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On the entropy stability of Roe-type finite volume methods

Mária Lukáčová - Medvid’ová and Eitan Tadmor

Abstract. We study the entropy stability of a class of finite volume (FV)

methods for systems of hyperbolic conservation laws. The methods under
consideration are based on a Roe-type linearization coupled with the multidi-

mensional FV evolution Galerkin method [8]. Following Tadmor [16] we derive
the second-order numerical viscosity which guarantees the entropy stability of

these Roe-type FV schemes. Numerical experiments confirm that the resulting
schemes have just the right amount of numerical viscosity: small enough to

retain sharp shock profiles, yet large enough to enforce a correct resolution of
sonic rarefactions.

1. Introduction

In this paper we consider a class of finite volume methods for nonlinear con-
servation laws, based on a suitable Roe-type linearization method coupled with the
finite volume evolution Galerkin (FVEG) schemes.

Since the former method is classical [13] and widely used in the literature, we
will describe here more closely only the latter one. The finite volume evolution
Galerkin (FVEG) methods belong to the class of genuinely multidimensional finite
volume scheme, see, e.g., [6]-[9]. They couple a finite volume formulation with
approximate evolution operators which are based on the theory of bi-characteristics
for the first order systems [6]. As a result, exact integral equations for linear or
linearized hyperbolic conservation laws can be derived, which take into account all
of the infinitely many directions of wave propagation.

In the finite volume framework, the approximate evolution operators are used
to evolve the computed solution at t = tn, along the cell interfaces, up to an inter-

mediate time level tn+ 1
2 , in order to compute fluxes. This step can be considered as

a predictor step. In the corrector step the finite volume update is done. Extensive
numerical experiments confirm robustness, good multidimensional behavior, high
accuracy, stability, and efficiency of the FVEG schemes, see, e.g. [7]-[9].
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In this paper we investigate entropy stability of the FVEG schemes for one-
dimensional systems. We follow the works of Tadmor [15]-[17] and study the
entropy stability of FVEG schemes using the comparison approach with the so-
called entropy conservative schemes. Further results on entropy-stable/entropy-
conservative schemes can be found in [1, 3, 5, 12, 18] and in the references therein.

Entropy analysis presented here illustrates the role of entropy-stable flux func-
tion and indicates that in order to keep the FVEG scheme entropy-stable an entropy
correction term measuring jumps in the wave speeds corresponding to rarefaction
waves has to be added. We present only a brief overview of main theoretical results,
a detailed analysis will be given elsewhere [10]. Our main focus is to demonstrate
entropy stable behavior of the resulting scheme by means of numerical experiments.
Indeed, it has just the right amount of numerical viscosity: small enough to retain
sharp shock profiles and yet large enough to get a correct resolution of sonic rar-
efactions.

2. Entropy-conservative and entropy-stable schemes

We consider the one-dimensional system of hyperbolic conservation laws,

(2.1)
∂

∂t
u +

∂

∂x
f(u) = 0,

governing the N -vector of conserved variables u := [u1, · · · , uN ]> : R × R
+ → R

N

and balanced by the flux functions f(u) := [f1, · · · , fN ]> ∈ C1(RN , RN). We
assume it is endowed with an entropy pair, (U, F ), such that every strong solution
of (2.1) satisfies the entropy equality

(2.2a)
∂

∂t
U(u) +

∂

∂x
F (u) = 0,

whereas weak solutions are sought to satisfy the entropy inequality

(2.2b)
∂

∂t
U(u) +

∂

∂x
F (u) ≤ 0,

For simplicity, we assume that the Jacobian matrix, A(u) := fu(u) is symmetric,
with real eigenvalues, λj ≡ λj(A), λ1 ≤ λ2 ≤ . . . ≤ λN . We note in passing
that the assumption of symmetry is not a restriction, since by change of variables,
u → v := Uu(u), one obtains the desired symmetry of the equivalent system, e.g.,
[16, section 2]

∂

∂t
u(v) +

∂

∂x
f(u(v)) = 0,

where uv(v) and fv(u(v)) are symmetric.

We now turn our attention to consistent approximations of (2.1),(2.2b), based
on semi-discrete finite volume (FV) methods of the form

(2.3)
d

dt
uν(t) +

Hν+ 1
2
− Hν−1

2

∆xν

= 0.

Here, uν(t) denotes the discrete solution along the grid lines, (xν, t), which consists
of cells of variable size, ∆xν := xν+ 1

2
− xν−1

2
centered at xν =

(

xν+1
2

+ xν−1
2

)

/2,

and

Hν+ 1
2

:= H (uν(t), uν+1(t))
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is the numerical flux which approximates the physical one, Hν+ 1
2
≈ f(u(xν+ 1

2
)) at

the cell interface (xν+ 1
2
, t); in particular, H is consistent with f so that H(u, u) =

f(u).

We say that the finite volume schemes (2.3) are entropy-stable if the following
cell-entropy inequality, analogous to (2.2a), holds

(2.4)
d

dt
U(uν(t)) +

Fν+1
2
− Fν− 1

2

∆xν

≤ 0;

here U(u) is the convex entropy function and Fν+ 1

2
:= F (uν(t), uν+1(t)) is the

corresponding consistent entropy flux function such that F (u, u) = F (u). From
(2.4) it follows that the total amount of entropy

∑

U(uν(t))∆xν does not increase
in time, which is the apriori energy estimate sought for nonlinear semi-discrete
schemes (2.3). In the particular case that equality takes place in (2.4), analogous
to (2.2b),

(2.5)
d

dt
U(uν(t)) +

Fν+1
2
− Fν− 1

2

∆xν

= 0,

we say that the FV scheme (2.3) is entropy-conservative, following Tadmor [16].
The discrete formulation can be generalized to the non-symmetric case where

the numerical solution is sought in terms of the discrete entropy variables, uν(t) →
u(vν(t)); consult [16].

3. Entropy stability and viscosity form

In this section we consider a special class of the finite volume schemes which
are based on a suitable linearization of the corresponding Riemann problem. Using
the local entropy analysis along the corresponding (approximate) Riemann paths
in phase space proposed in [16], we will show, using a comparison principle, that
these schemes are entropy-stable.

A path in phase space. Consider two neighboring discrete values uν and uν+1.
We now describe the construction of a general path in phase space connecting uν to

uν+1, along an arbitrary set of linearly independent system r+ := {rj

ν+ 1
2

}j=1,...,N ;

| rj

ν+ 1
2

| = 1. To this end, let `+ := {`j

ν+ 1
2

}j=1,...,N , be the corresponding orthogonal

system 〈rj
+, `k

+〉 = δjk. Starting at u1
+ := uν , we will follow with the intermediate

states, u2
+, . . .,

(3.1a) u
j+1

+ = u
j
+ + αj

+r
j
+, j = 1, . . . , N,

ending with uN+1
+ = uν+1. Here, the α’s,

(3.1b) αj
+ :=

〈

`
j
+, ∆u+

〉

, ∆u+ := uν+1 − uν,

measure the strength of the waves along the different sub-paths. The passage from
uν = u1

+ to the state on its right uν+1 = uN+1
+ is now made of sub-paths, u

j
+(ξ),

connecting u
j
+ to u

j+1

+ , which are conveniently parameterized over the symmetric
interval −1/2 ≤ ξ ≤ 1/2,

(3.1c) u
j
+(ξ) :

[

−1

2
,
1

2

]

7→ {uj
+, uj+1

+ }.
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The specific construction of these sub-paths, u+ = {uj
+(ξ)}j=1,...,N , is at our dis-

posal. As an example, we quote from [16, section 6] the piecewise linear path

(3.2) u
j
±(ξ) =

1

2

(

u
j
± + u

j+1
±

)

+ ξαj
±r

j
±,

1

2
≤ ξ ≤ 1

2
, j = 1, . . . , N ;

we have used here an analogous notation for the left cell interface between uν−1

and uν.
Using these paths u±(ξ), we can now formulate the following general compar-

ison argument for entropy stability.

Theorem 3.1 (Tadmor [16]). Consider the semi-discrete scheme,

d

dt
uν(t) = − 1

2∆xν





N
∑

j=1

〈

f
(

u
j
+

)

+ f
(

u
j+1

+

)

, rj
+

〉

`
j
+

−
N

∑

j=1

〈

f
(

u
j
−

)

+ f
(

u
j+1

−

)

, rj
−

〉

`
j
−



(3.3)

+
1

2∆xν





N
∑

j=1

qj
+ αj

+ `
j
+ −

N
∑

j=1

qj
− αj

−`
j
−



 ,

where, q± = {qj
±}N

j=1 are arbitrary numerical viscosity amplitudes at our disposal.

(i) [Entropy conservation]. The scheme (3.3) is entropy conservative if the
numerical viscosities, q± = q∗±, are chosen as

(3.4) q∗,j
± :=











1

αj
±

∫ 1
2

− 1

2

2ξ

〈

A
(

u
j
±(ξ)

) du
j
±(ξ)

dξ
, rj

±

〉

dξ if αj
± 6= 0,

0 if αj
± = 0.

(ii) [Comparison]. The semi-discrete scheme (3.3) is entropy stable if it con-
tains more numerical viscosity than the entropy conservative scheme (3.3),(3.4),
namely

(3.5) qj
± ≥ q∗,j

± .

Remark 3.2. The viscosity term (3.4) is path independent and is left at our
disposal. If we choose u±(ξ) to be the piecewise linear path (3.2), then the entropy
conservative viscosity (3.4) amounts to
(3.6)

q∗,j
± =

∫ 1
2

− 1
2

2ξ
〈

A
(

u
j
±(ξ)

)

r
j
±, rj

±

〉

dξ, u
j
±(ξ) :=

1

2

(

u
j
± + u

j+1
±

)

+ ξαj
±r

j
±,

which is the entropy conservative scheme introduced in [16, corollary 6.2]. Theorem
3.1 generalizes the framework of entropy stability outlined in [16].

Using the comparison approach outlined in theorem 3.1, we turn to study the
entropy stability of semi-discrete FV schemes, by comparing its numerical viscosity
vs. an entropy conservative numerical viscosity. To this end, we have to specify
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our choice of the path in phase-space and the amount of numerical viscosity along
this path.

4. The FVEG scheme and its viscosity form along shock-based path

We study now the entropy stability, or in fact the lack of it in difference schemes
based on shock paths. We connect the sub-paths {uj

+(ξ)}N
j=1, through shock waves

such that
(4.1)

f
(

u
j
+(ξ)

)

− f
(

u
j
+

)

= sj
+(ξ)

(

u
j
+(ξ) − u

j
+

)

, u
j
+(−1

2
) = u

j
+, j = 1, . . . , N.

Set u
j+1

+ − u
j
+ = αj

+r
j
+. Thus, we resolve the interface between uν and uν+1

through a series of shocks and (4.1) at ξ = 1/2 are nothing but the corresponding
Rankine-Hugoniot conditions

(4.2) f
(

u
j+1

+

)

− f
(

u
j
+

)

= sj
+

(

u
j+1

+ − u
j
+

)

, j = 1, . . . , N,

ordered by their increasing scalar speeds, {sj
+ ≡ sj

+(uj
+(ξ = 1/2))}, s1

+ ≤ s2
+ ≤

. . . ≤ sN
+ . We know, [4], that such a path exists, at least “in the small”, ‖∆u+‖ � 1.

But such a path does not necessarily yield entropy stability; only the compressive
shocks, for which dsj

+(ξ)/dξ < 0 are admissible.

We now focus our attention on the class of one-dimensional FV schemes which
will be sought in connection with the multidimensional FVEG methods. To guar-
antee their entropy stability, we employ the numerical fluxes

(4.3a) Hν+ 1
2

= H(uν , uν+1) := f(u∗
ν+ 1

2

) − Jν+ 1
2
,

which involves the intermediate state u∗
ν+ 1

2

≡ u∗
+,

(4.3b) u∗
+ := uν +

∑

{j: s
j

+
≤0}

αj
+r

j
+,

and an entropy correction term, Jν+ 1
2
≡ J+, given by

(4.3c) J+ :=
κ

2

N
∑

j=1

[

λj
+

]+

αj
+r

j
+,

[

λj
+

]+

= max{λj
+, 0}.

Here, κ is an amplitude to be tuned later on, and
[

λj
+

]+

is the positive part1 of the

jumps across the sub-paths,

(4.3d)
[

λj
+

]

:= λj
(

A(uj+1
+ )

)

− λj
(

A(uj
+)

)

.

To verify the entropy stability of (4.3), we will utilize the entropy stability
framework of Theorem 3.1, and to this end we need to compute the viscosity co-
efficients associated with the FVEG scheme (4.3). This is the content of our next
result.

1We denote by x
+ = max{x, 0} and x

− = min{x,0} the positive and negative parts of x.
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Lemma 4.1. Consider the shock-based path
{

u
j
+

}

j=1...N+1
, such that (4.2)

holds. Then the FVEG scheme (4.3) admits the standard viscosity form

d

dt
uν(t) = − 1

2∆xν

[

f (uν+1) − f (uν−1)
]

(4.4)

+
1

2∆xν





N
∑

j=1

qj
+ αj

+ `
j
+ −

N
∑

j=1

qj
− αj

−`
j
−





with viscosity coefficients

(4.5) qj
+ =

∣

∣

∣s
j
+

∣

∣

∣ + κ
[

λj
+

]+

.

Assuming additionally that
{

r
j
+

}

j=1,...,N+1
are orthonormal then the center flux

difference can be rewritten in the following form, cf. (3.3),

1

2∆xν

[

f(uν+1) − f(uν−1)
]

=
1

2∆xν





N
∑

j=1

〈

f
(

u
j
+

)

+ f
(

u
j+1
+

)

, rj
+

〉

`
j
+

−
N

∑

j=1

〈

f
(

u
j
−

)

+ f
(

u
j+1
−

)

, rj
−

〉

`
j
−



 .(4.6)

Proof. Derivation of (4.6) can be found in [10]. Note also that even if the
shock-based path is not orthogonal (4.6) holds in the higher order terms.

Now, in order to prove (4.4) let us assume that there are k negative eigenvalues

sj
+ ≤ 0. The choice of u∗

+ in (4.3b) yields

f(uν) − f(u∗
+) ≡ f (u1

+) − f (uk
+) = −

k−1
∑

j=1

f(uj+1
+ ) − f(uj

+)

= −
k−1
∑

j=1

sj
+ αj

+ ri
+ = −

N
∑

j=1

(

sj
+

)−

αj
+ r

j
+.(4.7)

Similarly, f (uν+1) − f(u∗
+) =

∑N

j=1

(

sj
+

)+

αj
+ r

j
+.

Averaging the last two equations we find

1

2

(

f(uν) + f(uν+1)
)

= f(u∗
+) +

1

2

N
∑

j=1

∣

∣sj
+

∣

∣αj
+ r

j
+.

Thus, the numerical flux of the FVEG schemes (4.3a), f(u∗
+) − J+, equals

H(uν, uν+1) =
1

2

(

f(uν) + f(uν+1)
)

− 1

2

N
∑

j=1

∣

∣sj
+

∣

∣αj
+ r

j
+ − J+(4.8)

=
1

2

(

f(uν) + f(uν+1)
)

− 1

2

N
∑

j=1

(

∣

∣sj
+

∣

∣ + κ
[

λj
+

]+ )

αj
+ r

j
+.

Plugging (4.8) in the standard FV formulation (2.3) we conclude with the
desired form of the q’s in (4.5). �



ON THE ENTROPY STABILITY OF ROE-TYPE FINITE VOLUME METHODS 771

The viscosity form (4.4), (4.5) of our FVEG will enable us to fine-tune the
amount of numerical viscosities q± along the corresponding waves to enforce entropy
stability. In particular, the analysis presented below yields an entropy stability
condition for appropriately large entropy amplitude κ.

5. The entropy stability of FVEG schemes

The aim of this section is to verify, whether the estimate (3.5) holds for the
FVEG scheme (2.3), (4.3). Actually, we will be able to show that the inequality
(3.5) holds to the leading order term. However, the numerical experiments pre-
sented in the next section demonstrate that the effect of the higher order terms is
negligible. The jump term J+ proposed in (4.3c) in fact yields numerical schemes
which correctly resolve typical entropy-type problems, such as the correct resolution
of the sonic rarefaction.

Let us firstly formulate the main result of this section.

Theorem 5.1. Consider the mid-value Jacobian, A
j+ 1

2 , evaluated at the sub-
paths u+,

A
j+ 1

2 := A(uj
+(0)), u

j
+(0) =

1

2
(uj

+ + u
j+1
+ ).

Let
{

rk
j+ 1

2

}N

k=1
be the right orthonormal eigenvectors of A

j+ 1
2 , with the corre-

sponding eigenvalues of A
j+ 1

2 .

We assume that the following condition holds.

(5.1) |rj

j+ 1
2

− r
j
+| + |λj

j+ 1
2
− sj

+| ≤ c|∆u+|2.

Then setting the entropy constant κ ≥ 1/4 we have

(5.2) q∗,j
+ ≤ qj

+ + c|∆u+|2.
Proof. We will outline here only the main idea of proof, further details can

be found in [10]. In order to illustrate derivation of the jump term J+, cf. (4.3c),
we will show that the following property holds

∫ 1
2

− 1
2

2ξ
〈

A
(

u
j
+(ξ)

)

rj(uj
+(ξ)), rj(uj

+(ξ))
〉

dξ ≤ 1

4

[

λj
+

]+

,(5.3)

where rj(uj
+) is the normalized right eigenvector of the matrix A(uj

+).
Indeed, we have
(5.4)
∫ 1

2

− 1
2

2ξ
〈

A
(

u
j
+(ξ)

)

rj(uj
+(ξ)), rj(uj

+(ξ))
〉

dξ =

∫ 1
2

− 1
2

2ξλj
(

u
j
+(ξ)

)

|rj(uj
+(ξ))|2dξ.

Now, integration by parts and the normalization |rj(uj
+(ξ))| = 1 yield

∫ 1
2

− 1
2

2ξλj
(

u
j
+(ξ)

)

|rj(uj
+(ξ))|2dξ =

∫ 1
2

− 1
2

(

1

4
− ξ2

)

d

dξ
λj(uj

+(ξ)) dξ.(5.5)

There are two possible scenarios. In the case of an admissible shock discontinuity,
λj(uj

+(ξ)) is decreasing across the shock path and the integral on the right becomes
negative: entropy is dissipated and no additional numerical viscosity is required. In
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the case of a rarefaction wave, dλj(uj
+)/dξ > 0 and additional numerical viscosity

is required to prevent “expansive shocks”. According to the comparison principle
in theorem 5.1, a sufficient amount of numerical viscosity is given by the following
upper bound of (5.5)

∫ 1
2

− 1
2

(

1

4
− ξ2

)

d

dξ
λj(uj

+(ξ))dξ ≤ 1

4

[

λj
+

]+

.(5.6)

Thus, choosing κ ≥ 1
4

the right hand side is bounded by qj
+, cf. (4.5). �

Remark 5.2. We should point out that in our practical implementation of the
FVEG scheme the local linearization is done by freezing the corresponding Jacobian
matrix in the local average u±. Thus, from the viewpoint of the entropy analysis

the orthonormal system {rj
±}N

j=1 corresponds to the right eigenvectors of the exact
mid-value Jacobian A(u±). Analogous results have been obtained using the Roe
matrix. The reliability of the correction term J , which is indicated by the numerical
analysis above, will be confirmed by the set of numerical experiments in the next
section.

6. Numerical experiments

Consider the homogeneous shallow water equations written in conservative vari-
ables

(6.1) ∂tu + ∂x1
f1(u) + ∂x2

f2(u) = 0,

with

u :=





h
hu
hv



 , f1(u) :=





hu
hu2 + 1

2
gh2

huv



 , f2(u) :=





hv
huv

hv2 + 1

2
gh2



 .

Here h denotes the water depth, u, v are vertically averaged velocity components
and g stays for the gravitational acceleration, we set g = 10 in our computations.
The Froude number is given as Fr = |w|/c, where w := (u, v) and c =

√
g h denotes

the wave celerity. The shallow flow is called supercritical, critical or sub-critical for
Fr > 1, F r = 1, and Fr < 1, respectively.

Now, let us consider a one-dimensional channel with two uniform water levels,
both at rest, separated by a wall at x = 0

(6.2)
h = 0.1, u = 0, |x| ≥ 0,
h = 1, u = 0, |x| < 0.

The one-dimensional shallow water equations model the wave propagation after
the wall collapses. The wave pattern consists of the left propagating depression
wave (rarefaction) and the right propagating bore (shock). The computational
domain [−1, 1] was divided into 100 mesh cells. Absorbing boundary conditions
were implemented by extrapolating both components of the solution.

This problem is a well-known benchmark in order to test whether a numerical
solution satisfies entropy inequality, in particular at the sonic rarefaction wave, i.e.
when Fr = 1. Numerical methods based on an approximate solution of a linearized
Riemann problem typically show the entropy glitch at the critical depression wave
(the sonic rarefaction). It is the small discontinuity jump, unphysical entropy vio-
lating shock, within the depression. This can be seen very well in our experiments,
see Figures 1, 2 for the first and second order FVEG methods, respectively. Several
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entropy fixes have been proposed in literature in the last decades, see, e.g., Harten
and Hyman [2].

Results presented in this paper were obtained using the entropy correction
term J derived by theoretical analysis of entropy-stable schemes. In all numerical
experiments presented here we have used the entropy constant κ = 1/4 as suggested
by the sharp estimate (5.6). In Figures 1, 2 the water depth h as well as the Froude
number Fr for the first and second order FVEG schemes are plotted, respectively.
In the second order method the minmod limiter was used. Interestingly, in the
shallow water model the effects of entropy violation at the sonic rarefaction are quite
large. The entropy correction term derived in this paper works in an excellent way.
It clearly affects only the sonic rarefaction part, leaving unchanged the resolution
of discontinuities as well as the rest of rarefaction wave.
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Figure 1. Entropy glitch problem in the first order FVEG
method; results with entropy correction (solid line), without cor-
rection (stars).
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