫

T2
ωN ,− dx dt ≤ M(t2 − t2).

Passing to the limit N → ∞ (employing weak compactness, ωN ,−⇀ω− in L1, and
possibly after the extraction of a further subsequence), it follows that also

∫ t2

t1

∫

T2
ω− dx dt ≤ M(t2 − t2).

Hence,we conclude that
∫

T2 ω−(x, t) dx ≤ M for almost all t ∈ [0, T ]. Sinceω− ≥ 0,
this implies in particular that ω− ∈ L∞([0, T ]; L1(T2)).

Using finally the uniform a priori bound

‖ωN (·, t)‖H−1 ≤ ‖uN (·, t)‖L2 ≤ ‖u0‖L2 ,

we conclude that the numerical approximation converges to a Delort-type solution
with limiting vorticity ω(·, t) = ω+(·, t) + ω−(·, t) ∈ (M+ + L1) ∩ H−1. ��
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7 Numerical Experiments

In this section, we will present a suite of numerical experiments to illustrate the con-
vergence results proved in the last section. We start with a brief description of some
essential details of the implementation of the spectral viscosity method.

7.1 Numerical Implementation

We use an implementation of the spectral viscosity method (2.4), (2.8), based on
the SPHINX code, presented in [24]. The nonlinear term in (2.8) is implemented via
O(N 2 log N )-costly fast Fourier transforms. Aliasing is avoided by the use of a padded
grid, employing the two-thirds rule [24]. This implies that if our computation includes
all Fourier modes ranging over |k|∞ ≤ N , then the corresponding pseudo-spectral
grid (without de-aliasing) would have grid points xψ

i, j :=(i, j)/NG , with NG :=2N and
i, j ∈ {0, . . . , NG − 1}. On the other hand, the padded grid with de-aliasing will have
grid points xP

k,� = (k, �)/(3NG/2), where k, � ∈ {0, . . . , 3NG/2}. In the SPHINX
code, the spectral scheme is implemented in the primitive formulation (2.8). Time
stepping is performed with an adaptive, explicit third-order Runge–Kutta scheme. We
remark also that in the numerical implementation, the domain has been chosen to be a
torus of unit periodicity, T 2 = [0, 1]2, rather than T

2 = [0, 2π ]2. Clearly, the results
of the previous sections remain true, up to rescaling.

For our simulations, the diffusion parameter εN in (2.8) is chosen to be of the form
εN = ε/NG = ε/(2N ), where ε is a fixed constant. This scaling for εN with N has
been found to be sufficient to cause the required decay of the highest Fourier modes,
to ensure vorticity control.

It has been suggested in [43] (in the context of theBurgers equation) that the numeri-
cal stability of the SVmethod is greatly enhanced in practice, if the Fourier coefficients
Q̂k are smooth functions of k. Therefore, for all following simulations carried out with
the spectral viscosity method, we have set Q̂k as a smooth cutoff function of the form

Q̂k = 1 − exp
(− (|k|/k0)α

)
,

where k0 = N/3 (or k0 = N/8), and α = 18. The coefficients Q̂k so obtained are
depicted in Fig. 1a, as a function of |k|/N . We remark that for |k| = 0.1 N , we have
Q̂k < 10−9, whereas for |k| = 0.4 N , we find Q̂k > 1 − 10−11. For all practical
purposes, this implies that mN ≈ 0.1 N and that Q̂k effectively changes from 0 to
1 over the interval |k| ∈ [mN , 4mN ] (rather than over the interval [mn, 2mN ]). As
has already been noted in Remark 1, the choice of a factor 2 is not essential for the
theoretical results established in the previous sections.

7.2 Sinusoidal Vortex Sheet

In our first numerical experiment, we consider approximations to a vortex sheet, i.e.,
vorticity concentrated along curves in the two-dimensional periodic domain. In par-
ticular, we take initial data of the following form:
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Fig. 1 Coefficients defining the SV projection (left) and mollifier used in the approximation of the vortex
sheet initial data (right)

ω0(x):=δ(x − Γ ) −
∫

T 2
dΓ .

Note that we have added a second term to ensure that
∫

ω0 dx = 0. We define the
curve Γ as the graph Γ :={ (x1, x2) | x1 ∈ [0, 1], x2 = d sin(2πx1) }, and we choose
d = 0.2. We define a mollifier as the following third-order B-spline

ψ(r):= 80

7π

[
(r + 1)3+ − 4(r + 1/2)3+ + 6r3+ − 4(r − 1/2)3+ + (r − 1)3+

]
.

The mollifier is depicted in Fig. 1b. We define ψs(x):=s−2ψ(|x |/s). The numerical
approximation to the above initial data is obtained by setting

ωN (xi, j , 0):=(ω0 ∗ ψρN )(xi, j ),

where ρN determines the thickness (smoothness) of the approximate vortex sheet, and
xi, j , i, j ∈ {1, . . . , NG} denote the grid points. The convolution at a point x ∈ T

2 is
computed by numerical quadrature:

(ω0 ∗ ψρN )(x) =
∫

ψρN (x − y) dΓ (y)

=
∫ 1

0
ψρN ( x − (ξ, g(ξ)) )

√

1 + |g′(ξ)|2 dξ

≈ ρN

M

M∑

i=−M

ψρN ( x − (ξi , g(ξi )) )

√

1 + |g′(ξi )|2,

where ξi = x1 + iρN/M are equidistant quadrature points in x1, and g(ξ) =
d sin(2πξ), g′(ξ) = 2πd cos(ξ). The additional factor

√
1 + |g′(ξ)|2 is the length

element along the graph ξ �→ (ξ, g(ξ)). For our simulations, we have used M = 400.
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Fig. 2 Numerical approximation of the initial data (vorticity) for the smoothened (fat) vortex sheet with
ρN = 0.05, at three different spectral resolutions

Fig. 3 Evolution in time for the smoothened vortex sheet with the pure spectral method, i.e., (ε, ρ) =
(0, 0.05), on the highest resolution of NG = 2048 Fourier modes

7.2.1 Smoothened (Fat) Vortex Sheet

First,we consider a smoothenedvortex sheet,whereρN is a fixed constant, independent
of N . Consequently, the resulting vorticity is smooth. The initial data (on a sequence
of successively finer resolutions) are shown in Fig. 2. As seen from the figure, we
have already resolved the vorticity at 512 Fourier modes (in each direction). Hence,
this test case can serve as a benchmark for the performance of the spectral viscosity
method when the initial data (and solution) are smooth.

We approximate the solution of the two-dimensional Euler equations with these
initial data with two variations of the spectral viscosity method. To this end, we first
consider the pure spectral method by setting ε = 0 in (2.8). This is justified as the
initial data are smooth and the classical convergence theory (see [1]) holds for the
spectral method, without any added viscosity. In Fig. 3, we present the evolution of
this smoothened vortex sheet over time, at the highest resolution of NG = 2048Fourier
modes. As seen from this figure, the initial (fat) vortex sheet has started folding by the
time t = 0.4 and has folded into two distinct vortices at time t = 0.8.

The convergence of the pure spectral method in this case is presented in Fig. 4
where we present the approximated vorticities, at time t = 1, on three different levels
of resolution. From this figure, we observe that the pure spectral method appears to
converge and the vorticity is very well resolved, already at a resolution of N = 512
Fourier modes. This convergence can be quantified by computing the following L2-
error (of the velocity field):
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Fig. 4 Numerical approximations at three different spectral resolutions of the smoothened vortex sheet with
the pure spectral method, i.e., (ε, ρ) = (0, 0.05), at time t = 1

Fig. 5 Results for the smoothened vortex sheetwith thewith the pure spectralmethod, i.e., (ε, ρ) = (0, 0.05)
at time t = 1. a Error of the approximate velocity field (7.1) in L2. b Energy spectrum (7.2) for the highest
resolution of NG = 2048 at different times

ENG (t):=‖uNG (·, t) − uNG,max(·, t)‖L2 , (7.1)

Here, NG,max = 2048 and uNG is the velocity field computed at resolution NG (grid
size). In other words, we compute error with respect to a reference solution computed
on a very fine grid. This error (as a function of resolution) is plotted in Fig. 5a. We
observe from this figure that there is convergence with respect to increasing spectral
resolution and the errors are already very low at resolutions of approximately 512
Fourier modes. We further analyze the performance of the numerical method by com-
puting the Fourier energy spectrum of ωN at the highest resolution, which we define
by

E(κ):=
∑

|k|∞=κ

|ω̂k|2. (7.2)

The spectrum (for three different times) is shown in Fig. 5b and shows that the bulk of
the energy (with respect to the vorticity) is concentrated in the lowFouriermodes (large
scales). Moreover, this spectrum decays very fast and there is almost no contribution
from the high Fourier modes. This is along expected lines as the underlying solution
is smooth.
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Fig. 6 Numerical approximations at three different spectral resolutions of the smoothened vortex sheet with
the spectral viscosity method, i.e., (ε, ρ) = (0.05, 0.05), at time t = 1

Fig. 7 Results for the smoothened vortex sheet with the with the spectral viscosity method, i.e., (ε, ρ) =
(0.05, 0.05) at time t = 1. a Error of the approximate velocity field (7.1) in L2. b Energy spectrum (7.2)
for the highest resolution of NG = 2048 at different times

Next, we approximate solutions of the two-dimensional Euler equations with the
smoothened vortex sheet initial data, but with a spectral viscosity method, i.e., with
parameters described at the beginning of this section, in particular with ε = 0.05 and
the cutoff parameter k0 = N/3. The computed vorticities (for successively refined
spectral resolutions) at time t = 1 are shown in Fig. 6. As seen from this figure, the
computed vorticities look almost indistinguishable from the vorticities computed with
the pure spectral method (compare with Fig. 4). This is further corroborated by the
computed energy spectrum (7.2), shown in Fig. 7b, which is also indistinguishable
from the pure spectral case (Fig. 5b). Moreover, we plot the L2 error of the velocity
(7.1) in Fig. 7a and observe that the method converges with increasing resolution.
Furthermore, the convergence is cleaner than the one seen for the pure spectral method
case (compare Fig. 7a with Fig. 5a). This suggests that adding a little bit of viscosity
in the higher modes (as we do with the spectral viscosity method) might improve
observed convergence, even for underlying smooth solutions.

7.2.2 Singular (Thin) Vortex Sheet

Next, we consider the initial data which belong to the Delort class by setting ρN =
ρ/NG = ρ/(2N ), where ρ is a fixed constant. In particular, this implies that the
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Fig. 8 Numerical approximation of the initial data (vorticity) for the singular vortex sheet with ρN = 10/N ,
at three different spectral resolutions. Compare with the smoothened vortex sheet of Fig. 2

Fig. 9 Evolution in time for the singular (thin) vortex sheet with the vanishing viscosity method, i.e.,
(ε, ρ) = (0.05, 10), on the highest resolution of NG = 2048 Fourier modes

vortex sheet becomes thinner with increasing resolution, in contrast to the case of the
smoothened (fat) vortex sheet (Fig. 2). This can also be observed fromFig. 8, wherewe
depict the initial data, for successively increasing resolutions and ρ = 10. Moreover,
these initial data are well approximated, as stipulated by the theory presented in the
last section.

It is clear that a pure spectral method will not suffice in this case. In fact, our
numerical experiments showed that the pure spectral method was unstable. Hence, we
have to use the spectral viscosity method to approximate the solutions in this case.
At the first instance, we consider a spectral viscosity method with the parameters,
θ = 0 in (4.17) and ε = 0.05. We remark that this particular case of the spectral
viscosity method corresponds to a vanishing viscosity method as a Navier–Stokes-
type viscous damping is applied to every (even low) Fourier mode, i.e., mN = 0 in
(2.8). Consequently, this method will only be (formally) first-order accurate. On the
other hand, it can be expected to be more stable than just applying viscous damping
to the high Fourier modes. The evolution of the approximate vortex sheet in time at
the highest resolution of NG = 2048 Fourier modes is shown in Fig. 9. We observe
from this figure that as in the case of the smoothened vortex sheet, the initial vortex
sheet rolls up and spirals around two vortices, but with structures that are considerably
thinner than in the case of the smoothened vortex sheet (compare with Fig. 3).

The convergence of the numerical method is investigated qualitatively in Fig. 10.
where we plot the computed vorticities at time t = 1 at three successively finer
resolutions and observe convergence as the resolution is increased. However, we do
notice that by time t = 1, there are small-wave-like instabilities that are developing
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Fig. 10 Numerical approximations at three different spectral resolutions of the singular vortex sheet with
the vanishing viscosity method with (ε, ρ) = (0.05, 10), at time t = 1

Fig. 11 Results for the singular (thin) vortex sheet with the with the vanishing viscosity method, i.e.,
(ε, ρ) = (0.05, 10) at time t = 1. a Error of the approximate velocity field (7.1) in L2. b Energy spectrum
(7.2) for the highest resolution of NG = 2048 at different times

along both spiral arms of the rolled-up sheet. Nevertheless, these structures do not seem
to impede convergence in L2 norm, which is depicted in Fig. 11a. We also plot the
computed spectrum (7.2) in Fig. 11b. We see from this figure that the spectrum, even
for the initial data, decays much more slowly with wave number, when compared
to the smoothened vortex sheet (Fig. 5b). Nevertheless, there seems to be enough
dissipation in the system to damp the spectrum at high wave numbers and enable a
stable computation of the vortex sheet.

Next, we approximate the singular vortex sheet with a spectral viscosity method,
as described in Sect. 7.1. As for the smoothened vortex sheet, we consider a cutoff
parameter k0 = N

3 and viscosity parameter ε = 0.05. The time evolution of the
computed vorticity with this scheme is shown in Fig. 12. In contrast to the situation
for the vanishing viscositymethod (Fig. 9), there is amarked appearance of instabilities
in the form of small-wave-like structures along the spiral arms by time t = 0.4. By a
later time of t = 0.8, these structures evolve into a large number of small vortices and
the whole sheet breaks up into small-scale structures. The spontaneous emergence of
these small-scale numerical instabilities clearly impedes convergence of this version
of the spectral viscosity method. This lack of convergence is seen from Fig. 13 where
plot the approximate vorticities, computed with this spectral viscosity method at time
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Fig. 12 Evolution in time for the singular (thin) vortex sheet with the spectral viscosity method, i.e.,
(ε, ρ, k0) = (0.05, 10, N/3), on the highest resolution of NG = 2048 Fourier modes

Fig. 13 Numerical approximations at three different spectral resolutions of the singular vortex sheet with
the spectral viscosity method with (ε, ρ, k0) = (0.05, 10, N/3), at time t = 1

t = 1, at three successively finer mesh resolutions. From this figure, we observe that
although the computed vortex sheet is stable at a moderate resolution of 512 Fourier
modes, it starts becoming unstable at the next level of refinement, i.e., N = 1024
Fourier modes, with the appearance of small vortices along the outer spiral arms.
These vortices appear to break up into even smaller structures at the finest level of
refinement, i.e., N = 2048 and the whole sheet disintegrates into a soup of small
incoherent vortices. The lack of convergence (at least at later times) is also observed
from Fig. 14a where we plot the L2 error (7.1),with respect to the velocity field at
the finest resolution. Clearly, there is no observed convergence at the time t = 0.8.
The appearance of structures at small scales can also be inferred from spectrum (7.2),
plotted in Fig. 14b. In comparison with the spectrum computed with the vanishing
viscosity method (Fig. 11b), we observe that the spectrum with this spectral viscosity
method shows that a nonnegligible amount of energy is contained in the small scales
(high wave numbers).

These numerical results lead to an interesting dilemma. We have proved in The-
orem 6.10 that, up to a subsequence, the spectral viscosity method converges as the
spectral resolution is increased. On the other hand, we see in this experiment that this
method may not converge, at least on moderately long timescales. Is there a way to
reconcile these two facts. We argue that there is no contradiction between the theorem
and the numerical observations. As it happens, the solutions of the Euler equations
with rough initial data are highly unstable [33]. In particular, very small differences in
the initial data can be amplified by possibly double exponential instabilities that lead
to very large separation between the underlying solutions, after even a short period
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Fig. 14 Results for the singular (thin) vortex sheet with the with the spectral viscosity method with
(ε, ρ, k0) = (0.05, 10, N/3) at time t = 1. a Error of the approximate velocity field (7.1) in L2. b
Energy spectrum (7.2) for the highest resolution of NG = 2048 at different times

of time. Computations of the Euler equations are necessarily approximate, and it can
happen that even small round-off errors are amplified in time and yield small-scale
vortical structures that eventually can lead to the disintegration of the sheet. These
instabilities are damped at low-to-moderate resolutions but will appear at very high
resolutions. Moreover, they tend to accumulate in time and only seem to appear at
later times.

It is interesting to contrast the lack of convergence of the spectral viscosity method
(Fig. 14a) with the apparent convergence of the vanishing viscosity method (Fig. 11a).
Clearly, the vanishing viscositymethod, at least for the parameters considered above, is
significantlymore dissipative than the spectral viscositymethod at the same resolution.
This is seen from the computed spectrum (comparing Figs. 11b and 14b) as we observe
that the vanishing viscositymethod damps the small-scale instabilities and prevents the
transfer of energy into the smallest scales.However, the amount of viscosity is εN = ε

N .
Thus, increasing the resolution further with the vanishing viscosity method can reduce
the viscous damping and possibly to the instabilities building up and leading to the
disintegration of the sheet. Given that it is unfeasible to increase the resolution beyond
N = 2048 Fourier modes, we mimic this possible behavior by reducing the constant
to ε = 0.01 in the vanishing viscosity method. The resulting approximate vorticities
at time t = 1 for three different resolutions are shown in Fig. 15. We observe from
this figure that the results are very similar to the spectral viscosity method (compare
with Fig. 13) and the sheet disintegrates into a soup of small vortices at the highest
resolution. Consequently, there is no convergence of the velocity in L2 as seen from
Fig. 16a and the spectrum shows that more energy is transferred to the smallest scales
now than it was when ε = 0.05 (compare with Fig. 11b).

The lack of convergence of computations of singular vortex sheets, on account of the
formation and amplificationof small-scale instabilities, iswell knownandcanbe traced
back to the pioneering work of Krasny [19,20] and reference therein. In those papers,
the author computed singular vortex sheets by solving the Birkhoff–Rott equations of
vortex dynamics and was able to ensure stable computation by controlling the round-
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Fig. 15 Numerical approximations at three different spectral resolutions of the singular vortex sheet with
the vanishing viscosity method with (ε, ρ) = (0.01, 10), at time t = 1

Fig. 16 Results for the singular (thin) vortex sheet with the vanishing viscosity method i.e., (ε, ρ) =
(0.01, 10) at time t = 1. a Error of the approximate velocity field (7.1) in L2. b Energy spectrum (7.2) for
the highest resolution of NG = 2048 at different times

off errors with an adaptive increase in the arithmetic precision of the computation.
We believe that this fix is only relevant for a few levels of increasing resolution and
ultimately at very high resolutions, the vortex sheet will disintegrate into smaller
vortices. This is already evidenced by our computations at different resolutions, at
different times and with different values of the viscosity parameter ε. Paraphrasing
[33], the phenomenon of the exponential growth of small instabilities “is a feature of
the underlying equation itself as opposed to an instability of the numerical method.”

7.3 KissingVortices

As a second example, we apply the spectral viscosity method to initial data which
have been proposed in [29] as a possible example of an initial datum that lead to
nonuniqueness of Delort solutions.

This example is based on the following observation [29]: In polar coordinates
(r , θ), centered at the origin x0 = 0 ∈ R

2, a weak stationary solution of the 2D Euler
equations can be constructed by setting

ωc(x) = ω−(r) + ω+δ(r − 1),
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where r = |x |, ω−(r) is a suitable smooth function of r , and ω−(r) = 0 for r ≥ 1.
Furthermore, by choosing the constant ω+ > 0 in a suitable way, one can ensure that
the velocity field uc corresponding to ωc vanishes outside of the unit disk, i.e., that
uc(x) = 0, for |x | > 1. Following [29], we call such a solution a confined eddy.

Since uc has compact support, it is possible to obtain a new stationaryweak solution,
by superposing two confined eddies with essentially disjoint supports, i.e., we can,
e.g., set

ω0(x) = ωc

(
x − x0

R

)

+ ωc

(
x − x1

R

)

,

where R is the radius determining the support each confined eddy. This initial datum
ω0 is then found to be a stationary weak solution of the Euler equations [29], provided
that 2R ≤ |x1 − x0|.

For the numerical implementation, we choose x1 = (−1/3, 0), x2 = (2/3, 0),
R = 1/6, so that the vortices are tangent at (1/2, 0). Each confined eddy is defined
via the corresponding velocity: uc(x) = v(r)x⊥, where

v(r):=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, (r < 1/4),

2π(r − 1/4), (1/4 ≤ r ≤ 1/2),

π
{
tanh

(
1−r
ρN

)
+ 1

}

4
, (r > 1/2).

(7.3)

Note that

lim
ρ→0

π
{
tanh

(
1−r
ρN

)
+ 1

}

4
= π

2
1[r<1],

so that ρN represents the mollification parameter in our numerical scheme. We choose
ρN = ρ/NG = ρ/(2N ) with constant ρ = 10, in the following.

We start by approximating the solutions of the two-dimensional Euler equa-
tions with the above initial data, by a vanishing viscosity method with parameters
(ε, ρ, k0) = (0.01, 10, 0) and present the computed vorticities, on a sequence of suc-
cessively refined levels of resolution, at time t = 1, in Fig. 17. As seen from the figure
and verified from the L2-approximation error of the velocity field (7.1), the computed
solution appears to converge in this regime. More interestingly, the solutions appear
to converge to a vorticity distribution that it is very different from the initial datum.
This time evolution is shown in Fig. 18, and we observe from the figure that the two
initial confined eddies are twisted by the time evolution and spiral into two distinct
vortices. In Fig. 19b, we plot the difference between the initial datum and the com-
puted velocity field in L2 for each time and plot the evolution of this quantity in time.
We observe from this figure that the difference increases linearly over time. Moreover,
this difference increases with resolution.

Similar results are also obtained with a spectral viscosity method with parameters
(ε, ρ, k0) = (0.01, 10, N/8). The convergence of the computed velocity field is ver-
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Fig. 17 Numerical approximations at three different spectral resolutions of the kissing vortices with the
vanishing viscosity method with (ε, ρ) = (0.01, 10), at time t = 1

Fig. 18 Evolution in time for the kissing vortices with the vanishing viscosity method, i.e., (ε, ρ) =
(0.01, 10), on the highest resolution of NG = 2048 Fourier modes

Fig. 19 Results for the kissing vortices with the vanishing viscosity method, i.e., (ε, ρ) = (0.01, 10) at
time t = 1. a Error of the approximate velocity field (7.1) in L2. b Difference in L2 between the computed
velocity field and the initial data for different resolutions as a function of time

ified from Fig. 21a, and the time evolution of the vorticity (at the highest spectral
resolution) is shown in Fig. 20. Clearly, the computed vorticity is very similar to the
one computed with the vanishing viscosity method and very different from the initial
datum as inferred from Fig. 21b.

Both computations clearly indicate that the solutions computed with the spectral
viscosity method converge to a velocity field that is different from the initial datum.
This suggests nonuniqueness of weak solutions for the two-dimensional incompress-
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Fig. 20 Evolution in time for the kissing vortices with the spectral viscosity method, i.e., (ε, ρ, k0) =
(0.01, 10, N/8), on the highest resolution of NG = 2048 Fourier modes

Fig. 21 Results for the kissing vortices with the with the spectral viscosity method, i.e., (ε, ρ, k0) =
(0.01, 10, N/8) at time t = 1. a Error of the approximate velocity field (7.1) in L2. b Difference in L2

between the computed velocity field and the initial data for different resolutions, as a function of time

ible Euler equations when the initial datum is in the Delort class. This nonuniqueness
was already suggested by the computations reported in [29]. We add further weight
to this conclusion by observing the same behavior but with a different numerical
method, particularly one that is proved to converge to a Delort solution on refinement
of resolution.

8 Conclusion

In this paper, we considered the two-dimensional incompressible Euler equations. In
contrast to the three-dimensional case, global well-posedness results are available in
two space dimensions. In particular, existence and uniqueness of weak solutions is
proved under the assumption that the initial vorticity is in L∞. Moreover, global (in
time) existence of weak solutions is proved for significantly less regular initial data, for
instance when the initial vorticity belongs to the so-called Delort class. Such rough
initial data are encountered in practice when one considers the evolution of vortex
sheets in an ideal fluid.
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Although many different numerical methods have been developed to approximate
the incompressible Euler equations, convergence results for these schemes havemostly
been available in the regime where the initial data and the underlying solutions were
smooth. Notable exceptions were considered in [25] and [30], where the authors prove
convergence of central finite difference schemes for the vorticity formulation of the
equations under the assumption that the initial vorticity is in L p, for 1 < p ≤ ∞,
and more generally if the vorticity belongs to a rearrangement invariant space that is
compactly supported in H−1. For vortex methods [27,28,39], convergence is known
when the initial vorticity is a bounded measure of definite sign, or if the vorticity is in
L(log L) without any sign restriction. However, no rigorous convergence results are
available for the case of Delort class initial data. Thus, there has so far remained a
considerable gap between themathematical existence results and rigorous convergence
results for numerical approximations.

In this paper, we have proposed a spectral viscositymethod to approximate the two-
dimensional Euler equations. Based on the spectral viscosity framework of Tadmor
[43] and references therein, our method is a spectral method that discretizes the Euler
equations inFourier space.Viscosity (damping) is only added in the high-wave-number
Fourier modes. Consequently, the method is formally spectrally (superpolynomially)
accurate for smooth solutions. Till now, convergence of this method was only proved
for smooth solutions of the incompressible Euler equations [1].

We prove that our spectral viscosity method converges to a weak solution as long
as the initial vorticity is either bounded in L p for 1 ≤ p ≤ ∞ or in the Delort class.
Thus, we provide the first rigorous convergence results for a numerical approximation
of the two-dimensional incompressible Euler equations with initial data in the Delort
class. This also closes the gap between available existence results for the underlying
PDE and convergence results for numerical approximation.

Our proof relies on the following key ingredients:

– The equivalence of the spectral viscosity method for the velocity–pressure for-
mulation (2.4) and the vorticity formulation (2.9). This equivalence holds for any
resolution, i.e., truncation of the underlying Fourier expansion.

– A spectral decay estimate for the high-wave-number modes.
– A patching up of long-time estimates on the vorticity (obtained by the spectral
decay estimate) and short-time estimates.

– A novel approximation of rough initial data that amounts to resolving the initial
singularities.

– Application of the compensated compactness theorems of Delort by controlling
the negative part of the approximated vorticity. In particular, we ensure that the
negative part of the vorticity, as approximated by the spectral viscosity method,
cannot concentrate on sets of small measure.

It is unclear whether these ingredients, particularly the equivalence between the
velocity–pressure and vorticity formulations, can be transferred to other numerical
methods. Thus, for the time being, the spectral viscosity method is the only method
that can rigorously be proved to converge to weak solutions for the incompressible
Euler equations with rough initial data. As our results are based on a spectral Fourier
expansion, they are inherently limited to the periodic case. It is not clear whether the
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method can be extended to other boundary conditions, and in particular to schemes
providing numerical approximations of flows in the whole plane. Furthermore, due
to the lack of theoretical existence results on domains with boundary, a convergence
proof on such domains appears to be out of reach at present.

We present some representative numerical experiments to test the proposed spectral
viscosity method. We observe from the experiments that the spectral viscosity method
performs as well as the pure (standard) spectral method for smooth initial data. More-
over, we have also presented experiments with rough initial data that demonstrated
the performance of the spectral viscosity method and compared it with the vanishing
viscositymethod.We observed that bothmethods were able to compute the problem of
kissing vortices robustly and provided numerical evidence for possible nonuniqueness
of weak solutions of the incompressible Euler equations, when the initial data are in
the Delort class.

We also computed vortex sheets with the spectral and vanishing viscosity methods
and observed convergence to complicated roll-ups of the sheet in many cases, partic-
ularly for small times. However, for very high spectral resolutions and for long times,
the computed solutions contained small-scale instabilities that amplified (either with
time or in resolution or both) and led to the disintegration of the vortex sheet into a soup
of small vortices. We argue that this phenomenon is generic to such rough data and
cannot be alleviated at the level of numerical computations, particularly at very high
resolutions. On the other hand, many papers in recent years such as [13,21,24] and
references therein have presented computations of vortex sheets and demonstrated that
although each deterministic simulation can be unstable, statistical quantities (ensemble
averages) are computed robustly. This implies that statistical notions of solutions such
as dissipative measure-valued solutions [7,13,21] and the more recent statistical solu-
tions [12] might be more appropriate as a solution framework for the incompressible
Euler equations, certainly from the perspective of numerical approximation.

Acknowledgements The research of SL and SM is partially supported by the European Research Council
(ERC) consolidator Grant ERC COG 770880: COMANFLO.

A: Miscellaneous Results

Weshall need some estimates for trigonometric polynomials fM (x)=∑
|k|≤M f̂keik·x .

We denote by PN the projection onto this space. We take them from [15] (though they
may have appeared elsewhere).

Theorem A.1 Let 1 < p ≤ q < ∞, or 1 < p < q ≤ ∞. Then

‖PN f ‖q ≤ CpN
d
(
1
p − 1

q

)

‖ f ‖p.

and

Theorem A.2 Let s ≥ 0. Then,

‖|∇|sPN f ‖p ≤ NsCp‖ f ‖p.
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Let us furthermore state a multidimensional version of the one-dimensional Bern-
stein inequality. We first recall the one-dimensional case:

Theorem A.3 (Bernstein) Let fN be a trigonometric polynomial on T, of order N.
Then, we have the following L p inequality (1 ≤ p ≤ ∞) for its derivative

‖ f ′
N‖L p ≤ N‖ fN‖L p .

Wewill require the following (multidimensional) inequality for the L p-norm of the
Laplacian.

Theorem A.4 Let fN : T
d → C be a trigonometric polynomial of degree at most N .

Then, for any 1 ≤ p ≤ ∞:

‖� fN‖L p ≤ N 2d‖ fN‖L p .

Proof Since the constant N 2d in this estimate is independent of p, it will suffice to
consider p < ∞. The result for the L∞-norm then follows by letting p → ∞. From
the one-dimensional inequality applied to the trigonometric polynomial

xi �→ fN (x1, . . . , xi , . . . , xd),

where the other variables x j , j �= i are frozen, we immediately obtain

∫ ∣
∣
∣
∣
∣

∂2 fN
∂x2i

∣
∣
∣
∣
∣

p

dxi ≤ N 2p
∫

| fN |p dxi .

Integrating over x1, . . . , xi−1, xi+1, . . . , xd , it then follows that

∫ ∣
∣
∣
∣
∣

∂2 fN
∂x2i

∣
∣
∣
∣
∣

p

dx ≤ N 2p
∫

| fN |p dx,

and therefore

(∫

|� fN |p dx

)1/p

≤
d∑

i=1

(∫ ∣
∣
∣
∣
∣

∂2 fN
∂x2i

∣
∣
∣
∣
∣

p

dx

)1/p

≤
d∑

i=1

N 2
(∫

| fN |p dx

)1/p

= N 2d

(∫

| fN |p dx

)1/p

.

��
We also recall the following characterization of weakly compact subsets of

L1([0, T ] × T
2), due to Dunford–Pettis theorem (for a proof, see [9]).
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Theorem A.5 (Dunford–Pettis) A subset K ⊂ L1([0, T ] × T
2) is weakly compact, if

and only if

– K is bounded in the L1-norm,
– for every ε > 0, there exists a δ > 0 such that

|A| < δ �⇒
∫

A
f dx dt < ε, for all f ∈ K .

We shall also need the following “Aubin–Lions lemma.” For a proof and thorough
discussion of compactness in spaces L p([0, T ]; B) with B a Banach space, we refer
to [41] and references therein.

Theorem A.6 [41, Thm. 5] Fix T > 0. Let X ⊂ B ⊂ Y be Banach spaces, with
compact embedding X → B. If 1 ≤ p ≤ ∞ and

– F ⊂ L p([0, T ]; X) is bounded,
– ‖ f (· + h) − f (·)‖L p([0,T ];Y ) → 0 as h → 0, uniformly for f ∈ F.

Then, F is relatively compact in L p([0, T ]; B) (and in C([0, T ]; B) if p = ∞).
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