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Abstract. We are concerned with the approximation of undercompressive, regularization-
sensitive, nonclassical solutions of hyperbolic systems of conservation laws by high-order accurate,
conservative, and semidiscrete finite difference schemes. Nonclassical shock waves can be generated
by diffusive and dispersive terms kept in balance. Particular attention is given here to a class of
systems of conservation laws including the scalar equations and the system of nonlinear elasticity
and to linear diffusion and dispersion in either the conservative or the entropy variables.

First, we investigate the existence and the properties of entropy conservative schemes—a notion
due to Tadmor [Math. Comp., 49 (1987), pp. 91–103]. In particular we exhibit a new five-point
scheme which is third-order accurate, at least.

Second, we study a class of entropy stable and high-order accurate schemes satisfying a single
cell entropy inequality. They are built from any high-order entropy conservative scheme by adding
to it a mesh-independent, numerical viscosity, which preserves the order of accuracy of the base
scheme. These schemes can only converge to solutions of the system of conservation laws satisfying
the entropy inequality. These entropy stable schemes exhibit mild oscillations near shocks and,
interestingly, may converge to classical or nonclassical entropy solutions, depending on the sign of
their dispersion coefficient.

Then, based on a third-order, entropy conservative scheme, we propose a general scheme for
the numerical computation of nonclassical shocks. Importantly, our scheme satisfies a cell entropy
inequality. Following Hayes and LeFloch [SIAM J. Numer. Anal., 35 (1998), pp. 2169–2194], we
determine numerically the kinetic function which uniquely characterizes the dynamics of nonclassical
shocks for each regularization of the conservation laws. Our results compare favorably with previous
analytical and numerical results.

Finally, we prove that there exists no fully discrete and entropy conservative scheme and we
investigate the entropy stability of a class of fully discrete, Lax–Wendroff type schemes.
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1. Introduction. We are interested in discontinuous solutions of hyperbolic sys-
tems of conservation laws

∂tu+ ∂xf(u) = 0, u(x, t) ∈ R
N ,(1.1)

and their approximation by high-order accurate, conservative, and semidiscrete fi-
nite difference schemes. We consider systems of conservation laws endowed with an
entropy-entropy flux pair (U,F ) : R

N → R
2. As is customary, the weak solutions of

(1.1) are constrained by the entropy inequality

∂tU(u) + ∂xF (u) ≤ 0.(1.2)
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By definition, ∇F (u) = ∇U(u) ·Df(u), which implies that ∇2U Df is a symmetric
N×N matrix. The function U(u) is strictly convex at those values u where the system
(1.1) is strictly hyperbolic. The latter means that the Jacobian matrix A(u) = Df(u)
of the flux f : R

N → R
N has real and distinct eigenvalues and a basis of eigenvectors.

For hyperbolic-elliptic systems, the entropy U is not convex everywhere.
The present paper is aimed at extending the recent work of Hayes and LeFloch

[17, 18, 19] concerning (undercompressive, regularization-sensitive) nonclassical en-
tropy solutions generated by diffusive-dispersive approximations of strictly hyper-
bolic systems of conservation laws. The main question we will address here is how to
design difference schemes for the numerical computation of the limit of zero diffusion-
dispersion approximations like

∂tu
ε + ∂xf(uε) = ∂xR(ε uεx, ε

2 uεxx, . . . ).(1.3)

The regularization term R is assumed to be compatible with the given entropy U of
(1.1) in the sense that any limit ū := limε→0 u

ε satisfies the fundamental entropy in-
equality (1.2). Such limits are relevant for many models arising in material science and
magnetohydrodynamics. The scalar conservation law with cubic flux supplemented
with linear diffusion and dispersion provides a useful model:

∂tu
ε + ∂x

(
uε
)3

= ε uεxx + α ε2 uεxxx,(1.4)

where α is a “material” parameter presumably given by physical modeling.
The main difficulties in studying (1.3)–(1.4) are as follows:
(1) The limits ū may contain undercompressive, nonclassical shocks which do

not satisfy the standard entropy criteria of Lax [27, 28] and Liu [35]. These
waves are admissible in the sense that they are associated with a diffusive-
dispersive traveling wave. For undercompressive shocks, the traveling wave
is in the generic case a connection between two saddle equilibrium points.
Furthermore, in the model (1.4), for instance, Jacobs, McKinney, and Shearer
[23] pointed out that the sign of the dispersion coefficient α is critical. For
α < 0 the solutions of (1.4) converge to classical entropy solutions, while if
α > 0 the limits may contain nonclassical shocks.

(2) The Cauchy problem (1.1)–(1.2) may not have a unique solution and a further
admissibility condition—the kinetic relation—is necessary, which constrains
the entropy dissipation of nonclassical shocks. Note that for undercompressive
waves, the number of characteristics impinging on the discontinuity is less
than what is required for linearized stability. See Abeyaratne and Knowles
[1, 2], LeFloch [32], and Truskinovsky [46, 47].

We refer the reader to Hayes and LeFloch [17, 18, 19] and to [33] for a review.
The numerical approximation of the limit ū is an extremely challenging problem.

First of all, for scalar conservation laws, say, nonclassical solutions violate the standard
TVD (total variation diminishing) property. This excludes, for our purpose, the
whole class of modern, shock-capturing TVD schemes. More importantly, nonclassical
shocks turn out to be driven by the physical dissipation terms in the right-hand side
of (1.3)–(1.4), which we must mimic at the numerical level. Otherwise, the artificial
numerical diffusion which is effectively present in any finite difference scheme (the
Glimm scheme [11] and the front tracking scheme [12, 6] being exceptions) would drive
the propagation of the shocks. The situation is reminiscent of what was observed
earlier by Hou and LeFloch [20] for nonconservative schemes. Wrong propagation
speeds may be observed in these contexts.
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In fluid dynamics and in material science, the dynamics of phase transitions has
received a lot of attention. The model problem there is a hyperbolic-elliptic system
of two conservation laws supplemented with a viscosity term and a dispersive-like
capillarity term, similar to (1.4); see Slemrod [41]. See also [25, 40, 9] for early
activity on the subject. The numerical analysis of this model was initiated in the
papers [42, 3, 26, 8]. In particular, Cockburn and Gau [8] introduced a finite difference
scheme satisfying a global entropy inequality and taking into account small parameter-
dependent viscosity and capillarity terms.

The complex wave phenomena studied here also arise in non-strictly hyperbolic
models, which have received a lot of attention. We refer to Azevedo et al. [4], Canic
[7], Isaacson, Marchesin, and Plohr [24], and the many references cited therein.

In the present article, following [17, 18, 19], we mainly focus on the effect of
dispersive terms in hyperbolic equations. We aim at understanding the fundamental
properties of undercompressive shock waves and rigorously assessing the accuracy of
approximation schemes. Our analytical results in sections 2 to 4 will be valid for both
hyperbolic and hyperbolic-elliptic systems. All of the numerical experiments in this
paper will be performed on scalar conservation laws with either quadratic (f(u) = u2)
or cubic (f(u) = u3) flux-functions.

We consider approximation schemes that, after Lax [27, 28], Harten, Hyman, and
Lax [15] and Lax and Wendroff [31], are in conservative form and satisfy a discrete
form of the entropy inequality (1.2). Furthermore, for regularization-sensitive shocks,
it is necessary that the numerical entropy dissipation of the discrete scheme mimic
the one of the continuous model (1.3). This led Hayes and LeFloch in [19] to use
the second-order accurate, entropy conservative scheme introduced earlier by Tadmor
[44, 45], for the discretization of the flux term ∂xf(u) in (1.1). Recall that this
notion was introduced by Tadmor to derive a large class of schemes consistent with
the entropy inequality (1.2). For the computation of nonclassical shocks, the entropy
conservative schemes are particularly interesting since they minimize the effect of
spurious numerical entropy dissipation.

In sections 2 and 3, we focus attention on the approximation of (1.1)–(1.2) by
entropy conservative schemes. We discover in section 3 a new five-point, third-order
accurate (at least) and entropy conservative scheme—which will play a central role in
the numerical section 5. For a class of systems of conservation laws, we establish a
striking parallel between the properties of this new entropy conservative scheme and
its continuum equivalent equation.

Numerical results with entropy conservative schemes show that their behavior is
dispersive in nature. As they possess so many analytical properties (see Theorems 2.5
and 3.6), it would be interesting to study these schemes for their own sake, along the
lines of the works by Lax and Levermore [30], Goodman and Lax [13], and Lax [29].

Next, in section 4 we introduce a class of high-order and entropy stable schemes,
which as we prove can only converge toward a weak solution of (1.1)–(1.2). The
schemes are built by adding a mesh-independent, high-order, numerical viscosity to
an entropy conservative scheme. The artificial numerical viscosity is an old concept
for which we refer, to mention just a few names, to Von Neumann and Richtmyer
[48], Lax and Wendroff [31], Harten and Zwas [16], and Majda and Osher [36]. (See
also the references cited therein.) Our purpose is solely to point out the striking fact
that a (actually singular) mild numerical viscosity is sufficient to drastically tame
out the oscillations observed in entropy conservative schemes. We note that only a
weak a priori estimate is available on the numerical entropy dissipation of the class of
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entropy stable schemes under consideration.
Section 5 is built upon the results obtained in sections 2 to 4, especially upon

the higher order entropy conservative scheme found in section 3. Generalizing the
approach of Hayes and LeFloch [19] we design a scheme adapted to the numerical
computation of nonclassical shocks. We consider both (1.4) and a new model equation
of interest for the study of nonclassical shocks. As in (1.4) the flux is taken to be a
cubic but now the diffusion and the dispersion are linear in the flux variable, i.e.,

∂tu
α,ε + ∂xf(uα,ε) = ε f(uα,ε)xx + αε2 f(uα,ε)xxx, f(u) = u3,(1.5)

and α is a given parameter. We stress that f(u) is also the entropy variable associated
with the entropy

U(u) =

∫ u

f(s) ds =
u4

4
.(1.6)

This convex entropy will play a role throughout the discussion in this paper. We will
see that the limiting solutions generated by (1.5) contain nonclassical shocks as (1.4)
does. We exhibit in section 5 qualitative differences between the two models. To
investigate the properties of nonclassical shocks, we determine Hayes and LeFloch’s
kinetic function, which uniquely characterizes their dynamics. Our numerical results
extend those obtained in [19]. For the model (1.5) we find that the kinetic function
is globally very well approximated, even for shock waves with large amplitude.

In conclusion, we show that the higher-order entropy conservative schemes derived
here provide an efficient computational method for a systematic study of nonclassical
shocks in the physical sciences.

Other approaches for the numerical computation of regularization-sensitive, non-
classical shock waves include the Glimm scheme [32, 49], the wave front tracking
algorithm [49, 22, 5], and Osher–Sethian’s level set method [21].

In section 6, we consider fully-discrete schemes—in which both the time and the
space variables are discretized. We prove that there exists no fully discrete and en-
tropy conservative scheme. Next the entropy stability of fully discrete, Lax–Wendroff
type schemes is investigated. We provide analytical and numerical evidence for the
conjecture that, for scalar equations with increasing flux f , the special entropy (1.6)
yields an entropy inequality. We recall that Majda and Osher [36] were able to estab-
lish an entropy inequality but for a modified version of the Lax–Wendroff scheme.

2. A second-order entropy conservative scheme. This section discusses the
second-order, entropy conservative scheme introduced by Tadmor in [44, 45] (also see
[43] for an earlier related work). For a class of systems of conservation laws, including
the 2×2 system of nonlinear elasticity, we point out that the scheme has a simple form
and additional properties can be derived. To begin with, we recall below Tadmor’s
definition of entropy conservative schemes.

Call v(u) = ∇U(u) the entropy variable associated with U . When the entropy is
strictly convex, this defines a change of variable [10] and one can set

g(v) := f(u), G(v) := F (u), B(v) := Dg(v).(2.1)

The matrix B is symmetric since Dg(v) = Df(u)D2U(u)−1. There exists a scalar-
valued function ψ = ψ(v) such that g = ∇ψ; in fact

ψ(v) = v · g(v) −G(v),(2.2)
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uniquely defined up to a constant. To deal with examples when U is not convex
everywhere, we make from now on the following assumption on the flux f(u):

f(u) can be written as a function of v;(2.3)

that is, (2.1) holds for some functions g and G. Then again ψ can be defined by (2.2).
Several examples will be of particular interest.
Example 2.1. For the scalar conservation laws (N = 1) with increasing flux f ,

choose the (convex) entropy

U(u) =

∫ u

f(s) ds.(2.4)

Interestingly, the flux g(v) = v is then a linear function of the entropy variable.
Example 2.2. Consider the system of nonlinear elasticity

∂tw − ∂xV = 0,
∂tV − ∂xσ(w) = 0,

(2.5)

where V is the velocity, w is the stress, and the stress-strain function w �→ σ(w)
depends on the material under study. Choose the entropy to be

U(w, V ) =

∫ w

σ(s) ds+
V 2

2
, F (w, V ) = −σ(w)V.(2.6)

We stress here that, without any assumption on σ, the flux can be written in terms
of the entropy variables, (σ, V ), and—as in Example 2.1—is a linear function. Note
in passing that when σ′(w) > 0, the system is hyperbolic and the entropy strictly
convex, while otherwise it is elliptic and the entropy is neither convex nor concave.

Example 2.3. The symmetric systems for which the matrix Df is symmetric
yields a general class—although not so relevant from the physical standpoint—of (not
necessarily strictly) hyperbolic systems. The function

U(u) = |u|2

is a strictly convex entropy for these systems, and the entropy variable v = u coincides
with the conservative variable.

Let xj = j h, j ∈ Z, be a regular mesh, where h > 0 denotes the mesh length.
Consider the following class of (2p+ 1)-point, conservative, semidiscrete schemes

u′j = − 1

h

(
g∗j+1/2 − g∗j−1/2

)
,(2.7)

where uj = uj(t) is an approximation of the value u(xj , t) of a solution of (1.2). The
numerical flux

g∗j+1/2 = g∗(vj−p+1, . . . , vj+p), vj = ∇U(uj),

is assumed to be consistent with the exact flux g (and, thus, with f) in the sense that

g∗(v−p+1, . . . , vp) = g(v) when v−p+1 = · · · = vp = v.

Tadmor in [43] focused on essentially three-point schemes, for which

g∗(v−p+1, . . . , vp) = g(v) when v0 = v1 = v.(2.8)
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As we will see in section 3, this restriction must be relaxed for third-order schemes,
however.

The numerical flux (2.9) below was discovered by Tadmor, together with the cell
entropy equality (2.10)–(2.11).
Theorem 2.4. Suppose that either the entropy U is strictly convex or (more

generally) the assumption (2.3) holds. Consider the two-point numerical flux

g∗(v0, v1) =

∫ 1

0

g(v0 + s (v1 − v0)) ds, v0, v1 ∈ R
N .(2.9)

(1) Then the scheme (2.7)–(2.9) satisfies the cell entropy equality

U(uj)
′ +

1

h

(
G∗

j+1/2 −G∗
j−1/2

)
= 0,(2.10)

where the numerical entropy flux is defined for every v0, v1 ∈ R
N by

G∗(v0, v1) =
G(v0) +G(v1)

2
+

(v0 + v1)

2
g∗(v0, v1) − 1

2

(
v0 · g(v0) + v1 · g(v1)

)
.

(2.11)

(2) The scheme is second-order accurate and its equivalent equation up to second-
order has a conservative form

∂tu+ ∂xf(u) =
h2

6
∂x

(
− g(v)xx +

1

2
vx · ∂xDg(v)

)
, v = ∇U(u).(2.12)

We stress that the equivalent equation of a conservative scheme, obtained through
a formal Taylor expansion in any smooth region of the solution, is usually not in a
conservative form. The conservative form (2.12) is a special property of the entropy
conservative scheme (2.9).

Proof. The entropy inequality (2.10)–(2.11) is established in [44, 45] under the
assumption that U is strictly convex. The proof easily extends to nonconvex entropies
U as well, provided the entropy variables allow one to rewrite the system (1.1) in a
symmetric form, as is assumed by (2.3). For completeness and since this will be useful
for section 3, we revisit here the proof of Tadmor.

Multiply (2.7) by vj = ∇U(uj) so that

U(uj)
′ = − 1

h
vj ·

(
g∗j+1/2 − g∗j−1/2

)
.

In the obvious identity

vj ·
(
g∗j+1/2 − g∗j−1/2

)
=

(vj + vj+1)

2
· g∗j+1/2 −

(vj−1 + vj)

2
· g∗j−1/2

− 1

2

(
(vj+1 − vj) · g∗j+1/2 + (vj − vj−1) · g∗j−1/2

)
,

the first term on the right-hand side is already in a conservative form, and we deduce
that a scheme is entropy conservative, i.e., (2.10) holds iff there exists

ψ∗
j+1/2 = ψ∗(vj−p+1, . . . , vj+p)

such that

1

2
(vj+1 − vj) · g∗j+1/2 +

1

2
(vj − vj−1) · g∗j−1/2 = ψ∗

j+1/2 − ψ∗
j−1/2.(2.13)
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Then the entropy equality (2.10) would hold with

G∗
j+1/2 =

(vj + vj+1)

2
· g∗j+1/2 − ψ∗

j+1/2.(2.14)

In particular, returning to the choice made in (2.9) and using g = ∇ψ, we see that

1

2
(vj+1−vj) ·g∗j+1/2 =

1

2

∫ 1

0

(vj+1−vj) ·g(vj +s (vj+1−vj)) ds =
1

2
(ψ(vj+1)−ψ(vj)).

Since

1

2
(ψ(vj+1)−ψ(vj))+

1

2
(ψ(vj)−ψ(vj−1)) =

1

2
(ψ(vj+1)+ψ(vj))− 1

2
(ψ(vj)+ψ(vj−1)),

we deduce from (2.13) that

ψ∗
j+1/2 =

1

2
(ψ(vj+1) + ψ(vj)).

In view of (2.14), the corresponding entropy flux is

G∗
j+1/2 =

1

2
(vj + vj+1) g∗j+1/2 −

1

2
(ψ(vj+1) + ψ(vj)) ,

which in view of (2.2) is in agreement with (2.11).
To determine the accuracy of the scheme, we calculate its equivalent equation via

a formal Taylor expansion. From (2.7)–(2.9), we find

∂tu+ ∂xf(u) = −h
2

12
vx · (∂xD2g(v)

) · vx − h2

3
vxx · ∂xDg(v) − h2

6
Dg(v) · vxxx.

The right-hand side contains only terms of order 3, that is, having three derivatives
in space. By easy manipulations, the conservative form (2.12) follows.

It was observed in [43] that an essentially three-point scheme admits the following
viscous form:

u′j = − 1

2h
(g(vj+1) − g(vj−1)) +

1

2h
(Q∗

j+1/2 (vj+1 − vj) −Q∗
j−1/2 (vj − vj−1)),

(2.15)

where the numerical viscosity matrix

Q∗
j+1/2 = Q∗(vj−p+1, . . . , vj+p)

is determined from the flux g∗ by the condition

g∗j+1/2 =
1

2
(g(vj+1) + g(vj)) − 1

2
Q∗

j+1/2(vj+1 − vj).

Clearly (2.8) is a necessary condition for Q∗ to exist. Then considering any essentially
three-point scheme, observe that for v−p+1, . . . , vp ∈ RN ,

g(v1)−g∗(v−p+1, . . . , vp) =

∫ 1

0

∂g∗

∂v0
(v−p+1, . . . , v−1, v0+s (v1−v0), v1, . . . , vp) ds (v1−v0),
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and thus

Q∗(v−p+1, . . . , vp) (v1 − v0)

=

∫ 1

0

∂g∗

∂v0
(v−p+1, . . . , v−1, v0 + s (v1 − v0), v1, . . . , vp) ds (v1 − v0)

−
∫ 1

0

∂g∗

∂v1
(v−p+1, . . . , v0, v0 + s (v1 − v0), v2, . . . , vp) ds (v1 − v0).

A rather natural (but not unique) choice for Q∗ is thus

Q∗(v−p+1, . . . , vp) =

∫ 1

0

∂g∗

∂v0
(v−p+1, . . . , v−1, v0 + s (v1 − v0), v1, . . . , vp) ds

−
∫ 1

0

∂g∗

∂v1
(v−p+1, . . . , v0, v0 + s (v1 − v0), v2, . . . , vp) ds.

(2.16)

To calculate a viscous form of the scheme (2.9), we rely on the general formula
(2.16). Using the notation B(v) = Dg(v), we get

Q∗(u0, u1) =

∫ 1

0

B(v0 + s(v1 − v0))(1 − s) ds−
∫ 1

0

B(v0 + s(v1 − v0))s ds

=

∫ 1

0

B(v0 + s(v1 − v0))(1 − 2s) ds,

(2.17)

which is symmetric since the matrix B(v) = ∇2U(u)Df(u) is symmetric. Clearly Q∗

need not be nonnegative. Furthermore, using any norm of the matrix Q∗, we have

|Q∗(v0, v1)| =

∣∣∣∣
∫ 1

0

(B(v0 + s (v1 − v0)) −B(v0)) (1 − 2s) ds

∣∣∣∣ ≤ C |v1 − v0|(2.18)

for some constant C > 0 and all v0, v1 in a bounded set of R
N .

We stress that the second-order entropy conservative schemes can be identified
with their numerical viscosity coefficient, Q∗. The following formula was noticed by
Tadmor [44, Theorem 2.1]:

Q∗(v0, v1) =

∫ 1/2

−1/2

∫ 1/2

−1/2

(ξ2 + η2)D2g
(
2 ξ η + 1/2

)
dηdξ (v1 − v0),

which implies immediately the inequality above, |Q∗(v0, v1)| ≤ C |v1−v0|. This yields
yet another proof for the second-order accuracy of Tadmor’s entropy conservative
scheme.

Observe that, in general, the numerical viscosity Q∗ of an entropy conservative
scheme does not have any distinguished property. We now exhibit a class of systems
of conservation laws of interest for which the numerical viscosity of Tadmor’s scheme
is identically zero and the scheme has a simple form, allowing us to derive additional
properties.

Due to an observation made earlier in Examples 2.1–2.2, the theorem below ap-
plies to the scalar conservation laws endowed with the entropy (2.4) and to the (hy-
perbolic or hyperbolic-elliptic) system of elasticity endowed with the entropy (2.6).
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Theorem 2.5. Consider any system of conservation laws endowed with a (convex
or nonconvex) entropy function U such that

the flux-function is a linear function of the entropy variable v.(2.19)

(1) Then the numerical viscosity of the scheme (2.7)–(2.9) vanishes identically:

Q∗ ≡ 0.

(2) The scheme coincides with the semidiscrete, second-order, centered scheme,

u′j = − 1

2h
(g(vj+1) − g(vj−1)), vj = ∇U(uj).(2.20)

(3) Its equivalent equation is conservative up to any order of approximation, in-
deed,

∂tu+ ∂xf(u) = −
∞∑

n=1

h2n

(2n+ 1)!
∂2n+1
x f(u).(2.21)

(4) The equation (2.21) is entropy conservative for the entropy U , in the sense
that

∂tU(u) + ∂xF (u)

= ∂x

∞∑
n=1

(
(−1)n+1

2
∂nx v · ∂nxf(u) +

n−1∑
m=0

(−1)m∂mx v · ∂2n−m
x f(u)

)
h2n

(2n+ 1)!
,

(2.22)

in which v = ∇U(u).
For instance, the equivalent equation (2.21) at the second-order contains a linear

dispersion in the flux variable

∂tu+ ∂xf(u) = −h
2

6
f(u)xxx,(2.23)

and (2.22) yields

∂tU(u) + ∂xF (u) =
h2

2
((v · f(u))xx − 3 vx · f(u)x)x, v = ∇U(u).(2.24)

Theorem 2.5 establishes a striking parallel between the properties of the scheme
(2.20)—which is conservative in the sense of Lax–Wendroff and entropy conservative
in the sense of Tadmor—and the properties of its equivalent equation (2.21)—which is
conservative and entropy conservative in the “continuous” sense. Under the assump-
tion (2.19), no entropy dissipation can be “measured” at both the continuous and the
discrete level. These properties will justify a reliance on the equivalent equation when
designing a scheme adapted to nonclassical shocks in section 5.

Proof. The first two statements follow from (2.17) and (2.15). To show (2.21),
we expand the approximate solution vj(t) ≈ v(xj , t) in the neighborhood of a point
(xj , t) = (0, 0). Evaluating all functions at (0, 0), we find

vj+1 =

∞∑
n=0

∂nx v
hn

n!
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and

ut = − 1

2h
Dg

∞∑
n=0

∂nx v

n!
(hn − (−h)n)

= −Dg
∞∑

n=0

∂2n+1
x v

h2n

(2n+ 1)!
= −g(v)x −

∞∑
n=1

∂2n+1
x g(v)

h2n

(2n+ 1)!
.

This yields (2.21) for the scheme (2.20).
To derive the entropy equality, we multiply (2.21) by ∇U(u) = v. We obtain

∂tU(u) + ∂xF (u) = −
∞∑

n=1

v · ∂2n+1
x g(v)

h2n

(2n+ 1)!
.

Using the fact that g(v) = Dg v and Dg is a symmetric matrix, we arrive at

∂tU(u) + ∂xF (u)

= −
∞∑

n=1

v ·Dg ∂2n+1
x v

h2n

(2n+ 1)!

= −
∞∑

n=1

h2n

(2n+ 1)!
((v ·Dg ∂2n

x v)x − (vx ·Dg ∂2n−1
x v)x + (vxx ·Dg ∂2n−2

x v)x

− · · · + (−1)n−1
(
∂n−1
x v ·Dg ∂n+1

x v
)
x

+ (−1)n ∂nx v ·Dg ∂n+1
x v).

To treat the last term, still written in a nonconservative form, we observe that since
Dg is symmetric,

∂nx v Dg ∂
n+1
x v =

1

2
(∂nx v Dg ∂

n
x v)x .

The conservative form (2.22) follows.
Observe that any entropy conservative scheme admits the two time-invariants

∞∑
j=−∞

uj(t) =

∞∑
j=−∞

uj(0) and

∞∑
j=−∞

U(uj(t)) =

∞∑
j=−∞

U(uj(0)).

Therefore, it cannot converge to a weak solution of (1.1) having discontinuities. The
behavior of Tadmor’s scheme for scalar conservation laws is illustrated numerically
below.

Numerical experiments. In Figure 2.1 we plot the numerical solution ob-
tained by the second-order entropy conservative scheme (2.9), using entropy variables
as described in Example 2.1, i.e., U ′ = f and here f(u) = u2/2. The initial datum is
u0(x) = 0.5 sin(2π (x + 0.05)) + 0.5 and the mesh contains 300 points. Here and in
all subsequent numerical calculations, we use a higher order Runge–Kutta time dis-
cretization as proposed in [39]. We observe a train of oscillations with large amplitude
(of the order of the shock strength) near shocks. As expected, the scheme does not
converge in a strong norm when the mesh is refined.

3. High-order entropy conservative schemes. We now turn to investigating
more general entropy conservative schemes, being especially interested in constructing
higher-order schemes. A new class of such schemes is derived.
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Fig. 2.1. Second-order entropy conservative scheme with f(u) = u2/2.

Theorem 3.1. Consider the system of conservation laws (1.1) together with the
entropy inequality (1.2). Consider the numerical scheme

u′j = − 1

h

(
g∗j+1/2 − g∗j−1/2

)
, g∗j+1/2 = g∗(vj−p+1, . . . , vj+p)(3.1)

for the class of numerical fluxes g∗ defined by

g∗(v−p+1, . . . , vp)

=

∫ 1

0

g(v0 + s (v1 − v0)) ds

− 1

12
((v2 − v1) ·B∗(v−p+2, . . . , vp) − (v0 − v−1) ·B∗(v−p+1, . . . , vp−1)) ,

(3.2)

where the N ×N matrices B∗(v−p+2, . . . , vp) are symmetric.
(1) The (2p+ 1)-point scheme (3.1)–(3.2) is entropy conservative in the sense of

Tadmor. Indeed the cell entropy equality (2.10) holds where the numerical
entropy flux is now given by

G∗(v−p+1, . . . , vp) =
(v0 + v1)

2
· g∗(v−p+1, . . . , vp)

− 1

2
(ψ∗(v−p+2, . . . , vp) + ψ∗(v−p+1, . . . , vp−1)) ,

ψ∗(v−p+2, . . . , vp) = v1 · g(v1) −G(v1) +
1

12
(v1 − v0) ·B∗(v−p+2, . . . , vp)(v1 − v2).

(3.3)

(2) When, for instance, p = 2, the five-point scheme is third-order accurate, at
least, provided B∗ satisfies

B∗(v, v, v) = B(v) (= Dg(v)) .(3.4)
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The choice p = 2 and

B∗(v0, v1, v2) = Dg(v1)(3.5)

yields the entropy conservative scheme to be used in section 5 for computing nonclas-
sical shocks.

Remark 3.2. We stress that (3.2) is generally not an essentially three-point
scheme. So in general (3.2) does not admit a viscous form like (2.15).

Proof. The entropy conservative schemes are found by solving (2.13), i.e.,

(v1 − v0) · g∗(v−p+1, . . . , vp) + (v0 − v−1) · g∗(v−p, . . . , vp−1)

= 2 (ψ∗(v−p+1, . . . , vp) − ψ∗(v−p, . . . , vp−1)) .
(3.6)

To simplify the notation, we derive the scheme (3.2) on scalar equations, first. It is
sufficient to find a function ϕ such that

(v1−v0) · g∗(v−p+1, . . . , v−1, v0, v1, v2, . . . , vp)

= ϕ(v−p+2, . . . , v0, v1, v2, . . . , vp) − ϕ(v−p+1, . . . , v−1, v0, v1, . . . , vp−1).
(3.7)

Namely, we can then set

ψ∗(v−p+1, . . . , v−1, v0, v1, v2, . . . , vp)

=
1

2
(ϕ(v−p+2, . . . , v0, v1, v2, . . . , vp) + ϕ(v−p+1, . . . , v−1, v0, v1, . . . , vp−1))

(3.8)

and (3.6) follows.
Choosing v0 = v1 = v in (3.7) we see that

ϕ(v−p+2, . . . , v−1, v, v, v2, . . . , vp) = ϕ(v−p+1, . . . , v−1, v, v, v2, . . . , vp−1).(3.9)

This shows that for each v the functions

(v−p+2, . . . , v−1, v2, . . . , vp) �→ ϕ(v−p+2, . . . , v−1, v, v, v2, . . . , vp)

and

(v−p+1, . . . , v−1, v2, . . . , vp−1) �→ ϕ(v−p+1, . . . , v−1, v, v, v2, . . . , vp−1)

are constant and equal to, say, α(v). Thus there exists a function H such that

ϕ(v−p+2, . . . , v0, v1, v2, . . . , vp) = α(v1) + (v1 − v0)H(v−p+2, . . . , v0, v1, v2, . . . , vp).

Taking v1 = v2 = v and using (3.9) once more, we get

α(v) = α(v) + (v − v0)H(v−p+2, . . . , v0, v, v, v3, . . . , vp).

Therefore H(v−p+2, . . . , v0, v, v, v3, . . . , vp) = 0 and there exists a function B∗ such
that

H(v−p+2, . . . , v0, v1, v2, . . . , vp) = − 1

12
(v2 − v1)B∗(v−p+2, . . . , v0, v1, v2, . . . , vp),
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where the factor 1/12 is introduced to simplify the subsequent calculations. We have

ϕ(v−p+2, . . . , v0, v1, v2, . . . , vp)

= α(v1) − 1

12
(v1 − v0) (v2 − v1)B∗(v−p+2, . . . , v0, v1, v2, . . . , vp).

(3.10)

Combining (3.10) with (3.7) we obtain

g∗(v−p+1, . . . , v−1, v0, v1, v2, . . . , vp)

=
α(v1) − α(v0)

v1 − v0 − 1

12
(v2 − v1)B∗(v−p+2, . . . , v0, v1, v2, . . . , vp)

+
1

12
(v0 − v−1)B∗(v−p+1, . . . , v−1, v0, v1, . . . , vp−1).

(3.11)

To ensure the consistency property g∗(v, . . . , v) = g(v), one must have α(v) = ψ(v).
The formula (3.11) then defines an entropy conservative scheme for any choice of the
function B∗.

Assuming p = 2, we now determine conditions on the function B∗ for the scheme
to be third-order accurate. A tedious calculation leads us to the equivalent equation

∂tu+ ∂xf(u) = − 1

12

(
2h2 g(v)xxx − h2 (vx∂xg

′(v))x

− h2 (B′′
11 +B′′

22 +B′′
33 + 2 (B′′

12 +B′′
23 +B′′

31)) v3
x

+ 4h2 (B′
1 +B′

2 +B′
3) vx vxx + 2h2Bvxxx

)
,

(3.12)

where Bkl = Bkl(v, v, v), etc., and we write B instead of B∗. It follows that the
scheme is third-order accurate iff

B′′
11 +B′′

22 +B′′
33 + 2 (B′′

12 +B′′
23 +B′′

31) = g′′′,
B′

1 +B′
2 +B′

3 = g′′,
B = g′.

A necessary and sufficient condition on B∗ is thus

B∗(v, v, v) = g′(v).(3.13)

For systems, the generalization is immediate. In the formula (3.2), B∗ is now a
(symmetric, for simplicity) matrix. The condition (3.13) now reads as (3.4). It is an
exercise to check that (3.2) defines a third-order accurate scheme even for systems.
The expression of the numerical entropy flux follows immediately from (2.14)–(2.13)–
(2.14).

In the following result, we restrict attention to essentially three-point schemes.
In particular it is shown that it is not possible to construct essentially three-point
schemes which are of third or even higher order and entropy conservative.
Theorem 3.3. Consider the system of conservation laws (1.1) together with the

entropy inequality (1.2).
When N = 1, Tadmor’s flux (2.9) yields the unique, entropy conservative, three-

point, semidiscrete scheme. This scheme is second-order accurate.
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For systems of N ≥ 1 equations, suppose that the flux-function f is not identically
constant and the entropy U is not a linear function on any interval. Then any en-
tropy conservative, essentially three-point, semidiscrete scheme is exactly second-order
accurate.

Proof. First suppose N = 1 and p = 1. Using v−1 = v0 = v in (3.6), we obtain

(v1 − v) · g∗(v, v1) = 2 (ψ∗(v, v1) − ψ∗(v, v)) ,

while using v0 = v1 = v in (3.6) yields

(v − v−1) · g∗(v−1, v) = 2 (ψ∗(v, v) − ψ∗(v−1, v)) .

Replacing (v−1, v) with (v, v1) in the latter and comparing with the former, we arrive
at the identity

2 (ψ∗(v, v1) − ψ∗(v, v)) = 2 (ψ∗(v1, v1) − ψ∗(v, v1)) ,

which gives an explicit expression for ψ∗,

ψ∗(v, v1) =
1

2
(ψ∗(v1, v1) + ψ∗(v, v)) .(3.14)

The numerical flux then reads

g∗(v0, v1) =
ψ∗(v1, v1) − ψ∗(v0, v0)

v1 − v0 ,

where for consistency one must have

ψ∗(v, v) = ψ(v).

This leads us exactly to the numerical flux (2.9) and shows that scalar conservation
laws admit a unique, entropy conservative, and three-point scheme.

For systems, several entropy conservative fluxes can be defined. Let us first con-
sider any (2p + 1)-point numerical flux g∗. A straightforward but rather tedious
calculation yields the equivalent equation of the scheme, at the third order,

∂tu+ ∂xf(u)

=
h

2

p∑
i=−p+1

(
(i− 1)2 − i2) gi · vxx +

h

2

p∑
i,j=−p+1

((i− 1)(j − 1) − ij) gij · (vx, vx)

+ h2

p∑
i=−p+1

(
(i− 1)3 − i3) gi · vxxx

+
h2

4

p∑
i,j=−p+1

(
(i− 1)2(j − 1) + (i− 1)(j − 1)2 − i2j − ij2) gij · (vxx, vx)

+
h3

6

p∑
i,j,k=−p+1

((i− 1)(j − 1)(k − 1) − ijk) gijk · (vx, vx, vx) .

(3.15)
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Here gi = ∂g(v, . . . , v)/∂vi, etc.
If the scheme is essentially three-point, we can get

gi = 0 for all i 
= 0, 1(3.16)

and

gij = 0, except if at least one i, j 
= 0, 1.

It follows that the scheme is second-order accurate iff we have

∂g

∂v0
(v, . . . , v) =

∂g

∂v1
(v, . . . , v).(3.17)

On the other hand, for third-order accuracy one found the necessary condition

∂g

∂v0
(v, . . . , v) = − ∂g

∂v1
(v, . . . , v),

which is not compatible with (3.17) (except in the trivial case g = constant). This
implies the well-known property that any essentially three-point scheme is at most
second-order accurate.

It remains to check that any entropy conservative scheme satisfies the condition
(3.17) for second-order accuracy. To this end we return to the general condition (3.6).
Taking there v−1 = v0, differentiating with respect to both v0 and v1, and finally
letting v−p = · · · = vp, we arrive at the identity

1

2

∂g

∂v0
(v, . . . , v) − 1

2

∂g

∂v1
(v, . . . , v) =

∂2ψ∗

∂v0∂v1
(v, . . . , v),(3.18)

where we also used (3.16). On the other hand, taking v0 = v1, differentiating with
respect to both v−1 and v0, and finally letting v−p = · · · = vp, we arrive now at

1

2

∂g

∂v0
(v, . . . , v) − 1

2

∂g

∂v1
(v, . . . , v) = − ∂2ψ∗

∂v0∂v1
(v, . . . , v).(3.19)

Comparing (3.18)–(3.19) yields (3.17), which completes the proof.
As in Theorem 2.5 of section 2 we now focus on a particular class of systems.
Theorem 3.4. Consider any system of conservation laws endowed with a (convex

or nonconvex) entropy function U such that the property (2.19) holds.
(1) Then the scheme (3.2)–(3.5) takes the form

g∗(v−1, . . . , v2) =
1

2
(g(v0) + g(v1)) +

1

12
(−g(v−1) + g(v0) + g(v1) − g(v2)) ,

(3.20)

and thus

u′j = − 1

2h
(g(vj+1) − g(vj−1)) − 1

12h
(−g(vj+2) + 2 g(vj+1)

− 2 g(vj−1) + g(vj−2)).
(3.21)

(2) It is fourth-order accurate.
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Fig. 3.1. Third-order entropy conservative scheme for f(u) = u2/2.

(3) Its equivalent equation is conservative up to any order of approximation:

∂tu+ ∂xf(u) =
4

3

∞∑
n=2

(22n−2 − 1)
h2n

(2n+ 1)!
∂2n+1
x f(u).(3.22)

(4) The equation (3.22) is entropy conservative for the entropy U , i.e.,

∂tU(u) + ∂xF (u)

=
4

3
∂x

∞∑
n=2

(
(−1)

n+1

2
∂nx v · ∂nxf(u)

+

n−1∑
m=0

(−1)m∂mx v∂
2n−m
x f(u)

)
(22n−2 − 1)

(2n+ 1)!
h2n,

(3.23)

where v = ∇U(u).
Proof. The proof of the first two assertions follows via Taylor expansion as in the

proof of Theorem 2.5. Note that the terms under the sum on the right-hand side of
(3.22) are equal to the corresponding terms in (2.21) up to the factor (22n−2 − 1).
Consequently (3.23) follows from (2.22).

Remark 3.5. Surprisingly, the entropy conservative scheme found in (3.21) turns
out to be identical with the one used—for scalar equations and the system of elasticity—
by [19] without realizing the properties we obtain here in Theorem 3.4. Interestingly,
in the case of phase transitions, we can also recover a scheme used earlier in [8].

Remark 3.6. Under the assumption (2.19), if we search for a linear scheme, then
the matrix B∗ in (3.2) is a constant. If B∗ = 0 we recover Tadmor’s second-order
scheme in the form (2.20) pointed out in Theorem 2.5. The choice B∗ = B gives the
new five-point, fourth-order scheme. Other values of B∗ lead to second-order entropy
conservative schemes. Therefore, under the assumption (2.19), there exists no entropy
conservative and “linear in the entropy variable” scheme of accuracy strictly higher
than four.
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Fig. 3.2. A second-order entropy conservative scheme for f(u) = u3.

Remark 3.7. As we demonstrate at the end of this section and of section 4, the
choices B∗ = 0 and B∗ = B provide schemes that generate only classical shock waves,
while the choice B∗ = 2B, say, yields a scheme which may generate nonclassical
shocks. This can be explained in view of the equivalent equation (3.12) and from the
observations in [23] and [19] concerning the critical role of the sign of the dispersion
coefficient.

Numerical experiments. Figure 3.1 displays the numerical solution of the
entropy conservative scheme (3.21) for the scalar equation in Example 2.1 with U ′ = f
and f(u) = u2/2. The initial datum is u0(x) = 0.5 sin(2.0π (x+0.05))+0.5, the mesh
contains 300 points, and time is t = 0.5. The support of the oscillations is larger,
which is due to the larger stencil (5 points) of the scheme. Observe also that the
oscillations appear to have some “structure.” According to Remark 3.7 we then
perform a calculation for f(u) = u3 using the scheme with B∗ = 5.0 · B. As initial
data we choose ul = 4.0 and ur = −5.0; a mesh of 400 points was used. The results
are shown in Figure 3.2.

Although oscillations are still present the nonclassical behavior is obvious by the
development of a middle state between the nonclassical shock and the rarefaction.
Note again the characteristic oscillation pattern following the shock.

4. A class of high-order, entropy stable schemes. In [44, 45], Tadmor
proves that a scheme that contains more numerical viscosity than an entropy conser-
vative one satisfies a discrete entropy inequality. His analysis is based on the viscosity
form of the schemes. We extend here Tadmor’s result to schemes of arbitrary order,
for which the viscous form need not exist, and to mathematical entropies that need
not be convex. We also establish a new consistency and convergence result.

Let g∗ be any entropy conservative flux of order m∗, consistent with the exact
flux g(v) = f(u) of (1.1). Consider the semidiscrete scheme

u′j = − 1

h

(
g∗j+1/2 − g∗j−1/2

)
+

1

2h

(
Q̃j+1/2 (vj+1 − vj) − Q̃j−1/2 (vj − vj−1)

)
,(4.1)
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where vj = ∇U(uj). The additional numerical viscosity Q̃(v−p+1, . . . , vp) is assumed
to be a symmetric matrix.

The initial data in L1(R)∩L∞(R) are discretized to preserve the order of accuracy
and the natural L1(R) ∩ L∞(R) bounds.
Theorem 4.1. Assume that the matrix Q̃ satisfies for some exponents 0 ≤ α ≤ β

(
C1 |v1 − v0|2+β

)
Id ≤ Q̃(v−p+1, . . . , vp) ≤

(
C2

p−1∑
i=−p+1

|vi+1 − vi|2+α

)
Id(4.2)

for all v−p+1, . . . , vp in any given, bounded set of R
N and for some C1, C2 > 0.

(1) The scheme (4.1) is at least second-order accurate if m∗ = 2 and α ≥ 0 and
third-order accurate if m∗ = 3 and α ≥ 1.

(2) It satisfies the cell entropy inequality

U(uj)
′ +

1

h

(
G̃∗

j+1/2 − G̃∗
j−1/2

)
= − 1

2h

(
(vj+1 − vj) · Q̃j+1/2 (vj+1 − vj)

+ (vj − vj−1) · Q̃j−1/2 (vj − vj−1)
)
≤ 0,

(4.3)

where the numerical entropy flux is

G̃∗
j+1/2 := G∗

j+1/2 −
vj+1

2
· Q̃j+1/2 (vj+1 − vj),(4.4)

G∗ being the entropy flux of the entropy conservative scheme.
(3) In particular, the scheme is entropy stable and has uniformly bounded entropy

dissipation, i.e., for all t

∞∑
j=−∞

U(uj(t)) +
C1

h

∫ t

0

∞∑
j=−∞

|vj+1(s) − vj(s)|4+β ds ≤
∞∑

j=−∞
U(uj(0)).

(4.5)

(4) Assume that the scheme is L∞ stable and denote by νx,t an associated Young
measure. Then ν satisfies the system of conservation laws (1.1) and the en-
tropy inequality (1.2). (See (4.10)–(4.11) below.)

(5) If the scheme is L∞ stable and converges a.e., then the limiting function
satisfies (1.1)–(1.2).

Remark 4.2. Observe that our dissipation bound (4.5) is weaker than the one
known for first-order schemes and for the standard viscosity method. It ressembles
the one obtained by the standard energy method for the equation with degenerate
diffusion

∂tu
ε + ∂xf(uε) = ε3+β

(|vεx|2+β vεx
)
, vε = ∇U(uε),

that is,

ε3+β

∫ ∫
R×R+

|vεx(x, t)|4+β dxdt ≤ C

∫
R

|uε(x, 0)| dx.

(Compare with (4.6) below.)



ENTROPY INEQUALITIES AND NONCLASSICAL SHOCKS 2041

Remark 4.3. Note that the entropy U need not be convex in Theorem 4.1 and the
flux g∗ and the viscosity Q∗ need not be essentially three-point functions. Thus the
result applies to the class of entropy conservative schemes found in Theorem 3.1.

Proof. Consider the case α ≥ 0. To determine the equivalent equation via formal
Taylor expansion, we write

vj+1 − vj = h vx + h.o.t.

and also expand Q̃j+1/2. Using the upper bound in (4.2) we see that

Q̃(v−p+1, . . . , vp) ≤ C2(2p− 1)h2 |vx|2 + h.o.t.

To the equivalent equation of the entropy conservative scheme, one should add a term
of order

1

h
C2(2p− 1)h2 |vx|2 h|vx| − 1

h
C2(2p− 1)h2 |vx|2 (−h)|vx| + h.o.t. = O(h2).

This shows that the scheme is second-order accurate when α ≥ 0 and m∗ = 2. The
same argument applies to m∗ = 3 and α ≥ 1.

To derive the entropy inequality (4.3), we multiply (4.1) by vj . The first term
in the right-hand side takes a conservative form since g∗ is entropy conservative. We
obtain

U(uj)
′ +

1

h

(
G∗

j+1/2 −G∗
j−1/2

)
=

vj
2h

· Q̃j+1/2 (vj+1 − vj) − vj
2h

· Q̃j−1/2 (vj − vj−1)

=
1

2h
(vj − vj+1) · Q̃j+1/2 (vj+1 − vj) − 1

2h
(vj − vj−1) · Q̃j−1/2 (vj − vj−1)

+
vj+1

2h
· Q̃j+1/2 (vj+1 − vj) − vj−1

2h
· Q̃j−1/2 (vj − vj−1).

This proves that the entropy inequality (4.3) holds with the numerical entropy flux
given in (4.4). Then (4.5) follows by summation of (4.3) over j and integration in t,
using the lower bound in (4.2).

Denote by uh(x, t) the piecewise constant approximate solutions generated by the
scheme

uh(x, t) = uj(t), x ∈ (xj−1/2, xj+1/2

)
,

where xj+1/2 := h(j + 1/2) and set also vh(x, t) := ∇U(uh(x, t)). The entropy
dissipation bound in (4.5) implies

∫ ∞

0

∫
R

|vhx |4+β dxdt = h−3−β

∫ ∞

0

∞∑
j=−∞

|vj+1 − vj |4+β dt ≤ C h−2−β .(4.6)

Consider a Young measure νx,t representing all weak-star limits of the functions uh

as h→ 0. That is, 〈
νx,t, ϕ

〉
= lim

h→0
ϕ(uh)(4.7)
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in the sense of distributions for all continuous functions ϕ having compact support.
Similarly consider a Young measure ν�x,t associated with vh. It is easily checked that

〈
ν�x,t, ψ

〉
=
〈
νx,t, ψ ◦ ∇U〉(4.8)

for all continuous functions ψ with compact support.
Take a test-function θ and set θj(t) = θ(xj , t). Multiply (4.1) by θj , sum in j,

integrate in t, and finally estimate each term successively. Observe first that

∑
j

∫
R+

θj(t)u
′
j(t) dt −→ −

∫ ∫
R×R+

∂tθ
〈
ν, u
〉
dxdt

by the definition (4.7) of the Young measure. On the other hand, we have

−
∫

R+

∑
j∈Z

θj(t)

h

(
g∗j+1/2(t) − g∗j−1/2(t)

)
dt

=

∫
R+

∑
j∈Z

θj+1(t) − θj(t)
h

g∗j+1/2(t) dt

=

∫
R+

∑
j∈Z

θj+1(t) − θj(t)
h

(
g∗j+1/2(t) − g(vj(t))

)
dt

+

∫
R+

∑
j∈Z

θj+1(t) − θj(t)
h

g(vj(t)) dt.

(4.9)

The latter term converges, by definition of the Young measure, toward∫ ∫
R×R+

∂tθ
〈
ν�, g

〉
dxdt.

Since the numerical flux g∗ is consistent with the exact flux g, we have

|g∗j+1/2 − g(vj)| ≤ C

p−1∑
i=−p+1

|vj+i+1 − vj+i|.

Using the notation supp θ ⊂ [−R,R] × [0, T ], we have∣∣∣∣∣∣
∫

R+

∑
j∈Z

θj+1(t) − θj(t)
h

(
g∗j+1/2(t) − g(vj(t))

)
dt

∣∣∣∣∣∣
≤ C

∫ T

0

∑
−R−1≤jh≤R+1

∣∣∣∣θj+1(t) − θj(t)
h

∣∣∣∣
p−1∑

i=−p+1

|vj+i+1 − vj+i| dt

≤ C ′


∫ T

0

∑
−R−1≤jh≤R+1

∣∣∣∣θj+1(t) − θj(t)
h

∣∣∣∣
4+β
3+β




3+β
4+β

×

∫ T

0

∑
−R−2≤jh≤R+2

|vj+1 − vj |4+β




1
4+β

≤ C ′′ h
1

4+β ‖θx‖
L

4+β
3+β
x,t

−→ 0,
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Fig. 4.1. Entropy stable scheme with f(u) = u2/2 and 200 points.

where we used the dissipation bound (4.6).
To treat the term containing Q̃j+1/2, we observe that∣∣∣∣∣∣

∫ T

0

∑
j∈Z

θj+1(t) − θj(t)
h

Q̃j+1/2 · (vj+1 − vj) dt
∣∣∣∣∣∣ ≤ C

∫ T

0

∑
j∈Z

∣∣∣∣θj+1(t) − θj(t)
h

∣∣∣∣ |vj+1−vj | dt

and proceed as for the flux term above. We conclude that the Young measure satisfies

∂t
〈
ν, u
〉

+ ∂x
〈
ν�, g(v)

〉
= 0;

that is, by (4.8),

∂t
〈
ν, u
〉

+ ∂x
〈
ν, f(u)

〉
= 0.(4.10)

The consistency of ν with the entropy inequality is checked in a similar fashion.
One uses that the entropy flux is bounded by

|G∗
j+1/2 −G(vj)| ≤ C

p−1∑
i=−p+1

|vj+i+1 − vj+i|

and that there is a favorable sign on the right-hand side of (4.3). This leads us to the
inequality

∂t
〈
ν, U(u)

〉
+ ∂x

〈
ν, F (u)

〉 ≤ 0(4.11)

and completes the proof of Theorem 4.1.
Numerical experiments.
(1) In Figure 4.1, we display the numerical solutions for the scheme (3.21) with

added numerical viscosity. As flux we have Burgers’ flux; for the mesh we use
200 points. The initial datum is again u0(x) = 0.5 sin(2.0π (x+ 0.05)) + 0.5.
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Fig. 4.2. Entropy stable scheme: f(u) = u2/2 and 800 points.

Each curve corresponds to successive times: t = 0.0, 0.2, 0.4, 0.7. Figure 4.2
shows the same results but now with 800 points. The strong convergence of
the scheme is obvious if we compare with Figures 2.1–3.1. The additional
numerical viscosity actually used here is given by

Q̃j+1/2 = 40.0
(
(vj+2 − vj+1)2 + (vj+1 − vj)2 + (vj − vj−1)2

)
.(4.12)

(2) Next we tested the entropy stable scheme for the cubic conservation law,
having f(u) = u3 and initial data ul = 4.0, ur = −5.0. The additional term
in this case is chosen to be

Q̃j+1/2 = (vj+1 − vj)2.(4.13)

The numerical solution exhibits classical behavior, i.e., the solution consists
of a shock with an attached rarefaction (cf. Figure 4.3 with the result for
t = 0.075). Note that almost no visible oscillations arise even if the additional
numerical viscosity (4.13) is very mild compared to (4.12).

(3) The numerical experiments in section 3 demonstrate that we can produce
nonclassical shocks with the scheme (3.1)–(3.2) by variation of B∗. The next
test shows that the oscillations in Figure 3.2 can be dramatically damped if
we stabilize the method using (4.13). For the results in Figure 4.4 we took
f(u) = u3, B∗ = 5.0 ·B and initial data ul = 4.0, ur = −5.0. The numerical
solution at time t = 0.1 is displayed. We stress the fact that nevertheless this
procedure doesn’t destroy the development of nonclassical shock waves.

The numerical results for the scheme presented here clearly show that the nu-
merical viscosity drastically tames the oscillations observed earlier with the entropy
conservative schemes.

5. A shock-capturing method for nonclassical shocks. In this section,
we use the high-order, entropy conservative scheme derived in section 3 to compute
nonclassical solutions generated by vanishing diffusion-dispersion approximations. We
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Fig. 4.3. Entropy stable scheme and classical solution: f(u) = u3 and 400 points.
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Fig. 4.4. Entropy stable scheme and nonclassical solution: f(u) = u3 and 400 points.

consider here two different models, one having linear regularization in the conservative
variable and the other having linear regularization in the entropy variable. We use
the entropy (2.4) whose interest was pointed out in section 2. We recall from [17] that
to each regularization one may associate a kinetic function, say

u+ = ϕ(u−),

which provides the right state u+ across a nonclassical shock as a function of its left
state u−. The kinetic function will be determined here for several numerical schemes.

Our purpose is to design a computational method to capture nonclassical shocks.
As such shocks are known to be regularization-sensitive one must be particularly
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cautious when discretizing higher-order terms. The numerical experiments will deal
both with the linear regularization

∂tu
α,ε + ∂xf(uα,ε) = ε uα,εxx + αε2 uα,εxxx(5.1)

and the following model:

∂tu
α,ε + ∂xf(uα,ε) = ε f(uα,ε)xx + αε2 f(uα,ε)xxx,(5.2)

which has a regularization term that is linear in the flux variable. Some initial data
are given at t = 0 and α are a fixed parameter.

The limit

uα := lim
ε→0

uα,ε

may differ [23, 17, 18] drastically from the classical solution—corresponding to the
choice α = 0 in (5.1)–(5.2); that is, in general,

u0 
= uα for α 
= 0.

However, certain conditions are necessary for this to happen: the flux f should be
nongenuinely nonlinear (nonconvex or nonconcave when N = 1) and the parameter α
should lie in some range of values depending on the behavior of the flux. For instance,
nonclassical shocks are observed for both models (5.1) and (5.2) when

N = 1 and f(u) = u3, α > 0.(5.3)

When f(u) = −u3, one needs instead α < 0.
For simplicity, the rest of the discussion is presented on the model (5.2), assuming

that the linearity assumption (2.19) holds. Our discussion therefore includes the
scalar equation (Example 2.1) and the system of elasticity (Example 2.2). We want
to calculate the limit uα using a conservative and semidiscrete difference scheme:

u′j(t) = − 1

h

(
gj+1/2(t) − gj−1/2(t)

)
.(5.4)

We define the following numerical flux composed of two parts:

g(v−1, . . . , v2) = g∗(v−1, . . . , v2) + g̃(v−1, . . . , v2).(5.5)

Here g∗ is chosen to
(1) either Tadmor’s second-order flux, or
(2) the new fourth-order entropy conservative scheme discovered in Theorem 3.4.

The flux g̃ is defined to be a discretization of the regularization

g̃(v−1, v0, v1, v2) = −β
2

(u1 − u0) − γ

6
(u2 − u1 − u0 + u−1), u = u(v),(5.6)

in case (5.1) and

g̃(v−1, v0, v1, v2) = −β
2

(v1 − v0) − γ

6
(v2 − v1 − v0 + v−1)(5.7)

for (5.2). Here β and γ are two numerical constants to be chosen in agreement with
the physical parameter α. (See Theorem 5.1 below.)
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Calling u(β,γ),h the numerical solution and calling

u(β,γ) := lim
h→0

u(β,γ),h

the limit obtained by one of the above schemes, we stress that in general

uβ,γ 
= uα.(5.8)

The kinetic relations determined numerically below allow us to estimate precisely the
discrepancy between the analytical solution uα and the numerical solution u(β,γ). We
will see below that only the ratio γ/β2 is relevant. We are particularly interested in
pointing out any qualitative differences between the two models (7.1)–(7.2).

Let us make some notes on model (5.2). For the cubic flux f(u) = u3 and the
entropy defined by U ′(u) = 3u3/4, i.e.,

U(u) = u4,

we can describe the set of nonclassical shocks issuing from the left state ul > 0. The
right states must satisfy the Rankine–Hugoniot relation

σ = u2 + uul + u2
l

and the entropy inequality

−σ (u4 − u4
l ) + 2 (u6 − u6

l ) ≤ 0.

We find that

(u− ul)2 (u2 + uul + u2
l ) (u2 − u2

l ) ≤ 0.

Therefore, since the values u ∈ (ul/2, ul) correspond to classical Oleinik-entropy dis-
continuities, the interval for nonclassical shocks is

u ∈ (−ul,−ul/2).(5.9)

Interestingly, this is exactly the same interval found in [17] for the quadratic entropy
U(u) = u2.

Finally we observe that the scheme satisfies a cell entropy inequality.
Theorem 5.1. The above scheme (5.5), (5.7) satisfies the cell entropy inequality

U(uj)
′(t) +

1

h
(Gj+1/2(t) −Gj−1/2(t)) ≤ 0,(5.10)

where the numerical entropy flux is composed of two parts,

Gj+1/2(t) = G∗
j+1/2(t) + G̃j+1/2(t).(5.11)

Here G∗ is defined by (3.3) and

G̃j+1/2(t) = −β
2
vj (vj+1 − vj) − γ

6
(vj−1 vj+1 + vj vj+2 − 2 vj vj+1).(5.12)

If, moreover,

γ

β2
=

3

4
α,(5.13)
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Fig. 5.1. Nonclassical shock + Nonattached rarefaction for model (5.1).

its equivalent equation up to third-order included coincides with the continuous model
(7.2),

∂tu+ ∂xf(u) =
β

2

(
h f(u)xx + αh2 f(u)xxx

)
.(5.14)

Of course the constant 3/4 in (5.13) can be scaled out in the definition of β, γ.
Proof. It is straightforward to calculate that

U(uj)
′(t) +

1

h
(Gj+1/2(t) −Gj−1/2(t)) = −Dj(t),

where

Dj(t) =
β

2
|vj(t) − vj−1(t)|2 ≥ 0.

The second part is also an easy calculation from the definitions.
Numerical experiments for model (5.1).
(1) We start with numerical calculations for single Riemann problems using the

method (2.9) where the entropy conservative flux is given by (3.9). The
physical and numerical coefficients are chosen to be β = 5.0 and γ = 37.5.

In Figure 5.1 we see the result at time t = 0.03 obtained for the initial
data ul = 4.0 and ur = −5.0. The solution consists of a shock and a fast
rarefaction with a constant middle state in between which identifies the shock
to be nonclassical. If we choose ul = 4.0 and ur = −3.0 we get a two-
shock solution. The slow shock is of nonclassical type while the fast wave
is classical (cf. Figure 5.2). Time is t = 0.03. These two different pictures
are representative for all Riemann solutions of the scalar problem involving
nonclassical waves.

For both calculations we used a grid of 400 points. Let us remark that
in either case visible oscillations are only observed after the slow and before
the fast wave.
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Fig. 5.2. Nonclassical shock + Classical shock for model (5.1).

(2) The next numerical test is devoted to the comparison of results obtained by
the numerical scheme for a specific choice of β, γ, h and the corresponding
limit limε→0 u

ε,α, α > 0 of the model problem (5.1). We let α = 1.0 and
choose the parameters according to

β = 5.0, γ = 18.75, h = 0.005.

This choice agrees with (5.13) above. From our analytical observation on the
equivalent scheme, then, the results should be close to limε→0 u

ε,α in model
problem (5.1).

The test will be done by the computation of a series of Riemann prob-
lems that lead to nonclassical shocks, following the paper of LeFloch and
Hayes [19]. We consider the Riemann problems to initial data ul > 0 and
ur = −1.25ul for ul taking values in [1.0, 15.0]. The solution consists of a
shock connecting ul and a middle state um which goes over to ur by a sepa-
rated rarefaction. From the analysis in [23, 17] we know the exact state um for
α = 1.0. In Figure 5.3 we plotted the calculated middle states together with
the exact states, the classical states (um = −ul/2, directly attached rarefac-
tion) and the extreme nonclassical solution (um = ul), and the traveling-wave
solution. If we take for g∗ the second-order entropy conservative flux we ob-
tain a reasonable approximation for small values of ul as expected. For bigger
values the calculated middle state becomes more classical and is nearly iden-
tical with the classical solution for ul > 12.5. The approximation behavior
for the scheme (5.4) is somewhat better. We note that even for big values the
middle state indicates a nonclassical solution.

To compare the quality of approximation further we have calculated the
entropy dissipation φ for the nonclassical shock depending on the shock speed
s. The result is displayed in Figure 5.4. Note that the function φ(s) is scaled
by s2.
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Fig. 5.3. Middle state versus left state for the first model.
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Fig. 5.4. Entropy dissipation versus shock speed for the first model.

Numerical experiments for model (5.2). Finally we present numerical
calculations for the model equation (5.2). In Figure 5.5 one can see the result
that we obtained choosing g∗j+1/2 to be the higher-order flux (3.3). Initial data are
ul = 75.0 and ur = 93.75. We used 1600 mesh points and t is equal to 0.0004.
Note that the scheme does not produce visible oscillations in contrast to the tests
for (5.1) even for such a big jump. Figure 5.6 exhibits a nonclassical shock fol-
lowed by a classical shock. The initial data were taken to be the sine function. We
used 5000 points for the mesh. Let us remark that typically the resolution of the
nonclassical shock is much better than for the fast classical shock. Compare also
Figure 5.2.
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Fig. 5.5. Nonclassical shock + nonattached rarefaction for the second model.
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Fig. 5.6. Nonclassical shock + classical shock for the second model.

As in the case of (5.1) we tested how well the schemes capture nonclassical shocks.
To this end we choose exactly the same setting of parameters as for (5.1). But for
the states ul we took values from the even larger interval [5.0, 150.0]. The results
can be seen in Figure 5.7. Both schemes do not collapse to the classical solution and
provide nearly the same middle states. A close view of the numerical data shows
that the third-order scheme produces a somewhat more nonclassical solution. This is
demonstrated with Figure 5.8 where we plot the difference between the two middle
states.

6. Fully-discrete Lax–Wendroff type schemes. In this section we turn to
fully-discrete schemes, focusing for simplicity on scalar conservation laws. Theorem
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Fig. 5.7. Middle state versus left state for the second model.
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Fig. 5.8. Difference between the middle states for the two schemes.

6.1 below shows that the framework developed for semidiscrete schemes cannot be
generalized to fully-discrete schemes. This leads us to study directly whether the
Lax–Wendroff scheme—a typical second-order and fully discrete scheme closely related
to the entropy conservative and semidiscrete schemes considered earlier—is entropy
consistent, making along the way a striking connection with the results of the previous
sections.

Denote by h and k the space and time mesh lengths and set

xj = j h, j ∈ Z; tn = nk, n ∈ N, λ =
k

h
.
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We deal here with (2p+1)-point, fully discrete and conservative schemes of the general
form

un+1
j = unj − λ (gnj+1/2 − gnj−1/2),(6.1)

where gnj+1/2 = g(unj−p+1, . . . , u
n
j+p) is a numerical flux consistent with the exact

flux f .
First, we prove the nonexistence of entropy conservative schemes.
Theorem 6.1. Consider a scalar conservation law together with a strictly convex

entropy U . Suppose there exists a fully discrete scheme of the form (6.1) that is also
entropy conservative in the sense

U(un+1
j ) − U(unj ) + λ (Gn

j+1/2 −Gn
j−1/2) = 0(6.2)

for some function Gn
j+1/2 = G(unj−p+1, . . . , u

n
j+p). Assume that λ satisfies the stability

condition

λ max
j∈Z,n∈N

∣∣∣∣∂g
n
j+1/2

∂vj

∣∣∣∣ ≤ 1, λ max
j∈Z,n∈N

∣∣∣∣∂g
n
j+1/2

∂vj+1

∣∣∣∣ ≤ 1.(6.3)

Then f is an affine function and the scheme is the upwinding scheme with more-
over λ |f ′| ≡ 1.

Our condition (6.3) is a variant of the standard Courant–Friedrichs–Lewy (CFL)
condition

λ max
j∈Z,n∈N

∣∣f ′(unj )
∣∣ ≤ 1.(6.4)

Remark 6.2. Observe that no assumption is put on the order of accuracy of the
scheme and that the function G is not explicitly assumed to be consistent with the
entropy flux associated with U .

Remark 6.3. Recall that in [37], Schonbek proved (for systems of conservation
laws) that if a fully discrete and three-point scheme satisfies a cell entropy inequality,
then it is at most first-order accurate.

Proof. To simplify the presentation, we give the proof for a three-point scheme.
It is straightforward to generalize inductively the forthcoming argument to deal with
any 2p+ 1-point scheme.

Consider the function

H(u0, u1, u2) = U
(
u1 − λ (g(u1, u2) − g(u0, u1))

)− U(u1) + λ
(
G(u1, u2) −G(u0, u1)

)
,

which by assumption vanishes identically. Compute the derivative ∂u0∂u2 :

0 = U ′′(u1 − λ (g(u1, u2) − g(u0, u1))
)
λ g′0(u0, u1) (−λ) g′1(u1, u2).

Since U ′′ > 0, we have either

g′0(u0, u1) ≡ 0 or g′1(u1, u2) ≡ 0.

In the first case, g′0 ≡ 0, we obtain

H(u1, u2) = U
(
u1 − λ (g(u2) − g(u1))

)
− U(u1) + λ

(
G(u1, u2) −G(u0, u1)

)
.
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Since only G(u0, u1) may possibly depend on the variable u0, we deduce that in fact
the function G depends only on its second argument too. Then computing ∂u1∂u2

yields

g′(u2)
(

1 − λ g′(u1)
)

= 0

for all u1, u2. Therefore g ≡ const and f ≡ const or else g and f are linear function
and λ g′ ≡ 1.

In the second case, g′1 ≡ 0, we obtain

H(u1, u2) = U
(
u1 − λ (g(u1) − g(u0))

)
− U(u1) + λ

(
G(u1, u2) −G(u0, u1)

)
,

and therefore the entropy flux is also independent of its second argument. Computing
now the derivative ∂u0∂u1 yields

g′(u0)
(

1 − λ g′(u1)
)

= 0,

and we reach the same conclusion. The proof is completed.
In the rest of this section, we investigate the entropy stability of Lax–Wendroff

type schemes [31].
Introduce a “numerical speed” anj+1/2 ∈ R (for each j ∈ Z) that is consistent

with f ′(unj ). Later on, we will make a more specific choice for anj+1/2. Define the

initial discretization u0
j for j ∈ Z via the initial data which are assumed to be in

L1(R) ∩ L∞(R).
The fully-discrete Lax–Wendroff scheme takes the form n = 1, 2, . . . , j ∈ Z,

un+1
j = unj − λ

2

(
f(unj+1) − f(unj−1)

)
+
λ2

2

(
anj+1/2

(
f(unj+1) − f(unj )

)− anj−1/2

(
f(unj ) − f(unj−1)

))
.

(6.5)

Using the notation

gnj+1/2 =
1

2

(
f(unj+1) + f(unj )

)− λ

2
aj+1/2

(
f(unj+1) − f(unj )

)
,

we can rewrite the scheme in the conservation form (6.1). The scheme is second-order
in space and time when anj is consistent with f ′(unj ).

For the sake of making comparisons, we also consider a semidiscrete version of
the Lax–Wendroff scheme: For j ∈ Z, the function uj : [0,∞) → R satisfies

u′j(t) = − 1

2h

(
f(uj+1(t)) − f(uj−1(t))

)
+
λ

2h

(
aj+1/2(t)

(
f(uj+1(t)) − f(uj(t))

)
− aj−1/2(t)

(
f(uj(t)) − f(uj−1(t))

))
,

(6.6)

where λ is here a given parameter and aj+1/2 satisfies

aj+1/2(t) =
f ′(uj(t)) + f ′(uj+1(t))

2
+O

(
uj+1(t) − uj(t)

)2

.(6.7)
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Observe that this scheme is only first-order accurate.
To establish the entropy stability of the Lax–Wendroff scheme, we should deter-

mine a convex function U such that
∞∑

j=−∞
U(un+1

j ) ≤
∞∑

j=−∞
U(unj )(6.8)

holds for all n ∈ N. In the rest of this section we will provide analytical and numerical
evidence for the following.

Conjecture. Consider an increasing flux function f and the convex entropy U
defined by

U(u) :=

∫ u

f(s) ds.(6.9)

Then, for λ sufficiently small, the fully-discrete Lax–Wendroff type scheme (6.5) sat-
isfies the entropy inequality (6.8).

To deal with decreasing fluxes, one should use U ′ = −f instead. It is interesting to
note that the choice (6.9) was already proposed earlier, in the context of semidiscrete
schemes. This is explained as follows. In the situation of Theorem 2.5, Tadmor’s
second-order, entropy conservative scheme coincides with the centered scheme. The
latter is also the dominant part of the scheme (6.5) when λ approaches zero. Therefore
it is natural to use here also the same entropy function (6.9).
Theorem 6.4. Consider an increasing flux function f and the entropy U defined

by (6.9). Consider the Lax–Wendroff scheme (6.5) with anj+1/2 given by

anj+1/2 =
f ′(unj+1) + f ′(unj )

2
+O(λ)

∞∑
j=−∞

|unj+1 − unj |2.(6.10)

If the scheme is L∞ stable, then it satisfies the entropy inequality

∞∑
j=−∞

U(un+1
j ) −

∞∑
j=−∞

U(unj )

≤ −λ
2

4

∞∑
j=−∞

f ′j
n
(
f(unj+1) − 2 f(unj ) + f(unj−1)

)2

+O(λ3)

∞∑
j=−∞

|unj+1 − unj |3.

(6.11)

Remark 6.5. Majda and Osher [36] have introduced a modified version of the
Lax–Wendroff scheme, based a nonlinear, artificial diffusion term. It is also shown
therein through a concrete example that the original Lax–Wendroff scheme is not Lp-
stable for Burgers’ equation whenever the data change sign, i.e., when a sonic point
arises.

Proof. For simplicity we omit the upper index n throughout and let fj = f(uj).
Using a Taylor expansion in λ in the (consistent and essentially three-point) scheme
(6.1), we find

U(un+1
j ) = U

(
uj − λ

(
gj+ 1

2
− gj− 1

2

))
= Uj − λU ′

j

(
gj+ 1

2
− gj− 1

2

)
+
λ2

2
U ′′
j

(
gj+ 1

2
− gj− 1

2

)2

+O(λ3)
(
|unj − unj−1|3 + |unj+1 − unj |3

)
.
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For the Lax–Wendroff scheme (6.5) we deduce

U(un+1
j ) = Uj − U ′

j

λ

2
(fj+1 − fj−1)

+ U ′
j

λ2

2

(
aj+1/2(fj+1 − fj) − anj−1/2(fj − fj−1)

)

+ U ′′
j

λ2

8
(fj+1 − fj−1)

2
+O(λ3)

∞∑
j=−∞

|unj+1 − unj |3.

(6.12)

We sum up with respect to j ∈ Z and get for the terms in (6.12) of order less
than three

∞∑
j=−∞

U(un+1
j ) −

∞∑
j=−∞

U(unj ) =

∞∑
j=−∞

(
Rj

1 +Rj
2 +Rj

3

)
+O(λ3)

∞∑
j=−∞

|unj+1 − unj |3,

with obvious notation. Using the special choice U ′ = f leads for Rj
1 to

−λ
2

∞∑
j=−∞

U ′
j(fj+1 − fj−1) = −λ

2

∞∑
j=−∞

fjfj+1 − fj−1fj = 0.(6.13)

For Rj
2 and Rj

3 we obtain

∞∑
j=−∞

Rj
1 +Rj

2 =
λ2

2

∞∑
j=−∞

U ′
j (aj+1/2(fj+1 − fj) − anj−1/2(fj − fj−1)) +

1

4
U ′′
j (fj+1 − fj−1)

2

=
λ2

8

∞∑
j=−∞

f ′j(fj+1 − fj−1)
2 − 2 aj+1/2(fj+1 − fj)2 − 2 anj−1/2(fj − fj−1)

2

=
λ2

8

∞∑
j=−∞

(f ′j − 2 aj+1/2)(fj+1 − fj)2 + (f ′j − 2 aj−1/2)(fj − fj−1)
2

+2 f ′j(fj+1 − fj)(fj − fj−1).

For the last equality we used the identity

(fj+1 − fj−1)2 = (fj+1 − fj)2 + 2(fj+1 − fj)(fj − fj−1) + (fj − fj−1)2.

We proceed using (6.10) and get

∞∑
j=−∞

Rj
1 +Rj

2

=
λ2

8

∞∑
j=−∞

(
− f ′j+1(fj+1 − fj)2 − f ′j−1(fj − fj−1)

2
+ 2f ′j(fj+1 − fj)(fj − fj−1)

)

+O(λ3)

∞∑
j=−∞

|unj+1 − unj |3

= −λ
2

8

∞∑
j=−∞

f ′j
(
fj+1 − 2fj + fj−1

)2

+O(λ3)

∞∑
j=−∞

|unj+1 − unj |3.(6.14)
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Fig. 6.1. Lax–Wendroff scheme with 200 and 1000 points.

Combining (6.13) and (6.14) gives the statement.
Exactly the same arguments can be used to show the entropy stability of the

semidiscrete Lax–Wendroff scheme (6.6), again for the choice (6.10). In this case all
terms are handled. Note that in this case due to the multiplication of (6.6) with
U ′(uj(t)) no Taylor expansion is necessary and consequently no higher-order terms
arise. We state without proof the following theorem.
Theorem 6.6. Consider an increasing flux function f and the entropy U defined

by (6.9). Consider the Lax–Wendroff scheme (6.6) with aj+1/2(t) given by

aj+1/2(t) =
f ′(uj+1(t)) + f ′(uj(t))

2
.(6.15)

Then we have the entropy inequality

d

dt

∞∑
j=−∞

U(u(t)) ≤ −λ
2

4

∞∑
j=−∞

f ′j(t)
(
fj+1(t) − 2 fj(t) + fj−1(t)

)2

.(6.16)

Numerical experiments. Figure 6.1 demonstrates numerically that the Lax–
Wendroff scheme converges to the classical entropy solution for Burgers’ equation.
One can see the results for numerical calculations with 200 and 1000 mesh points at
time t = 2.0. The initial datum was u0(x) = sin(2.0πx) + 1.0.
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Fig. 6.2. Total entropy
∑

j U1(uj) versus time.
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Fig. 6.3. Total entropy
∑

j U2(uj)/5.775 versus time.

This periodic test case is now used to calculate the behavior of some entropy
functional

∑
j U(uj(t)) in time. We have done numerical tests that support the con-

jecture that the entropy stability should hold for λ sufficiently small with the choice
of entropy U1(uj(t)) = (uj(t))

3/6 which corresponds to U ′ = f . Figure 6.2 shows that∑
j U1(uj(t)) is decreasing in time. In contrast to U1 the entropy U2(uj(t)) = (uj(t))

6

leads to a nondecreasing functional which is displayed in Figure 6.3 for part of the
time interval. Note that the kink in the graphs corresponds to the shock arising for
t = 1/2π ≈ 0.16. We performed both calculations with 1000 mesh points and a
CFL-number of 0.1.
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