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Abstract. We study critical threshold phenomena in a dynamic continuum
traffic flow model known as the Payne and Whitham (PW) model. This model
is a quasi-linear hyperbolic relaxation system, and when equilibrium velocity
is specifically associated with pressure, the equilibrium characteristic speed
resonates with one characteristic speed of the full relaxation system. For a
scenario of physical interest we identify a lower threshold for finite time sin-
gularity in solutions and an upper threshold for the global existence of the
smooth solution. The set of initial data leading to global smooth solutions is
large, in particular allowing initial velocity of negative slope.

1. Introduction. We are concerned with both global in time regularity and finite
time singularity formation in solutions for hyperbolic relaxation systems as in [24].

Let us begin with the following 2 × 2 hyperbolic relaxation system
{

ρt + (ρu)x = 0,

ut + uux + p(ρ)x

ρ = 1
τ (ve(ρ) − u),

x ∈ R, t > 0 (1)

subject to the initial data

(ρ, u)(x, 0) = (ρ0, u0)(x), x ∈ R. (2)

This system arises from a continuum model of traffic flows, see [40, 43]. The first
equation in (1) is a conservation law, while the second one describes drivers’ ac-
celeration behavior. Here τ > 0 is the relaxation time, p(ρ) is the pressure with
p′(ρ) > 0 and ve(ρ) is the equilibrium velocity with v′e(ρ) < 0. In some physical
situations [40, 44], these two profiles are related in a special way such as

p′(ρ) = (ρv′e(ρ))2 > 0. (3)
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System (1) is a strictly hyperbolic balance law, with characteristic speeds

λ1(ρ, u) = u + ρv′e(ρ) < u − ρv′e(ρ) = λ2(ρ, u). (4)

But with (3) the equilibrium equation,

ρt + (q(ρ))x = 0, q(ρ) = ρve(ρ), (5)

has a characteristic speed λ∗(ρ) = q′(ρ) = ve(ρ) + ρv′e(ρ) = λ1, implying that
the usual sub-characteristic condition [35, 43] is only satisfied marginally. Hence
the conventional large-time stability analysis based on the dissipation mechanism
provided by non-vanishing speed gaps cannot be applied. Our approach is to study
the critical threshold phenomena: the global existence of the smooth solution or
the finite time singularity depends on whether the initial data cross such critical
thresholds.

Two physical scenarios are of our interest:
i) The Payne [40] and Whitham [43] (PW) model: (1) with

p(ρ) = c2
0ρ. (6)

This model, a classical dynamic continuum description of traffic flow, has been
adopted in the study of traffic jam dynamics, see e.g. [12, 15, 21, 36]. The data
from the Lincoln Tunnel, New York obtained by Greenberg in 1959 [9] suggest

ve(ρ) = c0ln
1

ρ
, 0 < ρ ≤ 1, (7)

in which the maximum density has been normalized to 1.
ii) The Zhang model [44]: (1) with

p(ρ) =
v2

f

3
ρ3, ve(ρ) = vf (1 − ρ) (8)

where vf is the free flow speed, and the equilibrium velocity has been rescaled from
an actual measurement taken from [10]. For this model existence of weak solutions
as well as L1 stability theory have been established in [19, 20].

Scenario ii) has recently been investigated in [24], where the authors identified five
upper thresholds for finite time singularity in solutions and three lower thresholds
for global existence of smooth solutions. The purpose of this paper is to confirm
the critical threshold phenomena for scenario i). A similar set of both upper and
lower thresholds for this case can still be identified by fully using the feature of the
underlying scenario. For the sake of brevity, we present herein only one upper and
one lower thresholds and the associated results.

The first result tells us the upper threshold for the global smoothness of (1) with
(6) and (7).

Theorem 1.1. (Global in time regularity) Consider the relaxation system (1) with
(6) and (7), subject to initial data (2) satisfying (ρ0, u0) ∈ C1(R) × C1(R) and

0 < ν ≤ ρ0(x) ≤ 1

for all x ∈ R and for some ν > 0. Denote

m =
1

ν
e

‖u0‖∞
c0 . (9)

If both

− 2

τ
√

m
≤ u′

0(x)
√

ρ0(x)
+ c0

ρ′0(x)

ρ0(x)
3
2

≤ 0
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and
u′

0(x)
√

ρ0(x)
− c0

ρ′0(x)

ρ0(x)
3
2

≥ 0

hold for all x ∈ R, then the Cauchy problem (1) (2) admits a global smooth solution
satisfying

‖u(·, t)‖∞ ≤ ‖u0‖∞ + c0|lnν|, t ∈ R+

and

m−1 ≤ ρ(x, t) ≤ m, (x, t) ∈ R × R+.

Furthermore, we have the following estimates on the first derivatives

min
x∈R

A+(x) ≤ ux(x, t)
√

ρ(x, t)
+ c0

ρx(x, t)

ρ3/2(x, t)
≤ 0

and

min
x∈R

A−(x)
√

ρ0(x) +
√

mA−(x)t/2
≤ ux(x, t)
√

ρ(x, t)
− c0

ρx(x, t)

ρ3/2(x, t)
≤ max

x∈R
A−(x)

where

A±(x) =
u′

0(x)
√

ρ0(x)
± c0

ρ′0(x)

ρ
3/2
0 (x)

. (10)

The result on lower threshold for finite time singularity is summarized below.

Theorem 1.2. (Finite-time singularity) Consider the same problem as stated in
Theorem 1.1. If

u′
0(x)

√

ρ0(x)
+ c0

ρ′0(x)

ρ0(x)
3
2

≥ −2
√

m

τ

fails to hold at any point x ∈ R, then the solution of Cauchy problem (1) (2) must
develop singularity in a finite time T ∗. Moreover,

lim
t→T∗

(

min
x∈R

{

ux(x, t)
√

ρ(x, t)
+ c0

ρx(x, t)

ρ3/2(x, t)

})

= −∞

and

T ∗ < τ min
x∈R

ln

∣

∣

∣

∣

∣

A+(x)

A+(x) + 2
√

m
τ

∣

∣

∣

∣

∣

where m and A± are given in (9) and (10), respectively.

Concerning these theorems, several remarks are in order.

Remark 1. The set of initial data leading to global regularity is rich. In particular,
it allows the initial Riemann invariant of negative slope. This is in sharp contrast
to the generic breakdown in homogeneous hyperbolic systems [18].

Remark 2. No smallness of data is assumed for the global existence of the smooth
solution. The critical thresholds we identified reveal the genuine nonlinear phenom-
ena hidden in the system.

Remark 3. Note that the bounds for the derivatives of the initial Riemann in-
variants are of order 1

τ . This implies that the smaller the relaxation time τ , the
larger the set of initial data leads to global smooth solutions. This means that the
shorter the drivers’ reaction time, the larger the set of initial conditions leads to
global smooth traffic flows.
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The issues of global in time regularity and finite time singularity formation are
fundamental for hyperbolic balance laws, and have been investigated by many au-
thors, see, e.g., [18, 16, 34, 39, 5, 37, 42, 7, 24]. Hyperbolic relaxation systems belong
to a special class of balance laws, for which a sub-characteristic type condition is
always necessary for even linear stability [43]. An abundant research on nonlinear
stability theory for various relaxation systems has appeared in past decades, see
e.g., [1, 3, 14, 17, 28, 27, 22, 23, 35, 38], relying on some sub-characteristic type
structure conditions [35].

Our results rely on tracking nonlinear dynamics of the slopes of the Riemann
invariants. As such, we believe that the arguments entertained here and those
in [24] for special cases will be helpful for more general relaxation systems with
large data, in which classical stability analysis is difficult to apply directly. For
hyperbolic balance laws such as (1), the coupling of different characteristic fields
makes it difficult to detect a sharp critical threshold. Nevertheless, for the relaxation
system (1) with (6) (7), we are able to decouple the ratio of the slope of one
Riemann invariant and the half power of the density from the system and to track
its dynamics.

The concept of critical threshold seems a right idea to go beyond the stability
regime for nonlinear evolution equations. The critical threshold phenomenon was
first observed and studied in [7] for a class of Euler-poisson equations; and further
extended to other problems of various types [29, 25, 8, 41, 2]. The study of multi-D
critical threshold phenomena becomes more challenging, and a new tool of spectral

dynamics has been first introduced in [30] to estimate the velocity gradient. Using
spectral dynamics as a crucial tool in the study of the critical threshold phenomena
has been justified for several interesting models [32, 33, 26].

We now conclude this section by outlining the rest of this paper. In Section 2
we reformulate corresponding results in terms of the Riemann invariants. Section
3 contains a priori estimates of solutions in L∞ norm for (1). Section 4 is devoted
to identifying the upper threshold for global existence of smooth solutions, as well
as the lower threshold for the finite time singularity formation. This is done by
deriving the a priori estimate of the solution derivatives through some nonlinear
quantities.

2. Reformulation of the Problem. We start reformulation of (1) with (6) and
(7). Set w = lnρ. Multiplying the first equation of (1) by 1

ρ , we have

{

wt + uwx + ux = 0,
ut + uux + c2

0wx = 1
τ (−c0w − u).

(11)

Multiplying system (11) by the left eigenvectors of the Jacobian of the flux

li(w, u) = ((−1)ic0, 1), i = 1, 2,

we have
{

R−
t + λ1R

−
x = − 1

τ R+,
R+

t + λ2R
+
x = − 1

τ R+ (12)

where

λ1 =
R− + R+

2
− c0, λ2 =

R− + R+

2
+ c0 (13)



CRITICAL THRESHOLDS IN RELAXATION SYSTEMS 515

and the Riemann invariants
{

R−(w, u) = u − c0w
R+(w, u) = u + c0w

(14)

define a one-to-one mapping from (ρ, u), ρ > 0, to (R−, R+) in the phase space.
The corresponding initial data is

(R−, R+)(x, 0) = (R−
0 , R+

0 )(x) = (u0 − c0lnρ0, u0 + c0lnρ0)(x). (15)

In order to prove Theorem 1.1 and Theorem 1.2, it suffices to establish the
following for Cauchy problem (12), (15).

Theorem 2.1. Consider the system (12) subject to C1 bounded initial data (15).
Let m be defined in (9). If

0 ≥
R+

0,x(x)
√

ρ0(x)
≥ − 2

τ
√

m
, x ∈ R

and
R−

0,x(x) ≥ 0, x ∈ R,

then the Cauchy problem (12) (15) has a unique smooth solution for all time t > 0.
Moreover, we have

0 ≥ R+
x (x, t)

√

ρ(x, t)
≥ min

x∈R

R+
0,x(x)

√

ρ0(x)
, (x, t) ∈ R × R+

and

max
x∈R

R−
0,x(x)
√

ρ0(x)
≥ R−

x (x, t)
√

ρ(x, t)
≥ min

x∈R

R−
0,x(x)

√

ρ0(x) +
√

m
2 R−

0,x(x)t
, (x, t) ∈ R × R+.

Theorem 2.2. Assume that R±
0 (x) ∈ C1(R) and ‖R±

0 ‖∞ are bounded. If

R+
0,x(x)
√

ρ0(x)
≥ −2

√
m

τ

fails to hold at any point x ∈ R, then the C1 solution of the Cauchy problem (12)
(15) will develop a finite time singularity. Moreover,

lim
t→T∗

(

min
x∈R

{

R+
x (x, t)

√

ρ(x, t)

})

= −∞

for

T ∗ < τ min
x∈R

ln

(

τR+
0,x(x)

2
√

mρ0(x) + τR+
0,x(x)

)

.

The local existence of smooth solutions of hyperbolic problem is classical, see e.g.
Douglis [6] and Hartman and Wintner [11]. According to the theory of first order
quasilinear hyperbolic equations [4], solutions to initial value problems exist as long
as one can place an a priori limitation on the magnitude of their first derivatives.

Equipped with the classical local existence results in [6] and [11], we need only to
establish the a priori estimates, which will be presented in Lemma 3.1 and Lemma
4.1. The finite time singularity formation follows from the proof of Lemma 3.1.

Using expressions of the Riemann invariants (14) to convert back to variables
u and ρ, we prove our main results as stated in Theorem 1.1- Theorem 1.2. Note
that in Lemma 3.2, we showed that ρ is bounded away from zero if ρ0 is. Therefore
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finite time blow up of
R+

x
(x,t)√

ρ(x,t)
implies the finite time blow up of ux(x, t) or ρx(x, t).

Theorem 1.2 follows directly from Theorem 2.2.

3. Bounds for smooth solutions. We give a priori estimates of solutions in L∞

norm in this section.
We first establish the uniform bounds for the Riemann invariants (R−, R+) of

(1) with (6) (7).

Lemma 3.1. Assume that R±
0 ∈ C1(R) and that

‖R−
0 ‖∞ + ‖R+

0 ‖∞ ≤ M

for some M > 0. Then the C1 solution of the Cauchy problem (12) (15) satisfies
the a priori estimates

‖R+(·, t)‖∞ ≤ ‖R+
0 ‖∞e−

t

τ (16)

and
‖R−(·, t)‖∞ + ‖R+(·, t)‖∞ ≤ M (17)

for all t ≥ 0 as long as the C1 solution exists.

Proof. Integrating the second equation in (12) along the second characteristics
x2(t, α)

dx2

dt
= λ2 = u + c0, x2(0, α) = α,

we have
R+(x2(t, α), t) = R+

0 (α)e−
t

τ ,

which leads to the asserted bound (16).
Now integrating the first equation in (12) along the first characteristics x1(t, β)

dx1

dt
= λ1 = u − c0, x1(0, β) = β,

we have

R−(x1(t, β), t) = R−
0 (β) − 1

τ

∫ t

0

R+(x1(s, β), s)ds

Using the above decay result for ‖R+(·, t)‖∞, we have

‖R−(·, t)‖∞ ≤ ‖R−
0 (·)‖∞ + ‖R+

0 (·)‖∞(1 − e−
t

τ ).

This added upon (16) gives the desired bound (17).

Lemma 3.2. Assume that the initial data (2) are uniformly bounded with

−‖u0‖∞ ≤ u0(x) ≤ ‖u0‖∞, 0 < ν ≤ ρ0(x) ≤ 1

for all x ∈ R.
Let (ρ, u) be a C1 solution of (1) with (6) (7) determined from R±, then the

density satisfies
m−1 ≤ ρ(x, t) ≤ m (18)

for all t ≥ 0 as long as the C1 solution exists, where

m =
1

ν
e

‖u0‖∞
c0 . (19)

The velocity is also bounded

‖u(·, t)‖∞ ≤ ‖u0‖∞ + c0|lnν|
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for all t ≥ 0 as long as the C1 solution exists.

Proof. From the relation w = lnρ, it follows that

e−‖w(·,t)‖∞ ≤ ρ(x, t) ≤ e‖w(·,t)‖∞ , x ∈ R. (20)

Applying Lemma 3.1 to estimate

w =
R+ − R−

2c0
,

we have

‖w(·, t)‖∞ ≤ 1

2c0
(‖R−(·, t)‖∞ + ‖R+(·, t)‖∞) ≤ 1

2c0
(‖R−

0 ‖∞ + ‖R+
0 ‖∞).

Using expressions of the Riemann invariants (14) we have

‖w(·, t)‖∞ ≤ 1

2c0
(‖u0 − c0lnρ0‖∞ + ‖u0 + c0lnρ0‖∞) ≤ ‖u0‖∞

c0
+ ‖lnρ0‖∞.

Under the conditions that 0 < ν ≤ ρ0(x) ≤ 1 for all x ∈ R,

‖lnρ0‖∞ ≤ |lnν|.

Inserting this into (20) gives the asserted bounds (18) for the density. The bound for
velocity follows immediately when recalling that (14) implies u = (R+ +R−)/2.

4. Critical thresholds. In order to identify the upper threshold for global exis-
tence of smooth solutions, as well as the lower threshold for the finite time singularity
formation as claimed in Theorems 1.1 and 1.2, we derive the a priori estimates of
the derivatives of the Riemann invariants R±(x, t) of (1) with (6) (7).

Denote r− = R−
x and r+ = R+

x , we shall show that R±
x are bounded when initial

values of them, i.e., r±0 := R±
0,x, are bounded by some critical thresholds.

More precisely, we have the following.

Lemma 4.1. Assume that R±
0 (x) ∈ C1(R) and ‖R±

0 ‖∞ are bounded. Let m be
defined in (19). If further

0 ≥
R+

0,x(x)
√

ρ0(x)
≥ − 2

τ
√

m
, x ∈ R

and

R−
0,x(x) ≥ 0, x ∈ R,

then any C1 solution of the Cauchy problem (12) (15) has the a priori estimates

0 ≥ R+
x (x, t)

√

ρ(x, t)
≥ min

x∈R

R+
0,x(x)

√

ρ0(x)

and

max
x∈R

R−
0,x(x)

√

ρ0(x)
≥ R−

x (x, t)
√

ρ(x, t)
≥ min

x∈R

R−
0,x(x)

√

ρ0(x) +
√

m
2 R−

0,x(x)t

for all x ∈ R and t ≥ 0 as long as the C1 solution exists.
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Proof. From (13) we derive that

λ1,x = λ2,x =
r+ + r−

2
.

We differentiate (12) with respect to x to obtain
{

r−t + λ1r
−
x + r−+r+

2 r− = − 1
τ r+

r+
t + λ2r

+
x + r−+r+

2 r+ = − 1
τ r+.

(21)

From the first equation in (1) and (14), we derive

ρt + λ2ρx = −ρux + c0ρx = −ρr−. (22)

Multiplying the second equation in (21) by 1√
ρ and using equation (22), we get

(

r+

√
ρ

)

t

+ λ2

(

r+

√
ρ

)

x

= − r+

√
ρ

(

1

τ
+

r+

2

)

.

Denote a = r+

√
ρ . Then a satisfies

at + λ2ax = −a

(

1

τ
+

√
ρ

2
a

)

.

Along the second characteristics x2(t, α): dx2

dt = λ2, x2(0, α) = α, we have

d

dt
a = −a

(

1

τ
+

√
ρ

2
a

)

,

which when using bounds for ρ from Lemma 3.2 leads to the following

− a

(

1

τ
+

√
m

2
a

)

≤ d

dt
a ≤ −a

(

1

τ
+

1

2
√

m
a

)

. (23)

Solving these two differential inequalities, we conclude that a remains bounded

− 2
√

m

τ
≤ a(x2(t, α), t) ≤ max{0, a0(α)} (24)

provided

a0(α) ≥ − 2

τ
√

m
, ∀α ∈ R.

On the other hand, a will blow up in a finite time if there exists an α∗ ∈ R such
that

a0(α
∗) < −2

√
m

τ
. (25)

More precisely, the right differential inequality in (23) enables us to obtain

a(x2(t, α), t) ≤ 2
√

ma0(α)

(2
√

m + τa0(α))et/τ − τa0(α)
. (26)

For initial data satisfying (25), the right hand side of (26) will become −∞ at a
finite time

T = τ min
α∈R

ln

(

τa0(α)

2
√

m + τa0(α)

)

< +∞.

Therefore, there exists a T ∗ < T such that

lim
t→T∗

min
x

a(x, t) = −∞. (27)

Now we examine r− = R−
x . From the first equation in (1) we derive

ρt + λ1ρx = −ρux − c0ρx = −ρr+.
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Multiplying the first equation in (21) by 1√
ρ and using the above equation, we get

(

r−√
ρ

)

t

+ λ1

(

r−√
ρ

)

x

= −1

τ
a − (r−)2

2
√

ρ
.

Let b = r−
√

ρ . Then b satisfies

bt + λ1bx = −1

τ
a −

√
ρ

2
b2.

It follows from (24) that if

0 ≥ a0(α) ≥ − 2

τ
√

m
, ∀α ∈ R, (28)

then

0 ≥ a(x2(α, t), t) ≥ −2
√

m

τ
, (α, t) ∈ R × R+.

Assuming (28) and letting x1(t, β) be the first characteristics, we have

2
√

m

τ2
− 1

2
√

m
b2 ≥ d

dt
b ≥ −

√
m

2
b2,

d

dt
:= ∂t + λ1∂x.

If

b0(β) ≥ 0, ∀β ∈ R,

then b stays bounded. Indeed

2
√

m

τ
h(t, β) ≥ b(x1(t, β), t) ≥ b0(β)

1 +
√

m
2 b0(β)t

where

h(t, β) =
(b0(β) + 2

√
m

τ )e
t

τ + (b0(β) − 2
√

m
τ )e−

t

τ

(b0(β) + 2
√

m
τ )e

t

τ − (b0(β) − 2
√

m
τ )e−

t

τ

, β ∈ R.

Note that when b0 ≥ 0, h(t, β) is a decreasing function in time and satisfies

1 ≤ h(t, β) ≤ τb0(β)

2
√

m
.

Therefore, for b0(β) ≥ 0 for all β ∈ R,

b0(β)

1 +
√

m
2 b0(β)t

≤ b(x1(t, β), t) ≤ b0(β),

which when optimizing the bounds in terms of the parameter β leads to the desired
estimates.

In our analysis above we also found a threshold condition (25) for the finite time

singularity in a(x, t) =
R+

x
(x,t)√

ρ(x,t)
, (27), which proves Theorem 2.2.
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