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We propose and study the framework of dissipative statistical solutions for the incom-
pressible Euler equations. Statistical solutions are time-parameterized probability mea-
sures on the space of square-integrable functions, whose time-evolution is determined
from the underlying Euler equations. We prove partial well-posedness results for dissi-
pative statistical solutions and propose a Monte Carlo type algorithm, based on spectral
viscosity spatial discretizations, to approximate them. Under verifiable hypotheses on the
computations, we prove that the approximations converge to a statistical solution in a
suitable topology. In particular, multi-point statistical quantities of interest converge on
increasing resolution. We present several numerical experiments to illustrate the theory.
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1. Introduction

Many interesting incompressible fluid flows are characterized by high to very high

values of the Reynolds number. Taking the infinite Reynolds number limit of the

underlying Navier–Stokes equations (formally), results in the Incompressible Euler

equations governing the motion of an ideal i.e. inviscid and incompressible fluid,
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given by ⎧⎪⎨⎪⎩
∂tu+ u · ∇u+∇p = 0,

div(u) = 0,

u|t=0 = u.

(1.1)

Here, the velocity field is denoted by u ∈ Rd (for d = 2, 3), and the pressure is

denoted by p ∈ R+. The pressure acts as a Lagrange multiplier to enforce the

divergence-free constraint.38 The equations need to be supplemented with suitable

boundary conditions. Throughout this paper, we shall assume periodic boundary

conditions, and take as our domain D, the d-dimensional torus D = Td, d ∈ {2, 3}.

1.1. Well-posedness results

The question of global (in time) well-posedness of classical i.e. C1 solutions of the

incompressible Euler equations (1.1) in three space dimensions, even with suffi-

ciently smooth initial data ū, is not yet resolved. Moreover in two space dimensions,

where one can prove well-posedness of classical solutions as long as the initial data

is sufficiently regular, many interesting initial data of interest, such as vortex sheets,

do not possess this regularity. Hence, it is imperative to consider the so-called weak

solutions of (1.1), defined as,

Definition 1.1. A vector field u ∈ L∞([0, T );L2(D;Rd)) is a weak solution of the

incompressible Euler equations with initial data u ∈ L2(D;Rd), if
ˆ T

0

ˆ
D

u · ∂tφ+ (u⊗ u) : ∇φdxdt = −
ˆ
D

u · φ(x, 0)dx, (1.2)

for all test vector fields, φ ∈ C∞
c ([0, T )×D;Rd), div(φ) = 0, andˆ

D

u · ∇ψdx = 0, (1.3)

for all test functions ψ ∈ C∞(D).

It is customary to require additional admissibility criteria in order to recover

uniqueness of weak solutions. A natural criterion in this context is given by the

so-called dissipative or admissible weak solutions, i.e. weak solutions u such that

‖u(t)‖L2 ≤ ‖u‖L2. Although the global existence of admissible weak solutions in

three space dimensions is open, one can prove global existence of admissible weak

solutions in two dimensions with very general initial data. The most general result

of this kind is the celebrated work of Delort,10 later slightly extended to an edge case

by Vecchi andWu,52 where global weak solutions of (1.1) were shown to exist as long

as the initial data belongs to the so-called Delort class, i.e. with initial vorticity ω ∈
H−1∩ (M++L1) the sum of a signed Radon measure (in space) and a L1 function.

In addition to being energy admissible, the constructed solutions satisfy the an

additional a priori bound ‖ω(t)‖M ≤ ‖ω‖M. The existence of solutions with initial

vorticity in the more natural spaceH−1∩M without any sign restriction remains an
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open problem. Uniqueness of weak solutions in the Delort class also remains open.

On the other hand, it is well-known that – without the requirement of any bounds

on the vorticity – energy admissible weak solutions are not necessarily unique.9,43,44

Using convex integration techniques introduced by DeLellis and Szekelyhidi,9 it has

been shown that, in both two and three dimensions, there exists a dense set of “wild

initial data” possessing infinitely many admissible weak solutions. Furthermore, it

was shown in Ref. 49 that an explicit example of such wild initial data is given by

the flat vortex sheet of constant vortex sheet strength in the two-dimensional case.

This result has recently been extended to vortex sheet initial data along curves with

sufficient Hölder regularity and not necessarily distinguished sign.39 Vortex sheet

initial data pose many open challenges in the two-dimensional case, and will thus

be of particular interest in the current work.

1.2. Numerical schemes

A variety of numerical methods have been proposed in order to approximate the

incompressible Euler equations (1.1). These include the spectral21,41 (see also Ref. 7

and references therein for a general overview) and spectral viscosity methods,50 that

are particularly suitable for periodic boundary conditions. On bounded domains,

efficient methods such as the finite difference projection method3,8 and discon-

tinuous Galerkin (DG) finite element method22 have been proposed. Alternatives

include numerically approximating the Euler equations in the vorticity-stream func-

tion formulation. Methods such as the Lagrangian vortex blob,34 point vortex23

and central finite difference schemes30 have been proposed in this context.

Rigorous convergence results for numerical approximations of the incompress-

ible Euler equations (1.1) are mostly restricted to two space dimensions and to

sufficiently regular initial data, see Ref. 2 for spectral viscosity methods, Ref. 38 for

vortex methods and Ref. 22 for DG methods. Notable exceptions include Ref. 36

where the central schemes of Ref. 30 were shown to converge to weak solutions

of the two-dimensional Euler equations as long as the initial vorticity was in Lp,

for p > 1. Similarly in Refs. 34 and 35, the authors showed convergence of vortex

point and vortex blob methods in two space dimensions as long as the initial vor-

ticity was a signed Radon measure. Finally in a recent paper,26 the authors showed

convergence of a spectral viscosity method for initial data in the Delort class.

Furthermore, careful numerical experiments, for instance those presented in

Refs. 25 and 17 have shown that numerical schemes may not necessarily converge,

even in two space dimensions, for rough initial data. Even when the numerical

approximations converge (such as in Ref. 26), the inherent instabilities of the Euler

equations lead to a very slow convergence rate (see also Fig. 8(left)) and render the

computation of weak solutions of (1.1) prohibitively expensive.

1.3. Measure-valued and statistical solutions

Given the lack of well-posedness results for weak solutions and the lack of con-

vergent numerical approximations, there is considerable scope for the design of
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alternative solution frameworks for (1.1). One such framework is that of measure-

valued solutions,11 where the sought for solutions are no longer functions but space-

time parameterized probability measures on state space. The global existence of

measure-valued solutions, even in three space dimensions, was shown in Ref. 11.

A convergent numerical method (of the spectral viscosity type) and an efficient

algorithm to compute measure-valued solutions was proposed in Ref. 25. The con-

vergence to the limiting Young measure has conventionally been considered in the

weak-∗ topology. More recently, a slightly stronger notion of convergence, termed K-

convergence, has been introduced.12 It has been shown12 that (up to a subsequence)

Césaro-typemeans of approximate solutions computed at different numerical resolu-

tions converge pointwise almost everywhere to the limiting measure-valued solution.

However, measure-valued solutions are generically non-unique. This holds true

even for the much simpler case of the one-dimensional Burgers’ equation.45 In

Ref. 14, the authors implicated the lack of information about multi-point (spatial)

correlations in the non-uniqueness of measure-valued solutions. Moreover, they also

proposed a framework of statistical solutions as an attempt to recover uniqueness.

In the formulation of Ref. 14, statistical solutions are time-parameterized prob-

ability measures on Lp, for 1 ≤ p < ∞, that are consistent with the underlying

PDE in a weak sense. They were shown to be equivalent to a family of correlation

measures, with the kth member of this family is a Young measure representing cor-

relations (or joint probabilities) of the solution at k distinct spatial points. Thus,

one can interpret statistical solutions as measure-valued solutions, augmented with

information about all possible multi-point correlations. The consideration of multi-

point statistics is one of the main differences of the present work with earlier con-

tributions such as Ref. 25, which focused on the computation of a measure-valued

solution, i.e. single-point statistics. A priori, statistical solutions contain much more

information than measure-valued solutions. Moreover, statistical solutions encode

statistical (ensemble averaged) properties of the solutions of the underlying PDE.

Thus, statistical solutions provide a suitable framework for uncertainty quantifica-

tion (UQ).1,14 This is particularly relevant for the incompressible Euler equations

as it is well-known that the flow of fluids at very high Reynolds numbers can be

turbulent, and only (or statistical) properties can be inferred from measurements.20

Statistical solutions for scalar conservation laws were considered in Ref. 14,

wherein well-posedness was shown under an entropy condition. In particular, infor-

mation about infinitely many correlations was necessary to ensure uniqueness. In

Refs. 15 and 16, a Monte Carlo algorithm, based on the ensemble averaging algo-

rithm of Ref. 13, was proposed and analyzed for scalar conservation laws and

multi-dimensional hyperbolic systems of conservation laws, respectively. In con-

trast to Ref. 16 where multi-dimensional hyperbolic systems of conservation laws

were considered, we focus on the case of incompressible Euler equations in this

paper. Although the concept of statistical solutions is similar in both cases, there

are important differences that we highlight in this paper. In particular, the the-

ory for deterministic solutions of the incompressible Euler equations is much more
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developed than its counterpart for systems of conservation laws. This will allow us

to prove global existence and uniqueness of dissipative statistical solutions for the

two-dimensional Euler equations, and convergence of our approximate statistical

solutions, whenever the initial measure μ is concentrated on sufficiently smooth

data, without any additional assumptions on the structure functions. Moreover, we

will focus on inferring information about multi-point correlations from energy spec-

tra. This approach differs from Ref. 16, where the focus was entirely on structure

functions.

Independent notions of statistical solutions of the incompressible Navier–Stokes

equations have been proposed in Refs. 19 and 54. While the statistical solutions

of Foias, Rosa and Temam19 are formulated in terms of the evolution equations

of integrals of functionals
´
H Φ(u) dμt(u) on a suitable Hilbert space H , the sta-

tistical solutions in the present work are formulated in terms of an infinite family

of PDEs for the multi-point correlation measures νkt,x1,...,xk
(ξ1, . . . , ξk). These cor-

relation measures encode the probability of the flow field u(t, x) attaining certain

values at points x1, . . . , xk and time t, i.e. one might informally write

νkt,x1,...,xk
(ξ1, . . . , ξk) = Prob[u(t, x1) = ξ1, . . . , u(t, xk) = ξk].

Despite the apparent differences between the current work and Ref. 19, the two

approaches can be related to each other, using the correspondence between multi-

point correlation measures and infinite-dimensional measures established in Ref. 14.

The precise link between the zero-viscosity limit of the statistical solutions of the

Navier–Stokes equations of Foias, Rosa and Temam, and the statistical solutions of

the present work will be considered in a forthcoming paper.

1.4. Aims and scope

The main goal of this paper is to propose a suitable notion of statistical solutions

for the incompressible Euler equations (1.1) and to analyze and approximate these

statistical solutions. To this end, we will

• propose a notion of dissipative statistical solutions, i.e. a time-parameterized

probability measure on Lp(D) that is consistent with (1.1) in a suitable sense

and prove partial well-posedness in some special cases, namely local in time well-

posedness and global well-posedness for sufficiently regular initial data in two

space dimensions,

• propose a numerical algorithm, based on ensemble averaging and a spectral vis-

cosity spatial discretization, to approximate statistical solutions of (1.1) and

prove that the approximations converge in an appropriate topology to a statistical

solution, under reasonable and verifiable hypotheses on the numerical method,

• perform and present extensive numerical experiments to verify the theory and to

illustrate interesting properties of statistical solutions.

The rest of the paper is organized as follows: in Sec. 2, we present time-

parameterized probability measures on L2(D;Rd) and characterize convergence in a
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suitable topology on this space of measures. In Sec. 3, we define statistical solutions

of (1.1) and present partial well-posedness results. The numerical approximation

of statistical solutions and its convergence is presented in Sec. 4 and numerical

experiments are presented in Sec. 5.

2. Time-Parameterized Probability Measures on L2(D;Rd)

As mentioned in the introduction, statistical solutions are time-parameterized prob-

ability measures on Lp. For incompressible Euler equations, the energy bound

enforces that p = 2. In this section, we will describe time-parameterized probability

measures, characterize them and describe a suitable topology on them. Although

different in several details, similar considerations have previously appeared in differ-

ent contexts in Refs. 14 and 16. To streamline our discussion and to avoid distracting

the reader with technical details, we will therefore merely state the core results in

this section. For completeness, detailed proofs of these results have been included

in the appendices.

2.1. Notation

For spatial dimensions d = 2, 3, we denote the spatial domain D = Td, i.e. d-

dimensional torus [−π, π]d, with endpoints identified, the co-domain (or phase

space) U = Rd, so that a solution of (1.1) is given as a vector field u : D×[0, T ) → U .

On occasion x �→ u(x, t) will also be identified with a 2π-periodic function on Rd

in the obvious way.

As we are interested in time-dependent vector fields u(x, t), we will fix a final

time T > 0 and consider u(x, t) as a mapping u : [0, T ) → L2
x = L2(D;U). In

general, for a Banach space Y , we will denote by Lq
t (Y ) the space of measurable

functions u : [0, T ) → Y , such that

‖u‖Lq
t(Y ) =

(ˆ T

0

‖u‖qY dt
)1/q

<∞.

Of particular interest in the context of the incompressible Euler equations are spaces

Lq
tL

2
x = Lq

t (L
2
x), for 1 ≤ q ≤ ∞.

For a function u ∈ L2
x, we will denote by û(k) the kth Fourier coefficient (k ∈

Zd), i.e.

û(k) =
1

(2π)d

ˆ
D

u(x)e−ikxdx⇒ u(x) =
∑
k∈Zd

û(k)eikx.

We will say that ω(r) is a modulus of continuity if ω : [0,∞) → [0,∞) is a map

such that limr→0 ω(r) = 0.

On multiple occasions in this paper, we will need to mollify a given function

x �→ u(x). Let us therefore fix a standard mollifier ρ(x) ∈ C∞(Rd), supported in a
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ball of radius 1 around the origin, i.e. ρ ≥ 0 is a function, such thatˆ
Rd

ρ(x)dx = 1, ρ(x) = 0, if |x| > 1.

Given ε > 0, we denote by ρε ∈ C∞
c (Rd) the function ρε(x) = ε−dρ(x/ε). The

mollification of u(x) is now defined by convolution with ρε(x), as

uε(x) := (u ∗ ρε)(x) =
ˆ
Rd

u(x− y)ρε(y)dy.

2.2. Weak convergence of probability measures

Given a topological space X , we denote by P(X) the space of all probability mea-

sures on the Borel σ-algebra of X . Given a sequence μn ∈ P(X) (n ∈ N) and

μ ∈ P(X), we say that μn converges weakly to μ, written μn⇀μ, ifˆ
X

F (u)dμn(u) →
ˆ
X

F (u)dμ(u), (2.1)

for all F ∈ Cb(X), where Cb(X) is the space of bounded, continuous functions

on X .

We shall call a family of probability measures {μΔ}Δ>0 ⊂ P(X) defined on a

separable Banach space X tight, provided that for any ε > 0 there exists a compact

subset K ⊂ X such that

μΔ(K) ≥ 1− ε, ∀Δ > 0.

It is a classical result due to Prokhorov (see e.g. Theorems 8.6.7, 8.6.8 of the mono-

graph4) that a family μΔ ∈ P(X), with X a separable Banach space, is tight if and

only if μΔ is relatively compact under the weak topology.

We recall that weak convergence on a Banach space X is metrized by the p-

Wasserstein metric Wp:

Wp(μ, ν) :=

(
inf

π∈Π(μ,ν)

ˆ
X×X

‖u− v‖pXdπ(u, v)
)1/p

, (2.2)

where the infimum is taken over all transfer plans π ∈ Π defined as

Π(μ, ν) :=

{
π ∈ P(X ×X) :

ˆ
X×X

(F (u) +G(v))dπ(u, v)

=

ˆ
X

F (u)dμ(u) +

ˆ
X

G(v)dν(v)

}
,

for all measurable F,G. More precisely, let μΔ be a sequence of probability measures

on X . If there exists a M > 0, such that μΔ ∈ P(X) are uniformly concentrated

on the ball BM (0) = {u ∈ X | ‖u‖X < M} of radius M and centered at the origin

in X , then

μΔ⇀μ ⇔Wp(μ
Δ, μ) → 0,
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where 1 ≤ p <∞. In this paper, we shall only consider p = 1 and p = 2. The space of

probability measures μ on which Wp is well-defined, i.e. such that
´
X
‖u‖p dμ(u) <

∞ is usually denoted by Pp(X). It is well-known that (Pp,Wp) is a complete metric

space.53

We also note that for p = 1, the following duality formula holds:

W1(μ, ν) = sup
Φ

ˆ
X

Φ(u)[dμ(u)− dν(u)], (2.3)

where the supremum is taken over all 1-Lipschitz continuous functions Φ : X → R.

Next, we characterize the compactness properties of families of probability mea-

sures μΔ ∈ P(L2
x). The following quantity, the so-called structure function, is of

particular interest in the present context:

S2
r (μ) :=

(ˆ
L2

x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2dhdxdμ(u)
)1/2

,

where Br(0) = {ξ ∈ Rd | |ξ| < r}, and ffl
Br(0)

:= 1
|Br(0)|

´
Br(0)

denotes the mean over

Br(0).

We now state our main result characterizing certain compact subsets of P(L2
x).

Theorem 2.1. Let F ⊂ P(L2
x) be a family of probability measures on L2

x. Assume

that there exists M > 0, such that μ(BM (0)) = 1 for all μ ∈ F , where BM (0) =

{u ∈ L2
x | ‖u‖L2

x
< M}. Then the following statements are equivalent :

(i) F ⊂ L2
x has compact closure (with respect to the weak topology),

(ii) There exists a modulus of continuity ω, such that we have a uniform bound on

the structure function:

S2
r (μ) ≤ ω(r), ∀μ ∈ F .

The proof of this theorem can be found in Appendix A.

Remark 2.1. Theorem 2.1 is closely related to Kolmogorov’s characterization of

compact subset of L2
x: Indeed, there is a natural isometric embedding

(L2
x, ‖ · ‖L2

x
)↪→(P1(L

2
x), W1), u �→ δu.

Thus, a bounded set K ⊂ L2
x has compact closure if, and only if, its image under

this embedding {δu |u ∈ K} ⊂ P(L2
x) has compact closure. Using Theorem 2.1,

we conclude that a bounded set K ⊂ L2
x has compact closure if, and only if,

satisfies Kolmogorov’s equicontinuity property, which corresponds to property (2)

in Theorem 2.1.

2.3. Time parameterized probability measures

As mentioned before, statistical solutions are time-parameterized probability mea-

sures. We define them in what follows.
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Definition 2.1. We denote by L1
t (P) = L1([0, T );P) the space of weak-∗ measur-

able mappings [0, T ) → P(L2
x), namely mappings t �→ μt such t �→

´
L2

x
F (u)dμt(u)

is measurable for a.e. t ∈ [0, T ), for all F ∈ Cb(L
2
x) and with the property that

ˆ T

0

ˆ
L2

x

‖u‖L2
x
dμt(u) dt <∞.

Denoting by δ0 the Dirac measure concentrated on 0 ∈ L2
x, the above condition

can equivalently be written as

ˆ T

0

W1(δ0, μt) dt <∞.

This leads us to define a natural metric on L1([0, T );P) by

dT (μt, νt) :=

ˆ T

0

W1(μt, νt) dt. (2.4)

We then have the following proposition, whose proof is presented in Appendix B.

Proposition 2.1. The metric space (L1
t (P), dT ) is a complete metric space.

Our objective is to find a suitable topology on L1
t (P) and characterize com-

pactness in this topology. It would be natural to try and extend the compactness

Theorem 2.1 to time-parameterized probability measures and find a suitable version

of the weak topology. This necessitates formalizing some notion of time-continuity

or time-regularity of underlying functions.

To this end, fix a (time-independent) divergence-free test function φ ∈
C∞

c (D;Rd). Formally, solutions of the incompressible Euler equations (1.1) satisfy

for s, t ∈ [0, T ),

ˆ
D

[u(x, t)− u(x, s)]φ(x) dx =

ˆ t

s

ˆ
D

u(x, τ) ⊗ u(x, τ) : ∇φ(x) dx dτ,

so that ∣∣∣∣ˆ
D

[u(x, t)− u(x, s)]φ(x) dx

∣∣∣∣ ≤ C‖u‖L∞
t L2

x
‖∇φ‖L∞

x
|t− s|.

Furthermore, we have a natural energy bound ‖u‖L∞
t L2

x
≤ ‖u0‖L2

x
, in terms of

the initial data u0. If L > 0 is large enough such that by Sobolev embedding

HL
x = HL(D;U) ↪→C1(D;U), then it follows that∣∣∣∣ˆ

D

[u(x, t)− u(x, s)]φ(x) dx

∣∣∣∣ ≤ C‖φ‖HL
x
|t− s|,

where the constant C > 0 depends only on the initial data. Taking the supremum

over all φ ∈ HL
x with ‖φ‖HL

x
≤ 1, it follows, at least formally, that

‖u(t)− u(s)‖H−L
x

≤ C|t− s|, ∀ s, t ∈ [0, T ). (2.5)
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Given these considerations, it is natural to assume that statistical solutions of

the Euler equations satisfy some version of this time continuity. A formalization is

provided in the following definition,

Definition 2.2. A weak-∗ measurable, time-parameterized probability measure

t �→ μt ∈ P(L2
x) is called time-regular, if there exists a constant L > 0, and a

mapping s, t �→ πs,t ∈ P(L2
x × L2

x), such that for almost all s, t ∈ [0, T ):

• The measure πs,t is a transport plan from μs to μt,

• There exists a constant C > 0, such that πs,t satisfies the following regularity

condition ˆ
L2

x×L2
x

‖u− v‖H−L
x

dπs,t(u, v) ≤ C|t− s|.

A family {μΔ
t }Δ>0 of time-parameterized probability measures is uniformly

time-regular, provided that each μΔ
t is time-regular, and the constants L,C > 0

above can be chosen independently of Δ > 0.

Remark 2.2. Note that if μt is of the form

μt =
1

M

M∑
i=1

δui(t),

with t �→ u(t) weak solutions of the incompressible Euler equations satisfying (2.5),

then we can define suitable transfer plans

πs,t =
1

M

M∑
i=1

δui(s) ⊗ δui(t).

The time-regularity property follows from the estimate (2.5) for the ui.

We now show that a family μΔ
t , Δ > 0, of uniformly time-regular probability

measures is relatively compact, provided that they satisfy a time-averaged version of

the second property of Theorem 2.1. To this end, we define the time-averaged struc-

ture function of (t �→ μt) ∈ L1
t (P) (weak-∗ measurable) as the following quantity:

S2
r (μt, T ) :=

(ˆ T

0

ˆ
L2

x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dμt(u) dt

)1/2

. (2.6)

The main result of the present section is the following compactness result:

Theorem 2.2. Let μΔ
t ∈ L1

t (P) be a family of uniformly time-regular probability

measures, for Δ > 0, for which there exists M > 0, such that μΔ
t (BM (0)) = 1 for

all Δ > 0, a.e. t ∈ [0, T ). Here BM (0) := {‖u‖L2
x
< M}. If there exists a modulus

of continuity ω(r) such that

S2
r (μ

Δ
t , T ) ≤ ω(r), ∀Δ > 0,

then μΔ
t is relatively compact in L1

t (P).
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The idea behind Theorem 2.2 is to use the spatial regularity of the sequence to

show that the weak time-regularity assumption of Definition 2.2 implies a similar

time-regularity with respect to a stronger spatial norm, where H−L is replaced

by L2. The details of this argument are provided in Appendix C.

Let us also remark that a limit μΔ
t → μt of a uniformly time-regular sequence

μΔ
t is itself time-regular (see Appendix D for a proof):

Proposition 2.2. Let μΔ
t ∈ L1

t (P) be a family of uniformly time-regular probability

measures, for Δ > 0. And such that there exists M > 0 with μΔ
t (BM (0)) = 1 for

all Δ > 0, a.e. t ∈ [0, T ), where BM (0) := {‖u‖L2
x
< M}. If μΔ

t → μt in L1
t (P),

then μt is time-regular in the sense of Definition 2.2, with the same time-regularity

constants C,L > 0 as for the family μΔ
t .

2.4. Time-dependent correlation measures and their compactness

It has been shown in Ref. 14 that there is a one-to-one correspondence between

probability measures on L2
x and so-called correlation measures. Correlation mea-

sures are defined as infinite hierarchies of Young measures, taking into account

spatial correlations, or more precisely,

Definition 2.3. A correlation measure is a collection ν = (ν1, ν2, . . .) of maps

νk : Dk → P(Uk) satisfying the following properties:

(1) Weak-∗ measurability: Each map νk : Dk → P(Uk) is weak-∗-measurable, in

the sense that the map x �→ 〈νkx , f〉 from x ∈ Dk into R is Borel measurable

for all f ∈ C0(U
k) and k ∈ N. In other words, νk is a Young measure from Dk

to Uk.

(2) L2-boundedness: ν is L2-bounded, in the sense that

ˆ
D

〈ν1x, |ξ|2〉 dx < +∞. (2.7)

(3) Symmetry: If σ is a permutation of {1, . . . , k} and f ∈ C0(R
k) then

〈νkσ(x), f(σ(ξ))〉 = 〈νkx , f(ξ)〉 for a.e. x ∈ Dk. Here, we denote σ(x) =

σ(x1, x2, . . . , xk) = (xσ1 , xσ2 , . . . , xσk
). σ(ξ) is denoted analogously.

(4) Consistency: If f ∈ C0(U
k) is of the form f(ξ1, . . . , ξk) = g(ξ1, . . . , ξk−1)

for some g ∈ C0(U
k−1), then 〈νkx1,...,xk

, f〉 = 〈νk−1
x1,...,xk−1

, g〉 for almost every

(x1, . . . , xk) ∈ Dk.

(5) Diagonal continuity (DC): If Br(x) := {y ∈ D : |x− y| < r} then

lim
r→0

ˆ
D

 
Br(x)

〈ν2x,y, |ξ1 − ξ2|2〉 dy dx = 0. (2.8)

Each element νk is called a correlation marginal. We let L2 = L2(D,U) denote the

set of all correlation measures from D to U .
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It has been shown in Ref. 14, that if μ ∈ P(L2
x), then μ is associated with a

unique correlation measure ν, with the interpretation that for A1, . . . , Ak ⊂ U :

μ[u(xi) ∈ Ai, i = 1, . . . , k] = νkx1,...,xk
(A1 × · · · ×Ak).

More precisely, we have the following theorem14:

Theorem 2.3. For every correlation measure ν ∈ L2(D,U) there exists a unique

probability measure μ ∈ P(L2(D;U)) satisfyingˆ
L2

x

‖u‖2L2
x
dμ(u) <∞, (2.9)

such that ˆ
Dk

ˆ
Uk

g(x, ξ) dνkx(ξ) dx =

ˆ
L2

x

ˆ
Dk

g(x, u(x)) dx dμ(u), (2.10)

for all g ∈ C0(D
k × Uk) and k ∈ N (where u(x) denotes the vector

(u(x1), . . . , u(xk))). Conversely, for every probability measure μ ∈ P(L2(D;U)) with

finite moment (2.9), there exists a unique correlation measure ν ∈ L2(D,U) satis-

fying (2.10). The relation (2.10) is also valid for any measurable g : D × U → R

such that |g(x, ξ)| ≤ C|ξ|2 for a.e. x ∈ D.

Moreover, the moments

mk : Dk �→ U⊗k, mk(x) = 〈νkx , ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξk〉, (2.11)

uniquely determine the correlation measure ν and hence the underlying probability

measure μ.

The following result is obtained as a consequence of Theorem 2.2 (for a proof,

see Appendix E):

Theorem 2.4. Let {μΔ
t }Δ>0 be a family of uniformly time-regular probability mea-

sures in L1
t (P), and assume that there exists M > 0, such that μΔ

t (BM ) = 1 for

all Δ > 0 and t ∈ [0, T ). Let νΔ
t = (νΔ,1

t , νΔ,2
t , . . .) denote the corresponding time-

parameterized correlation measures. If there exists a uniform modulus of continuity

ω(r), such that
ˆ T

0

ˆ
D

 
Br(x)

〈νΔ,2
t,x,y, |ξ1 − ξ2|2〉 dy dx dt ≤ ω(r), ∀Δ > 0,

then {μΔ
t }Δ>0 is relatively compact in L1

t (P), i.e. there exists a subsequence Δj → 0

(j ∈ N), and a time-parameterized probability measure μt ∈ L1
t (P), such that

ˆ T

0

W1(μ
Δj

t , μt) dt→ 0, as j → ∞.

Furthermore, denoting by νt = (ν1t , ν
2
t , . . .) the correlation measure correspond-

ing to the limit μ, we have

• L2-bound :
´
D
〈ν1t,x, |ξ|2〉 dx ≤M2, for a.e. t ∈ [0, T ),
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• the two-point correlations satisfy
ˆ T

0

ˆ
D

 
Br(x)

〈ν2t,x,y, |ξ1 − ξ2|2〉 dy dx dt ≤ ω(r).

• We define admissible observables, in terms of test functions g ∈ C([0, T )×Dk ×
Uk), which satisfy the following bounds :

|g(t, x, ξ)| ≤ C

k∏
i=1

(1 + |ξi|2),

|g(t, x, ξ)− g(t, x, ξ′)| ≤ C

k∑
i=1

Πi(ξ, ξ
′)
√
1 + |ξi|2 + |ξ′i|2|ξi − ξ′i|,

(2.12)

where C > 0 is a fixed constant, independent of t ∈ [0, T ), x ∈ Dk and ξ, ξ′ ∈ Uk.

Here Πi(ξ, ξ
′) is defined as

Πi(ξ, ξ
′) :=

k∏
j=1
j �=i

(1 + |ξj |2 + |ξ′j |2), ξ, ξ′ ∈ Uk. (2.13)

Then, these admissible observables converge strongly in L1
t,x, in the sense that

lim
j→∞

ˆ T

0

ˆ
Dk

|〈νΔj ,k
t,x , g(x, ξ)〉 − 〈νkt,x, g(x, ξ)〉| dx dt = 0.

A particular point of interest in the statement of previous theorem is the charac-

terization of a suitable set of “admissible observables”, whose convergence is assured

by the convergence μΔ
t → μt in L

1
t (P).

Remark 2.3. We note that the uniform modulus of continuity estimate in Theo-

rem 2.4 can equivalently be expressed as
ˆ T

0

ˆ
L2

x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dμΔ
t (u) dt ≤ ω(r),

or S2
r (μ

Δ
t , T )

2 ≤ ω(r), for all Δ > 0.

3. Dissipative Statistical Solutions and their Well-Posedness

Given the discussion on time-parameterized probability measures in the last section,

we can now define statistical solutions of (1.1) as the following.

Definition 3.1. A time-parameterized probability measure μt ∈ L1
t (P) is a statis-

tical solution of the incompressible Euler equations with initial data μ̄, if t �→ μt is

time-regular, and the associated correlation measure νt satisfies:

(1) Given φ1, . . . , φk ∈ C∞([0, T )×D;Rd) with div(φi) = 0 for all i = 1, . . . , k, set

φ(t, x) = φ1(t, x1)⊗ · · · ⊗ φk(t, xk), where x = (x1, . . . , xk).
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Let us denote F (ξ) := ξ ⊗ ξ and define a contraction by

(ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk) : ∇xiφ =

⎡⎣∏
j �=i

(ξj · φj)
⎤⎦ (ξi · ∇xiφi) · ξi.

Then νk = νkt,x1,...,xk
satisfies

ˆ T

0

ˆ
Dk

{
〈νk, ξ1 ⊗ · · · ⊗ ξk〉 : ∂tφ

+
∑
i

〈νk, ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk〉 : ∇xiφ

}
dx dt

+

ˆ
Dk

〈ν̄k, ξ1 ⊗ · · · ⊗ ξk〉 : φ(0, x) dx = 0.

Here ν̄ is the correlation measure corresponding to the initial data μ̄.

(2) For all ψ ∈ C∞
c (D), we haveˆ

D2

〈ν2t,x1,x2
, ξ1 ⊗ ξ2〉 : (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2 = 0,

for a.e. t ∈ [0, T ).

The above PDEs specify the time-evolution of the moments (2.11) for all k and

by Theorem 2.3, determine the evolution of the probability measure μt.

Remark 3.1. As ν1 above is a standard Young measure, it is straightforward to

observe that the corresponding identity for the evolution of ν1 corresponds to the

definition of measure-valued solution of (1.1) in the sense of Ref. 11 under the

further assumption that there is no concentration. Hence, one can think of statistical

solutions as measure-valued solutions coupled with information about all possible

multi-point correlations.

We first show that the second property of Definition 3.1 is equivalent to the

requirement that μt be supported on divergence-free vector fields for almost all t.

Lemma 3.1. Let μ ∈ P(L2
x), with associated correlation measure ν. Then μ is

concentrated on divergence-free vector fields if, and only if,ˆ
D2

〈ν2x1,x2
, ξ1 ⊗ ξ2〉 : (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2 = 0,

for all ψ ∈ C∞
c (D).

Proof. Let ψ ∈ C∞
c (D). Then, we have the following identity

ˆ
L2

x

[ˆ
D

u · ∇ψ dx
]2

dμ(u)
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=

ˆ
L2

x

ˆ
D

(u(x1)⊗ u(x2)) : (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2 dμ(u)

=

ˆ
D

〈ν2x1,x2
, ξ1 ⊗ ξ2〉 : (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2. (3.1)

Therefore, if μ is concentrated on the divergence-free vector fields, thenˆ
D

u · ∇ψ dx = 0, μ-almost surely

and hence, from Eq. (3.1), we obtainˆ
D

〈ν2x1,x2
, ξ1 ⊗ ξ2〉 : (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2 = 0. (3.2)

To prove the converse, let us assume that relation (3.2) holds for all ψ ∈ C∞
c .

Let ψn ∈ C∞
c , n ∈ N, be a countable, dense subset of H1(D). Then, we have

{u ∈ L2
x | div(u) �= 0 distributionally} =

⋃
n∈N

{
u ∈ L2

x

∣∣∣∣ˆ
D

u · ∇ψn dx �= 0

}
.

Set now Fn(u) := [
´
D
u · ∇ψn dx]

2. We note that for any ε > 0, we have

μ[Fn(u) > ε] ≤ 1

ε

ˆ
L2

x

Fn(u) dμ(u) = 0,

where the last equality follows from (3.1) and the assumption (3.2). Letting ε→ 0,

we conclude that μ[Fn(u) > 0] = 0 for all n ∈ N. Equivalently, we have

μ

[ˆ
D

u · ∇ψn �= 0

]
= 0, for all n ∈ N.

Finally, we conclude that

μ[div(u) �= 0] = μ

[⋃
n∈N

{ˆ
D

u · ∇ψn �= 0

}]

≤
∑
n∈N

μ

[ˆ
D

u · ∇ψn �= 0

]
= 0.

Hence μ[div(u) = 0] = 1, i.e. μ is concentrated on divergence-free vector fields.

Note that if ρ, μ ∈ P(L2
x) are probability measures, and if ρ is of the form

ρ =

M∑
i=1

αiδui ,

where αi > 0,
∑M

i=1 αi = 1, and ui ∈ L2
x, then a transport plan from μ to ρ is

necessarily of the form14:

π =

M∑
i=1

αiμi ⊗ δui ,
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where μi ∈ P (L2
x), and

∑M
i=1 αiμi = μ. Therefore, given α = (α1, . . . , αM ) as above,

and μ ∈ P(L2
x), we denote

Λ(α, μ) :=

{
(μ1, . . . , μM )

∣∣∣∣∣μi ∈ P(L2
x),

M∑
i=1

αiμi = μ

}
.

Note that the set Λ(α, μ) is non-empty, since it contains (μ, . . . , μ).

In analogy with work of Refs. 14 and 16 on entropy statistical solutions for

hyperbolic systems of conservation laws, we define the following.

Definition 3.2. (Dissipative statistical solution) A statistical solution μt ∈ L1
t (P)

is called dissipative, if for every choice of coefficients αi > 0 with
∑M

i=1 αi = 1

and for every (μ1, . . . , μM ) ∈ Λ(α, μ), there exists a function t �→ (μ1,t, . . . , μM,t) ∈
Λ(α, μt), such that t �→ μi,t is weak-∗ measurable, μi,t|t=0 = μi, such that each μi,t

satisfiesˆ T

0

ˆ
L2

x

ˆ
D

[u · ∂tφ+ (u⊗ u) : ∇φ] dx dμi,t(u) dt = −
ˆ
L2

x

ˆ
D

u · φ(0, x) dx dμi(u),

for all φ ∈ C∞
c ([0, T )×D), div(φ) = 0, and all i = 1, . . . ,M . And, in addition, we

have for almost every t ∈ [0, T ):ˆ
L2

x

‖u‖2L2
x
dμi,t(u) ≤

ˆ
L2

x

‖u‖2L2
x
dμi(u), i = 1, . . . ,M.

3.1. Existence and uniqueness of dissipative solutions

As already pointed out in the introduction, the initial-value problem for the incom-

pressible Euler equations is ill-posed for general initial data u ∈ L2
x, i.e. there exists

an exceptional set of initial data E ⊂ L2
x for which there either exist no suitable solu-

tions at all, or for which there exist infinitely many suitable solutions. In practice,

one may nevertheless hope that the “probability of encountering” such exceptional

initial data is 0, so that the subsequent evolution would then be well defined at

least for initial data encountered in practice. In this section, we provide a formal

description of a suitable set of statistical initial data μ for which this intuition holds

true, and show existence and partial uniqueness of dissipative statistical solutions

μt for initial data μ in this class. In particular, the results in this section imply

a weak–strong uniqueness result for statistical solutions. In contrast, an analogous

weak–strong uniqueness result for measure-valued solutions only holds for atomic

initial data i.e. when the initial datum is a function, but fails for non-atomic Young

measure-valued initial data (see e.g. Example 1 in Ref. 13 for an explicit example

in the context of conservation laws).

More precisely, we show based on purely topological arguments, that if the set

of C1-regular initial data admitting classical solutions of (1.1), over a given time-

interval [0, T ) is dense in L2
x, then there exists a (topologically) generic set G ⊂ L2

x,

containing these regular initial data, with the following property: For any initial
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data μ̄ ∈ P(L2
x) which is concentrated on this generic set G ⊂ L2

x, we have existence

and uniqueness in the class of dissipative statistical solutions. By a “generic” set

G, we denote a set whose complement E = L2
x\G is a countable union of nowhere

dense sets (implying that E is a meagre set in the topological sense). We say that

μ̄ is concentrated on G, if μ̄(G) = 1.

The construction of such a generic G under the above mentioned assumption

has first been carried out in Ref. 33. Let us first review the construction of G. We let

C ⊂ C1(D;U) denote the set of initial data v admitting a classical solution v(t) on

[0, T ), with C(v) := supt∈[0,T ) ‖∇v(t)‖L∞ finite, i.e. C(v) < ∞. For n ∈ N, define

the open set Gn, by

Gn :=

{
u ∈ L2

x | ∃ v ∈ C s.t. ‖u− v‖L2
x
<

1

n
e−C(v)T

}
. (3.3)

Finally, we let G =
⋂

n∈N
Gn.

Remark 3.2. If there exists a dense set of initial data v ∈ C, then G is generic in

the topological sense (more precisely a Gδ set), being the countable intersection of

the dense open sets Gn. By the Baire category theorem, the set G is non-empty and

dense in this case. In particular, this would hold true if there is no finite-time blow-

up for sufficiently smooth classical solutions of the incompressible Euler equations

(e.g. for C1,α initial data v possessing a Hölder continuous derivative), which is

an established fact in two space dimensions but an open question in three space

dimensions.

We can now state the main theorem of the present section:

Theorem 3.1. Define the generic set G as above (cf. Eq. (3.3)). If μ̄ ∈ P(L2
x) is an

initial datum such that μ̄(G) = 1 and there exists M > 0 such that μ̄(BM (0)) = 1,

then there exists a unique dissipative statistical solution μt of the incompressible

Euler equations with initial data μ̄.

The proof of Theorem 3.1 is somewhat technical and is left to Appendix F.

Remark 3.3. Even though a topologically generic set G is large in some sense

(e.g. in the sense that a countable intersection of generic sets is again generic,

and in particular non-empty), it might be very small from a different point of

view. For example, there exist generic subsets of Rn, which have Lebesgue measure

zero. It is therefore a priori not clear whether there are any “interesting” μ̄, such

that μ̄(G) = 1, beyond those μ̄ which are concentrated on smooth initial data.

Nevertheless, Theorem 3.1 implies suitable weak–strong uniqueness results as we

show below.

We can derive the following corollaries from Theorem 3.1.

Corollary 3.1. (Short-time existence and uniqueness) If m ≥ �d/2� + 2, and if

there exists a C > 0, such that μ ∈ P(L2
x) is concentrated on

{u ∈ Hm
x | ‖u‖Hm

x
≤ C},
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then there exists T ∗ > 0 (depending only on C) and a statistical solution μt :

[0, T ∗] → P(L2
x) with initial data μ. Furthermore, μt is unique in the class of

dissipative statistical solutions for t ∈ [0, T ∗].

Proof. Classical short-time existence results for the Euler equations38 show that

there exists T ∗ > 0, such that for initial data u with ‖u‖Hm
x

≤ C, there exists a

unique solution u(t) such that

sup
t∈[0,T∗]

‖u(t)‖Hm
x

≤ C′‖u‖Hm
x
.

Since Hm
x ↪→C1, this implies that μ is concentrated on u ∈ C. In particular, we

conclude that μ(G) = 1, and the result now follows from Theorem 3.1.

Corollary 3.2. (Weak–Strong uniqueness in 2d) Let d = 2, and let α ∈ (0, 1). If μ

is concentrated on C1,α(D;U) and if there exists M > 0, such that μ(BM (0)) = 1,

then there exists a dissipative statistical solution μt with initial data μ. Furthermore,

μt is unique in the class of dissipative statistical solutions with initial data μ.

Proof. Again, we observe that for any u ∈ C1,α, there exists a unique solution

u(t) ∈ C1,α. Hence, we have u ∈ C for all such u. In particular, it follows that μ is

concentrated on G. The claim follows from Theorem 3.1.

4. Numerical Approximation of Statistical Solutions

In this section, we will propose an algorithm for computing statistical solutions of

the incompressible Euler equations (1.1). As mentioned before, this algorithm is

very similar to the one proposed in Ref. 16 for computing statistical solutions of

hyperbolic systems of conservation laws, which in turn was inspired by the ensemble

averaging algorithms of Refs. 13 and 25 for computing measure-valued solutions.

This algorithm requires a spatio-temporal discretization and a Monte Carlo sam-

pling of the underlying probability space. We propose to use a spectral viscosity

spatial discretization which is described below.

4.1. Spectral hyper-viscosity scheme

We write uΔ(x, t) =
∑

|k|∞≤N ûΔk (t)e
ik·x, where now and in the following we shall

consistently denote Δ = 1/N , and we denote |k|∞ := maxi=1,...,d |ki|. We con-

sider the following spectral viscosity approximation50,51 of the incompressible Euler

equations: ⎧⎪⎪⎨⎪⎪⎩
∂tu

Δ + PN(uΔ · ∇uΔ) +∇pΔ = −εN |∇|2s(QN ∗ uΔ),
div(uΔ) = 0,

uΔ|t=0 = PNu.

(4.1)
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Here, PN is the spatial Fourier projection operator, mapping an arbitrary function

f(x, t) onto the first N Fourier modes: PNf(x, t) =
∑

|k|∞≤N f̂k(t)e
ik·x. QN is a

Fourier multiplier of the form

QN (x) =
∑

mN<|k|≤N

Q̂ke
ik·x (4.2)

and we assume 0 ≤ Q̂k ≤ 1.

The idea behind the SV method is that dissipation is only applied on the upper

part of the spectrum, i.e. for |k| > mN , thus preserving the formal spectral accuracy

of the method, while at the same time enabling us to enforce a sufficient amount of

energy dissipation on the small scale Fourier modes which is needed to stabilize the

method. The additional hyperviscosity parameter s ≥ 1 in (4.1) can be chosen larger

to enforce more numerical dissipation on the high Fourier modes, thus allowing a

larger part of the Fourier spectrum to remain free of numerical diffusion, while still

ensuring stability of the resulting numerical scheme.

Note thatQN is defined via its Fourier coefficients Q̂k, which, given an additional

parameter θ > 0, are assumed to satisfy the following constraints:

Q̂k = 0, for |k| ≤ mN , 1−
(
mN

|k|
)(2s−1)/θ

≤ Q̂k ≤ 1. (4.3)

In Ref. 51, the parameters mN , εN , θ are chosen such that

mN ∼ Nθ, εN ∼ 1

N2s−1
, 0 ≤ θ <

2s− 1

2s
. (4.4)

Multiplying the evolution equation (4.1) by uΔ and integrating by parts, we

obtain the following energy balance:

‖uΔ(t)‖2L2
x
+ 2εN

ˆ t

0

∑
|k|∞≤N

Q̂k|k|2s|ûΔk (τ)|2 dτ = ‖uΔ(t = 0)‖2L2
x
≤ ‖u‖2L2

x
. (4.5)

4.2. Monte Carlo algorithm

Following Ref. 16, the computation of statistical solutions of (1.1) requires combin-

ing the spectral viscosity scheme (4.1) with the following Monte Carlo sampling,

Algorithm 4.1. (Monte Carlo) Given μ̄ ∈ P(L2
x), and a grid scale Δ = 1/N , we

determine an approximate statistical solution μΔ
t , as follows: For m = m(N),

• Generate i.i.d. samples ū1, . . . , ūm ∼ μ̄.

• Evolve the samples, using the numerical scheme uΔi (t) := SΔ
t ūi, where SΔ

t

denotes the solution operator, defined by the scheme (4.1).

• The approximate statistical solution μΔ
t is given by the so-called empirical

measure

μΔ
t :=

1

m

m∑
i=1

δuΔ
i (t). (4.6)
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We remark that in practice, the samples ūi for 1 ≤ i ≤ m are random realizations

with respect to a certain underlying probability space.

Remark 4.1. The Monte Carlo Algorithm 4.1, when restricted only to the com-

putation of the first correlation marginal ν1, reduces to the ensemble averaging

algorithm proposed in Ref. 25 for computing measure-valued solutions of the incom-

pressible Euler equations.

4.3. Convergence to statistical solutions

In this section, we will investigate the convergence of the empirical measure μΔ
t

(4.6), generated by the Monte Carlo Algorithm 4.1, to a statistical solution of (1.1).

To this end, we seek to apply the convergence Theorem 2.2 to these approximations.

We start by verifying the temporal regularity of the empirical measures in the

following lemma,

Lemma 4.1. There exists L ∈ N and constants C,C′ > 0, such that if uΔ is

obtained from the spectral hyper-viscosity method (4.1), with Δ = 1/N and initial

data u ∈ L2
x, then

∂tu
Δ + div(uΔ ⊗ uΔ) +∇pΔ = EΔ,

where ‖EΔ‖H−L
x

≤ CΔ(1+ ‖uΔ‖2L2
x
). Furthermore, there exists a constant C′, such

that

‖uΔ(t)− uΔ(s)‖H−L
x

≤ C′(1 + ‖u‖2L2
x
)|t− s|.

Proof. From the definition of the spectral hyperviscosity scheme (4.1), we obtain

∂tu
Δ + div(uΔ ⊗ uΔ) +∇pΔ = EΔ,

with EΔ = EΔ
1 + EΔ

2 , where

EΔ
1 = εN |∇|2suΔ, EΔ

2 = (I − PN )div(uΔ ⊗ uΔ).

Clearly, the first error term EΔ
1 can be estimated by

‖EΔ
1 ‖H−2s

x
= εN‖|∇|2suΔ‖H−2s

x
≤ εN‖uΔ‖L2

x
≤ 1

N
(1 + ‖uΔ‖2L2

x
),

where we have used that εN ∼ N−2s+1 ≤ N−1 in the last step (assuming s ≥ 1).

On the other hand, to estimate the second term, let φ ∈ C∞(D;U) be a given

vector field. Thenˆ
D

φ · EΔ
2 dx =

ˆ
D

φ · (I − PN )div(uΔ ⊗ uΔ) dx

= −
ˆ
D

∇(I − PN )φ : (uΔ ⊗ uΔ) dx

≤ ‖(I − PN )∇φ‖L∞
x
‖uΔ‖2L2

x
.
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Choosing � > 0 sufficiently large, we have by the Sobolev embedding theorem

H	
x↪→L∞

x . Hence, we can further estimate for some absolute constant C > 0:

‖(I − PN )∇φ‖L∞
x

≤ C‖(I − PN )∇φ‖H�
x

≤ C‖(I − PN )φ‖H�+1
x

≤ CN−1‖φ‖H�+2
x
.

Thus, we have shown thatˆ
D

φ ·EΔ
2 dx ≤ ‖φ‖H�+2

x
CN−1‖uΔ‖2L2

x
,

for all φ ∈ C∞(D;U), which implies by duality that ‖EΔ
2 ‖

H
−(�+2)
x

≤ CN−1‖uΔ‖2L2
x
.

Let now L := max(2s, � + 2). Then, combining the above two estimates, and

noting that H
−(	+s)
x , H−2s

x ↪→H−L
x , we now conclude that there exists an absolute

constant C > 0, such that

‖EΔ‖H−L
x

≤ CN−1(1 + ‖uΔ‖2L2
x
).

Since Δ = 1/N , this is the claimed estimate for EΔ.

For the time-regularity estimate, we write

∂tu
Δ = −PNdiv(uΔ ⊗ uΔ)−∇pΔ + EΔ

1 .

By an argument analogous to the above, we then find that

‖∂tuΔ‖H−L
x

= ‖PNdiv(uΔ ⊗ uΔ) +∇pΔ + EΔ
1 ‖H−L

x
≤ C′(1 + ‖uΔ‖2L2

x
).

Recalling that also ‖uΔ‖L2
x
≤ ‖u‖L2

x
, it follows that

‖uΔ(t)− uΔ(s)‖H−L
x

=

∥∥∥∥ˆ t

s

∂tu
Δ(τ) dτ

∥∥∥∥
H−L

x

≤
ˆ t

s

‖∂tuΔ(τ)‖H−L
x

dτ

≤ C′(1 + ‖u‖2L2
x
)|t− s|.

This concludes our proof.

From Lemma 4.1, it is now easy to see that if μΔ
t is generated by the Monte

Carlo Algorithm 4.1, i.e.

μΔ
t =

1

M

M∑
i=1

δuΔ
i (t),

with uΔi (t) computed by the spectral hyper-viscosity scheme (4.1), then the trans-

port plan defined by

πΔ
s,t :=

1

M

M∑
i=1

δuΔ
i (s) ⊗ δuΔ

i (t),
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satisfies the properties required by the definition of time-regularity, Definition 2.2.

This provides the required temporal regularity required by Theorem 2.4.

Next, we turn our attention to the spatial regularity bounds of Theorem 2.2.

In particular, we need to obtain uniform estimates on the structure function (2.6).

We start with the following simple observation.

Lemma 4.2. For any r ≥ 0, we have 
Br(0)

|eik·h − 1|2 dh ≤ Cmin(|k|2r2, 1) ≤ C|k|2r2,

where C = 4.

Proof. Fix k, h ∈ Rd. Let f(τ) := |eiτk·h − 1|. Then
f(0) = 0, |f ′(τ)| ≤ |k||h|.

This implies that for |h| ≤ r, and τ ∈ [0, 1]:

|f(τ)| ≤
ˆ t

0

|k||h| ds ≤ |k|r.

Furthermore, the upper bound |f(t)| ≤ 2 is obvious, so that

|eik·h − 1|2 ≤ 4min(|k|2r2, 1).
Averaging over h ∈ Br(0), it follows that 

Br(0)

|eik·h − 1|2 dh ≤ 4min(|k|2r2, 1).

The next result is an estimate on the structure function (2.6) at the grid scale Δ.

Lemma 4.3. If μΔ
t is an approximate statistical solution obtained from the spectral

hyper-viscosity method with Δ = 1/N, and initial data μ̄ for which there exists

M > 0 such that μ̄(BM (0)) = 1 where BM (0) = {‖u‖L2
x
< M}, then

S2
Δ(μ

Δ
t , T ) ≤ CMΔ1/(2s),

for some absolute constant C > 0. The same estimate is also true for r ≤ Δ, i.e.

we have

S2
r (μ

Δ
t , T ) ≤ CMr1/(2s), for all r ≤ Δ.

Proof. Our goal is to estimate the structure function S2
r (μ

Δ
t , T ) based on the

energy estimate (4.5). By construction, we have

μΔ
t =

1

m

m∑
i=1

δuΔ
i (t)
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and uΔi is obtained by the spectral hyper-viscosity method (4.1) with initial data

ui. By Plancherel’s theorem, we obtainˆ
D

 
Br(0)

|uΔi (x+ h)− uΔi (x)|2 dh dx =

 
Br(0)

∑
|k|∞≤N

|eik·h − 1|2|ûΔk |2dh

≤ C
∑

|k|∞≤N

|k|2r2|ûΔi,k|2,

where the last estimate is shown in Lemma 4.2. Let us now fix some α with θ ≤
α < 1. We split the summation over modes |k| ≤ 2Nα and |k| > 2Nα:

ˆ
D

 
Br(0)

|uΔi (x+ h)− uΔi (x)|2 dh dx ≤ r2

⎛⎝ ∑
|k|≤2Nα

+
∑

|k|>2Nα

⎞⎠ |k|2|ûΔi,k|2. (4.7)

From the L2-bound ‖uΔi (t)‖L2
x
≤ ‖ui‖L2

x
, we trivially estimate∑

|k|≤2Nα

r2|k|2|ûΔi,k|2 ≤ 4r2N2α‖ui‖L2
x
.

Recall that for all |k| ≥ 2Nα ≥ 2mN we have

Q̂k ≥ 1−
(
mN

|k|
)(2s−1)/θ

≥ 1− 2−(2s−1)/θ ≥ 1− 2−2s = C,

as a consequence of (4.3) and (4.4). We thus find
ˆ T

0

∑
|k|>2Nα

r2|k|2|ûΔi,k|2 dt ≤ Cr2
ˆ T

0

∑
|k|>2Nα

Q̂k|k|2|ûΔi,k|2 dt

≤ Cr2N−2α(s−1)

ˆ T

0

∑
|k|>2Nα

Q̂k|k|2s|ûΔi,k|2 dt

≤ Cr2
N−2α(s−1)‖ui‖L2

x

εN

= Cr2N2αN−2αs+2s−1‖ui‖L2
x
,

where we have used the prescribed scaling εN ∼ N−2s+1 in the last step.

Combining both estimates, and noting that for all i, ‖ui‖L2 ≤M by assumption,

we conclude thatˆ T

0

ˆ
D

 
Br(0)

|uΔi (x + h)− uΔi (x)|2 dh dx dt ≤ CMr2N2α(1 +N−2αs+2s−1), (4.8)

with an implied constant that depends on s, T , but is independent of the initial

data, and N . If we now choose r = Δ = 1/N , so that Δ is a length at the grid-scale,

then we findˆ T

0

ˆ
D

 
BΔ(0)

|uΔi (x+ h)− uΔi (x)|2 dh dx dt ≤ CMN2α−2(1 +N−2αs+2s−1).
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We finally would like to determine a constant α, which minimizes this last expres-

sion. This is achieved when the term in brackets is of order 1, i.e. with α = 2s−1
2s .

With this choice of α, we have 2α− 2 = −1
s , and

ˆ T

0

ˆ
D

 
BΔ(0)

|uΔi (x+ h)− uΔi (x)|2 dh dx dt ≤ CMN2α−2 = CMN
−1
s = CMΔ1/s.

Let us finally sum over i = 1, . . . ,m. Thus, if μΔ
t is an approximate statistical

solution obtained from the spectral vanishing hyperviscosity method of order s, and

initial data μ, with Δ = N−1, then it satisfies the following bound on the structure

function at the grid scale:

S2
Δ(μ

Δ
t , T ) ≤ CMΔ1/(2s). (4.9)

Inspection of (4.8) shows that also

S2
r (μ

Δ
t , T ) ≤ CMr1/(2s),

if r ≤ Δ.

As in Ref. 16, Sec. 4.2, we have uniform estimates on the structure function

at (or below) the grid scale. Large scale features are in any case independent of

the resolution Δ. However, we lack any information on the intermediate scales, in

between the two. To close this information gap, we follow Ref. 16 and make an

assumption on scaling of the structure function (2.6) at intermediate scales. The

resulting theorem is the following.

Theorem 4.2. Consider the incompressible Euler equations with initial data μ̄ ∈
P(L2

x), such that supp(μ̄) ⊂ BM , with BM the ball of radiusM in L2
x, for someM >

0. Define the approximate statistical solution μΔ
t by the Monte Carlo Algorithm 4.1.

If the approximate statistical solutions μΔ
t satisfy:

• Approximate scaling : For every � > 1, there exists a constant 0 < λ	 ≤ 1/(2s),

fixed C > 0 possibly depending on the initial data, but independent of � and the

grid size N, such that

S2
	Δ(μ

Δ
t , T ) ≤ C�λ�S2

Δ(μ
Δ
t , T ), (T > 0).

Then the approximate statistical solutions μΔ
t converge (up to a subsequence still

denoted by Δ), as Δ → 0, to some μt ∈ L1
t (P).

Proof. By Lemma 4.3, there exists a constant C > 0, such that

S2
r (μ

Δ
t , T ) ≤ C̄r1/(2s), (4.10)

for all r ≤ Δ. If r > Δ, then by the assumed approximate scaling property, we

write r = �Δ, with � > 1, and obtain

S2
r (μ

Δ
t , T ) = S2

	Δ(μ
Δ
t , T )
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≤ C�λ�S2
Δ(μ

Δ
t , T )

≤ CC̄�1/2sΔ1/(2s)

= CC̄r1/(2s),

for some constant CC̄ > 0. The convergence now follows from Theorem 2.4.

Remark 4.2. The scaling assumption (4.10) can be interpreted as a weaker ver-

sion of the scaling assumptions of Kolmogorov (see hypothesis H2, Eq. (6.3), p. 75

of Ref. 20) that was instrumental in the K41 theory for homogeneous, isotropic

turbulence. In contrast to the exact scaling relation postulated by Kolmogorov,

Theorem 4.2 only requires an upper bound on the structure functions; we do not

assume (or indeed even conjecture) that the structure functions exhibit any pre-

cise scaling. The scaling assumption is fundamentally an assumption about the

compactness properties (encoded in two-point correlations) of the approximate sta-

tistical solutions, stating that if we can control the smallest scales by diffusion, the

large scales are expected to be reasonably well-behaved. This intuition is motivated

by numerical experiments presented in Sec. 5. We also note that the inequalities in

(4.10) can accommodate intermittency in the form of deviations for the standard

Kolmogorov determination of the exponent 1/3 for the structure function (2.6).

Remark 4.3. (Convergence without scaling assumption) Let μ be concentrated

on a set of initial data G ⊂ L2
x, such that for any u ∈ G there exists a strong (i.e.

Lipschitz continuous) solution u(x, t) for t ∈ [0, T ]. Denote by St : G → L2
x the

solution operator mapping u �→ u(x, t) = St(u), and let S Δ
t : G → L2

x, u �→ S Δ
t (u)

denote the discretized solution operator. The corresponding (exact/approximate)

statistical solution is in this case given by the push-forward μt = St,#μ, μ
Δ
t =

S Δ
t,#μ. From the definition (2.4) of the metric dT on L1

t (P), and the duality formula

(2.3), we readily obtain the inequality

dT (μt, μ
Δ
t ) ≤

ˆ T

0

ˆ
G
‖St(u)− S Δ

t (u)‖L2
x
dμ(u) dt. (4.11)

Since St(u) is a strong solution for all u ∈ G, the pointwise convergence S Δ
t (u) →

S Δ
t (u) follows from the consistency and energy admissibility of the spectral vis-

cosity scheme (cf. Theorem 3.2 in Ref. 25) and weak–strong uniqueness (cf. Theo-

rem 2 in Ref. 6). Hence, the integrand on the right-hand side of (4.11) is uniformly

bounded and converges to zero pointwise, as Δ → 0. By dominated convergence the-

orem, it follows that μΔ
t → μt in L

1
t (P). In particular, the approximate statistical

solution μΔ
t computed by Algorithm 4.1 converges to the unique dissipative statis-

tical solution μt in this case, without any additional assumptions on the structure

functions.a In three dimensions, this implies the convergence approximate statisti-

cal solutions to the unique dissipative statistical solution under the assumptions of

aIt can be shown that the convergence μΔ
t → μt in turn implies a uniform decay of the structure

functions as Δ → 0.24
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Corollary 3.1 (short-time existence and uniqueness). In the two-dimensional case,

this shows the convergence to the unique dissipative statistical solution under the

assumptions of Corollary 3.2 (global existence and uniqueness for C1,α initial data).

4.4. Decay of energy spectrum

In this section, we will provide an alternative criterion to ensure convergence of

probability measures with respect to the metric (2.4).

This criterion is motivated from well-known experimental and theoretical con-

cepts in the study of turbulent flows and is based on the energy spectrum E(u;K)

(K ∈ N0) associated to a vector field u, defined as

E(u;K) =
1

2

∑
K−1<|k|≤K

|û(k)|2.

Note that the kinetic energy is obtained as a sum

1

2

ˆ
D

|u|2 dx =

∞∑
K=1

E(u;K).

Given a probability measure μ ∈ P(L2
x), let us similarly define:

E(μ;K) =

ˆ
L2

x

E(u,K) dμ(u),

so that E(δu;K) = E(u;K), for u ∈ L2
x. Finally, we denote by ET (μt;K) the

time-integrated energy spectrum

ET (μt;K) =

ˆ T

0

E(μt;K) dt.

It is an experimentally observed fact20 that the typical energy spectrum of

turbulent flows with a sufficiently strong dissipation mechanism at small scales typ-

ically takes a shape similar to the one shown in Fig. 1: Visible are three parts of the

energy spectrum. The left-most part (small K) corresponds to large-scale features

for the flow, the middle part (intermediate K) is referred to as the inertial range,

while the right-most part (large K) may be referred to as the dissipation range.

The appearance of these three parts is heuristically explained as follows. Starting

from initial data (with a sufficiently fast decay of the energy spectrum) initially

fixes the large-scale features of the flow. Due to the nonlinear nature of the evolu-

tion equation, these large-scale features decay to smaller scales, corresponding to

energy cascading from small values of K to larger values of K. While a satisfactory

mathematical treatment of the precise nature of this energy cascade remains an

outstanding challenge, there is evidence by physical reasoning and as well as from

numerical and real-world experiments that typically the energy spectrum resulting

from this cascade process satisfies at least an upper bound of the formE(K) � K−γ ,

for some fixed γ that is associated with the nonlinearity. In the presence of a dis-

sipative mechanism acting on small scale features of the flow, this “free” energy
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cascade to larger values of K due to the nonlinearity is finally interrupted by the

dissipation. Thus, energy is dissipated at dissipative scales.

From this heuristic point of view, we would expect the large-scale features to

depend mostly on the initial data, while the decay of the energy spectrum at the

largest values of K can be controlled in a numerical approximation scheme by a

suitable choice of the numerical dissipation. On the other hand, there is no a priori

information on the decay of the spectrum in the intermediate, inertial range. Hence,

we make the following, rather natural, assumption,

Assumption 4.3. There exist β > 0 and constant C > 0 such that the computed

energy spectra with Algorithm 4.1 scale as,

ET (μ
Δ
t ,K) ≤ CK−2β , ∀Δ > 0. (4.12)

�
Under this assumption on the energy spectrum, we have the following conver-

gence theorem.

Theorem 4.4. If μΔ
t is obtained by the spectral viscosity method through Algo-

rithm 4.1, and if the energy spectra ET (μ
Δ
t ;K) satisfy the inertial range Assump-

tion 4.3 with β > 1/2, then there exists a subsequence (not relabeled) Δ → 0 and a

time-parameterized probability measure μt, such that μΔ
t → μt in L

1
t (P).

Proof. From Plancherel’s identity and Lemma 4.2, we have

S2
r (μt;T )

2 =

ˆ T

0

ˆ
L2

x

 
Br(0)

ˆ
D

|u(x+ h)− u(x)|2 dx dh dμt dt

�
ˆ T

0

ˆ
L2

x

∑
k

min(|k|2r2, 1)|û(k)|2 dμt dt

∼ r2
∑

K≤1/r

K2ET (μt;K) +
∑

K>1/r

ET (μt;K).

Hence, based on Assumption 4.3, we now obtain the estimate

S2
r (μ

Δ
t ;T )

2 � r2
∑

K≤1/r

K2K−2β +
∑

K>1/r

K−2β

∼ r2(1 + r2β−3) + r2β−1

∼ rmin(2,2β−1), as r → 0.

Therefore, the scaling assumption on the average energy spectrum leads to the

uniform diagonal continuity:

ET (μ
Δ
t ,K) � K−2β ⇒ S2

r (μ
Δ
t ;T ) � rβ−1/2, if 1 < 2β < 3. (4.13)

From Theorem 2.4, we obtain compactness of the sequence μΔ
t .
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(a) Energy spectrum E(K) (b) Compensated E’spectrum KγE(K)

Fig. 1. Typical energy spectrum for turbulent flows.

Remark 4.4. As indicated in Fig. 1(b), a convenient way to check the scaling

Assumption 4.3 in practice is to consider the compensated energy spectrum, which is

defined asKγE(K), where γ is the (proposed) scaling exponent in the inertial range.

Proposition 4.4 says that if there exists γ > 1, such that the compensated energy

spectrum KγET (μ
Δ
t ;K) is uniformly bounded by a constant, and independently of

Δ, then {μΔ
t |Δ > 0} is compact in L1(P).

Remark 4.5. If d = 3 and p = 2, then Kolmogorov’s theory states that for fully

developed turbulence S2
r ∼ r1/3. Based on our estimate, this requires β = 5

6 . So

that the (expected) energy spectrum is E(K) ∼ K−2β ∼ K−5/3. Such an assumed

scaling is consistent with many real, as well as numerical, experiments reported in

the literature, and is sufficient for compactness in the space of probability measures

L1
t (P) (cf. Proposition 4.4).

4.5. Lax–Wendroff type theorem

We have used a compactness argument to show that under some reasonable

hypotheses on the approximations, numerical solutions computed by the spectral

hyper-viscosity converge to a limiting time-parameterized probability measure. In

this section, we show that such a limit necessarily is a statistical solution of the

incompressible Euler equations in the sense of Definition 3.1.

Theorem 4.5. (Lax–Wendroff type theorem) Let μΔ
t be computed by the spectral

hyper-viscosity scheme with initial data μ̄, and assume μΔ
t → μt in L1

t (P), as

Δ → 0. Then μt is a statistical solution of the incompressible Euler equations with

initial data μ̄.

Proof. Fix k ∈ N. Let φ1, . . . , φk ∈ C∞
c (D × [0,∞)) be given solenoidal test

functions. Set φ := φ1 ⊗ · · · ⊗ φk and denote νk = νkx1,...,xk,t
. Let uΔ be obtained
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from the spectral method, with initial data ū. Let us denote (u, φ) :=
´
D
u · φdx.

Then, as a consequence of Lemma 4.1, we can write

d

dt
(uΔ, φi) = (uΔ, ∂tφi) + (uΔ ⊗ uΔ,∇φi) + (EΔ, φi),

where there exists L > 0 independent of Δ and the initial data ū, such that the error

term EΔ satisfies ‖EΔ‖H−L ≤ CΔ(1+‖ū‖2L2
x
). Taking the product over i = 1, . . . , k,

we find

d

dt

k∏
i=1

(uΔ, φi) =

k∑
i=1

⎡⎣∏
j �=i

(uΔ, φj)

⎤⎦
×{(uΔ, ∂tφi) + (F (uΔ),∇φi) + (EΔ, φi)},

where F (u) := u⊗u. Recognizing the special structure of the empirical measure μΔ
t

(4.6) as a convex combination, denoting by νk,Δ = νk,Δx1,...,xk,t
the k-point correlation

measure corresponding to μΔ
t , we obtain from the above identity that,

ˆ T

0

ˆ
Dk

〈νk,Δ, ξ1 ⊗ · · · ⊗ ξk〉 : ∂tφ

+
∑
i

〈νk,Δ, ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk〉 : ∇xiφdx dt

+

ˆ
Dk

〈ν̄k,Δ, ξ1 ⊗ · · · ⊗ ξk〉 : φ(x, 0) dx

=

ˆ T

0

ˆ
L2

x

k∑
i=1

⎡⎣∏
j �=i

(uΔ, φj)

⎤⎦ (EΔ, φi) dμ
Δ
t dt. (4.14)

The right-hand side can be bounded by

ˆ T

0

ˆ
L2

x

‖uΔ‖k−1
L2

x

k∑
i=1

∏
j �=i

‖φj‖L2
x
‖EΔ‖H−L

x
‖φi‖HL

x
dμΔ

t dt,

which, by Lemma 4.1 is further bounded by

≤ C(φ, k)Δ

ˆ T

0

ˆ
L2

x

(1 + ‖uΔ‖2L2
x
)k dμΔ

t (u) dt.

Note that if μ̄ is supported on BM (0) ⊂ L2
x, then it follows that μΔ

t is supported

on BM (0), as well. This is a consequence of the a priori L2-bound (4.5). Hence the

error term in Eq. (4.14) is in this case bounded by CΔ, where C = C(φ, k,M, T )

is a constant independent of Δ.

Let us also note that the terms on the left-hand side of (4.14) converge strongly

in L1
t,x as Δ → 0. Indeed, it is not difficult to see that all terms on the left-hand

side, e.g.

g(t, x, ξ) := (ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk) : ∇xiφ(x, t),
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are admissible observables in the sense of (2.12). For such observables, the L1
t,x-

convergence of

〈νk,Δt,x , g(t, x, ξ)〉 → 〈νkt,x, g(t, x, ξ)〉, as Δ → 0,

has been established in Theorem 2.4. The same holds true for the other two terms

on the left-hand side.

Passing to the limit μΔ
t → μt, it thus follows that

ˆ T

0

ˆ
Dk

〈νkt,x, ξ1 ⊗ · · · ⊗ ξk〉 : ∂tφ

+
∑
i

〈νkt,x, ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk〉 : ∇xiφdx dt

+

ˆ
Dk

〈ν̄kx , ξ1 ⊗ · · · ⊗ ξk〉 : φ(x, 0) dx = 0.

The fact that μt is concentrated on incompressible vector fields follows immedi-

ately from the corresponding property of the approximations μΔ
t (cf. Lemma 3.1).

Furthermore, from Proposition 2.2, it also follows that the limit μt is time-regular.

This finishes the proof that μt is a statistical solution of the incompressible Euler

equations with initial data μ̄.

Remark 4.6. It is straightforward to show that if μΔ
t are generated from the

spectral hyper-viscosity scheme (4.1), and if they satisfy the assumptions of The-

orem 4.5, the limit μt is in fact a dissipative statistical solution in the sense of

Definition 3.2.

5. Numerical Experiments

In this section, we will present a suite of numerical experiments to demonstrate the

effectiveness of the Monte Carlo Algorithm 4.1 in computing statistical solutions of

the incompressible Euler equations.

5.1. Implementation

For our numerical experiments, we use the implementation of the spectral hyper-

viscosity scheme (4.1) provided by the SPHINX code, which was first presented

in Ref. 27. In SPHINX, the nonlinear advection term is implemented using the

O(N2 logN)-costly fast Fourier-transform. Aliasing is avoided via the use of a

padded grid, as e.g. described in Refs. 27 and 26. The spectral scheme is imple-

mented based on the primitive variable formulation.

For the numerical experiments reported below, we use a spectral viscosity oper-

ator of order s = 1 (cf. Eq. (4.1)), with εN = ε/N , ε = 1/20 unless otherwise stated.
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The Fourier multiplier QN is chosen with Fourier coefficients

Q̂k =

{
1−N/|k|2 |k| ≥ √

N,

0, otherwise.

corresponding to mN =
√
N .

For each sample, SPHINX solves the following system of ODEs for the Fourier

coefficients ûk(t), |k|∞ ≤ N of u(x, t) =
∑

|k|∞≤N ûk(t)e
ikx:

⎧⎪⎨⎪⎩
d

dt
ûk = −ik ·

(
I − k ⊗ k

|k|2
)
· ̂(u⊗ u)k − ε

N
max(|k|2 −N, 0) ûk,

ûk(0) = ûk,

(5.1)

for |k|∞ ≤ N , k �= 0. Here, ûk denote the Fourier coefficients of the initial data. The

multiplication by the matrix (I − (k ⊗ k)/|k|2) implements the Leray projection

onto divergence-free vector fields. The dot product with ik · (. . .) corresponds to

taking the divergence in Fourier space. We note that the zeroth Fourier component

of u is constant in time, reflecting conservation of momentum. In SPHINX, this

component is set equal to û0 ≡ 0. The above system of ODEs (5.1) is integrated in

time using an adaptive explicit third-order Runge–Kutta method.

Although the theory of Sec. 4 is valid for both two and three space dimensions

and the SPHINX code is available for both cases, we restrict our focus to two space

dimensions in this section, on account of affordable computational costs.

5.2. Flat vortex sheet

Vortex sheets occur in many models in physics and are an important test bed for

numerical experiments for the Euler equations, Ref. 25 and references therein. We

first consider a randomly perturbed version of the flat vortex sheet that corresponds

to the following initial data also considered in Ref. 25,

5.2.1. Initial data

Given a smoothing parameter ρ > 0, and a parameter δ ≥ 0 (measuring the size

of the random perturbation of the interface), this vortex sheet initial data is of the

form

uρ,δ(x) = P(Uρ(x1, x2 + σδ(x1))), (5.2)

where P denotes the Leray projection, Uρ(x) = (Uρ
1 (x), U

ρ
2 (x)) is the following

smoothened flat vortex sheet initial data:

Uρ(x) :=

⎧⎪⎪⎨⎪⎪⎩
tanh

(
x2 − 1/4

ρ

)
, (x2 ≤ 1/2),

tanh

(
3/4− x2

ρ

)
, (x2 > 1/2),

Uρ
2 (x) = 0.
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and σδ(x) is a random function, which for a given (random) choice of parameters

α1, . . . , αq ∈ (0, δ), β1, . . . , βq ∈ [0, 2π), is defined by

σδ(x1) =

q∑
k=1

αk sin(2πx1 − βk). (5.3)

We will also consider the discontinuous case of initial data that are obtained in the

limit ρ→ 0 resulting in

U0
1 (x) :=

{
+1, (1/4 < x2 ≤ 3/4),

−1, (otherwise),
U0
2 (x) = 0.

For our simulations, we fix q = 10 modes for the perturbations. The coefficients αk

are drawn independently, uniformly in (0, 1), and then multiplied by δ. The coeffi-

cients βk are i.i.d., with a uniform distribution on [0, 2π). The initial data for the

statistical solution μ̄δ
ρ ∈ P(L2

x) is defined as the law of these random perturbations.

It depends on the two parameters ρ ≥ 0, δ ≥ 0. While ρ controls the smoothness

of the initial data, δ measures the amplitude of the perturbation. We fix δ = 0.025

in the following and consider different values of ρ. Note that the choice ρ = 0 cor-

responds to an initial measure supported on discontinuous flows with a very sharp

transition (see Figs. 2(a) and 2(b) for realizations (samples) of this initial data). In

Figs. 2(c) and 2(d), we present the initial mean and variance that correspond to

the random variations of the initial interface location.

(a) u1-component (b) u2-component

(c) mean: u1-comp. (d) variance: u1-comp.

Fig. 2. Initial data for the perturbed discontinuous flat vortex sheet (ρ = 0), samples for u1,2,
and mean and variance of u1.
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Clearly when ρ > 0, the corresponding initial data for every sample is smooth.

Consequently, smooth solutions of (1.1) are well-posed and the spectral viscosity

method converges to this solution as N → ∞.2 However for ρ = 0, which cor-

responds to the case of a discontinuous vortex sheet, there are no well-posedness

results even for weak solutions, as the vorticity corresponding to the initial datum

(for each sample) is a sign changing measure and does not belong to the Delort

Class. In Ref. 25, the authors had presented multiple numerical experiments to

illustrate the approximate solutions, computed with a spectral viscosity method,

may not converge (or converge too slowly to be of practical interest) for individual

samples (see Figs. 5 and 6 of Ref. 25). Hence, it would be interesting to study if

approximate statistical solutions, generated by Algorithm 4.1 converge in this case.

5.2.2. Structure functions and Compensated Energy spectra

The convergence Theorem 4.2, based on the compactness Theorem 2.2, provides

us with verifiable criteria to check convergence of Algorithm 4.1. In particular, we

need to check certain decay conditions on the structure function (2.6) for small

correlation lengths. To this end, we consider the following instantaneous version of

the structure function (2.6),

S2,Δ
r,t (μt) :=

(ˆ
L2

x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dμΔ
t (u)

)1/2

, (5.4)

Note that the above is a formal definition and it can be made rigorous in terms

of the time-dependent correlation measures. It is much simpler to compute the

instantaneous quantity (5.4) than the time-averaged version (2.6).

Our objective is to check whether the structure function (2.6), or rather its

instantaneous version (5.4), decays (uniformly in resolution Δ) as r → 0. Such a

decay would automatically imply convergence of the approximations to a statistical

solutions by Theorems 2.2 and 4.5.

Clearly if ρ > 0 in (5.2), the spectral viscosity method converges to the unique

classical solution as Δ → 0. Moreover, a straightforward calculation shows that the

structure function (5.4) should scale as

S2,Δ
r,t (μt) ≈ r, ∀Δ, t. (5.5)

This is indeed verified from Fig. 3(a) where we plot the structure function (5.4)

at t = 0.4 and ρ = 0.1 for different values of the mesh parameter. We see from this

figure that S2,Δ
r,0.4(μt) ≈ r0.9, at fine resolutions, which is very close to the expected

value of 1 for the scaling exponent of the structure function.

On the other hand, for ρ = 0, corresponding to the discontinuous flat vortex

sheet, the lack of smoothness inhibits us from inferring a particular form of decay

of (2.6) (or (5.4)) a priori.

At least initially, calculations in Ref. 24 imply that S2,Δ
r,0 (μ̄) ∼ r

1
2 , for the

discontinuous flat vortex sheet. Surprisingly, we find from Fig. 3(b) that at fine
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(a) ρ = 0.1 (b) ρ = 0.0

Fig. 3. Instantaneous structure function (5.4) versus correlation length r for different resolutions
(N ∼ Δ−1) for different values of smoothness parameter ρ, at t = 0.4.

resolutions, S2,Δ
r,0.4(μt) ≈ r0.52, which agrees with the decay of the structure func-

tion of the initial data. Although we do not present the results there, we observe

that the structure function (5.4) scales as rθt , with θt ≥ 0.5 for all t. This implies

an uniform decay of the structure function (2.6) and convergence of the approxi-

mations to a statistical solution of the Euler equations (1.1), even for this case of

discontinuous vortex sheet data. Note that the computed structure functions (5.4)

in Fig. 3 clearly satisfy the approximate scaling hypothesis (4.10) and thus imply

convergence through Theorem 4.2.

An alternative criterion for convergence of statistical solutions is provided by

the energy spectrum decay in the inertial range (4.12). To check whether this cri-

terion is satisfied, we follow Theorem 4.4 and compute the following instantaneous

compensated energy spectrum

CΔ
γ,t(μt;K) := KγE(μt,K). (5.6)

Following the arguments in the proof of Theorem 4.4, we can relate the decay of the

instantaneous energy spectrum to the corresponding decay of the structure function

(5.4) by a direct analogue of (4.13).

For ρ = 0.1 in (5.2), we plot the compensated energy spectrum CΔ
3,0.4(μt;K) for

all K and at time t = 0.4, with compensating factor γ = 3 in Fig. 4(a). Note that

this choice of γ is consistent with a decay exponent of 1 for the structure function

in (4.13), i.e. S2
r (μ

Δ
t ;T ) � r. We observe from this figure that as expected for this

case, the compensated energy spectrum is clearly bounded and in fact, decays faster

than the expected rate for the entire range of wave numbers.

On the other hand, we plot the compensated energy spectrum CΔ
2,0.4(μt;K) (5.6)

for the discontinuous flat vortex sheet case, i.e. ρ = 0 in (5.2), in Fig. 4(b). In this

case, we expect from the structure function computations (see Fig. 3(b)) that the

instantaneous structure function decays with an exponent of ≈ 0.5. From (4.13), we

see that this corresponds to the choice of γ = 2 as the exponent of compensation in

(5.6). Moreover, in Fig. 4(b), we also plot the line corresponding to wave number
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(a) ρ = 0.1, γ = 3 (b) ρ = 0.0, γ = 2

Fig. 4. The instantaneous compensated energy spectrum CΔ
γ,t(μt;K) (5.6) for the flat vortex

sheet, at time t = 0.4. Note different values of γ for the smooth and discontinuous vortex sheets.

mN ≈ √
N , which for the spectral viscosity method (4.1) represents the wave

number after which the spectral viscosity is activated and hence, demarcates the

separation between inertial and dissipation ranges. We observe from Fig. 4(b) that

the compensated energy spectrum is clearly uniformly bounded (in terms of the

resolution Δ) for the whole inertial range and for all resolutions Δ barring the

coarsest resolution, and decays fast in the dissipation range, although there is a

slight kink upwards at the very end of the dissipation range, almost at the grid

scale. This might be attributed to numerical errors, which are dominant at this

range. Translating these results to the energy spectrum, we see that the spectrum

decays as K−2 in the inertial range uniformly with respect to resolution. Hence,

according to Theorems 4.4 and 4.5, the sequence of approximations will converge

to a statistical solution of (1.1).

5.2.3. Convergence in Wasserstein Metrics

Given the computational results on the structure function and the compensated

energy spectra, results in Sec. 4 clearly imply convergence of the approximations

μΔ
t , generated by the Monte Carlo Algorithm 4.1 to a statistical solution of the

incompressible Euler equations. Moreover from the discussion in Sec. 2, we should

observe with respect to the following Cauchy rates:

dT (μ
Δ
t , μ

Δ/2
t ) =

ˆ T

0

W1(μ
Δ
t , μ

Δ/2
t ) dt. (5.7)

Unfortunately, the calculation of the Wasserstein distance between probability mea-

sured defined on high-dimensional (or indeed ∞-dimensional) spaces is a highly

non-trivial issue, which we cannot tackle with present computational resources.

On the other hand, one can compute finite-dimensional marginals of (5.7) by

utilizing the complete characterization of L1
t (P) in terms of correlation measures
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(a) k = 1 (b) k = 2 (c) k = 3

Fig. 5. The Wasserstein distances between correlation marginals
´
Dk W1(ν

Δ,k
t,x , ν

Δ/2,k
t,x ) dx for

k = 1, 2, 3, at time t = 0.4 with respect to resolution.

as given in Theorem 2.3. Following Ref. 16 (Theorem 5.7), one can prove thatˆ
Dk

W1(ν
Δ,k
t,x , ν

Δ/2,k
t,x ) dx ≤ CkW1(μ

Δ
t , μ

Δ/2
t ), a.e. t (5.8)

Here, k ≥ 1 and νΔ,k
t,x is the kth correlation marginal corresponding to the approx-

imate statistical solution μΔ
t . Note that we consider instantaneous versions of the

Wasserstein metric (5.7) for reasons of computational convenience.

We remark that computing the Wasserstein distancesW1(ν
Δ,k
t,x , ν

Δ/2,k
t,x ) for small

k is much more tractable. We have computed these Wasserstein distances using

the algorithm of Ref. 5 (as implemented in Ref. 18) and the corresponding results

for k = 1, 2, 3, at time t = 0.4 for the discontinuous flat vortex sheet, i.e. ρ =

0 in (5.2) are presented in Fig. 5. As seen from this figure, we observe a clear

convergence of these Wasserstein distances (in the Cauchy sense as in (5.8)) for the

one-point, two-point and three-point correlation measures, albeit at a slow rate for

the second and third correlation marginals. This, together with the results on the

structure function and compensated energy spectra, provides considerable evidence

that the approximate statistical solutions, generated by Algorithm 4.1, converge to

a statistical solution of (1.1). Moreover, given Theorem 2.4, results shown in Fig. 5

establish convergence with respect to any admissible observable in the sense of

(2.12), corresponding of one-point, two-point and three-point statistical quantities

of interest. These include mean, variance, structure functions, energy spectra as

well as three-point correlation functions.

5.3. Sinusoidal vortex sheet

In this section, we will consider a random perturbation of the so-called sinusoidal

vortex sheet, i.e. the initial vorticity is concentrated on a sine curve. This test case

was extensively studied in a recent paper26 in the context of the numerical approx-

imation of weak solutions (in Delort class) of the two-dimensional incompressible

Euler equations. Whereas Ref. 26 considered the deterministic problem with fixed

initial data, we will here follow a statistical approach, considering an initial mea-

sure μ supported on small random perturbations of the sinusoidal vortex sheet. As

discussed in Ref. 26, due to inherent Kelvin–Helmholtz instabilities the computed
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numerical approximations for sinusoidal vortex sheet initial data experience vortex

sheet roll-up at ever smaller length-scales at increasing resolution Δ → 0 (and at

low diffusivity). These small-scale Kelvin–Helmholtz instabilities slow down, and at

even smaller values of Δ ultimately prevent the strong convergence of the numerical

approximants to a limiting solution. In this section, we will compare the convergence

properties of the deterministic problem with the corresponding perturbed statistical

approach. In contrast to the deterministic problem, the quantities of interest in the

statistical setting, such as the mean, variance (as well as higher-order correlations),

appear to retain some smoothness even after the complex vortex sheet roll-up. This

makes them amenable to numerical approximation, even though the deterministic

evolution cannot be stably resolved.

5.3.1. Initial Data

We fix a sinusoidally perturbed vortex sheet, where the initial vorticity is a Borel

measure of the form

ω0 = δ(x− Γ)−
ˆ
T2

dΓ,

such that
´
T2 ω0 dx = 0, and up to a constant, ω0 is uniformly distributed along a

curve Γ, which is defined as the graph:

Γ = {(x, y) | y = d sin(2πx), x ∈ [0, 1]}.
We chose d = 0.2 for our simulations.

The numerical initial data is obtained from the mollification of this initial data

with a parameter ρ > 0. As a mollifier, we consider the third-order B-spline

ψ(r) :=
80

7π
[(r + 1)3+ − 4(r + 1/2)3+ + 6r3+ − 4(r − 1/2)3+ + (r − 1)3+].

Next, we define ψρ(x) = ρ−2ψ(|x|/ρ). The numerical approximation of the per-

turbed vortex sheet is now defined by setting

ωρ
0(x) :=

ˆ
Γ

ψρ(x− y)ω0(y) dy,

where ρ determines the thickness (smoothness) of the approximate vortex sheet.

The convolution at x = (x1, x2) ∈ T2 is evaluated via numerical quadrature:

(ω0 ∗ ψρ)(x) ≈ ρ

Q

∑
i

ψρ(x− (ξi, g(ξi)))
√

1 + |g′(ξi)|2,

with ξi = x1 + iρ/Q equidistant quadrature points in x1, and g(ξ) the function

whose graph is Γ, i.e. g(ξ) = d sin(2πξ). We choose Q = 400 quadrature points. We

denote by Uρ(x1, x2) the velocity field such that div(Uρ) = 0 and curl(Uρ) = ωρ
0 .

Similar to the case of the flat vortex sheet, we carry out random perturbations

of the sinusoidal vortex sheet as follows:

uρ,δ(x) := P(Uρ(x1, x2 + σδ(x1)).
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Here, P : L2
x → L2

x denotes the Leray projection onto divergence-free vector fields,

and we again fix a random function σδ(x),

σδ(x1) =

q∑
k=1

αk sin(2πx1 − βk),

depending on a parameter δ ≥ 0 and a choice of (random) coefficients α1, . . . , αq ∈
(0, δ), β1, . . . , βq ∈ [0, 2π). For our simulations, we fix q = 10 modes for the per-

turbations. In practice, the coefficients αk are first drawn independently, uniformly

in (0, 1), and then multiplied by δ. The coefficients βk are i.i.d., with a uniform

distribution on [0, 2π). The initial data for the statistical solution μ̄δ
ρ ∈ P(L2

x) is

defined as the law of these random perturbations. It depends on the two parameters

ρ ≥ 0, δ ≥ 0. While ρ controls the smoothness of the initial data, δ measures the

amplitude of the perturbation. We fix δ = 0.003125 in the following and vary ρ as

a function of the grid size N . To approximate vortex sheet initial data, we must

scale ρ = ρ(N) with N , such that ρ→ 0 as N → ∞. We use ρ = 5/N for our simu-

lations. The additional diffusion parameter ε of the spectral viscosity scheme is set

to ε = 0.01. With this choice of parameters, we will drop the sub- and superscripts

and denote the initial data at a given resolution simply by μ ∈ P(L2
x).

5.3.2. Computation of individual samples

For any single realization of the random perturbation σδ(x), the resulting vorticity

of the initial datum (sample) is a positive measure, concentrated on a sine curve

(see Fig. 6(a) for horizontal component of velocity u1). Hence, any single sample of

the initial data in the Delort class. Therefore, by the results of Ref. 26, the approx-

imate solutions generated by the spectral viscosity method (4.1) will converge, on

increasing resolution, to a weak solution of (1.1). However, as noted in Ref. 26, this

convergence can be very slow as the flow breaks down into smaller and smaller vor-

tices. In fact, this phenomenon is also seen from Fig. 7 (top row), where we plot the

horizontal component of velocity u1 at time t = 1.2 and different resolutions. At this

time, the initial vortex sheet has rolled over and broken down into a succession of

small vortices, whose location and amplitude are different for different resolutions.

This very slow convergence is also displayed in Fig. 8(a), where we plot the Cauchy

(a) Sample (b) Mean (c) Variance

Fig. 6. Initial conditions for the horizontal velocity u1 for the sinusoidal vortex sheet.
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Fig. 7. Results at time T = 1.2 for the horizontal velocity u1 of the sinusoidal vortex sheet, at
different resolutions. Top row: Sample; middle row: Mean; bottom row: Variance.

(a) Sample (b) Mean and Variance

Fig. 8. Cauchy rates for the norm of the velocity field (
√

u2
1 + u2

2) for the sinusoidal vortex

sheet. Slope λ is determined by a best fit. Left: Sample convergence rates at three different times
t = 0, 0.6, 1.2. Right: Convergence of mean and variance at T = 1.2.

rates ‖uΔ(t) − uΔ/2(t)‖L2
x
, with uΔ denoting the approximate solution computed

with the spectral viscosity method (4.1), for three different times t = 0, 0.6, 1.2. As

seen from this figure, the rate of convergence decreases very rapidly and at time

t = 1.2, it appears as if there is no convergence on mesh refinement.

5.3.3. Structure functions and Compensated energy spectra

Given this apparent non-convergence of individual samples, it is pertinent to inves-

tigate if computing the statistics will be more convergent. To this end, we consider
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(a) Instant. structure function (5.4) (b) Compensated energy spectrum (5.6)

with γ = 2.2

Fig. 9. The structure function and compensated energy spectrum for the sinusoidal vortex sheet
at time T = 1.2.

the initial data to be the initial probability measure μ̄. The mean and variance

(of the horizontal component u1) are plotted in Figs. 6(b) and 6(c). From this fig-

ure, we observe that the initial probability measure is concentrated on very small

perturbations of the underlying sinusoidal vertex sheet, as reflected in the initial

variance.

In order to investigate the convergence of approximations to the statistical solu-

tion, generated by Algorithm 4.1, we follow the template of the previous numerical

experiment and compute the (instantaneous) structure function (5.4) and the com-

pensated energy spectrum (5.6) in Fig. 9. From this figure, we observe that the

structure function at time t = 1.2 scales with an exponent of ≈ 0.7 at the finest

resolutions. From (4.13), this implies roughly a γ = 2.4 in the scaling of the energy

spectrum (5.6). A better fit to the scaling of the energy spectrum is found with

γ = 2.2. We plot the compensated energy spectrum with the latter value of γ in

Fig. 9(b). From this figure, we see that for the inertial range, the energy spectrum

clearly decays (faster than) a rate of 2.2. Thus, the assumptions of Theorems 2.2

and 4.4 are satisfied and the approximations will converge to a statistical solution

of (1.1).

5.3.4. Convergence of observables and Wasserstein Distances

Given the results on the computed structure functions and energy spectra, the

approximations will converge. But is this convergence at a better rate than that

of single samples? To investigate this issue, we consider two different sets of com-

putations. First, we compute the mean and the variance of the velocity field at

different resolutions and plot them (for the horizontal velocity at time t = 1.2) in

Fig. 7(middle and bottom rows). Clearly, the one-point statistics appear much more

convergent than the single sample results. The mean flow consists of a coherent set

of large vortices, which is in stark contrast to the large number of vortices formed
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(a) k = 1 (b) k = 2

Fig. 10. The metrics
´
Dk W1(ν

Δ,k
t,x , ν

Δ/2,k
t,x )dx for the one- and two-point correlation marginals

for the sinusoidal vortex sheet at time t = 1.2.

in the single sample simulations. Moreover, we also plot Cauchy rates for the mean

and the variance, corresponding to the norm
√
u21 + u22 at time t = 1.2, and dif-

ferent resolutions in Fig. 8(b). Again, we observe that these one-point statistics

converge at a significantly faster rate than the single sample. These results indicate

that one can expect significantly better convergence of approximations for statistics

than for individual realizations of fluid flows, even if the initial probability measure

is a small perturbation of the underlying deterministic data and further reinforces

the results of Refs. 13, 25 and 16 in this direction.

Finally, we plot the Wasserstein distances (5.8) for k = 1, 2, corresponding to

the one- and two-point correlation marginals, at time t = 1.2, in Fig. 10. The

results clearly show convergence in these metrics at a significantly faster rate than

for individual samples and indicate possible convergence in the metric (2.4) on

probability measures on L2.

5.4. Fractional Brownian motion

The study of the evolution of initial ensembles corresponding to (fractional) Brow-

nian motion stems from Refs. 46 and 48, where the authors model interesting

aspects of Burgers turbulence by evolving Brownian motion initial data for the

(scalar) Burgers’ equation, see Ref. 15 for a more recent numerical study. Simi-

larly in Ref. 16, the authors consider the compressible Euler equations with (frac-

tional) Brownian motion initial data. Following these papers, we will consider the

two-dimensional Euler equations (1.1) with initial data corresponding to fractional

Brownian motion, i.e. the following initial data:

ux,H0 (ω;x) := BH
1 (ω;x), wy,H

0 (ω;x) := BH
2 (ω;x). for ω ∈ Ω, x ∈ D, (5.9)

where BH
1 and BH

2 are two independent two-dimensional fractional Brownian

motions with the Hurst index H ∈ (0, 1). Standard Brownian motion corresponds

to a Hurst index of H = 1/2. The initial probability measure μ̄ is the law of the

above random field.
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(a) H = 0.15 (b) H = 0.5 (c) H = 0.75

Fig. 11. A single sample of initial horizontal velocity u1 for the fractional Brownian motion initial
data (5.9) for three different Hurst indices.

To generate fractional Brownian motion, we use the random midpoint dis-

placement method originally introduced by Lévy29 for Brownian motion, and later

adapted for fractional Brownian motion, see Sec. 6.6.1 in Ref. 16.

Considering fractional Brownian motion initial data (5.9) is a significant devia-

tion from the vortex sheet initial data in the following respects:

• For the vortex sheet initial data, the initial measure μ̄ ∈ P(L2
x) was concentrated

on a 20-dimensional subset of L2
x (corresponding to the choice of 20 free param-

eters αk, βk). On the other hand, in the limit of infinite resolution (Δ → 0), the

fractional Brownian motion initial data corresponds to a measure concentrated

on an infinite dimensional subset of L2
x.

• For any 0 < H < 1, and for any sample ω ∈ Ω, the initial vorticity for (5.9) is not

a Radon measure. Consequently, the initial data does not belong to the Delort

class and there are no existence results for the corresponding samples. Hence,

fractional Brownian motion does not fall within the ambit of any of the available

well-posedness theories for two-dimensional Euler equations.

• The Hurst index H in (5.9) controls the regularity (and also roughness) of the

initial data (pathwise). Roughly speaking, each sample is Hölder continuous with

exponent H . Hence, we can consider a very wide range of scenarios in terms

of roughness of the initial data by varying the Hurst-index H , see Fig. 11 for

realizations of the horizontal velocity field for three different Hurst indices. In

particular, one can observe from this figure that lowering the value of H leads to

oscillations of both higher amplitude and frequency in the initial velocity field.

5.4.1. Structure functions and Compensated energy spectra

In order to verify convergence of the approximations, generated by Algorithm 4.1,

for the fractional Brownian motion initial data (5.9), we will check if the computed

structure functions (5.4) decay uniformly with respect to resolution, on decreasing

correlation lengths. In Fig. 12 (top row), we plot the structure function at time

T = 1 for three different Hurst indices of H = 0.75, 0.5, 0.15 and observe that

the structure functions indeed decay to zero at a certain exponent (independent
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(a) H = 0.15 (b) H = 0.5 (c) H = 0.75

Fig. 12. Instantaneous structure function (5.4) (top row) and compensated energy spectrum (5.6)
(bottom row) for fractional Brownian motion initial data with three different Hurst indices at time
T = 1. The compensated energy spectrum (5.6) is computed with γ = 1.3 (H = 0.15), γ = 2.0
(H = 0.5) and γ = 2.5 (H = 0.75).

of resolution). These exponents are approximately 0.8 for initial H = 0.75, 0.6 for

the standard Brownian motion initial data (H = 0.5) and 0.55 for the initially

rough H = 0.15. These results indicate that the conditions of the compactness

Theorem 2.2 are fulfilled and the approximations converge to a statistical solution

of (1.1).

This convergence is further reinforced by the computed compensated energy

spectra (5.6), at time T = 1, for the three different Hurst indices shown in Fig. 12

(bottom row). Based on the value of the Hurst index, we choose the compensating

index γ = 2.5, 2, 1.3 for the H = 0.75,H = 0.5,H = 0.15, respectively. These values

of γ are chosen to provide the correct scaling of the energy spectra at the initial

time t = 0. As seen from Fig. 12, the compensated energy spectra remain bounded

up to the final time t = T , independent of the spectral resolution. Hence, the energy

spectrum decays at least at the rate of K−γ for increasing wave number K, in the

inertial range. Consequently, we can readily apply Proposition 4.4 and conclude that

the approximations, generated by Algorithm 4.1, converge to a statistical solution,

for all three values of the Hurst index H in (5.9).

5.4.2. Convergence in Wasserstein distance

Next, we seek to verify convergence of observables (statistical quantities of interest).

To this end, we follow the previous section and compute the Wasserstein distances´
Dk W1(ν

Δ,k
t,x , ν

Δ/2,k
t,x )dx, corresponding to the k-point correlation marginals for the

three different Hurst indices of H = 0.75, 0.5, 0.15. In Fig. 13, these metrics are

computed at time T = 1, for k = 1, 2, corresponding to one-point and two-point

statistical quantities of interest. As observed from the figure, the approximations
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(a) H = 0.15 (b) H = 0.5 (c) H = 0.75

Fig. 13. Wasserstein distances
´
Dk W1(ν

Δ,k
t,x , ν

Δ/2,k
t,x )dx for k = 1 (top row) and k = 2 (bottom

row) for fractional Brownian motion initial data with three different Hurst indices at time t = 1.

clearly converge in this metric for both one- and two-point statistics, at rates which

are independent of the underlying initial Hurst index. The two-point correlation

marginals appear to converge at a slower rate than the one-point Young measures.

These results validate convergence of all one- and two-point statistical quantities of

interest. Taken together with the results for the structure function, compensated

energy spectra and Theorem 2.2, they strongly suggest convergence in metric dT
(2.4) on L1

T (P).

5.4.3. Comparison between incompressible cases and compressible cases

Very similar Brownian motion initial data as considered in this section have also

been considered to compute statistical solutions for the compressible Euler equa-

tions in Ref. 16. While the initial data is indeed very similar, and we observe similar

convergence rates in the Wasserstein norm, there appear to be important differ-

ences having to do with the different physical processes involved, and in particular

shock formation due to compressibility in Ref. 16. Indeed, the time-evolution in

the compressible case leads to formation of shock-fronts which sweep through the

domain, leaving behind smoother regions in the flow and colliding with each other

in the process. In Ref. 16, these shock fronts apparently lead to a dynamic regu-

larization of the flow (as measured by the exponent in the algebraic decay of the

structure functions). This regularization is clearly visible in the temporal evolution

of the algebraic decay of the structure functions (cf. Fig. 18 in Ref. 16). In contrast,

the incompressibility constraint appears to rule out a similar dynamical regulariza-

tion in the present numerical experiments (at least in the two-dimensional case).

Instead, we observe a largely uniform scaling of the energy spectra, without regular-

ization by the fluid dynamics (apart from the expected regularization by numerical

diffusion at high wave-numbers).
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5.5. Stability of the computed statistical solution

The afore-presented numerical experiments clearly validate the convergence theory

developed in this paper. Therefore, Algorithm 4.1 provides a practical way to com-

pute statistical solutions. We use this algorithm to study the sensitivity/stability

of the computed statistical solution in the context of the discontinuous flat vortex

sheet initial data (ρ = 0 in (5.2)) to the following perturbations:

• Type of the initial perturbation, with respect to the underlying probability dis-

tribution.

• Type of underlying numerical method.

• Amplitude of the initial perturbation.

We start by changing the type of the underlying initial probability measure in

the flat vortex sheet initial data. Instead of choosing the i.i.d. random variables

αk ∼ U [−1, 1] according to a uniform distribution as before in (5.2), we choose

them from a normal distribution αk ∼ N (0, 1/3) with mean 0 and variance 1/3.

The mean and variance are chosen so the distribution’s mean and variance are

consistent with those of U [−1, 1].

In order to compare the corresponding approximate statistical solutions, we

compute the Wasserstein distance
´
Dk W1(ν

Δ,k
t,x , ν̂

Δ/2,k
t,x )dx, at different resolutions

Δ. Here, μ̂Δ is the statistical solution computed with normally distributed initial

data and ν̂Δ is the corresponding correlation measure. We set the initial pertur-

bation amplitude δ = 0.05 in (5.2), t = 0.4 and k = 1, 2 and plot the computed

Wasserstein distances in Fig. 14 (left column). As seen from this figure, the two

approximate solutions clearly converge to each other in this metric as the resolution

is increased. This indicates that the computed statistical solutions are stable with

respect to the variation of underlying initial probability measures.

Next, we consider if the computed statistical solution depends on the under-

lying numerical method. To this end, we compute the statistical solution for the

discontinuous flat vortex sheet initial data (5.2) with Algorithm 4.1 but replace

the spectral viscosity method with a finite difference projection method.3,8,27 The

convergence of this method to a statistical solution is considered in a forthcoming

thesis.42 We denote the computed statistical solutions with this method as μ∗,Δ
t

and the corresponding correlation measures as ν∗,Δ and compute the Wasserstein

distance
´
Dk W1(ν

Δ,k
t,x , ν

∗,Δ/2,k
t,x )dx at time t = 0.4 and k = 1, 2 and plot the results

in Fig. 14 (right column). From this figure, we readily conclude that the statistical

solutions computed with the finite difference projection method converge to that

computed with the spectral viscosity method on increasing resolution. This strongly

suggests the stability of the computed statistical solutions to the underlying (con-

vergent) numerical method.

Finally, we compute approximate statistical solutions for different amplitudes of

the initial (random) perturbation in (5.2) by taking different values of the pertur-

bation amplitude ranging from δ = 0.05 to δ = 0.05/32, corresponding to smaller
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(a) Type (b) Scheme

Fig. 14. Stability of the flat vortex sheet (5.2) to perturbations. For k = 1 (top row) and k = 2

(bottom row) and at time t = 0.4, we plot left column: Distance
´
Dk W1(ν

Δ,k
t,x , ν̂Δ,k

t,x )dx with ν̂
the correlation marginal corresponding to a normally distributed initial measure in (5.2). Right

column: Distance
´
Dk W1(ν

Δ,k
t,x , ν∗,Δ,k

t,x )dx with ν∗ the correlation marginal computed with the
finite difference projection method.

and smaller perturbations of the underlying flat vortex sheet. We computed the

statistical solution at the highest resolution of N = 1024 with m = N Monte Carlo

samples in Algorithm 4.1.

First, we examine if there is convergence of the computed statistical solutions

as δ → 0. To this end, we compute the instantaneous structure function (5.4) at

time T = 0.4 for different values of δ and plot the results in Fig. 15 (top row, left).

Clearly, the computed structure functions are very close and decay with decreasing

correlation length with approximately the same exponent. Thus, we can appeal to

Theorem 2.2 and claim that the approximate statistical solutions converge. This is

further reinforced when we compute the instantaneous compensated energy spec-

trum (4.13) at time T = 0.4 and with γ = 2. We observe from Fig. 15(top row,

right) that the computed energy spectra with different values of δ are very close and

decay at the approximately the same rate. Hence, from Theorem 4.4, the underlying

approximate statistical solutions will converge.

After establishing convergence of statistical solutions when the amplitude of

perturbations in the initial datum (5.2) is decreased, it is natural to ask what these

solutions converge to. One possibility is the initial discontinuous flat vortex sheet
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(a) Structure function (b) Compensated Energy spectrum

(c) 1-pt Wasserstein distance (d) 2-pt Wasserstein distance

Fig. 15. (Color online) Stability of the flat vortex sheet (5.2) to amplitude of perturbations δ.
Top row: Instantaneous structure function (5.4) (left) and compensated energy spectrum (4.13)
with γ = 2 (right) at time T = 0.4 for different values of δ. Bottom row: Wasserstein distances
with respect to the stationary solution (orange) and reference statistical solution (blue) for the
1-point (left) and 2-point (right) correlation marginals.

itself. After all, setting ρ, δ → 0 in (5.2), it is easy to see that the discontinuous flat

vortex sheet is a stationary solution of the incompressible Euler equations. To check

if this stationary solution is indeed the zero perturbation limit of the computed

statistical solution, we compute the Wasserstein distances
´
D
W1(ν

δ,1
t,x , δū(x)) dx and´

D2 W1(ν
δ,2
t,x,y, δū(x)⊗ū(y)) dx dy for different values of the perturbation parameter δ

with t = 0.4 and k = 1, 2. Here, ū is the stationary solution corresponding to the

flat vortex sheet initial data, i.e. ρ, δ → 0. We display these distances in Fig. 15

(bottom row). We observe from this figure that there does not seem to be any

perceptible evidence of convergence to the stationary solution. This is consistent

with the findings in Ref. 25, where the authors had observed a non-atomic measure-

valued solution as the limit of the perturbations to the flat vortex sheet.

In order to further identify the limit of the computed statistical solutions as

δ → 0, we compute a reference solution μref
t , by setting δ = 0.05

32 in (5.2) and

N = m = 1024 as the spectral resolution and Monte Carlo samples. We compute
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the Wasserstein distances
´
Dk W1(ν

δ,k
t,x , ν

ref,k
t,x ) dx for different values of the pertur-

bation parameter δ with t = 0.4 and k = 1, 2. Here, νref is the correlation mea-

sure, corresponding to the reference statistical solution. The distances, plotted in

Fig. 15(bottom row), do decrease as δ is decreased, albeit at a slow rate. However,

this decrease is clearly visible when compared to the lack of convergence to the

stationary solution in the same figures. Thus, we have established that the com-

puted statistical solutions are stable with respect to the amplitude of perturbations

and moreover, converge to a probability measure that is different from the one

concentrated on the stationary solution.

6. Discussion

We consider the incompressible Euler equations (1.1) in this paper. The existence

of classical (or weak) solutions is an outstanding open question in three space

dimensions. Although weak solutions are known to exist in two space dimensions,

even for very rough initial data, they may not be unique. Similarly, numerical

experiments reveal that standard numerical methods may not converge, or converge

very slowly, to weak solutions on increasing resolution.

Given these inadequacies of traditional notions of solutions, it is imperative

to find solution concepts for (1.1) that are well-posed and amenable to efficient

numerical approximation. In this context, we consider the solution framework of

statistical solutions in this paper. Statistical solutions are time-parameterized prob-

ability measures on L2(D;Rd). Given the characterization of probability measures

on Lp spaces in Ref. 14, these measures are equivalent to so-called correlation mea-

sures, i.e. Young measures on tensor-products of the underlying domain and phase

space that represent multi-point spatial correlations. Furthermore, we require sta-

tistical solutions to satisfy an infinite number of PDEs (see Definition 3.1) for the

moments of the underlying correlation measure. Hence, a statistical solution can be

interpreted as a measure-valued solution (in the sense of Ref. 11), augmented with

information about the evolution of all possible multi-point spatial correlations.

Our aim in this paper was to study the well-posedness and efficient numerical

approximation of statistical solutions. To this end, first, we had to characterize

convergence on a weak topology on the space L1
t (P(L2(D;Rd))), under an assump-

tion of time-regularity on the underlying measures. Convergence in this topology

amounted to convergence of a very large class of observables (or statistical quanti-

ties of interest). We then proposed a notion of dissipative statistical solutions and

also proved partial well-posedness results for them in a generic sense, namely when

the initial measure is concentrated on functions sufficiently near initial data for

which smooth solutions exist. This led to short-time well-posedness if the initial

probability measure is concentrated on smooth functions. In two space dimensions,

we proved global well-posedness for statistical solutions when the initial data is

concentrated on smooth functions. Moreover, we also proved a suitable variant of

weak–strong uniqueness.
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Our main contribution in this paper is the proposal of an Algorithm 4.1 to

approximate statistical solutions of the Euler equations. This Monte Carlo type

algorithm is a variant of the algorithms proposed recently13,16,25 and is based

on an underlying spectral hyper-viscosity spatial discretization. Under verifiable

hypotheses, we prove that the approximations converge in our proposed topol-

ogy to a statistical solution. These hypotheses either rely on a suitable scaling

(or uniform decay) for the structure function, or equivalently, on finding an iner-

tial range (of wave numbers) on which the energy spectrum decays (uniformly in

resolution). These hypotheses are very common in the extensive literature on tur-

bulence (see Ref. 20 and references therein). A key novelty in this paper is the

rigorous proof of the fact that easily verifiable conditions on the structure functions

or energy spectrum imply a rather strong form of convergence for (multi-point)

statistical quantities of interest. For instance, we observe a surprising fact that a

bound on the compensated energy spectrum (5.6) implies that k-point statistics of

interest, even for large k, converge. The convergence results also provide a condi-

tional global existence result for statistical solutions in both two and three space

dimensions.

We present results of several numerical experiments for the two-dimensional

Euler equations. From the numerical experiments, we observe that

• Our convergence theory is validated by all the numerical experiments. The

assumptions on the structure functions and energy spectra appear to be very

clearly fulfilled in practice. Moreover, the computed solutions converge to a

statistical solution in suitable Wasserstein metrics on multi-point correlation

marginals. In particular, all admissible observables of interest such as mean,

variance, higher moments, structure functions, spectra, multi-point correlation

functions, converge on increasing resolution and sample augmentation.

• In clear contrast to the deterministic case where computed solutions may converge

very slowly even if one can prove convergence of the underlying numerical method

(see Ref. 26 and Fig. 8), statistical quantities of interest seem to be better behaved

and converge faster.

• For our numerical examples, we observe convergence of approximations even when

the initial data was quite rough such as when the initial vorticity may not have

definite sign (as in the flat vortex sheet) or may not even be a Radon measure

(as in the fractional Brownian motion with any Hurst index H ∈ (0, 1)). For such

initial data, the samples are not in the Delort class and the convergence (and

existence) theory for two-dimensional Euler equations is no longer valid. On the

other hand, we find neat convergence to a statistical solution.

• The computed statistical solutions where observed to be stable with respect to

amplitude and type of perturbations of initial data. Moreover, we observed that

two very different numerical methods converge to the same statistical solution

for a fixed initial data. This is in contrast to the deterministic case, where the

computed solutions can differ significantly.27
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Based on the above discussion, we conclude that statistical solutions are a promising

solution framework for the incompressible Euler equations. In particular, there is

some scope for proving well-posedness results within this class, possibly with further

admissibility criteria. Moreover, numerical approximation of statistical solutions is

feasible with ensemble averaging algorithms. Statistical solutions can be a suitable

framework for uncertainty quantification and Bayesian inversion for the Euler equa-

tions and to encode and explain numerous computational and experimental results

for turbulent fluid flows.

There are several limitations in this paper, which provide directions for future

work. At the theoretical level, we seek to either relax the criteria on scaling of

structure functions or prove it. This will pave the way for global existence results.

Similarly, the weak–strong uniqueness results of this paper could be improved.

In terms of numerical approximation, the main issue with the Monte Carlo

type Algorithm 4.1 is the slow convergence (in terms of number of samples). This

necessitates a very high computational cost, particularly in three space dimensions.

We plan to consider efficient variants such as multi-level Monte Carlo,15,28,40 Quasi-

Monte Carlo and deep learning algorithms,37 for computing statistical solutions

of the incompressible Euler equations in three space dimensions, in forthcoming

papers.

Appendix A. Proof of Compactness, Theorem 2.1

We first state the following uniform approximation principle, whose proof is an

exercise in general topology.

Lemma A.1. Let (X, d) be a complete metric space with metric d. Let K ⊂ X. If

for any ε > 0, there exists a mapping iε : K → X, such that the image iε(K) ⊂ X

is precompact (i.e. has compact closure), and d(x, iε(x)) < ε for all x ∈ K, then K

is precompact.

Proof of Theorem 2.1. We shall only use the implication (2) ⇒ (1) in the present

work. We prove this result here. For a proof of the converse, (1) ⇒ (2), we refer

instead to Ref. 24.

Step 1: Fix a mollifier ρε for ε > 0. Define iε : P(L2
x) → P(L2

x) by mollification

against ρε,

uε(x) := (iεu)(x) :=

ˆ
D

ρε(y)u(x− y) dy.

Note that for any fixed ε > 0, the image iε(BM (0)) is precompact in L2
x. Let us

denote by iε# : P(L2
x) → P(L2

x) the push-forward mapping associated with the

mollification map iε. Note that, since all of the probability measures μ ∈ F are

supported on BM (0) ⊂ L2
x, the corresponding push-forward measures με := iε#μ

have support in the (compact) set iε(BM (0)) ⊂ L2
x. In particular, this implies that,
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for fixed ε > 0, the family Fε := {με;μ ∈ F} is tight. By Prokhorov’s theorem, this

implies that Fε is precompact in the weak topology.

Step 2: We claim that there exists a constant C > 0 (independent of F and ε > 0),

such that

W1(μ
ε, μ) ≤ Cω(ε), (A.1)

for all μ ∈ F . Here, we recall that ω(r) is the uniform modulus of continuity which

exists by assumption on F .

To see (A.1), we note that given any Lipschitz continuous function F : L2
x → R

with ‖F‖Lip ≤ 1, and μ ∈ F , we haveˆ
L2

x

F (u) dμε −
ˆ
L2

x

F (u) dμ =

ˆ
L2

x

[F (uε)− F (u)] dμ

(‖F‖Lip≤1)
↓
≤
ˆ
L2

x

‖uε − u‖L2
x
dμ

(Jensen)
↓
≤
(ˆ

L2
x

‖uε − u‖2L2
x
dμ

)1/2

=

(ˆ
L2

x

ˆ
D

|uε(x)− u(x)|2 dxdμ
)1/2

.

The last integral can be bounded using

|uε(x) − u(x)|2 ≤
ˆ
Bε(0)

ρε(h)|u(x+ h)− u(x)|2 dh

≤ C2

 
Bε(0)

|u(x+ h)− u(x)|2 dh,

where C2 = ‖ρ‖L∞ depends only on the (fixed) choice of mollifier ρ. Thus,ˆ
D

|uε − u|2 dx ≤ C2

ˆ
D

 
Bε(0)

|u(x+ h)− u(x)|2 dh dx. (A.2)

It follows from the uniform modulus of continuity assumption on F thatˆ
Lp

F (u)dμε −
ˆ
Lp

F (u)dμ ≤ Cω(ε),

for all F : L2
x → R, with ‖F‖Lip ≤ 1. Taking the supremum over all such F on the

left and recalling the duality formula for the 1-Wasserstein distance W1, Eq. (2.3),

we recover the claimed estimate (A.1).

Step 3: To conclude the proof of this theorem, we note that by Steps 1 and 2, F
is uniformly approximated by precompact sets in the sense of Lemma A.1 (with

X = P(L2
x) under the 1-Wasserstein distance, K = F and iε# : K → X the

pushforward induced by mollification), and hence is itself precompact.
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Appendix B. Proof of Completeness of L1
t (P), Proposition 2.1

Proof of Proposition 2.1. We wish to prove completeness of the metric space

(L1
t (P), dT ). Let μ

n
t be a Cauchy sequence, i.e.

dT (μ
n
t , μ

m
t ) =

ˆ T

0

W1(μ
n
t , μ

m
t ) dt → 0, as m,n→ ∞.

It will suffice to prove that there exists a subsequence μ
nj

t with a limit μt, since

then

lim sup
n→∞

dT (μ
n
t , μt) ≤ lim sup

n,j→∞
dT (μ

n
t , μ

nj

t ) = 0,

by the Cauchy property.

We now choose a suitable subsequence (which we shall immediately rein-

dex), by requiring that dT (μ
n+1
t , μn

t ) ≤ 2−n, for all n ∈ N. It follows that∑
n∈N

dT (μ
n+1
t , μn

t ) ≤ 1, and thus

∞∑
n=1

W1(μ
n+1
t , μn

t )

is a convergent series in L1([0, T )). In particular, this implies that

∞∑
n=1

W1(μ
n+1
t , μn

t ) <∞, for a.e. t ∈ [0, T ).

For a.e. t ∈ [0, T ), we thus have that μn
t is Cauchy in P(Lp

x). Let μt denote the limit,

which is defined a.e. on [0, T ). To see that t �→ μt is weak-∗ measurable, we note

that for any F ∈ Cb(L
p
x), we have that t �→ 〈μn

t , F 〉 is measurable, and converges

almost everywhere to 〈μt, F 〉. It follows that also t �→ 〈μt, F 〉 is measurable. By

definition, this means that t �→ μt is weak-∗ measurable.

To show that μn
t → μt in L1

t (P), we note that for almost every t ∈ [0, T ), we

have

W1(μ
n
t , μt) = lim

m→∞W1(μ
n
t , μ

m
t )

≤ lim
m→∞

m∑
k=n

W1(μ
k+1
t , μk

t )

=

∞∑
k=n

W1(μ
k+1
t , μk

t ).

Integrating over [0, T ), it follows that

dT (μ
n
t , μt) ≤

∞∑
k=n

dT (μ
k+1
t , μk

t ) ≤ 2−n → 0, as n→ ∞.
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Appendix C. Proof of Time-Compactness, Theorem 2.2

Lemma C.1. If μΔ
t ∈ L1

t (P) is a uniformly time-regular family for which there

exists a modulus of continuity ω(r), such that

S2
r (μ

Δ
t , T ) ≤ ω(r), ∀Δ > 0

and if there exists M > 0, such thatˆ
L2

x

‖u‖L2
x
dμΔ

t (u) ≤M, for a.e. t ∈ [0, T ), ∀Δ > 0,

then t �→ μΔ
t is L1-equicontinuous, in the sense that for any ε > 0, there exists

δ > 0, such that if h < δ, thenˆ T−h

0

W1(μ
Δ
t+h, μ

Δ
t ) dt < ε, ∀ Δ > 0,

Proof. Since μΔ
t is uniformly time-regular, by definition, there exists L > 0 and

C > 0, and transfer plans πΔ
s,t between μ

Δ
s and μΔ

t , such thatˆ
L2

x×L2
x

‖u− v‖H−L
x

dπΔ
s,t(u, v) ≤ C|t− s|.

We note that by definition of W1 as the infimum over all transport plans, we have

W1(μ
Δ
t+h, μ

Δ
t ) ≤

ˆ
L2

x×L2
x

‖u− v‖L2
x
dπΔ

t+h,t(u, v).

Integrating in time, we thus findˆ T−h

0

W1(μ
Δ
t+h, μ

Δ
t ) dt ≤

ˆ T−h

0

ˆ
L2

x×L2
x

‖u− v‖L2
x
dπΔ

t+h,t(u, v) dt.

Our goal is to show that the last term converges to 0 as h → 0, uniformly for all

Δ > 0. Fix ε > 0, arbitrary. We want to find δ > 0, such that h < δ impliesˆ T−h

0

ˆ
L2

x×L2
x

‖u− v‖L2
x
dπΔ

t+h,t(u, v) dt < ε, ∀Δ > 0. (C.1)

Given u ∈ L2
x, let uη := ρη ∗ u denote mollification with a standard mollifier

ρη(x) = η−dρ(η−1x) ≥ 0, supported on a ball Bη of radius η around the origin.

Then for all u, v ∈ L2
x,

‖u− v‖L2
x
≤ ‖u− uη‖L2

x
+ ‖uη − vη‖L2

x
+ ‖vη − v‖L2

x
,

together with the fact that proj1#π
Δ
t+h,t(u, v) = μΔ

t+h(u) and proj2#π
Δ
t+h,t(u, v) =

μΔ
t (v), implies that

ˆ T−h

0

ˆ
L2

x×L2
x

‖u− v‖L2
x
dπΔ

t+h,t(u, v) dt

≤
ˆ T−h

0

ˆ
L2

x

‖u− uη‖L2
x
dμt+h dt
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+

ˆ T−h

0

ˆ
L2

x×L2
x

‖uη − vη‖L2
x
dπΔ

t+h,t dt

+

ˆ T−h

0

ˆ
L2

x

‖v − vη‖L2
x
dμt dt

≤ 2

ˆ T

0

ˆ
L2

x

‖u− uη‖L2
x
dμt(u) dt

+

ˆ T−h

0

ˆ
L2

x×L2
x

‖uη − vη‖L2
x
dπΔ

t+h,t dt.

Using the decay of the structure function, we have for all Δ > 0:

ˆ T

0

ˆ
L2

x

‖u− uη‖L2
x
dμt(u) dt ≤ C′

ˆ T

0

S2
η(μ

Δ
t ) dt

= C′√TS2
r (μ

Δ
t , T ) ≤ C′√Tω(η),

where the constant C′ = ‖ρ‖L∞ . Next, we note that since H1
x

comp
↪→ L2

x↪→H−L
x , it

follows from a result originally due to Lions (cf. p. 59 in Ref. 31, Lemma 5.1, p. 58

in Ref. 32, or Lemma 8, p. 84 in Ref. 47) that for any given η > 0, there exists a

constant Q(η) > 0 such that

‖u‖L2
x
≤ η2‖u‖H1

x
+Q(η)‖u‖H−L

x
, ∀u ∈ H1

x. (C.2)

Thus, using also that ‖uη − vη‖H1
x
≤ Cη−1‖u− v‖L2

x
, we can estimate

‖uη − vη‖L2
x
≤ η2‖uη − vη‖H1

x
+Q(η)‖uη − vη‖H−L

x

≤ Cη‖u− v‖L2
x
+Q(η)‖u− v‖H−L

x

≤ Cη(‖u‖L2
x
+ ‖v‖L2

x
) +Q(η)‖u− v‖H−L

x
.

Using this estimate, and the uniform time-regularity, we find

ˆ T−h

0

ˆ
L2

x×L2
x

‖uη − vη‖L2
x
dπΔ

t+h,t dt

≤ 2Cη

ˆ T

0

(ˆ
L2

x

‖u‖L2
x
dμΔ

t (u)

)
dt+ CQ(η)h

uniformly in Δ > 0. By assumption, the first term on the right-hand side is bounded

by 2CηTM .

Combining these estimates, we find

ˆ T−h

0

ˆ
L2

x×L2
x

‖u− v‖L2
x
dπΔ

t+h,t dt ≤ C′ω(η) + 2CηTM + CQ(η)h.
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Given ε > 0, we can first choose η > 0 sufficiently small so that C′ω(η) + 2ηTM <

ε/2. This fixes a value of Q = Q(η) according to Lions’ estimate (C.2). Next, we

set δ := ε/(2CQ). It then follows that for h < δ, we haveˆ T−h

0

ˆ
L2

x×L2
x

‖u− v‖L2
x
dπΔ

t+h,t dt < ε, ∀Δ > 0.

Thus, given ε > 0, we have found δ > 0, such that for all h < δ, we have (C.1).

This is what we set out to prove, and concludes our proof of the L1-equicontinuity

of μΔ
t .

Next, we note that for any 0 < a < T , we can associate to any μt ∈ L1([0, T );P)

a Maμt ∈ L1([0, T − a];P), by defining

Maμt =
1

a

ˆ a

0

μt+h dh. (C.3)

The expression on the right-hand side is a straight-forward adaption of the Bochner

integral for L1
t (P).24 It is then easy to show that

W1(Maμt, μt) ≤ 1

a

ˆ a

0

W1(μt+h, μt) dh.

Fix T1 < T . Integrating in time over [0, T1], it follows that

dT1(Maμt, μt) ≤ 1

a

ˆ a

0

dT1(μt+h, μt) dh, (C.4)

for all sufficiently small a > 0. In particular, the following lemma is now immediate

from this estimate and Lemma C.1.

Lemma C.2. If μΔ
t is a equicontinuous family, as in the conclusion of Lemma C.1,

then for any ε > 0, we can find δ > 0, such that for any a < δ, we have

dT1(Maμ
Δ
t , μ

Δ
t ) < ε, ∀Δ > 0.

Thus, the family {Maμ
Δ
t }Δ>0 is a uniform approximation of {μΔ

t }Δ>0, in this case.

To show that {μΔ
t }Δ>0 is relatively compact in L1([0, T1];P), it will thus suffice

to prove that {Maμ
Δ
t }Δ>0 is relatively compact, for any given (fixed) a > 0. This

is a consequence of the following lemmas and the Arzelà–Ascoli theorem.

Lemma C.3. Let T1 < T, and fix 0 < a < T − T1. Under the assumptions of

Theorem 2.2, the family Maμ
Δ
t is equicontinuous with respect to the W1-norm, i.e.

for any ε > 0, there exists δ > 0, such that

W1(Maμ
Δ
t ,Maμ

Δ
s ) < ε, if |s− t| < δ.

Proof. Fix a > 0. Let ε > 0 be given. By assumption on the uniform decay of

the structure functions S2
r (μ

Δ
t , T ), it follows from Lemma C.1 that the μΔ

t are

L1-equicontinuous. Thus, we can find δ > 0, such thatˆ T−h

0

W1(μ
Δ
t+h, μ

Δ
t ) dt < a ε, ∀Δ > 0,
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whenever h < δ. Given h < δ, we note that for any 1-Lipschitz continuous Φ : L2
x →

R, we haveˆ
L2

x

Φ(u)d(Maμ
Δ
t+h −Maμ

Δ
t ) =

1

a

ˆ a

0

ˆ
L2

x

Φ(u) d(μt+h+s − μt+s) dt

≤ 1

a

ˆ a

0

W1(μt+h+s, μt+s) ds

≤ 1

a

ˆ T−h

0

W1(μh+s, μs) ds

< ε.

Taking the supremum over all 1-Lipschitz continuous Φ, we conclude that

W1(Maμ
Δ
t+h,Maμ

Δ
t ) ≤ ε, ∀Δ > 0,

whenever h < δ. Thus, t �→ Maμ
Δ
t is equicontinuous as an element of C([0, T −

h];P(L2
x)).

Lemma C.4. Let T1 < T, and fix 0 < a < T − T1. Under the assumptions of

Theorem 2.2, and for any t ∈ [0, T1], we have that

{Maμ
Δ
t |Δ > 0} ⊂ P (L2

x)

is relatively compact.

Proof. We note that for any τ ∈ [0, T1], we have

S2
r (Maμ

Δ
τ )

2 =

ˆ
L2

x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx d(Maμ
Δ
τ )

=
1

a

ˆ a

0

ˆ
L2

x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dμΔ
τ+s ds

≤ 1

a

ˆ T

0

ˆ
L2

x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dμΔ
t dt

=
1

a
S2
r (μ

Δ
t , T )

2.

By assumption, there exists a modulus of continuity ω(r), such that we have

S2
r (μ

Δ
t , T ) ≤ ω(r), uniformly for all Δ. It follows that

S2
r (Maμ

Δ
τ ) ≤

1√
a
ω(r).

Furthermore, it is clear from the definition of Maμ
Δ
τ (cf. Eq. (C.3)), that if

μΔ
t (BM ) = 1 for almost all t ∈ [0, T ), then also Maμ

Δ
τ (BM ) = 1. By Theorem 2.1,

it now follows that the family {Maμ
Δ
τ |Δ > 0} is pre-compact in P(L2

x).

We are now in a position to prove Theorem 2.2.
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Proof of Theorem 2.2. By Lemma C.1, the family μΔ
t is equicontinuous in L1

x(P)

(in the sense made precise in Lemma C.1). Then by Lemma C.2, the mollifications

{Maμ
Δ
t |Δ > 0}a>0 form a uniform approximation of {μΔ

t |Δ > 0}a>0 in the

sense of Lemma A.1. By the uniform approximation Lemma A.1, to show that

{μΔ
t |Δ > 0} is precompact it therefore suffices to show that for a > 0 fixed, the

set {Maμ
Δ
t |Δ > 0} is precompact. As was shown in Lemmas C.3 and C.4, the

mollifications t �→Maμ
Δ
t satisfy:

• The mappings t �→Maμ
Δ
t are (pointwise) equicontinuous with respect to Δ > 0,

with values in the metric space P(L2
x),

• For each t ∈ [0, T1], the set

{Maμ
Δ
t |Δ > 0} ⊂ P(L2

x)

is precompact.

Since P(L2
x) is a complete metric space under the W1-metric, it follows from

the Arzelà–Ascoli characterization of compact subsets of C([0, T1];P(L2
x)) that

{Maμ
Δ
t |Δ > 0} is precompact in C([0, T1];P(L2

x)), and hence in particular that

{Maμ
Δ
t |Δ > 0} ⊂ L1([0, T1];P) is precompact. By the uniform approximation

lemma, we conclude that we also have that

{μΔ
t |Δ > 0} ⊂ L1([0, T1];P)

is precompact for any T1 < T .

To conclude the proof, we note that the same argument also applies when time

is reversed (or defining the regularization Maμ
Δ
t by averaging over the interval

[t− a, t], rather than over [t, t+ a]). This implies that also

{μΔ
t |Δ > 0} ⊂ L1([T − T1, T ];P)

is precompact for any T1 < T . Combining these results (e.g. setting T1 = T/2), we

finally conclude that

{μΔ
t |Δ > 0} ⊂ L1([0, T );P)

is precompact.

Appendix D. Proof of Proposition 2.2

The following lemma provides an estimate for the expected error that is introduced

when mollifying random samples from a time-dependent probability measure:

Lemma D.1. There exists C > 0, such that if μt ∈ L1
t (P) has structure function

S2
r (μt, T ), bounded by a modulus of continuity ω(r), i.e.

S2
r (μt, T )

2 ≤ ω(r),
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then for any ε > 0, we have
ˆ T

0

ˆ
L2

x

ˆ
D

|uε − u|2 dx dμt(u) dt ≤ Cω(ε).

Proof. Follows directly from estimate (A.2).

Proof of Proposition 2.2. To prove Proposition 2.2 and according to the defi-

nition of time-regularity Definition 2.2, we need to show that there exists a map

(s, t) �→ πs,t ∈ P(L2
x × L2

x), which defines a transport plan from μs to μt, and sat-

isfies the H−L-estimate of Definition 2.2. A proof of existence of such πs,t will be

achieved by viewing each πΔ
s,t as an element of P(H−L

x ×H−L
x ), and observing that

the πΔ
s,t are concentrated on the compact subset BM (0) × BM (0) ⊂ H−L

x × H−L
x

for almost all s, t. Let us now choose a sequence Δk → 0. By assumption, for each

k ∈ N, there exists a subset Ik ⊂ [0, T ) of full Lebesgue measure, such that πΔk
s,t is

concentrated on BM (0)×BM (0) ⊂ H−L
x ×H−L

x for all s, t ∈ Ik, and satisfiesˆ
L2

x×L2
x

‖u− v‖H−L
x

dπΔk
s,t (u, v) ≤ C|t− s|. (D.1)

Let I =
⋂∞

k=1 Ik. Then I ⊂ [0, T ) is of full Lebesgue measure, and πΔk
s,t is concen-

trated on BM (0) × BM (0) ⊂ H−L
x ×H−L

x for all s, t ∈ I and (D.1) is satisfied for

all s, t ∈ I, uniformly for all k ∈ N.

Fix now s, t ∈ I. Since the πΔk
s,t are concentrated on BM (0) × BM (0) ⊂

H−L
x × H−L

x , the sequence πΔk
s,t is tight in P(H−L

x × H−L
x ) (and hence relatively

compact under weak convergence by Prokhorov’s theorem). We can pass to a weakly

convergent subsequence π
Δkj

s,t in P(H−L
x × H−L

x ) such that π
Δkj

s,t ⇀πs,t for some

πs,t ∈ P(H−L
x ×H−L

x ). Then, by definition of weak convergence, we have for any

F ∈ Cb(H
−L
x ) thatˆ
H−L

x ×H−L
x

F (u) dπs,t(u, v) = lim
j→∞

ˆ
H−L

x ×H−L
x

F (u) dπ
Δkj

s,t (u, v)

= lim
j→∞

ˆ
L2

x×L2
x

F (u) dπ
Δkj

s,t (u, v)

= lim
j→∞

ˆ
L2

x

F (u) dμ
Δkj
s (u, v)

=

ˆ
L2

x

F (u) dμs(u).

When passing to the limit in the last step, we have used the convergence μ
Δj
s ⇀μs as

elements of P(L2
x), as well as the fact that if F ∈ Cb(H

−L
x ), then the restriction F |L2

x

to L2
x is in Cb(L

2
x). It follows from

´
F (u) dπs,t(u, v) =

´
F (u) dμs(u) for all F ∈

Cb(H
−L
x ) that proj1#πs,t = μs. A similar argument shows that also proj2#πs,t =

μt. In particular, this also implies that πs,t is in fact concentrated on L2
x × L2

x.
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Indeed, denote X = L2
x ⊂ H−L

x . Then the complement of the Cartesian product

X ×X in H−L
x ×H−L

x satisfies (X ×X)c = Xc ×H−L
x ∪H−L

x ×Xc. This implies

that

πs,t((X ×X)c) ≤ πs,t(X
c ×H−L

x ) + πs,t(H
−L
x ×Xc)

= μs(X
c) + μt(X

c)

= 0.

In the above estimate, the equality on the second line follows from the fact that

proj1#πs,t = μs and proj2#πs,t = μt, and the last equality follows from the fact

that μs, μt are supported on X = L2
x ⊂ H−L

x .

Furthermore, for any fixed γ > 0, (u, v) �→ Fγ(u, v) = min(γ, ‖u − v‖H−L
x

) is

a continuous bounded function on H−L
x ×H−L

x . We can choose γ > 0 sufficiently

large so that Fγ(u, v) = ‖u− v‖H−L
x

for (u, v) ∈ BM (0)×BM (0). It follows that
ˆ
L2

x×L2
x

‖u− v‖H−L
x

dπs,t(u, v) =

ˆ
H−L

x ×H−L
x

Fγ(u, v) dπs,t(u, v)

= lim
j→∞

ˆ
H−L

x ×H−L
x

Fγ(u, v) dπ
Δkj

s,t (u, v)

≤ sup
k

ˆ
L2

x×L2
x

‖u− v‖H−L
x

dπΔk
s,t (u, v)

≤ C|s− t|.
Since s, t ∈ I were arbitrary and as I ⊂ [0, T ) is of full Lebesgue measure, we have

thus shown that for almost all s, t ∈ [0, T ), there exists a transfer plan πs,t from μs

to μt satisfying the assumptions of Definition 2.2. This shows that the limit μt is

itself time-regular.

Appendix E. Proof of Theorem 2.4

We now come to the proof of compactness in L1
t (P), for approximate statistical

solutions μΔ
t .

Proof of Theorem 2.4. The compactness property follows easily from Theo-

rem 2.2, above. We only provide a proof of strong convergence of the observables

here. We drop the subscript j in the following, and assume that Δ → 0 is a sequence

such that μΔ
t → μt in L

1
t (P). We recall that by the assumption of this theorem, there

existsM > 0, such that μΔ
t (BM (0)) = 1, for all Δ. Fix now g ∈ C([0, T )×Dk×Uk)

as in the statement of the theorem. Denote

UΔ(t, x) := 〈νΔ,k
t,x , g(t, x, ξ)〉, U(t, x) := 〈νkt,x, g(t, x, ξ)〉.

By the assumed bound on g(t, x, ξ), we have UΔ, U ∈ L1([0, T ) × Dk). Given

u ∈ L2
x and ε > 0, let uε denote the mollification of u. For fixed ε > 0, and
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x ∈ Dk, the mapping L2
x �→ Uk, u �→ uε(x) is continuous and bounded on

BM (0) ⊂ L2
x, and so is u �→ g(t, x, uε(x)). Here we recall that in our notation,

uε(x) = (uε(x1), . . . , uε(xk)) ∈ Uk for x = (x1, . . . , xk) ∈ Dk. We claim that for

fixed ε > 0, x ∈ Dk, the function

Fx,ε(u) := g(t, x, uε(x)), satisfies Fx,ε ∈ Cb(BM (0)). (E.1)

Indeed, using the assumed Lipschitz bound on ξ �→ g(t, x, ξ), we find for u, v ∈
BM (0) from (2.12), (2.13):

|Fx,ε(u)− Fx,ε(v)|
= |g(t, x, uε(x))− g(t, x, vε(x))|

≤ C

k∑
i=1

Πi(uε(x), vε(x))
√

1 + |uε(xi)|2 + |vε(xi)|2|uε(xi)− vε(xi)|.

Using the Hölder estimate |uε(x)| ≤ ‖ρε‖L2
x
‖u‖L2

x
for the point-values of the molli-

fication, it follows that

|Fx,ε(u)− Fx,ε(v)| ≤ Ck(|D|+ 2M2‖ρε‖2L2)k−1/2‖ρε‖L2
x
‖u− v‖L2

x
, (E.2)

for all u, v ∈ BM (0); this implies that u �→ Fx,ε(u) is Lipschitz-continuous on

BM (0), with

‖Fx,ε‖Lip ≤ Ck(|D|+ 2M2‖ρε‖2L2
x
)k−1/2‖ρε‖L2

x
.

The previous observation allows us to define

UΔ
ε (t, x) :=

ˆ
L2

x

g(t, x, uε(x)) dμ
Δ
t (u)

and similarly Uε(t, x) for μt. Then, we have for any ε > 0 and φ ∈ L∞([0, T )×Dk):

ˆ T

0

ˆ
Dk

[UΔ
ε (t, x)− UΔ(t, x)]φ(t, x) dx dt

=

ˆ T

0

ˆ
L2

x

ˆ
Dk

[g(t, x, uε(x)) − g(t, x, u(x))]φ(t, x) dx dμΔ
t (u) dt

≤
ˆ T

0

ˆ
L2

x

ˆ
Dk

C‖φ‖L∞
t,x

k∑
i=1

Πi(uε(x), u(x))

×
√
1 + |u(xi)|2 + |uε(xi)|2|uε(xi)− u(xi)| dx dμΔ

t (u) dt.

According to Definition (2.13), Πi(uε(x), u(x)) depends only on

x1, . . . , xi−1, xi+1, . . . , xk. We can thus integrate over these variables to findˆ
Dk−1

Πi(uε(x), u(x)) dx1 · · · dxi−1 dxi+1 · · · dxk ≤ (|D|+ 2M2)k−1,
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for all u in the support of μΔ
t . Where we recall that μΔ

t is supported on BM (0) =

{‖u‖L2
x
≤ M}, by assumption. On the other hand, from Hölder’s inequality, we

haveˆ
D

√
1 + |u(xi)|2 + |uε(xi)|2|uε(xi)− u(xi)| dxi ≤ (|D|+ 2M2)1/2‖u− uε‖L2

x
,

on the support of μΔ
t . Combining these estimates, we conclude that

ˆ T

0

ˆ
Dk

[
UΔ
ε (t, x) − UΔ(t, x)

]
φ(t, x) dx dt

≤ C‖φ‖L∞
t,x
k(|D|+ 2M2)k−1/2

ˆ T

0

ˆ
L2

x

‖u− uε‖L2
x
dμΔ

t (u) dt

≤ C‖φ‖L∞
t,x
k(|D|+ 2M2)k−1/2

√
T

(ˆ T

0

ˆ
L2

x

‖u− uε‖2L2
x
dμΔ

t (u) dt

)1/2

.

In the last estimate, we have used Jensen’s inequality. Finally, we recall that by

(A.2), there exists a constant C > 0, such that(ˆ T

0

ˆ
L2

x

‖u− uε‖2L2
x
dμΔ

t (u) dt

)1/2

≤ C

(ˆ T

0

ˆ
L2

x

ˆ
D

 
Bε(0)

|u(x+ h)− u(x)|2 dh dx dμΔ
t (u) dt

)1/2

= CS2
ε (μ

Δ
t ;T ).

We have thus shown thatˆ T

0

ˆ
Dk

[UΔ
ε (t, x) − UΔ(t, x)]φ(t, x) dx dt ≤ C‖φ‖L∞

x,t
S2
ε (μ

Δ
t , T ),

where C = C(g, k,M, T ) depends on the observable g(t, x, ξ), the number of point-

correlations k, the uniform a priori L2
x-boundM > 0, and the maximal time T > 0,

but is independent of Δ, ε and φ.

Taking the supremum over all φ s.t. ‖φ‖L∞
t,x

≤ 1 on the left-hand side, we obtain

‖UΔ
ε (t, x) − UΔ(t, x)‖L1

t,x
≤ CS2

ε (μ
Δ
t , T ). (E.3)

The same inequality holds also true for U(x, t), following the same argument but

dropping the subscript Δ in the above estimates. By Lemma D.1, and the uniform

(in Δ) upper bound on the structure function, it now follows that there exists an

absolute constant C > 0, such that

‖UΔ
ε (t, x)− UΔ(t, x)‖L1

t,x
≤ Cω(ε), ‖Uε(t, x) − U(t, x)‖L1

t,x
≤ Cω(ε). (E.4)

From the convergence μΔ
t → μt, it furthermore follows that for any ε > 0 fixed:

‖UΔ
ε − Uε‖L1

t,x
→ 0, as Δ → 0. (E.5)
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Indeed, this follows from the fact that

UΔ(t, x) =

ˆ
L2

x

Fx,ε(u) dμ
Δ
t (u),

where Fx,ε(u) has been defined in (E.1) above, and the following estimate:

‖UΔ
ε − Uε‖L1

t,x
=

ˆ
Dk

ˆ T

0

∣∣UΔ
ε (t, x)− Uε(t, x)

∣∣ dt dx
=

ˆ
Dk

ˆ T

0

∣∣∣∣∣
ˆ
L2

x

Fx,ε(u)[dμ
Δ
t (u)− dμt(u)]

∣∣∣∣∣ dt dx
≤
ˆ
Dk

(ˆ T

0

‖Fx,ε‖LipW1(μ
Δ
t , μt) dt

)
dx

≤ |D|k‖Fx,ε‖Lip
(ˆ T

0

W1(μ
Δ
t , μt) dt

)
.

By (E.2), we have ‖Fx,ε‖Lip < ∞, so that last term converges to 0 as Δ → 0, as

follows from the fact that μΔ
t → μt in L

1(P).

Thus, combining (E.3)–(E.5), we find

‖UΔ(t, x) − U(t, x)‖L1
t,x

≤ ‖UΔ(t, x)− UΔ
ε (t, x)‖L1

t,x

+ ‖UΔ
ε (t, x)− Uε(t, x)‖L1

t,x

+ ‖Uε(t, x)− U(t, x)‖L1
t,x

≤ 2Cω(ε) + ‖UΔ
ε (t, x) − Uε(t, x)‖L1

t,x
,

which implies that

lim sup
Δ→0

‖UΔ(t, x)− U(t, x)‖L1([0,T )×Dk) ≤ 2Cω(ε),

for any fixed ε > 0. Finally, noting that the left-hand side is independent of ε, we

may let ε→ 0 to show that

lim sup
Δ→0

‖UΔ(t, x)− U(t, x)‖L1([0,T )×Dk) ≤ 0,

or, equivalently, that UΔ(t, x) → U(t, x) in L1([0, T )×Dk), as Δ → 0.

Appendix F. Proof of Existence and Uniqueness, Theorem 3.1

We will follow the notation used in Sec. 3.1. Before coming to the proof of Theo-

rem 3.1, we observe that

Gn =
⋃
v∈C

Br(v)/n(v), r(v) := e−C(v)T .
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In particular, Gn is covered by the open balls Br(v)/n(v). Since L
2
x is a separable

metric space, we can choose a countable subcovering, i.e. we can find a dense set of

initial data {ui}i∈N ⊂ C in such a way that

Gn =

∞⋃
i=1

Br(ui)/n(ui)

=

{
u | ∃ i ∈ N s.t. ‖u− ui‖L2

x
<

1

n
e−C(ui)T

}
. (F.1)

Furthermore, choosing such a countable subset {u(n)i }i∈N for each Gn, n ∈ N, and

considering finally the union
⋃∞

n=1{u(n)i }i∈N, we can in fact find a single countable

subset of C (not depending on n), such that (F.1) holds for all Gn, n ∈ N.

After this preliminary observation, we now come to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let μ̄ ∈ P(L2
x) be given, such that μ̄(G) = 1. The idea

of the proof is to first choose a countable set {ui}i∈N satisfying (F.1) for all n ∈ N,

and to observe that μ̄ can be well approximated by atomic measures of the form

ρ̄ =
∑∞

i=1 αiδui . We then use the regularity of the solution t �→ ui(t) of the Euler

equations with initial data ui to show that a dissipative solution μt exists and that

it is unique.

Construction of suitable approximants: For any n ∈ N, let us first construct

a suitable approximant ρ̄(n) ≈ μ̄, of the form

ρ̄(n) =

∞∑
i=1

α
(n)
i δui

. (F.2)

We define the coefficients α
(n)
i , as well as a decomposition G =

⋃n
i=1 Si, recursively

as follows: First, denote

r
(n)
i :=

1

n
e−C(ui)T , (F.3)

such that Gn =
⋃

iBr
(n)
i

(ui). Then we set⎧⎪⎪⎪⎨⎪⎪⎪⎩
S
(n)
1 := B

r
(n)
1

(u1) ∩ G,
Σ

(n)
1 := S

(n)
1 ,

α
(n)
1 := μ̄(S

(n)
1 )

(F.4)

and inductively ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S
(n)
i+1 :=

[
B

r
(n)
i+1

(ui+1)\Σ(n)
i

]
∩ G,

Σ
(n)
i+1 := Σ

(n)
i ∪ S(n)

i+1,

α
(n)
i+1 := μ̄(S

(n)
i+1).

(F.5)
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Note that S
(n)
i can be thought of as the support of μ̄ close to ui, and Σ

(n)
i keeps

track of the set that has already been assigned to uj for some j < i. By this

construction, we have

S
(n)
i ∩ S(n)

j = ∅, for i �= j,

∞⋃
i=1

S
(n)
i = G

(F.6)

and furthermore
∞∑
i=1

α
(n)
i =

∞∑
i=1

μ̄(S
(n)
i ) = μ̄(G) = 1,

for all n ∈ N. Thus, setting μ̄
(n)
i := μ̄|

S
(n)
i

, it follows that

μ̄ =

∞∑
i=1

α
(n)
i μ̄

(n)
i .

Since μ̄
(n)
i is supported in a small neighborhood of ui, we expect μ̄

(n)
i ≈ δui

, and it

is now natural to define

ρ̄(n) :=

∞∑
i=1

α
(n)
i δui

.

A dissipative statistical solution with initial data ρ̄(n) is given by

ρ
(n)
t :=

∞∑
i=1

α
(n)
i δui(t).

In the following, we will show that (ρ
(n)
t )n=1,2,... is Cauchy for any t ∈ [0, T ),

implying the existence of a limit ρ
(n)
t ⇀μt. Since the definition of a dissipative

statistical solutions is linear in the probability measure, it is not hard to see that

such a limit μt must itself be a dissipative statistical solution. Furthermore, we will

show that the limit μt has μ̄ as initial data. Finally, we will show that this μt is in

fact unique in the class of dissipative statistical solutions.

The sequence ρ
(n)
t is Cauchy: Let m,n ∈ N be arbitrary. Note that

G =

∞⋃
i=1

S
(m)
i =

∞⋃
i=1

S
(n)
i ,

implies that upon defining S
(m,n)
i,j := S

(m)
i ∩ S(n)

j , we have

G =

∞⋃
i,j=1

S
(m,n)
i,j , S

(m)
i =

∞⋃
j=1

S
(m,n)
i,j , S

(n)
j =

∞⋃
i=1

S
(m,n)
i,j .

Furthermore, the S
(m,n)
i,j are pairwise disjoint by (F.6). Thus, setting

α
(m,n)
i,j := μ̄(S

(m,n)
i,j ),
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we can define a transport plan πt ∈ P(L2
x×L2

x) from ρ
(m)
t ∈ P(L2

x) to ρ
(n)
t ∈ P(L2

x),

by

πt :=
∑
i,j

α
(m,n)
i,j δui(t) ⊗ δuj(t).

Note that if S
(m,n)
i,j �= ∅, then since S

(m)
i ⊂ B

r
(m)
i

(ui) and S
(n)
j ⊂ B

r
(n)
j

(uj), we must

in particular have

B
r
(m)
i

(ui) ∩Br
(n)
j

(uj) �= ∅.
This implies that

‖ui − uj‖L2
x
≤ r

(m)
i + r

(n)
j ≤ 2max(r

(m)
i , r

(n)
j ).

Assuming now without loss of generality that the maximum is max(r
(m)
i , r

(n)
j ) =

r
(m)
i , we find from the stability estimate for Lipschitz continuous solutions of the

Euler equations that

‖ui(t)− uj(t)‖L2
x
≤ 2r

(m)
i eC(ui)T =

2

m
≤ 2max

(
1

m
,
1

n

)
.

It follows that

W2(ρ
(m)
t , ρ

(n)
t )2 ≤

ˆ
L2

x×L2
x

‖u− v‖2L2
x
dπt(u, v)

=
∑
i,j

α
(m,n)
i,j ‖ui − uj‖2L2

x

≤ 4max

(
1

m
,
1

n

)2∑
i,j

α
(m,n)
i,j

= 4max

(
1

m
,
1

n

)2

.

In particular, this shows that ρ
(n)
t is Cauchy P(L2

x), and has a limit ρ
(n)
t → μt.

μt is a dissipative statistical solutions with initial data μ̄: To see this, we first

note that the 2-Wasserstein distance between ρ̄(n) = ρ
(n)
0 and μ̄ can be bounded by

W2(μ̄, ρ̄
(n))2 ≤

∞∑
i=1

α
(n)
i

ˆ
L2

x

‖u− ui‖2L2
x
dμ̄i

≤
∞∑
i=1

α
(n)
i

ˆ
L2

x

[r
(n)
i ]2 dμ̄i ≤

∞∑
i=1

α
(n)
i

1

n2
=

1

n2
.

Thus, ρ
(n)
0 converges to μ̄. Since ρ

(n)
t → μt uniformly for t ∈ [0, T ), and each ρ

(n)
t

is a dissipative statistical solution, this implies that μt is a statistical solution with

initial data μ̄.
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μt is unique: Let μ̃t be any dissipative statistical solution. We have to show that

μ̃t = μt. To this end, we fix ε > 0 for the moment. Since ρ
(n)
t ⇀μt, we have

W2(μt, μ̃t) ≤ ε +W2(μ̃t, ρ
(n)
t ),

for all sufficiently large n. It will thus suffice to show thatW2(μ̃t, ρ
(n)
t ) can be made

smaller than any ε for n large. We now fix n, such that 1/n < ε. We will from now

on denote αi = α
(n)
i for i = 1, 2, . . .. Define a finite convex combination of Dirac

measures by

ρ̃t =

N∑
i=1

αiδui(t) + α0δu0(t),

where we set α0 =
∑

i>N αi, and u0(t) ≡ 0. Here, N is chosen sufficiently large to

ensure that

α0 =
∑
i>N

αi < ε2/M2,

where M ≥ 1 is chosen such that μ̄(Bc
M ) = 0. Such M exists by assumption on μ̄.

Note in particular, that for this choice of ρ̃t, we have

W2(ρ̃t, ρ
(n)
t ) ≤ ε,

for all t ∈ [0, T ).

Define now μ̄i ∈ Λ(α, μ̄) by

μ̄i = μ̄
(n)
i , for i = 1, . . . , N, and

μ̄0 =

⎧⎪⎨⎪⎩
1

α0

∑
i>N

αiμ̄i, α0 > 0,

0, α0 = 0.

Corresponding to this decomposition

μ =

N∑
i=0

μi

and by assumption on the diffusivity of μ̃t (cf. Definition 3.2), there exists a decom-

position μ̂i,t of μ̃t, such that for each i = 0, . . . , N :

ˆ T

0

ˆ
L2

x

ˆ
D

[u · ∂tφ+ (u ⊗ u) : ∇φ] dx dμ̂i,t(u) dt

= −
ˆ
L2

x

ˆ
D

u · φ(x, 0) dx dμi(u)

and ˆ
L2

x

‖u‖2L2
x
dμ̂i,t(u) ≤

ˆ
L2

x

‖u‖2L2
x
dμi(u).
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Repeating the argument used in the proof of weak–strong uniqueness for measure-

valued solutions,6 it follows from the fact that ui(t) is a strong solution, thatˆ
L2

x

‖u− ui(t)‖2L2
x
dμ̂i,t(u) ≤ eC(ui)T

ˆ
L2

x

‖u− ui‖2L2
x
dμ̄i(u),

for almost all t ∈ [0, T ), and all i = 0, . . . , N . By our choice of μ̄i, which is supported

in B
r
(n)
i

(ui) and r
(n)
i = e−C(ui)T /n, this implies

W2(μ̂i,t, δui(t))
2 ≤

ˆ
L2

x

‖u− ui(t)‖2L2
x
dμ̂i,t(u) ≤ 1

n2
≤ ε2,

for i = 1, . . . , N . For i = 0, we have instead

W2(μ̂i,t, δui(t))
2 ≤

ˆ
L2

x

‖u− ui(t)︸︷︷︸
=0

‖2L2
x
dμ̂i,t(u) ≤M2,

by assumption on the L2-boundedness of μ.

We conclude that for almost all t ∈ [0, T ):

W2(μ̃t, ρ̃t)
2 ≤ α0W2(μ̂0,t, δu0(t))

2 +

N∑
i=1

αiW2(μ̂i,t, δui(t))
2

≤ ε2

M2
M2 +

N∑
i=1

αiε
2 ≤ 2ε2

and hence

W2(μ̃t, μt) ≤ W2(μ̃t, ρ̃t) +W2(ρ̃t, ρ
(n)
t ) +W2(ρ

(n)
t , μt)

≤ √
2ε+ ε+ ε ≤ 4ε.

Since ε > 0 was arbitrary, it follows that W2(μ̃t, μt) = 0 for almost all t ∈ [0, T ),

i.e. μt is the unique dissipative statistical solution with initial data μ̄.
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