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SPECTRAL VISCOSITY APPROXIMATIONS TO
HAMILTON-JACOBI SOLUTIONS*
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Abstract. The spectral viscosity approximate solution of convex Hamilton—Jacobi equations
with periodic boundary conditions is studied. It is proved in this paper that the approximation
and its gradient remain uniformly bounded, formally spectral accurate, and converge to the unique
viscosity solution. The L-convergence rate of the order 1 — Ve > 0 is obtained.
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1. Introduction. In this paper we consider the nonlinear Hamilton—Jacobi equa-
tions

(1) Opu (z,t) + H (x,t, Vyu(x,t)) =0in Q x [0,T], 0<T < o0,
u(x,O):go(x) in Q, SDELOO(Q)a

with Hamiltonian H (z,t,p) strictly convex with respect to x and p:

H H
2 ol < e m”)gﬁ[ 0<a,fB<o00),
) (7 ( )
where I denotes a unit 2d x 2d matrix. We also assume that Q = [0,27]%,d =

1,2,3, ..., the initial condition ¢ (x), and the Hamiltonian H (z,t,p) are 2m-periodic
in x.

Equations of Hamilton—Jacobi type arise in many areas of application, including
the calculus of variations, control theory, differential games, image processing (see,
e.g., [17], [21]). The generalized solutions to (1) are Lipschitz continuous (hence dif-
ferentiable almost everywhere), but may have discontinuous derivatives, regardless of
the smoothness of the initial condition ¢ (x) [17]. Solutions with such discontinuities
are not unique. The definition of the viscosity solution to (1), its well-posedness (in
L*°) and other properties were formulated and systematically studied by Kruzhkov,
Lions, Crandall, Evans, Souganidis, and others [12], [17], [6], [8], [23]. Following
these results, first and higher order numerical methods were developed for Hamilton—
Jacobi equations: finite difference methods ([7], [23], [20], [10], [15], [16]), finite volume
methods ([1], [13]), finite element methods ([3], [9], [14]). Recently, Lin and Tadmor
provided the convergence framework for general approximate solutions of multidimen-
sional Hamilton—Jacobi equations [15], which we use in the paper.

In this paper we suggest the numerical solution of the 27-periodic initial value
problem (1) in R? (d > 1) by a spectral viscosity method. We prove (see Theorem
5.2) that the numerical solution converges to the exact unique viscosity solution of
(1) and obtain the L'-convergence rate of the order 1 — e Ve > 0. The spectral
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viscosity method was introduced and analyzed for scalar conservation laws and certain
hyperbolic systems of conservation laws by Tadmor and his coworkers (see, e.g., [24],
[22], [25], [5], [19], [18]). In the one-dimensional case the derivative of the viscosity
solution of convex Hamilton—Jacobi equations (1) is equivalent to the entropy solution
of scalar conservation laws. However, in the multidimensional case the gradient of the
viscosity solution of (1) satisfies a weakly hyperbolic system of conservation laws [12],
[17], [11], for which the convergence of the spectral viscosity method was not proven.
The following abbreviations are used throughout this paper:
o o 825

- s __ 2 2s _ s _ (95 93 s
0= G 01 = g = gy 0= 010500,

o 2 . . . . 2
0y = Vg, Dz is a matrix with entries 8jk.

To solve the (1) by a spectral viscosity method we approximate the spectral (pseu-
dospectral) projection of the viscosity solution Pyu by an N-trigonometric polynomial

(3) un = Y Te(t)e
|§il<N
which is governed by the semidiscrete approximation

d
(4) Owun (z,t) + PvH (x,t, Voun(z,t)) = en Z@?Q?V(x,t) s« upn(x,t).
j=1
Together with one’s favorite ODE solver, (4) gives a fully discrete method for the
approximate solutions of (1).

Following [5], we use the spectral viscosity ey Z?Zl QN (1) * uy(z,t). We
show that the spectral viscosity is small enough to retain the formal spectral accuracy
of the overall approximation, while sufficiently large to enforce the uniform stability
and L!-convergence of the approximation ux(z,t) to the unique viscosity solution
(see Lemma 3.1, Lemma 3.2, and Theorem 5.2). It consists of the following three
ingredients:

(i) a vanishing viscosity amplitude ey,

(5) en~N%0€e(0,1);
(ii) a viscosity-free spectrum of size my > 1.
For the proof of W1*-stability of ux and convergence of the truncation error to

zero, it is enough to take my ~ N® 0 < § < 6, while for the proof of semiconcave

stability, and hence, convergence we use

N9/4
(6) My~ ——— 7
(log N)'/*

(iii) a family of viscosity kernels Q% (z,t), activated only on high wave numbers ||¢|| =

4 o\ 1/2
(21‘:1 57,) > my, such that

Qv = Y QU

[€:|<N, (I€llZzmn

d d
M St - T ($0u08) s

J=1 &SN, [[€l>my \5=1
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Here we take the Fourier coefficients @2(& such that @%(t) = @%(t), when ||| =
1/2

(8) Q1 (t) = 0 Vp < my,

4
my ~
1-— Constp—4 < Qg,(t) <1Vp>my,
Qi(t) < Q4 (b).
Define also
(9) S 2Ry (zt)x = A=) QN (x,1) %
j=1 j=1

Then we may rewrite the semidiscrete approximation (4) as

(10) Opun (z,t) + H (x,t, Vyun (z,t)) — enAupn(,t)
d
= (I—Py)H (z,t,Vouy(z,t)) —en Y 0FRy(2,t) x uy(z,1t).
j=1

The convergence analysis of the spectral viscosity method is based on its close resem-
blance to the vanishing viscosity approximation

(11) Opue(x,t) + H (2,8, Vyue(z,t)) — eAuc(x,t) = 0.

Here u(x,t) = lim._qu.(z,t) in W1 is the unique viscosity solution.

The paper is organized as follows. In section 2 we obtain the LP-estimates
(1 <p < o0) of the terms on the right of (10). These estimates enable us to show
in section 3 that the spectral viscosity approximation uy(z,t) and its gradient re-
main uniformly bounded with the growth of N. In section 4 we prove the semiconcave
stability of the approximate solution. Combining this result with the decay rate of the
truncation error, obtained in section 5, and applying Lin—Tadmor convergence theo-
rem [15], we conclude the convergence of the method and obtain its L!-convergence
rate (Theorem 5.2).

2. Preliminary estimates. In this section we will estimate the two terms on
the right of (10).
In view of Theorem 9.1 of [26] Vp > 1 we have

d d
(12) en Y OiRy xuy < llen Y OiRy lunll o) »

j=1 Lr(x) J=1 L (x)

d d
(13) ENZ@?-R{V*UN < €NZ(9]2-R§V ||uN||L1(m) ‘

=1 Lr(z) i=1 Lr(z)

LEMMA 2.1.
Cy e s=0,

d
-
3 |-evap st
j=1

x

< Coenmiylog N < 3/4
y = 0EN My 10g > 01(101%7[;1\7) L os=1,
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where s € {0,1}; Co,Cy do not depend on N.
Proof. This lemma corresponds to Lemma 3.1 in [5]. O
LEMMA 2.2.

1/2
log N _
< Cost?\}q”logN < { Ci ( g ) » s=0,

d
S )
=1 Cy, s=1,

< ()

where s € {0,1} and Cy,Cy do not depend on N.
Remark. Lemma 2.2 is a multidimensional generalization of Lemma 3.1 in [25].
Proof. By (9) and (8) for ¢ =2 and |{| =p

~. 1 lfp<mN7
Rj(t) = ~ . m2 q .
i 1 — Q7 (t) < Const (p—g) ifp>mp.

Then for s > 0
H—EN(??SR{V (x,t)”

L ()
NVd
— ey aj?s Z R;)(t) Z ezf-m
p=0 |&:I<N, ||€ll=p Lo (z)
mel
corr¥ T e
p=0 [&|<N, |I€]l=p Lo ()
NVd mg q .
+Const en 8?3 Z (é\[) Z et
p=mn NP <N lel=r | ey
mel
< Const en Z p2s Z et
p=0 [& SN, €ll=p Lo (x)
NVd m2q
N &z
romsey |3 2 S
p=mn [&:<N, [I€ll=p Lo ()
mpy—1 NVd mzq
< Const dey Z p2stl + Z 2,797,1
p=0 S P o
Les(z)  ||PTTN L (x)
2542 -
m if2g—2s—1>1,
< 25+2 N
< Const dey (mN + { m?\f“ log (N\/&) if2g—2s—1=1

< Const dz—:]\;m?\f+2 log N, since g =22>1+s.

Here d is the space dimension. Now, using (5) and (6) completes the proof of the
lemma. O

Note. For the simplicity of the proofs from now on we will assume that Hamilto-
nian depends only on Vu, i.e., H = H (Vu), such that

(14) al <Hp,(p)<pI (0<a,fB<o0),
p=(p1,..-,pd), I is a unit d x d matrix.
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However, all the results and proofs of this paper are easily extended to the case
H = H (z,t, Vu) satisfying (2).
LEMMA 2.3. Denote

Oy H (p): =0y -+ 05 H (p),

HH”ck(x) = ‘rill?f; H@?‘H (p)

||Loo(BN)’

By :— {p; p| < HunNIILoo(z)}'
Then Vs > 1
(15) 103H (Voun (@, )2y < Ko 05 un| 2oy

where Ky depends on |[Vaun/| 20, H, and s:

(16) Ko~ ||

r=1

r—1
cr (@) IVaun|lp2 () -

Proof. Define a multi-index a = (v, ..., o), Yoy € {1,2,...,s}, |a| = >, au.
By the chain rule we have

05 H (Vaun (x,t)) Z > Z Z (ap ) (09105, un) -+ (957 0iu) -

r=1|a|=si1=1 ip=1
(17)
The Holder inequality followed by the Gagliardo—Nirenberg inequality implies
that

(18) 105 Qi) - (97 @r“N)HL?( )

r T
S H HafkaikuNHL??/ak(m) — Z H HajqkamuNHL%/ak(gg)

d

<q Z H 1605 mrun|[70 5 NOmun |55
; =

<C ||a Oy [| 2 ) 190 |7 -

By Parseval’s 1dentity followed by the Young inequality

1/2 1/2
|05 mun] oy = | 2o &7 @7 < | D & @
[€I<N [EISN
1/2 1/2
25¢2 ([~ \2 €;+1 ffnJrl ’ ~ \2
< Z gj an (’U{) < Z s+1 + _1 (Ug)
[gl<N [g|<N s s+1
1/2
2
<26+ [ 3 (i) @)’
[§ISN
+1) ”a;+1uN|‘L2(m)'
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Combining (17), (18), and (19) we obtain

102 H (Vaun (2,1))|l 2 (2

< C 057 un]| oy D2 Wl oy IV ulialyy - O
r=1

3. Uniform boundedness of the approximate solution and its gradient.
We begin with the following facts:

(i) In view of the approximation error estimate (see section 9.7 of [4]) Vs > r >0
there holds

(20) 105 (I = Px) H (Vatn (2,)| 12
C
< oy 102 H (Voun (2,6)l| 2o -

(ii) The Sobolev imbedding theorem (see, e.g., [2]) combined with (i) implies

IA

(21) 10 (I = Pn) H (Voun (2, 1)) oo ()
‘ arH1Fa2 (1 _ oy H (quN(:v,t))‘
c

S oo 105 H (Voun (@, )l 2y -

L2 (z)

Here [d/2] = max{z € Z, z <d/2}; C is a constant independent of N.

Assumptions. From now on we assume that our data (the initial conditions
un(z,0) and the flux H (Vyu(z,t))) satisfy the following conditions:

(a) |05un (z,0)|| o <Const for s =0, 1;

(b) |03un (z,0)|| » <Const/ey /? for s > 2;

(c) The flux H is sufficiently smooth; that is, [[Vaul|p«(, ) < co implies

1H (Vau)|

cs (z,1) <00

for sufficiently large s.
LEMMA 3.1. Consider the spectral viscosity approzimation (4). Then for any
s > 2 holds

s C(VIUN) s2

(22) l0zunllp2(ps < —7— (HKP”L‘X’(t) + 1) :
EN i
C(Voun) o

S N

(23) 103Nl 2) <~ TT (1Kl +1)
EN p=1
. C(Vaun) o

(24) 0zunll ey < =i TT (1Eolley +1)
N p=1

C(Vyun) = (HH (Voun (@,t)ll o) + IVaun|l g2 + 1) ;

K is defined by (16) for s > 1, sq=s+1/2+[d/2].
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Proof. Multiplying (10) by 0*uy (z,t), s > 1 and integrating in x yields

1d
2dt
< [0z un 2

(25) ||aSuN||L2(z) ten ||8 . uNHLQ(x)

(z) ||8asc 'PvH (Veun(z,t)) ||L2(x)

d
+103unl 2 ||En D 05 Ry (x, 1) * O3un

=t L2(x)

Using (12) and Lemma 2.2 for the first term on the right of (25) and the Cauchy—
Schwarz inequality for the second term, we end up with

1d
(26) 55 105 ey + S 92 un s )
<08 uN||L2(m) + o Haé 'PnH (Vaun (x,t)) HLQ

It remains to estimate the last term. In view of the interpolation error estimate (see
section 9 of [4]) and (15)
057 PvH (Voun (2, 1))
<oz~ VH (Vaun(z,t)) HL2
< C|o;7 " H (Vaun(x,1))

HLQ(;B)
+[0:71 (I = Pv) H (Vaun (@, 0))| 1,
HLQ(I)
<C stl ||8;UN||L2(I) for s > 27
- Ky for s = 1.
Substituting this estimate to (26) yields

d 2
% HV:EUNHi?(m) teEN HaiuNHLz)(x) <20y ”unNHi%m +

CoK
EN

2
Co K3
EN ’

d
NO3unllF e +en 05 un e, < (261 + L) 0sun|?,,,, fors>2.
dt () L2(x) (z)

The temporal integration implies

IVounlfew) +en 182un[;2, 0

Cy || Kol ~
2 2 Lo (t
< Vo (@, 0)[72 + 201 [Vaun oy + ——

|85 (2,8) 32y + v (05 |2y

Co | Komn 7
< 0%un (z, 0|2 + <201 ) 0 e

and eliminating the squares gives
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[Vaun |z +ey ||32uNHL2 )
Kol 1 1)
< V2| [IVoun (2,0)] 12 + v/2C IVaunllp2 @ + ——F7— VO |,
EN

105w (2, ) 20y + e 105 un | 2o

Vs || K1l oo
sﬂ<|a;uw <x,o>|L2(x)+<¢201+ ) 10sunl e | -
9

N

It follows that

0||L°°(t 1
1/2 ||v uN||L2(a: t) + 172
€N

s— 1||L°° 1 s 1
105+ un[ 2.,y < Const << ) 4 1/2> 10zun | 2z ) + 1/2)
EN N

s s— 1||L°° t s
||azuN (‘r7t)||L2(:E) < Const (( 1/2 ( ) > ||8 uN||L2(m t) + 1)

e e

which in turn yields the (22) and (23) for e sufficiently small. We apply the Sobolev
inequality ||Oun ||z (z) < ||8f¢+1Jr /Z]uNHLz (z) to obtain (24). 0

LEMMA 3.2 (uniform boundedness of the approximation and its gradient). Con-
sider the spectral viscosity approximation (4). Then VN we have

Jun (@)l e oy + IV atin (@, 6)] oy < C VE € 0,T] for T < oo,

where C' does not depend on N.
Proof. Differentiating (10) in x we obtain

(27) WViun(x,t) + Vo H (Veun(z,t)) —enA (Veun(z,t))
d
=V, (I - Py)H (Vyuy(z,t)) —en Z@?Rgv(x,t) * Vyun(z,t).

Notice that
1
(28) 9o (@0l o) < max|djun (. 0)] = Bz, ).

First assume that Opun(xo,t) > 0 Vi € [0,T]. Then OpH (Vyun(xo,t)) =
2?21 Op, H (p) 0;0run = 0 and —enAdgpun(xo,t) > 0. Denote vy (t) := Ipun (w0, 1);
here k and xo depend on ¢. It is easy to show that vy (t) is a Lipschitz continuous
function. Therefore vy (t) is differentiable almost everywhere (a.e.) (by Rademacher’s
theorem). It follows from (27) that for a.e. ¢

< |V (I = Pn) H (Voun (2, 6))|| o (2

+|len Ve >R (2, 1)+ un(z,t)

=t Lo (x)
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We use (21), (15), and (23) to estimate the first term on the right:
IV, (2 = Pa) H (V@) o
K | Ha;ﬂ

= Ns5—2-[d/2

Co u
< s (Kol + IVaun 2 +1) K, H (1Kol +1)

UNHL2(x)

while (12) combined with Lemma 2.1 provides the estimate for the second term:

d ; log N 3/4
enVy Z@fRZV(J:,t) wuy(z,t) <C ( N ) IVaun]l oo (s -
=t L ()
Finally, applying (28) we obtain for a.e. ¢
d’UN(t) C :
(29) dt = Ns—2-[d/2]-0(s+1/2) Ks H (HK”HLW“) + 1)
p=0

+

CK, Ty (1Kl ey + 1) (N
No—2—[d/2]—0(s+1/2) N on (t)-

Take s > W; then we have
s—2—1[d/2]—0(s+1/2) >30/4> 0.
Now fix ¢ > 0 and assume that 3ty < T such that VN > Ng:

(30) e/2 <wun(tn) —vn(0) <k,
0< UN(t) - UN(O) < 6/2 Vt < tn.

Then integrating (29) in time and applying the definition of K, (in the statement of
Lemma 3.1), we get

Co (e, s
B i) = ow(0) < oo + €6

log N 3/4
NY ’

where Cy (¢, s) and C (¢) depend only on €, s, and T It follows that
un(tn) —on(0) <e/2 for big N,

which contradicts the assumption (30).

From this contradiction and from the continuity of vy (¢) it follows that for any
C > 0 there exist Ny such that vy (t) —vn(0) < CV N > Np and V ¢t € [0,T]. Since
oN(t) = [Vaun (@, 8)|| oo () » and vn(t) is continuous on [0,T7], we obtain that in the
considered case

(32) IVoun (@ )l oo (@) < [ Vaun(@,0)|[ o + C
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Next, assume that for k and xg satisfying (28) dpun(zo,t) < 0Vt € [0,T]. Define
wn (t) 1= Opun (zo,t) = min, Opun(z,t). Then

d
Ok H (Vaun (20, 1) = Y 9p, H (p) D;05un =0,

j=1

—enAdyun (z9,t) <0,

wy (t) is a Lipschitz continuous function, and we obtain from (27)

d
L oon(t
AN

> — Vo (I = Px) H (Vaun (2,6)| oo )

d
— llenVg Z@?Rgv(x,t) xuy(z,t)

=1 L (x)

for a.e. t. Applying the same estimates as in the case Opun(xo,t) > 0 we prove (32)
for the case when Opun(zo,t) < 0 V¢ € [0,T]. Finally, the case when Opun(zo,t),
satisfying (28), changes sign on [0,7] may be reduced to the previous two cases.

Now we will use the same strategy to prove the uniform boundedness of uy (z,t).
If

llun (@, ) oo () = mgxuN(x,t) vVt e [0,T7,

then wy (t) := max, uy(x,t) is a Lipschitz continuous function, and (10) yields for
a.e. t

Sl (1) + H (0)

d
< (= Pr) H (Vaun (@,6) | e o) — |lon 3 07 Ry (@) 5 un (@, )
= L (z)
Applying (21), (15), (23), and (12), Lemma 2.1 for the estimation of the first and

second term, respectively, and using the uniform boundedness of the gradient we
obtain for a.e. ¢

d C, log N\ */4
%wN (t) < —H(0) + Ns—1-1d/2]—6(s+1/2) +C <N9> wy (t)-
It follows that
d )< —H(0 Cs Cwy(t
@wN( ) < —H(0)+ Ns—1—[d/2]—0(s+1/2) + Cwn (D).

By the Gronwall lemma the last inequality yields

(etc — 1) Cs tC
(33) 0<wn (t) < T —H (0) + Ns—1—[d/2]-6(s+1/2) +wn (0)6
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Vitel0,T].
Next, if

lun (2,8)| ooy < —minuy(z,t) Vt € 0,77,

then let wy (t) := min, uy(x,t) and the similar arguments imply

(1 — etc) C,
B0 0zuw®z g (“HO e )

+wy (0) e,

Combining (33) and (34) we conclude that

(€ 1) C,
lun (@, )| oo (2) < S c <_H(0) - Ns—l—[d/2]—0(s+1/2)>
+[lun (2,0)] o €. O
COROLLARY 3.3. For any s > 2 and for any N holds
105N | 2y = CaNOE1/2),
10zuN | L2 (40) = C,NOG=D)
Ha;uN”Loo(x) = CSN9(3+1/2+[CZ/2]).
Proof. The corollary follows from Lemma 3.1 combined with Lemma 3.2. 0

COROLLARY 3.4. For any s > 2 and for any N holds

107 (1 = Pr) H (Voun (@, )| 2y < GNP, po=s—1—0(s+1/2),
(35) 107 (I — Px) H (Voun (2,0) [ 2ggpy < CNTF, 7o =5 -7~ 05,
10 (7 = Pr) H (Vaune(2,0) [ ey < CoN™%, g0 = ps — 1 [d/2].

Proof. The corollary follows from Lemma 3.2, Corollary 3.3, and estimates (15),
(20), and (21). |

4. Semiconcave stability of the approximate solution. In order to prove
the main result of this section we need the following auxiliary lemma.

LEMMA 4.1. Let wy (x,t) = (%21“\1(1‘,75) = <£,D920UN(.’L‘,t)§>, where un (z,t) is a
trigonometric polynomial, 2mw-periodic in x. Then HwNHLl(Z) = ||2w1'C||L1(x) .

Proof. lwy (x,t)] = 2wy (z,t) T —wy (z,t) . By the Green theorem Jown (z,t) dx
depends solely on the boundary data (which in our case of a periodic Cauchy problem
vanishes). Therefore [, [wx (z,t)|dx = [, 2wy (z,1)" da. O

LEMMA 4.2 (semiconcave stability of the approximation). The spectral viscosity
approximation uy(x,t) is semiconcave stable, i.e., Ik(t) € L' (0,T), T < oo, such
that sup,cq, j¢j—1 (€, D2un(z,8)€)" < k(t) fort € [0,T] and ¥ N.

Proof. Let wy := g—;u]v(x,t) = (&, D2upy(z,t)€) . Differentiating (10) with re-
spect to x;, zx, and taking the inner product with a constant unit vector £ yields

(36)  Oywn(x,t) + (& Diun(x,t) - D2H - D2up(z,t)€) + (V,H, V)
d
=enAywy —en ¥ OFRY (,t) »wy + (€, D2 (I — Py) H (Vaun(x,1)) €) .

Jj=1
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The strict convexity of H (14) and the Cauchy—Schwarz inequality imply

(37) (&, D2un(z,t) - DZH -Diupn(z,t)€) > a |}D§uN(x,t)§‘|2 > aw?;.

Let Wy (t) = wy (z0,t) = max,ecq wy (z,t). It is a Lipschitz continuous and there-
fore a.e. differentiable. Without loss of generality assume that Wy (t) > 0 for

t € [0,7]. Then V,wy (z0,t) = 0, Azwn (xo,t) < 0, and by (36) and (37) we
have for a.e. t

d
N+ aW3

d
< —en Z@ZR?V xwy | (wo,t) + (£, D2 (I — Pn) H (Voun(z0,1)) €) .
=

Equation (13), Lemma 2.2, and Lemma 4.1 yield

d d
Iy = |—en Zang\,*wN (zo,t)| < —ENzaf-RgV*wN
Jj=1 j=1 Loo(z)
d
<l BR|  bunl =268kl < 201 Cam.
= L (@)

By (35)

Iy = |(& D; (I - Py) H (Voun (w0, 1)) )|
| D2 (I — Py) H (Voun(z,t))

< G, <C for s >
S N atrijy = Const, for s 2

IN

’L°°(:L’)
34+ [d/2] +6/2
1-46 '

Thus, for a.e. ¢

4

dtWN +aW3 <Iy+1Ixy <CoWyx +Cs, a>0.

Integration in time of the last inequality yields

Cs (e“" —1
Wy (t) < k(t) = Wx (0) P + ¥7
2

k(t) € L' (0,T) for T < co. O

Lemma 4.1 and Lemma 4.2 imply the following corollary.

COROLLARY 4.3. For any vector [§] =1, ||(¢, D2un(z, 1)) < 21Q| Ck(t).

[

5. Convergence of the method and the error estimate. To prove conver-
gence we get the following truncation error estimate.

LEMMA 5.1. Define the truncation error F (uy) = Oyuny + H (Vyun). Then V
N holds

(38) ||F(UN)||L1(E¢) = C’N_‘9 1OgN+CsN_S+39_
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Moreover, if ||3SUN||L2($ < Const for some s > 2 and ¥V N > Ny, then

(39) IF (un)ll 1 gpy < CaN~6/AH/2010g N 4 C,N~HY,

Proof. From (4) it follows that

IE (un)ll 1 e )

d
< |len 370204 () % un (1) (= Pr) H (Vaun (2,6) |1 -

7=t L (zt)

In view of (9), Corollary 4.3, (12), and Lemma 2.1 we have

d
IN = 5N28J2Q3\[(x,t) *’LLN(SU,t)
J=1 LY (z,t)
d .
= [[Aun(z,t) —en ZRZ\,(m,t) * up (z,t)

J=1 L (z,t)

o],

d
< e 8un @, )lpsy + D [en Ba @) .
j=1

< Cen +CN%logN < CN~%log N.

By (35)

(40) IIy=||(I-Py)H (unN(a:,t))HLl(w)t) < C,N7+30 s > 9,

It follows that I7y <Const N9 Vs > -2 Now (38) follows from estimates for I
and I1y.

Next, assume [|0°un||fz2(, ) <Const (Vs > 2). It follows from (7), (6), and the
approximation error estimate [4] that for s > 2

d
In = |len Z@?ng(x,t) s upn(z,t)
J=1 L (z,t)

d
< ON=* \lends Z@?Q?V(x,t) xun(z,t)

J=1 L2 (z,t)

d
=CN ey > 07QN (x,t) * Dun (1)

=1

L2(z,t)
Using (9), (12), and Lemma 2.1 we obtain

d

In < CN*SQ/ZL;:1 <€N + HENRgv(x,t)’ Ll(m,t)> HaZGSUN (z,t) HLz )

< ON—(ts/4)0 logN||328 un (z,t) ||L2

0
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Finally, by Parseval’s identity and Young’s inequality

d
D_N0505un @ D) 2y < Co 105 2un (@, 8)] gy 0
j=1

hencefore,
Iy < CN~0+ /D% N0g N (|0 2 un (2,1)]| 12y -
In order to estimate ITy we use (20), (15), and (16) :

Iy = |[(I = Px) H (Voun (@, )| 140 < CN D (05 2un (2,0 o -

Since the two last inequalities hold for any integer s > 0, the second estimate of the
lemma (39) follows. The proof of the lemma is complete. a0

THEOREM 5.2 (convergence of the spectral viscosity method). Let u(x,t) be the
unique viscosity solution of the 2w-periodic initial value problem (1) and let un(x,t) be
the spectral viscosity approzimation, i.e., N-trigonometric polynomial satisfying (4).
Then fort € [0,T] and ¥ N we have the bound

HU(LL‘, ﬁ) - uN(a:, t)”Ll(m) <C (T) ||’LL(.’L‘, 0) - uN(‘T> O)HLl(m)
+C(T)N%log N 4 C(s, T)N (=9,

Moreover, if |0°un|| 2, ) <Const for some s 22 andV N > Ny, then

||u(ac, t) - UN($7 t)”Ll(z) <C (T) ||’LL(.’L‘, 0) - uN(‘T> O)HLl(m)
+C (s,T) N—/441/2)0 160 N 4 C (s,T) NG+,

Proof. The theorem follows directly from Theorem 2.1 in [15], semiconcave sta-
bility (Lemma 4.2), and the truncation error estimate (Lemma 5.1). a

Remark. The work is underway on the spectral viscosity method for the initial-
boundary Hamilton—Jacobi problem with nonperiodic boundary conditions.
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