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Abstract. In this paper, a super spectral viscosity method using the Chebyshev differential
operator of high order Ds = (

√
1− x2∂x)s is developed for nonlinear conservation laws. The bound-

ary conditions are treated by a penalty method. Compared with the second-order spectral viscosity
method, the super one is much weaker while still guaranteeing the convergence of the bounded so-
lution of the Chebyshev–Galerkin, Chebyshev collocation, or Legendre–Galerkin approximations to
nonlinear conservation laws, which is proved by compensated compactness arguments.
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1. Introduction. We have discussed in [M] the second-order spectral viscos-
ity (SV) method using the Chebyshev differential operator D =

√
1− x2∂x for the

following nonlinear conservation law:

∂tu(x, t) + ∂xf(u(x, t)) = 0, (x, t) ∈ (−1, 1)× (0, T ),(1.1)

provided with an initial condition at t = 0 and boundary data on the inflow bound-
aries. The aim of this paper is to generalize the second-order SV method [MT], [Ta1],
[Ta2] to a super spectral viscosity (SSV) version introduced by David Gottlieb, which
uses the high-order Chebyshev differential operator Ds. We refer to [Ta3] for the
Fourier SSV method of the periodic problems, where a more general version of SSV
has been established. There is a switch in the SSV of [Ta3] controlled by the param-
eter mN so that the viscosity is put only on the modes higher than mN . The SSV
method considered here corresponds to the case of mN = 1.

We will see that the SSV method can be viewed as a special case of the SV method,
but the former is much weaker than the latter for large s. Although the SSV method
does not meet the stability requirement in [M], it is shown in this paper that the SSV
method still guarantees the convergence of the bounded solution of the Chebyshev–
Galerkin, Chebyshev collocation, or Legendre–Galerkin approximations to nonlinear
conservation laws, which is proved by compensated compactness arguments.

Since the viscosity in the SSV method is much weaker, we may expect that the
computed coefficients of the SSV solution are less affected by the viscosity, and are
more accurate to the exact coefficients of the solution of (1.1). Therefore, spectral
accuracy may be recovered from these coefficients by a postprocessing procedure such
as filter or reconstruction methods [GT], [AGT], [GSSV], [GS1], [GS2], [GS3], [MOT].

The SSV method has a close relation with the exponential filter spectral method.
The latter has been successfully applied to nonlinear conservation laws with the
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Fourier spectral method [SW] and to shock wave calculations with the Chebyshev
spectral method [D]. We will give some details on this relation at the end of the
paper.

The paper is organized as follows. In section 2 we describe the SSV scheme for
(1.1) and its connection with the SV method. In section 3 we discuss some properties
of the Chebyshev and Legendre differential operators of high order. Sections 4 and
5 work on some a priori estimates related to the solution of the SSV method and
then prove that the bounded solution of the SSV method converges to the exact
scalar entropy solution of (1.1) by compensated compactness arguments based on the
standard framework.

2. The SSV method. Let I = (−1, 1) and ρ(x) be a positive weight on I.
The inner product and norm of L2

ρ(I) are denoted by (·, ·)ρ and ‖ · ‖ρ. We will drop
the subscript ρ whenever ρ ≡ 1. Let PN denote the space of algebraic polynomials
of degree ≤ N and ω(x) = (1 − x2)−1/2. We denote by {Tk(x)} the Chebyshev
polynomials standardized as Tk(1) = 1 and {Lk(x)} the Legendre ones as Lk(1) = 1.
The spectral approximation operator PN can be one of the following:

1. PCN : L2
ω(I) → PN , the Chebyshev–Galerkin projection operator (L2

ω(I)-
orthogonal);

2. ICN : C(Ī) → PN , the Chebyshev interpolation operator at Gauss–Lobatto–
Chebyshev points xj = cos jπN , 0 ≤ j ≤ N ;

3. PLN : L2(I) → PN , the Legendre–Galerkin projection operator (L2(I)-
orthogonal).

The SSV method for (1.1) is to find uN (t) ∈ PN such that

∂tuN + ∂xPNf(uN ) = (−1)s+1εNP
L
N (ωD2suN )−B(uN ).(2.1)

Here the boundary term is defined by

B(uN ) =
∑
j=0,N

bj(t)τ [uN (xj , t)−gj(t)]R(j)
N (x), R

(j)
N (x) =

1
2

[L′N (xjx)+L′N+1(xjx)],

where bj(t) = 1 on the inflow boundary prescribed with the data gj(t), and bj(t) = 0
on the outflow boundary (j = 0, N). We have that

(B(uN ), ϕ) =
∑
j=0,N

bj(t)τ [uN (xj , t)− gj(t)]ϕ(xj) ∀ϕ ∈ PN .

This is a penalty-type treatment of boundary conditions [FG1], [FG2]. The parame-
ters εN and τ are chosen such that

εN = N−(2s−1−θ), τ = N δ, 0 < δ <
4θ

2s− 1
, θ <

1
2
.(2.2)

The value of s may go to infinity, which will be described later.
To make a comparison with the second-order SV method, we rewrite the SSV

term as

(−1)s+1εND
2suN = −εN

N∑
k=0

k2sûkTk = − 1
N1−θ

N∑
k=0

(
k

N

)2s−2

k2ûkTk,(2.3)

where we have used the fact that

D2Tk(x) + k2Tk(x) = 0 ∀x ∈ I.(2.4)
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So the SSV method can be viewed as a special case of the second-order SV method
with Q̂k = Q̂

(s)
k = ( kN )2s−2, and the implementation for the SSV method is almost

the same as for the SV method, which can be done on the Chebyshev points {xj}
efficiently [DG], [M]. However, in the usual SV method [M], we required that Q̂k = 1
for k ≥ N1/3 (we have ignored the small improvement in the second-order SV method
since this kind of modification is also possible for the SSV [Ta3]). Obviously, the
former is much weaker than the latter when the value of s is large.

3. Preliminaries. In this section, we discuss some properties of the Chebyshev
and Legendre differential operators of high order, which are needed in the stability
analysis. We first introduce a Sobolev-type space related to the Chebyshev differential
operator D. Let

u =
∞∑
k=0

ûkTk, ûk =
(u, Tk)ω
‖Tk‖2ω

.(3.1)

By the property (2.4) we have formally that

‖Dσu‖ω =

(
π

2

∞∑
k=1

k2σ|ûk|2
)1/2

, σ > 0.(3.2)

We then define the Sobolev-type norms

‖u‖σ,D =

(
π|û0|2 +

π

2

∞∑
k=1

k2σ|ûk|2
)1/2

, σ ∈ R,(3.3)

and we denote by Hσ
D(I) the closure of the space of all polynomials with respect to

this norm. Accordingly, we should generalize the operator D to a distributional one
in the usual way such that

(Dσu, ϕ)ω = (−1)σ(u,Dσϕ)ω ∀ϕ ∈ D(I),

where D(I) is the space of infinitely differentiable functions with compact support in I.
It is easy to see that (3.2) is true for u ∈ Hσ

D(I). For positive σ, we also have

D2σu = (−1)σ
∞∑
k=1

k2σûkTk ∀u ∈ H2σ
D (I).(3.4)

If σ is negative, we define D2σu by (3.4) and D2σ+1u ≡ DD2σu. Thus (3.2) is also
true for u ∈ Hσ

D(I), σ < 0. We have that, for σ > 0,

DσD−σu = u− µω(u), µω(u) ≡ 1
π

∫
I

u(x)ω(x) dx.(3.5)

We will need the adjoint operator to Dσ for negative σ. If σ is even, we define
(Dσ)∗ ≡ Dσ, and if σ is odd, we define (Dσ)∗ ≡ Dσ+1(D−1)∗ with

(D−1)∗u ≡ −
∫ x

−1
u(ξ)ω(ξ) dξ.

It is easy to check that

(Dσu, v)ω = (u, (Dσ)∗v)ω.(3.6)
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We note that the behavior of u is quite different from Du. If u ∈ Hσ
D(I), then

D2u ∈ Hσ−2
D (I), but usually Du /∈ Hσ−1

D (I). If we connect them with the Fourier
series under the transformation x = cos θ, we may say that u behaves evenly and Du
behaves oddly. For example, let u = x = cos θ; then Du =

√
1− x2 = sin θ. We know

sin θ cannot be approximated well by Fourier cosine series.
Let D2

L = ∂xω
−2∂x. The following lemma is essential for getting a priori estimates

and will be proved in the Appendix.
LEMMA 3.1. If u ∈ Hs+2

D (I) (s ≥ 0), then we have

‖Ds+2u‖2ω + ‖Ds(x∂xu)‖2ω + (2s+ 1)‖Ds∂xu‖2ω ≤ ‖DsD2
Lu‖2ω,(3.7)

‖DsD2
Lu‖2ω + 3‖Ds+1u‖2ω ≤ 9‖Ds+2u‖2ω,(3.8)

(Ds+2u,DsD2
Lu)ω ≥ ‖Ds+2u‖2ω +

2s+ 1
2
‖Ds∂xu‖2ω,(3.9)

(Ds+2u,DsD2
Lu)ω ≥

1
3
‖DsD2

Lu‖2ω +
1
2
‖Ds+1u‖2ω.(3.10)

We will also use the following lemma, whose proof can be found in [M].
LEMMA 3.2. If u ∈ Hσ

D(I) (σ ≥ 0), then

‖Dµ(PCN u− u)‖ω ≤ CNµ−σ‖Dσu‖ω, 0 ≤ µ ≤ σ,(3.11)

‖Dµ(ICNu− u)‖ω ≤ CNµ−σ‖Dσu‖ω, 0 ≤ µ ≤ σ, σ >
1
2
,(3.12)

‖Dµ(PLNu− u)‖ω ≤ CNµ−σ lnN‖Dσu‖ω, 0 ≤ µ ≤ σ.(3.13)

LEMMA 3.3. Assume that f ∈ Cs(R) and u ∈ Hs
D(I) (s ≥ 1). Let

M = max
I
|u(x)|, |f |r,∞ = max

|ξ|≤M
|f (r)(ξ)|.

We have that

‖Dsf(u)‖ω ≤ Cs

(
s∑
r=1

|f |r,∞Mr−1

)
‖Dsu‖ω.(3.14)

Proof. We refer to [CDT] for the result with ω ≡ 1. Let αj (j ≥ 1) be positive
integers and |α|0 = 0, |α|r =

∑r
j=1 αj . According to the chain rule we have

Dsf(u) = Ds−1[f ′(u)Du] =
s−1∑
l=0

Cls−1D
s−1−lf ′(u)Dl+1u(3.15)

=
s∑

α1=1

Cα1−1
s−1 Ds−α1f ′(u)Dα1u

=
s∑

α1=1

Cα1−1
s−1

s−α1∑
α2=1

Cα2−1
s−α1−1D

s−α1−α2f (2)(u)Dα1uDα2u

= · · · =
s∑
r=1

∑
|α|r=s

 r∏
j=1

C
αj−1
s−|α|j−1−1

 f (r)(u)
r∏
j=1

Dαju.

By the Hölder inequality,

‖
r∏
j=1

Dαju‖ω ≤
r∏
j=1

‖Dαju‖
L

2s/αj
ω

.(3.16)
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Under the transformation x = cos θ, the Gagliardo–Nirenberg (GN) inequality [KZ]
gives us

‖Dlu‖Lqω ≤ C‖u‖
1−λ
L∞ ‖Dsu‖λLpω , λ =

l − q−1

s− p−1 .(3.17)

Let l = αj , q = 2s/αj , and p = 2 in (3.17). Then λ = αj/s and we have from (3.15)
and (3.16) that

‖Dsf(u)‖ω ≤ Cs
s∑
r=1

|f |r,∞
r∏
j=1

‖u‖1−αj/sL∞ ‖Dsu‖αj/sω(3.18)

= Cs

s∑
r=1

|f |r,∞Mr−1‖Dsu‖ω.

We note that Cs usually grows exponentially with s. In fact, if f(u) = u2 and
u = T1, then Cs ∼ 2s. We should keep this in mind when we choose s.

4. A priori estimates. This section is devoted to some a priori estimates of
the approximation solution of (2.1), which will be needed in the proof of convergence.
We assume that the approximation solution is uniformly bounded.

ASSUMPTION (L∞-boundedness). There exists a finite constant M such that

‖uN‖L∞(Ī×[0,T ]) ≤M.(4.1)

We will denote by CM the constant dependent only on the bound M and the flux
function f . To simplify the presentation, we only consider the case where x = −1
is an inflow boundary prescribed with the data g(t) ∈ H1(0, T ), while x = 1 is an
outflow one. The boundary term B(uN ) is now of the form

B(uN ) = τe(t)R0
N (x), e(t) ≡ uN (−1, t)− g(t).

We begin with an L2(I)-estimate. Let ‖ · ‖ω;0 ≡ ‖ · ‖L2(0,T ;L2
ω(I)). We first quote

the Sobolev inequality and the GN inequality (3.17) with p = q = 2, which will be
used frequently.

‖u‖L∞ ≤ C‖u‖1/2ω ‖u‖
1/2
1,D ∀u ∈ H1

D(I),(4.2)

‖Dlu‖ω ≤ C‖u‖
2(s−l)
2s−1
L∞ ‖Dsu‖

2l−1
2s−1
ω , 1 ≤ l ≤ s ∀u ∈ Hs

D(I).(4.3)

LEMMA 4.1. Assume that (2.2) holds and

εN ≥ 4CM
Cs ln2N

N2s−1 ,(4.4)

where Cs is the constant appearing in (3.14). We have that

‖uN (T )‖2 + εN‖DsuN‖2ω;0 + τ‖e‖2L2 ≤ CM (1 + ‖g‖2H1).(4.5)

Proof. Let F (u) =
∫ u

ξf ′(ξ) dξ. We get from the scheme (2.1) that

1
2
d

dt
‖uN‖2 + F (uN )|+1

−1 + εN‖DsuN‖2ω + τe2(t) + τe(t)g(t)(4.6)

= (∂x(I − PN )f(uN ), uN ) ≡ I(PN ).

We estimate I(PN ) in different cases as follows.
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1. By the Sobolev inequality (4.2), (3.11), the GN inequality (4.3), (3.14), and
the Hölder inequality,

|I(PCN )| = | [(I − PCN )f(uN )uN ]|+1
−1 − ((I − PCN )f(uN ), ∂xuN ) |(4.7)

≤ CM‖(I − PCN )f(uN )‖L∞(I) + ((I − PCN )f(uN ), DuN )ω

≤ CM‖(I − PCN )f(uN )‖1/2ω ‖D(I − PCN )f(uN )‖1/2ω

+
CM
Ns
‖Dsf(uN )‖ω‖DsuN‖

1
2s−1
ω

≤ CM
Ns−1/2 ‖D

sf(uN )‖ω + CM
Cs
Ns
‖DsuN‖

2s
2s−1
ω

≤ CM
(

1 +
Cs

N2s−1 ‖D
suN‖2ω

)
.

2. By (3.12), the GN inequality (4.3), and the Hölder inequality,

|I(ICN )| = |((I − ICN )f(uN ), ∂xuN )| ≤ ‖(I − ICN )f(uN )‖ω‖DuN‖ω(4.8)

≤ C

Ns
‖Dsf(uN )‖ω‖DuN‖ω ≤ CM

Cs
Ns
‖DsuN‖

2s
2s−1
ω

≤ CM
(

1 +
Cs

N2s−1 ‖D
suN‖2ω

)
.

3. By the Sobolev inequality (4.2) and (3.13),

|I(PLN )| = | [(I − PLN )f(uN )uN ]|+1
−1 |(4.9)

≤ CM‖(I − PLN )f(uN )‖1/2ω ‖D(I − PLN )f(uN )‖1/2ω

≤ CM
lnN
Ns−1/2 ‖D

sf(uN )‖ω ≤ CM
(

1 +
Cs ln2N

N2s−1 ‖D
suN‖2ω

)
.

Thus we obtain from (4.6) that

1
2
d

dt
‖uN‖2 +

(
εN − CM

Cs ln2N

N2s−1

)
‖DsuN‖2ω + τe2(t) ≤ CM + |F |∞ − τe(t)g(t),

where |F |∞ ≡ max|ξ|≤M |F (ξ)|. To bound τe(t)g(t), we use the scheme (2.1) to get
d

dt
(uN , 1) + f(uN )|+1

−1 + τe(t) = [(I − PN )f(uN )]|+1
−1 ≡ J(PN ),(4.10)

where J(ICN ) = 0, and we can see from (4.7) and (4.9) that

|J(PCN )| ≤ CM
Cs

Ns−1/2 ‖D
suN‖ω,(4.11)

|J(PLN )| ≤ CM
Cs lnN
Ns−1/2 ‖D

suN‖ω.(4.12)

Thus, we have from (4.10) that for E(T ) ≡ τ
∫ T

0 e(t) dt,

|E(T )| ≤ CM + CM
Cs lnN
Ns−1/2 ‖D

suN‖ω;0(4.13)

and ∣∣∣∣∣
∫ T

0
τe(t)g(t) dt

∣∣∣∣∣ =

∣∣∣∣∣E(t)g(t)|T0 −
∫ T

0
E(t)

d

dt
g(t) dt

∣∣∣∣∣(4.14)

≤ CM
(
‖g‖2H1 +

Cs ln2N

N2s−1 ‖D
suN‖2ω;0

)
.

The proof is completed by temporal integration of (4.6) and the use of (4.14).
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Next, we work on an H1(I)-estimate.
LEMMA 4.2. Assume that (2.2), (4.4) hold and

‖DuN (0)‖2 ≤ C
√
τN2(1− θ

2s−1 ).(4.15)

We have that

‖DuN (T )‖2 + εN‖Ds+1uN‖2ω;0 ≤ CM (1 + ‖g‖2H1)
√
τN2(1− θ

2s−1 ).(4.16)

Proof. Let D2
L = ∂xω

−2∂x. We have from the scheme (2.1) that

(∂tuN + ∂xPNf(uN ), D2
LuN ) = (−1)s+1εN (D2suN , D

2
LuN )ω − (B(uN ), D2

LuN ).

This gives us

1
2
d

dt
‖DuN‖2 + εN (Ds+1uN , D

s−1D2
LuN )ω

= (DPNf(uN ), D2
LuN )ω + τe(t)(D2

LuN )(−1, t).

Thus, by the coercive property (3.9), the Sobolev inequality (4.2), and (3.8)

1
2
d

dt
‖DuN‖2 + εN‖Ds+1uN‖2ω(4.17)

≤ ‖Df(uN )‖ω‖D2
LuN‖ω + Cτ |e| ‖D2

LuN‖1/2ω ‖DD2
LuN‖1/2ω

≤ CM‖DuN‖ω‖D2uN‖ω + Cτ |e| ‖D2uN‖1/2ω ‖D3uN‖1/2ω .

The temporal integration of (4.17) and the use of the Hölder inequality and the GN
inequality (4.3) yield

‖DuN (T )‖2 + εN‖Ds+1uN‖2ω;0

≤ ‖DuN (0)‖2 + CM‖DuN‖ω;0‖D2uN‖ω;0 + Cτ‖e‖L2‖D2uN‖1/2ω;0‖D3uN‖1/2ω;0

≤ ‖DuN (0)‖2 + CM‖DsuN‖
1

2s−1
ω;0 ‖DsuN‖

3
2s−1
ω;0 + Cτ‖e‖L2‖DsuN‖

3
4s−2
ω;0 ‖DsuN‖

5
4s−2
ω;0

≤ ‖DuN (0)‖2 + CM
√
τ(
√
τ‖e‖L2)ε

− 2
2s−1

N (εN‖DsuN‖2ω)
2

2s−1 ,

which completes the proof.

5. The convergence of the SSV method. In this section, we prove the con-
vergence of the SSV approximation (2.1) by compensated compactness arguments.
Based on the framework of [Tr], we follow [Ta3] to prove that both ∂tuN + ∂xf(uN )
and ∂tU(uN ) + ∂xF (uN ) for the quadratic entropy function flux pair can be ex-
pressed as a sum of two terms such that one belongs to a compact subset of H−1

loc (Ω)
and the other is bounded in L1

loc(Ω), where Ω = (−1, 1) × (0, T ). We will simplify
CM (1 + ‖g‖2H1) as CM , and also use the following notations:

(·, ·) ≡ (·, ·)L2(Ω), ‖·‖ ≡ ‖ · ‖L2(Ω), ‖ · ‖∞ ≡ ‖ · ‖L∞(Ω),

(·, ·)ω ≡ (·, ·)L2(0,T ;L2
ω(I)), ‖·‖ω ≡ ‖·‖L2(0,T ;L2

ω(I)).

For any ϕ ∈ H1
0 (Ω), we have

(∂tuN + ∂xf(uN ), ϕ)(5.1)

= (−1)s+1εN (D2suN , P
L
Nϕ)ω + (∂x(I − PN )f(uN ), ϕ)− (B(uN ), ϕ) ≡

3∑
j=1

Ij(ϕ).
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By Lemma 4.1, (3.13), and the following inverse property:

‖Dσu‖ω ≤ CNσ−µ‖Dµu‖ω, 0 ≤ µ ≤ σ ∀u ∈ PN ,(5.2)

the first term can be bounded as

|I1(ϕ)| = εN |(D2suN , ϕ)ω + (D2suN , (PLN − I)ϕ)ω|(5.3)
≤ CεN (‖D2s−1uN‖ω‖Dϕ‖ω + ‖D2suN‖ω‖(PLN − I)ϕ‖ω)
≤ CεNNs−1(1 + lnN)‖DsuN‖ω‖Dϕ‖ω
≤ CMN−(1−θ)/2 lnN‖∂xϕ‖ → 0.

We use Lemma 3.2 to estimate the second term:

|I2(ϕ)| = |((I − PN )f(uN ), ∂xϕ)| ≤ ‖(I − PN )f(uN )‖ ‖∂xϕ‖(5.4)

≤ CM
Cs
Ns
‖DsuN‖ω‖Dϕ‖ω ≤ CM

Cs
N (1+θ)/2 ‖∂xϕ‖ω → 0.

For the third term we use (4.5), the inverse property

‖u‖L∞(I) ≤ C
√
N‖u‖L2

ω(I) ∀u ∈ PN ,(5.5)

and Lemma 3.2 to obtain

|I3(ϕ)| =
∣∣∣∣∣
∫ T

0
τe(t)[(PLN − ICN )ϕ](−1, t) dt

∣∣∣∣∣(5.6)

≤ Cτ‖e‖L2 ·
√
N‖(PLN − ICN )ϕ‖ω ≤ CM

√
τ lnN√
N
‖∂xϕ‖ → 0.

Thus, we have shown that ∂tuN + ∂xf(uN ) belongs to a compact subset of H−1
loc (Ω).

Next we consider the quadratic entropy function. We have

1
2
∂tu

2
N + ∂x

∫ uN

ξf ′(ξ) dξ(5.7)

= (−1)s+1εNuNP
L
N (ωD2suN ) + uN∂x(I − PN )f(uN )− uNB(uN ) ≡

3∑
j=1

Ij .

We want to rewrite the right-hand side of (5.7) explicitly as two parts such that one
belongs to a compact subset of H−1

loc (Ω) and the other is bounded in L1
loc(Ω) .

For s ≥ 0, as in (4.6a) of [Ta3], we have the following identity:

uD2sv = (−1)sDsuDsv +
∑

l +m = 2s− 1
0 ≤ l < s

(−1)lD(DluDmv).(5.8)

Let P ∗Nu = ω−1PLN (ωu) so that

(P ∗Nu, v)ω = (PLN [ωu], v) = (u, PLNv)ω ∀u ∈ L2
ω(I), v ∈ L2(I).(5.9)

Using (5.8) and (3.5), noting µω((P ∗N − I)D2suN ) = 0, we have

I1 = (−1)s+1εNω [uND2suN + uND
2sD−2s(P ∗N − I)D2suN ](5.10)

= −εNω [(DsuN )2 +DsuND
−s(P ∗N − I)D2suN ]

+εNω
∑

l +m = 2s− 1
0 ≤ l < s

(−1)s+l+1D[DluN D
muN +DluN D

m−2s(P ∗N − I)D2suN ]

≡ I11 + I12.
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For any ϕ ∈ H1
0 (Ω), we get from (4.5), the inverse property (5.2), (3.13), and (4.16)

that

|(I11, ϕ)| ≤ εN |(DsuN , D
suNϕ)ω + (D2suN , (PLN − I)(D−s)∗[DsuNϕ])ω|(5.11)

≤ εN
(
‖DsuN‖2ω‖ϕ‖∞ +

C lnN
N

‖Ds+1uN‖ω‖DsuNϕ‖ω
)

≤ CM
(

1 +
τ1/4 lnN
Nθ/(2s−1)

)
‖ϕ‖∞.

By the same argument, but also using the inverse property

‖Dσu‖∞ ≤ CNσ‖u‖∞, σ ≥ 0 ∀u ∈ PN ,(5.12)

we have that

|(I12, ϕ)|
≤ εN

∑
l +m = 2s− 1

0 ≤ l < s

|(DmuN , D
luNDϕ)ω + (D2suN , (PLN − I)(Dm−2s)∗[DluNDϕ])ω|

≤ CεN
∑

l +m = 2s− 1
0 ≤ l < s

(1 + lnN)Nm−s+l ‖DsuN‖ω‖uN‖∞‖Dϕ‖ω

≤ CMs
√
εNN

s−1 lnN‖Dϕ‖ω ≤ CM
s lnN
N (1−θ)/2 ‖∂xϕ‖ → 0.

For the second term we rewrite it as

I2 = ∂x[uN (I − PN )f(uN )]− ∂xuN (I − PN )f(uN ) ≡ I21 + I22.(5.13)

From Lemma 3.2 and (3.14), it is easy to see that

|(I21, ϕ)| ≤ |((I − PN )f(uN ), uN∂xϕ)ω| ≤ ‖(I − PN )f(uN )‖ ‖uN‖∞‖∂xϕ‖

≤ CM
Cs
Ns
‖DsuN‖ω‖∂xϕ‖ ≤ CM

Cs
N (1+θ)/2 ‖∂xϕ‖ → 0.

For I22 we use the GN inequality (4.3) in addition and get

|(I22, ϕ)| ≤ |((I − PN )f(uN ), DuNϕ)ω| ≤
Cs lnN
Ns

‖DsuN‖ω‖DuN‖ω‖ϕ‖∞

≤ CMCs lnN (Nε
1

2s−1
N )−s(εN‖DsuN‖2ω)

s
2s−1 ‖ϕ‖∞

≤ CMCsN−
sθ

2s−1 lnN‖ϕ‖∞ → 0.

To deal with the third term, we first introduce an adjoint operator of ICN . Let u ∈
L2(I). We define I∗Nu ∈ H−1(I) such that

(I∗Nu, v)L2(I) = (u, ICNv)L2(I) ∀v ∈ H1(I).(5.14)

It is not difficult to give an explicit expression of I∗Nu, but we do not need it. We note
that

µω(ω−1(I∗N − I)B(uN )) =
1
π

((I∗N − I)B(uN ), 1)L2(I)(5.15)

=
1
π

(B(uN ), (ICN − I)1)L2(I) = 0;
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then by (5.8), I3 can be expressed as

I3 = ωuN D
2sD−2s[ω−1(I∗N − I)B(uN )]− uNI∗NB(uN )

= (−1)sωDsuN D
−s[ω−1(I∗N − I)B(uN )]

+ω
∑

l +m = 2s− 1
0 ≤ l < s

(−1)lD{DluND
m−2s[ω−1(I∗N − I)B(uN )]} − uNI∗NB(uN )

≡ I31 + I32 + I33.

For any ϕ ∈ H1
0 (Ω), as in (5.6), we have that

|(I31, ϕ)| ≤ |(B(uN ), (ICN − I)(D−s)∗[DsuNϕ])|(5.16)

≤ Cτ‖e‖L2

√
N lnN ‖(ICN − I)(D−s)∗[DsuNϕ]‖ω

≤ CM
√
τ lnN

Ns−1/2 ‖D
suN‖ω‖ϕ‖∞ ≤ CM

√
τ lnN
Nθ/2 ‖ϕ‖∞ → 0.

Similarly, but also using (5.12), we get

|(I32, ϕ)| ≤
∑

l +m = 2s− 1
0 ≤ l < s

|(B(uN ), (ICN − I)(Dm−2s)∗[DluNDϕ])|

≤ Cτ‖e‖L2

√
N lnN

∑
l +m = 2s− 1

0 ≤ l < s

‖(ICN − I)(Dm−2s)∗[DluNDϕ]‖ω

≤ CM
√
τ
√
N lnN

∑
l +m = 2s− 1

0 ≤ l < s

Nm−2s+l ‖uN‖∞‖Dϕ‖ω

≤ CM
s
√
τ lnN√
N

‖∂xϕ‖ → 0.

Finally, I33 is just a null functional on H1
0 (Ω) such that

(I33, ϕ) = −(B(uN ), ICN [uNϕ]) = 0.(5.17)

Thus we have shown that, by Murat’s lemma, the right-hand side of (5.7) belongs
to a compact subset of H−1

loc (Ω). Furthermore, we can see that it tends weakly to a
negative measure. In fact, for any ϕ ∈ H1

0 (Ω) and ϕ ≥ 0, we have as in (5.11) that

(I11, ϕ) ≤ −εN (DsuN , D
suNϕ)ω + εN |(D2suN , (PLN − I)(D−s)∗[DsuNϕ])ω|

< CM
τ1/4 lnN
Nθ/(2s−1) ‖ϕ‖∞ → 0.

Thanks to the div-curl lemma [Tr], we arrive at the following convergence result.
THEOREM 5.1. Assume that the conditions of Lemmas 4.1 and 4.2 hold. Then

the bounded solution uN (x, t) of the SSV scheme (2.1) converges strongly in Lploc(Ω)
(P <∞) to the unique entropy solution of (1.1).

Remark 1. Exponential filter [GS4]. We give a brief description of how the
SSV method is related to the currently used exponential filter spectral method. To
concentrate on the basic idea, we temporarily drop the factor ω in the SSV term.
Thus the SSV scheme (2.1) reads

∂tuN + ∂xPNf(uN ) = (−1)s+1εND
2suN −B(uN ).(5.18)
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Now suppose that we solve (5.18) by a splitting method such that{
∂tw

n
N = (−1)s+1εND

2swnN , tn−1 ≤ t ≤ tn,
wnN (tn−1) = un−1

N (tn−1),(5.19)

{
∂tu

n
N + ∂xPNf(unN ) = −B(unN ), tn−1 ≤ t ≤ tn,

unN (tn−1) = wnN (tn),(5.20)

where tn = n∆t. It is easy to see that (5.19) can be solved exactly so that if
un−1
N (tn−1) =

∑N
k=0 û

n−1
k Tk, then

unN (tn−1) = wnN (tn) =
N∑
k=0

e−εNk
2s∆tûn−1

k Tk =
N∑
k=0

σ

(
k

N

)
ûn−1
k Tk,(5.21)

where σ(ξ) = e−α|ξ|
γ

, α = N1+θ∆t, and γ = 2s. Therefore, the procedure is that we
use the usual spectral method (5.20) solving the nonlinear conservation law, but at
each time step, the numerical solution is filtered by (5.21). Readers are referred to
[SW], [D] for details.

Remark 2. We note that s = s(N) may increase with N , but it should not spoil
the conditions we have used in the proof of convergence. The most strict ones come
from (4.4) and (5.11) such that

Cs ≤
Nθ

4CM ln2N
, (τ1/4 lnN)2s−1 ≤ Nθ,

which suggest that s ≤ O(lnN) (we have mentioned that Cs ∼ 2s). In practice, a
little larger s is used [SW], [D], and it should be dependent on the problem we solve
as pointed out in [D].

Remark 3. It seems that the factor ω in the SSV term is needed not simply
because we can integrate by parts easy. It really helps control the L∞ bound, which
can be seen from the fact [CHQZ, pp. 288, 295] that

‖u‖∞ ≤ CN‖u‖, ‖u‖∞ ≤ C
√
N‖u‖ω ∀u ∈ PN .

In fact, even if we replace the Chebyshev differential operator D2 with the Legendre
differential operator D2

L in the SSV term so that we can integrate by parts without the
ω, we may still need the viscosity a little more strong to obtain an a priori estimate.
On the other hand, we can let the viscosity be even weaker by cutting its effect on
the lower modes as in [Ta3].

6. Conclusion. We have shown that the SSV is much weaker but good enough
to guarantee the convergence of the bounded solution of the Chebyshev–Legendre SSV
method. As mentioned in [M], the approximate solution uN should be expanded in
Legendre polynomials, and a suitable postprocessing procedure is needed. The most
difficult problem of the SSV method may be the boundedness of the solution, which
remains an open question even for the periodic problem [Ta3].

Appendix. The proof of Lemma 3.1. According to the definition,

D2
L = ω−2∂2

x − 2x∂x = D2 − x∂x.(A.1)

Let

as(u) = (−1)s(D2s+2u,D2
Lu)ω = (Ds+2u,DsD2

Lu)ω,(A.2)
bs(u) = (−1)s+1(D2s+2u, x∂xu)ω = −(Ds+2u,Ds(x∂xu))ω.(A.3)
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By (A.1), we have

as(u) = ‖Ds+2u‖2ω + bs(u),(A.4)
as(u) = ‖DsD2

Lu‖2ω + (Ds(x∂xu), DsD2
Lu)ω(A.5)

= ‖DsD2
Lu‖2ω − bs(u)− ‖Ds(x∂xu)‖2ω,

which also give us

‖Ds+2u‖2ω + ‖Ds(x∂xu)‖2ω + 2bs(u) = ‖DsD2
Lu‖2ω.(A.6)

For s = 0, we have

b0(u) = −
∫
I

xωDu∂xDudx = −1
2

∫
I

xω∂x(Du)2 dx(A.7)

=
1
2
‖∂xu‖2ω =

1
2

(‖x∂xu‖2ω + ‖Du‖2ω),

which plays important roles in obtaining the coercive properties.
For s ≥ 1, it seems troublesome to obtain similar results by integrals. Fortunately,

these quantities can be expressed by some simple matrices, which enable us to show
that

bs(u) ≥ 2s+ 1
2
‖Ds∂xu‖2ω,(A.8)

bs(u) ≥ 1
2

(‖Ds(x∂xu)‖2ω + ‖Ds+1u‖2ω).(A.9)

To simplify the presentation, we first introduce a special symmetric matrix A =
(aij) with elements of the form

aij = aji =
{
aibj , i+ j even, i ≤ j,
0, i+ j odd, i < j,

(A.10)

which will be called a symmetric proportional splitting matrix and denoted by A =
SPS(ai, bj). We first give the following result.

LEMMA A.1. Let A = SPS(ai, bj) (i, j ≥ 1). If a1b1, a2b2 > 0 and

∆n ≡ bn
(
an −

bn
bn−2

an−2

)
> 0 ∀n ≥ 3,(A.11)

then A is positive definite.
Proof. Let An be the leading principal submatrix of A of order n. Adding

−bn/bn−2 times (n − 2)th column to the nth column of An, we find that the nth
column vanishes except for its last element ∆n. Therefore, it is easy to see that the
determinants satisfy

Det(An) = ∆nDet(An−1) = · · · = a1b1a2b2

n∏
l=3

∆l > 0, n > 2.(A.12)

The desired result follows from the well-known theorem of matrices. In fact, if we do
the same transformations on the rows, we can see that A is congruent to a diagonal
matrix such that

PAPT = diag(a1b1, a2b2,∆3, . . . ,∆n, . . .),

where P is nonsingular.
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Now we prove (A.8) and (A.9). We suppose that u is a polynomial. For u ∈
Hs+2
D (I) the results can be justified through a limit procedure. Let

T = (T0, T1, . . . , Tj , . . .), û = (û0, û1, . . . , ûj , . . .)T .(A.13)

The following relations,

∂xTj = 2j
j−1∑
l = 0

l + j odd

Tl
cl
, c0 = 2, cl = 1 (l ≥ 0),(A.14)

xT0 = T1, 2xTj = Tj−1 + Tj+1, j ≥ 1,(A.15)

can be expressed as

∂xT = TDx, (Dx)ij =
{

2j/ci, i < j, i+ j even,
0, otherwise,(A.16)

xT = TM, (M)ij =
{
cj/2, |i− j| = 1,
0, otherwise.(A.17)

Let Λ = diag(0, 1, . . . , j, . . .) . We have

D2s+2u = D2s+2T û = (−1)s+1TΛ2s+2û,(A.18)
x∂xu = x∂xT û = TMDxû.(A.19)

Thus, we get that

bs(u) =
π

2
ûTΛ2s+2MDxû =

π

2
ûTBû,(A.20)

where the elements of Λ2s+2MDx are

(Λ2s+2MDx)ij =

 2i2s+2j, i < j, i+ j even,
i2s+2j, i = j,
0, otherwise,

(A.21)

and its symmetric form is

B ≡ 1
2

(Λ2s+2MDx + (Λ2s+2MDx)T ) = SPS(i2s+2, j) (i, j ≥ 0).(A.22)

In the same way, for s ≥ 1 we have that

‖Ds∂xu‖2ω =
π

2
ûTDT

x Λ2sDxû ≡
π

2
ûTCû,

where C = SPS(ci, dj) with

ci = 4i
i−1∑
l = 0

l + i odd

l2s, dj = j.

Therefore, by denoting σs = (2s+ 1)/2 we find that

bs(u)− σs‖Ds∂xu‖2ω =
π

2
ûT (B − σsC)û ≡ π

2
ûTAû,



906 HEPING MA

where A = SPS(ai, bj) with

ai = i2s+2 − 4σsi
i−1∑
l = 0

l + i odd

l2s, bj = j.

Since the first row and column of A are zeros, we drop them and still denote the
matrix by A. It is easy to see that a1b1 = 1, a2b2 = 2(4s+1 − 8σs) > 0, and

∆n+1 ≡ bn+1

(
an+1 −

bn+1

bn−1
an−1

)
(A.23)

= (n+ 1)2 [(n+ 1)2s+1 − (n− 1)2s+1 − 4σsn2s]

= (n+ 1)2n2s+1

[(
1 +

1
n

)2s+1

−
(

1− 1
n

)2s+1

− 4σs
1
n

]

= 2(n+ 1)2n2s+1
2s+1∑
l = 3
l odd

Cl2s+1

(
1
n

)l
> 0 ∀n ≥ 2.

From Lemma A.1 we know that A is positive definite and (A.8) follows.
Next, we consider (A.9). We have

‖Ds(x∂xu)‖2ω =
π

2
ûT (MDx)TΛ2s(MDx)û ≡ π

2
ûTCû.

We find that C + Λ2s+2 = SPS(ci, dj) (i, j ≥ 0) with

ci = 2i2s+1 + 4i
i−2∑
l = 0

l + i even

l2s, dj = j.

Therefore, we get

bs(u)− 1
2

(‖Ds(x∂xu)‖2ω + ‖Ds+1u‖2ω) =
π

2
ûT
[
B − 1

2
(C + Λ2s+2)

]
û ≡ π

2
ûTAû,

where B is given in (A.22), and hence A = SPS(ai, bj) with

ai = i2s+2 − i2s+1 − 2i
i−2∑
l = 0

l + i even

l2s, bj = j.

In this case, the first two rows and columns of A are zeros, a2b2 = 22s+2, and

∆n ≡ bn
(
an −

bn
bn−2

an−2

)
(A.24)

= n [n2s+2 − n2s+1 − n(n− 2)2s+1 + n(n− 2)2s − 2n(n− 2)2s]
= n2(n− 1) [n2s − (n− 2)2s] > 0 ∀n ≥ 3,

which combined with Lemma A.1 gives (A.9).
Now the desired result (3.7) follows immediately from (A.6) and (A.8), and (3.9)

follows from (A.4) and (A.8). Also, we have from (A.9) that

‖Ds(x∂xu)‖2ω + ‖Ds+1u‖2ω ≤ 2bs(u) ≤ 2‖Ds+2u‖ω‖Ds(x∂xu)‖ω(A.25)

≤ 2‖Ds+2u‖2ω +
1
2
‖Ds(x∂xu)‖2ω,
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which leads to

‖Ds(x∂xu)‖2ω + 2‖Ds+1u‖2ω ≤ 4‖Ds+2u‖2ω.(A.26)

Thus, we have from (A.1) that

‖DsD2
Lu‖2ω ≤ (‖Ds+2u‖2ω + ‖Ds(x∂xu)‖2ω)2(A.27)

≤ 3‖Ds+2u‖2ω +
3
2
‖Ds(x∂xu)‖2ω

≤ 3‖Ds+2u‖2ω + 3(2‖Ds+2u‖2ω − ‖Ds+1u‖2ω)
= 9‖Ds+2u‖2ω − 3‖Ds+1u‖2ω,

and (3.8) follows. Finally, combining (A.4) with (A.5) and using (A.9) and (3.8), we
get

4as(u) = ‖DsD2
Lu‖2ω + 3‖Ds+2u‖2ω + 2bs(u)− ‖Ds(x∂xu)‖2ω(A.28)

≥
(

1 +
1
3

)
‖DsD2

Lu‖2ω + 2‖Ds+1u‖2ω,

and (3.10) follows.
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[KZ] M. K. KWONG AND A. ZETTL, Norm inequalities for derivatives and differences, in In-
equalities, Lecture Notes in Pure and Appl. Math. 129, W. N. Everitt, ed., Marcel
Dekker, New York, 1991, pp. 91–121.

[M] H.-P. MA, Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws,
SIAM J. Numer. Anal., 35 (1998), pp. 901–924.

[MOT] Y. MADAY, S. M. OULD KABER, AND E. TADMOR, Legendre pseudospectral viscos-
ity method for nonlinear conservation laws, SIAM J. Numer. Anal., 30 (1993),
pp. 321–342.

[MT] Y. MADAY AND E. TADMOR, Analysis of the spectral viscosity method for periodic con-
servation laws, SIAM J. Numer. Anal., 26 (1989), pp. 854–870.

[SW] C.-W. SHU AND P. WONG, A note on the accuracy of spectral method applied to nonlinear
conservation laws, J. Sci. Comput., 10 (1995), pp. 357–369.

[Ta1] E. TADMOR, Convergence of spectral methods for nonlinear conservation laws, SIAM J.
Numer. Anal., 26 (1989), pp. 30–44.

[Ta2] E. TADMOR, Shock capturing by the spectral viscosity method, Comput. Methods Appl.
Mech. Engrg., 80 (1990), pp. 197–208.

[Ta3] E. TADMOR, Super viscosity and spectral approximations of nonlinear conservation laws,
in Numerical Methods for Fluid Dynamics IV, M. J. Baines and K. W. Morton, eds.,
Clarendon Press, Oxford, 1993, pp. 69–82.

[Tr] L. TARTAR, Compensated compactness and applications to partial differential equations,
in Res. Notes in Math. 39, Nonlinear Analysis and Mechanics, Heriot-Watt Sympo-
sium, Vol. 4, R. J. Knopp, ed., Pitman Press, Boston, London, 1975, pp. 136–211.


