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Abstract. Solutions of initial-boundary value problems for systems of conservation
laws depend on the underlying viscous mechanism, namely different viscosity operators
lead to different limit solutions. Standard numerical schemes for approximating conser-
vation laws do not take into account this fact and converge to solutions that are not
necessarily physically relevant. We design numerical schemes that incorporate explicit
information about the underlying viscosity mechanism and approximate the physical-
viscosity solution. Numerical experiments illustrating the robust performance of these
schemes are presented.
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1. Introduction

Many problems in physics and engineering are modeled by systems of conservation
laws

Ut + F(U)x = 0. (1.1)

Here, U : Ω × R+ → R
m is the vector of unknowns and F : R

m → R
m is the flux

vector. The spatial domain is a set Ω ⊂ R. The above equations are augmented with
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initial data. If Ω is a bounded domain, the conservation laws are augmented with
suitable boundary conditions. Examples of conservation laws include the shallow
water equations of oceanography, the Euler equations of gas dynamics and the
equations of MagnetoHydroDynamics (MHD).

We assume that the system of conservation laws is strictly hyperbolic, i.e. the
eigenvalues of the Jacobian matrix FU are real and distinct. Also, we assume that
all the eigenvalues of FU are bounded away from 0:

λ1(U) < · · · < λk(U) < −d < 0 < d < λk+1(U) < · · · < λm(U) (1.2)

for some positive constant d > 0 and some integer k < m.
It is well known (see Dafermos [7, Chapter 6]) that solutions of (1.1) can form

discontinuities (shock waves, contact discontinuities) in finite time even when the
initial data are smooth. Hence, solutions of (1.1) are defined in the sense of distri-
butions.

In general, the distributional solution of a given Cauchy or initial-boundary
value problem is not unique and hence various admissibility conditions have been
introduced in the attempts at selecting a unique solution, see the book by Dafer-
mos [7, Chaps. 4 and 8] for an extended discussion. These approaches often involve
the celebrated entropy condition, which can be formulated as follows: assume that
system (1.1) admits an entropy–entropy flux pair, namely there exist a convex func-
tion S : R

m → R and a function Q : R
m → R such that

QU = SUFU, (1.3)

where SU and QU denote the gradients of the function S and Q, respectively. A
distributional solution U satisfies the entropy admissibility condition if the following
inequality holds in the sense of distributions:

S(U)t + Q(U)x ≤ 0. (1.4)

Here, two remarks are in order: first, in general physical systems admit entropy–
entropy flux pairs. Second, systems of conservation laws like (1.1) are derived by
neglecting small scale effects like diffusion. Inclusion of these small effects in (1.1)
results in the mixed hyperbolic–parabolic system:

Uε
t + F(Uε)x = ε(B(Uε)Uε

x)x. (1.5)

Here, ε is a (small) viscosity parameter and B : R
m → R

m×m is the viscosity matrix.
For example, the Navier–Stokes equations are a viscous regularization of the Euler
equations of gas dynamics. In physical systems, the entropy admissibility criterion
is consistent with the zero small scale effects limit, namely one can show that, if the
solutions of the viscous approximation (1.5) converge in a strong enough topology,
then the limit satisfies (1.4).

Given a physically relevant viscous approximation (1.5), if Uε converge to a
(unique) limit function U in a suitable topology as ε → 0+, then we term U as the
physical-viscosity solution of the system of conservation laws (1.1). In particular,
the physical viscosity solution satisfies the entropy inequality (1.4).
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We now focus on the initial-boundary value problem obtained by coupling the
system of conservation laws (1.1) with the Cauchy and Dirichlet data

U(x, 0) = U0(x), x ∈ Ω = (Xl,∞), U(Xl, t) = Ū(t), t ∈ R+. (1.6)

The study of the initial-boundary value problem poses additional difficulties as
compared to the study of the Cauchy problem: first, the problem (1.1)–(1.6) is,
in general, ill posed (i.e. it possesses no solutions) unless additional conditions are
imposed on the data Ū. Possible admissibility criteria on Ū are discussed in [8].

Another additional difficulty one has to tackle when studying initial-boundary
value problems is the following: consider the viscous approximation (1.5) coupled
with the initial and boundary data

Uε(x, 0) = U0(x), x ∈ Ω = (Xl,∞), Uε(Xl, t) = Ul(t), t ∈ R+. (1.7)

Assume that the initial-boundary value problem (1.5), (1.7) is well posed (this is
not always the case in the case when B is singular) and that for ε → 0+ the solutions
converge in a suitable topology to a limit U. In general, because of boundary layer
phenomena, U may not satisfy the boundary condition Ul(t) pointwise. Dubois
and LeFloch [8] showed that, if the solutions of the viscous approximation (1.5)
converge as ε → 0+ to a solution of the initial-boundary problem (1.1), (1.6) in a
sufficiently strong topology, then the following inequality holds:

Q(U(t)) − Q(Ul(t)) − 〈SU(Ul(t)), (F(U(t)) − F(Ul(t)))〉 ≤ 0. (1.8)

Here 〈·, ·〉 denotes the standard scalar product in R
m.

A further difficulty in the study of initial-boundary value problems was pointed
out in the works by Gisclon and Serre [11, 12] and Joseph and LeFloch [16]: they
showed that the limit of the viscous approximation (1.5) depends on the underlying
viscosity mechanism. In other words, the limit of (1.5) in general changes if one
changes the viscosity matrix B.

As an example, we consider the linearized shallow water equations (2.13) with
initial data (2.18) and boundary data (2.19). The system is a linear, strictly hyper-
bolic, 2 × 2 system and is the simplest possible problem that can be considered
in this context. We consider two different viscosity operators: an artificial uniform
(Laplacian) viscosity (2.15) and the physical eddy viscosity (2.14). The resulting
limit solutions are shown in the left of Fig. 1. As shown in the figure, there is a
significant difference in solutions (near the boundary) corresponding to different
viscosity operators.

An extended discussion concerning the initial boundary value problem for sys-
tems of conservation laws and its viscous approximation can be found in the books
by Serre [22, 23, Chaps. 14 and 15], while we refer to the lecture notes by Serre [24]
and to the rich bibliography therein for the theoretical treatment of the discrete
approximation of viscous shock profiles. To conclude, we stress that analytically
establishing the convergence ε → 0+ for (1.5) is still an open problem in the gen-
eral case, but results are available in more specific cases: in particular, Gisclon [11]
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(a) Viscous profile (b) Roe scheme

Fig. 1. Left: The limit viscous profile at time t = 0.25 for the linearized shallow water equations
(2.13) with uniform (Laplacian) viscosity (2.15) and eddy viscosity (2.14). Right: Approximate
solutions with the Roe (Godunov) scheme for the linearized shallow water equations for the same
data as the left figure.

showed local-in-time convergence in the case when B is invertible and, by extending
the analysis in [4], Ancona and Bianchini [3] proved global-in-time convergence in
the case when B is the identity. See also [25].

1.1. Numerical schemes

Numerical schemes play a very important role in the study of system of conser-
vation laws. Conservative finite difference (finite volume) methods are among the
most popular discretization frameworks for (1.1). See the book by LeVeque [20] for
an extended discussion. Given the real numbers Xl < Xr, we discretize the compu-
tational domain [Xl, Xr] by N + 1 equally spaced points xj+1/2 = Xl + j∆x with
X1/2 = Xl and with mesh size ∆x and we set xj = xj−1/2+xj+1/2

2 . Time is discretized
with a time step ∆tn. The mesh size and time step are related by a standard CFL
condition.

The aim is to approximate cell averages Un
j of the unknown U in the cell Cj =

[xj−1/2, xj+1/2) at time tn by the scheme

Un+1
j = Un

j − ∆tn

∆x
(Fn

j+1/2 − Fn
j−1/2). (1.9)

Here, Fn
j+1/2 = F(Un

j ,Un
j+1) is the numerical flux. The numerical flux is obtained

by solving (approximately) the Riemann problem for (1.1) with the states Un
j and

Un+1
j .
Following [8, 20], the Dirichlet boundary conditions at X = Xl are imposed by

setting in the ghost cell [x−1/2, x1/2]:

Un
0 = Ul(tn). (1.10)

However, standard numerical schemes may not converge to the physical viscosity
solution of the initial boundary value problem for a system of conservation laws.
We illustrate this by again considering the linearized shallow water equations (2.13)
with initial data (2.18) and boundary data (2.19) at time t = 0.25. The results with
a standard Roe (Godunov) scheme for this linear system are presented in Fig. 1,
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right. The figure clearly shows that the Roe scheme converges to a solution that
is different from the physical-viscosity solution of the system, realized as a limit of
the eddy viscosity approximation (2.14). In fact, the solution converges to the limit
of the artificial uniform viscosity approximation (2.15).

The problem with standard numerical schemes approximating the initial-
boundary value problem (1.1) lies in the fact that they do not incorporate explicit
information about the underlying viscous approximation (1.5). The implicit numer-
ical viscosity added by such schemes may lead to the schemes converging to an
incorrect solution. This situation presents analogies with the numerical approxima-
tion of non-classical shocks (see [19]), non-conservative hyperbolic systems (see [6])
and conservation laws with discontinuous coefficients (see [2, 9]).

Here, we design numerical schemes that incorporate explicit information about
the underlying viscous operators. Consequently, these schemes approximate the
physical-viscosity solutions of system of conservation laws. The schemes are based
on the following two ingredients:

(i) An entropy conservative discretization of the flux F in (1.1) (see [10, 26]).
(ii) Numerical diffusion operators for (1.1) that are based on the underlying viscos-

ity matrix B in (1.5).

We present both first- and second-order schemes that are shown (numerically) to
converge to the physical-viscosity solution of the system of conservation laws.

The rest of the paper is organized as follows: in Sec. 2, we discuss the theoretical
results concerning the initial-boundary value problems (1.5) that will be used in the
following sections. In particular, explicit solutions of the boundary value problem
for a linear system are presented. In Sec. 3, we present numerical schemes for the
system of conservation laws (1.1) that converge to the physical-viscosity solution.
Second-order schemes are discussed in Sec. 4.

2. Theoretical Framework

In the following section, we focus on the so-called boundary Riemann problem, which
is posed when the Cauchy and Dirichlet data for the mixed hyperbolic–parabolic
system (1.5) are two constant states, U0(x) ≡ U0 ∈ R

m and Ul(t) ≡ Ul ∈ R
m.

The solution of a general initial-boundary value problem can be build using the
solutions of the boundary Riemann problem and standard Riemann problems in
the interior, see [13, 21] (Glimm scheme) and [1] (wave front-tracking algorithm).

2.1. Linear case

2.1.1. The solution of the Riemann problem in the linear case

We start by recalling the solution of the Riemann problem obtained by coupling
the linear system

Ut + AUx = 0, U ∈ R
m (2.1)

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

01
5.

12
:6

1-
86

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

M
A

R
Y

L
A

N
D

 @
 C

O
L

L
E

G
E

 P
A

R
K

 o
n 

06
/0

1/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 7, 2015 7:48 WSPC/S0219-8916 JHDE 1550003

66 S. Mishra & L. V. Spinolo

with the initial datum

U(0, x) =

{
U− x < 0,

U+ x > 0.
(2.2)

In (2.1), A is a constant, strictly hyperbolic m × m matrix, and in (2.2) U+ and
U− are two given values in R

m. We refer to [18] for the analysis of the nonlinear
case.

Denote by λ1, . . . , λm the eigenvalues of A and by R1, . . . , Rm the corresponding
right eigenvectors and consider the linear system

U− +
m∑

i=1

αiRi = U+, (2.3)

which by strict hyperbolicity admits a unique solution (α1, . . . , αm). Then the solu-
tion of (2.1) and (2.2) is

U(t, x) =


U− if x < λ1t,

U− +
j∑

i=1

αiRi if λjt < x < λj+1t, j = 1, . . . , m − 1,

U+ if x > λmt.

(2.4)

2.1.2. The solution of the boundary Riemann problem in the linear case

We now consider the boundary Riemann problem obtained by coupling the linear
mixed hyperbolic–parabolic system

Uε
t + AUε

x = εBUε
xx, U ∈ R

m (2.5)

with the Dirichlet and Cauchy data,

U(t, 0) = Ul, U(0, x) = U0(x), ∀ t > 0, x > 0, (2.6)

and by taking the limit ε → 0+. The matrix A in (2.5) is a constant m × m

matrix satisfying (1.2), and B is another constant, m × m matrix which depends
on the underlying physical model (we discuss explicit examples later in this paper).
The data Ul and U0 in (2.6) are constant states in R

m. Note that, in general, the
problem (2.5), (2.6) may be ill-posed if the matrix B is not invertible. However, to
simplify the exposition in the present paper we always choose the data (2.6) in such
a way that it is well-posed.

As mentioned in the introduction, one of the main challenges coming from the
presence of the boundary is the following: denote by U the limit ε → 0+ of U ε, then
in general the trace of U on the t-axis is not Ul,

Ū=̇ lim
x→0+

U(t, x) 
= Ul. (2.7)
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More precisely, the relation between Ub and Ū is the following: there is a function
W : [0, +∞[→ R

m satisfying{
BẆ = A(U − Ū),

W (0) = Ul, limy→+∞ W(y) = Ū,
(2.8)

where we denote by Ẇ the first derivative of W(y). A function W satisfying (2.8)
is called a boundary layer.

Under the assumption (1.2) and in the case when B is the identity, system (2.8)
admits a solution W if and only if

(Ul − Ū) ∈ span〈R1, . . . , Rk〉.
We recall that by (1.2), k is the number of negative eigenvalues of A and as in
Sec. 2.1.1, we denote by R1, . . . , Rk the corresponding eigenvectors. In general,
when the matrix B is invertible, the system (2.8) admits a solution if and only if
Ul − Ū belongs to the stable space of B−1A (i.e. to the subspace of R

m generated
by the generalized eigenvectors associated to the eigenvalues of B−1A with strictly
negative real part). Note that this space depends on the matrix B: this is the reason
why, even in the simplest possible case (linear system with an invertible viscosity
matrix), the limit ε → 0+ of (2.5), (2.6) depends on the choice of B.

In the case when B is not invertible, the analysis in Bianchini and Spinolo [5,
Secs. 4.2, 4.3] guarantees that, in physical cases [17], if the initial-boundary value
problem (2.5), (2.6) is well-posed, then there are k linearly independent vectors
R̃1, . . . , R̃k such that the following two properties hold: first, system (2.8) admits a
solution if and only if

(Ul − Ū) ∈ span〈R̃1, . . . , R̃k〉. (2.9)

Second, the vectors R̃1, . . . , R̃k, Rk+1, . . . , Rm constitute a basis of R
m. Specific

examples with explicit constructions of the vectors R̃1, . . . , R̃k are discussed later.
Consider the linear system

Ul +
k∑

i=1

αiR̃i +
m∑

i=k+1

αiRi = U0, (2.10)

which by the second property of the vectors R̃1, . . . , R̃k admits a unique solution
(α1, . . . , αm). The solution U obtained by taking the limit ε → 0+ of (2.5), (2.6) is
then

U(t, x) =



Ub +
k∑

i=1

αiR̃i if 0 < x < λkt,

Ub +
k∑

i=1

αiR̃i +
j∑

i=k+1

αiRi if λjt < x < λj+1t,

j = k + 1, . . . , m − 1,

U0 if x > λmt,

(2.11)
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where as usual λ1, . . . , λm denote the eigenvalues of the matrix A. Note that this
construction also works in the case when the matrix B is the identity provided that
we set

R̃i =̇Ri ∀ i = 1, . . . , k. (2.12)

2.2. Explicit computations for the linearized

shallow water equations

The above constructions are fairly general and abstract. We illustrate them by an
example, i.e. the linearized shallow water equations of fluid flow (see [20]):

ht + ũhx + h̃ux = 0,

ut + ghx + ũux = 0.
(2.13)

Here, the height is denoted by h and water velocity by u. The constant g stands
for the acceleration due to gravity and h̃, ũ are the (constant) height and velocity
states around which the shallow water equations are linearized.

The physical-viscosity mechanism for the shallow water system is the so-called
eddy viscosity. Adding eddy viscosity to the linearized shallow water system results
in the following mixed hyperbolic–parabolic system:

ht + ũhx + h̃ux = 0,

ut + ghx + ũux = εuxx.
(2.14)

For the sake of comparison, we add an artificial viscosity to the linearized shallow
waters by including the Laplacian. The resulting parabolic system is

ht + ũhx + h̃ux = εhxx,

ut + ghx + ũux = εuxx.
(2.15)

Systems (2.15) and (2.14) can be written in the form (2.5) provided that

A =

(
ũ h̃

g ũ

)
, B = BLap =

(
1 0

0 1

)
, B = BEDvisc =

(
0 0

0 1

)
(2.16)

in (2.15) and (2.14), respectively. We will construct explicit solutions for the lin-
earized shallow water equations (2.13) for the limit of both the eddy viscosity as
well as the artificial viscosity. For the rest of this section, we specify the parameters

h̃ = 2, ũ = 1, g = 1, (2.17)

and consider the initial data

(h, u)(x, 0) =

{
U− = (3, 1), if x < 0,

U+ = (1, 1), if x > 0,
(2.18)

and the Dirichlet boundary data

(h, u)(−1, t) = Ul(t) = (2, 1) ∀ t > 0. (2.19)
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2.2.1. Solution of the Riemann problem

We now apply the construction described in Sec. 2.1.1 to solve the Riemann prob-
lem (2.13), (2.18). The eigenvalues of the matrix A in (2.16) are λ1 = 1 −√

2 < 0
and λ2 = 1 +

√
2 > 0, with corresponding eigenvectors

R1 =

(
1

−√
2/2

)
, R2 =

(
1√
2/2

)
. (2.20)

Hence, the solution of the linear system (2.3) in this case is α1 = α2 = −1.

2.2.2. Solution of the boundary Riemann problem limit of the uniform
(Laplacian) viscosity

We now apply the construction in Sec. 2.1.2 to determine the limit ε → 0+ of the
viscous approximation (2.15) coupled with the Cauchy and Dirichlet data (2.18)
and (2.19).

We solve the linear system (2.10) in the case when Ul is given by (2.19), U0 =
(3, 1) and (2.12) holds and we obtain α1 = α2 = 1/2.

By combining this with the analysis in Sec. 2.2.1 and by recalling (2.4)
and (2.11), we conclude that the local in time solution of (2.13) obtained by taking
the limit ε → 0+ of (2.15), (2.18), (2.19) is

(h, u)(t, x) =



(5/2, 1 −√
2/4) if 0 < x + 1 < (1 +

√
2)t,

(3, 1) if x + 1 > (1 +
√

2)t and x < (1 −√
2)t,

(2, 1 +
√

2/2) if (1 −√
2)t < x < (1 +

√
2)t,

(1, 1) if x > (1 +
√

2)t.

(2.21)

2.2.3. Solution of the boundary Riemann problem limit of the eddy viscosity

We evaluate the limit ε → 0+ of the viscous approximation (2.14) coupled with the
Cauchy and Dirichlet data (2.18) and (2.19) by applying the construction described
in Sec. 2.1.2. We consider system (2.8) in the case when B is the same matrix BEDvisc

as in (2.16) and Ul is given by (2.19) and we get
0 = h − h̄ + 2(u − ū),

u̇ = −(u − ū),

(h, u)(0) = (2, 1), limy→+∞(h, u)(y) = (h̄, ū).

(2.22)

By imposing the initial datum h(0) = 2, u(0) = 1 one gets that (2.22) admits a
solution if and only if(

2 − h̄

1 − ū

)
= span〈R̃1〉, R̃1 =̇ (1,−1/2)
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and hence by solving the linear system (2.10) we get in this case α1 =
√

2/(
√

2+1)
and α2 = 1/(

√
2 + 1). By combining this with the analysis in Sec. 2.2.1 and by

recalling (2.4) and (2.11) we conclude that the local in time solution of (2.13)
obtained by taking the limit ε → 0+ of (2.14), (2.18), (2.19) is

(h, u)(t, x) =



(
3
√

2 + 2√
2 + 1

,

√
2 + 2

2
√

2 + 2

)
if 0 < x + 1 < (1 +

√
2)t,

(3, 1) if x + 1 > (1 +
√

2)t and x < (1 −√
2)t,

(2, 1 +
√

2/2) if (1 −√
2)t < x < (1 +

√
2)t,

(1, 1) if x > (1 +
√

2)t.

(2.23)

The explicit calculations clearly show that the solution of the linearized shallow
water equations (2.13) realized as a limit of vanishing eddy viscosity (2.14) differs
from the solution realized as a limit of the artificial viscosity (2.15). In particular,
the solutions are different near the boundary at x = 0 whereas they are the same,
away from the boundary. The height (h) for both solutions is shown in Fig. 1, left.

2.3. The solution of the boundary Riemann problem

for nonlinear systems

Consider the boundary Riemann problem obtained by coupling the mixed
hyperbolic–parabolic system (1.5) with the Cauchy and Dirichlet data Uε(0, x) =
U0, Uε(t, 0) = Ul, respectively, where U0,Ul ∈ R

m, and by then taking the limit
ε → 0+. One of the main challenges posed by this problem is establishing the
relation between the data Ul and the trace

Ū=̇ lim
x→0+

U(t, x).

As pointed out by Gisclon and Serre [11, 12], there exists a boundary layer
W : [0, +∞[→ R

m such thatB(W )Ẇ = F(W) − F(Ū),

W(0) = Ul, lim
y→+∞W(y) = Ū.

(2.24)

In the case when the Jacobian matrix FU satisfies (1.2) and the matrix B is invert-
ible, the existence of a boundary layer W satisfying (2.24) is equivalent to the fact
that Ul belongs to a suitable stable manifold centered at Ū. The general case when
condition (1.2) is violated (i.e. one eigenvalue of the Jacobian matrix FU can attain
the value 0) or the viscosity matrix B is singular is more complicated, but it can
be treated under suitable assumptions. A characterization of the solution of the
boundary Riemann problem obtained as limit of ε → 0+ of the viscous approxima-
tion (1.5) is provided in [5] under the assumption that the Dirichlet and boundary
data are sufficiently close. We also refer to [16, 3, 25] and to the references therein
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for characterizations of solution of the boundary Riemann problem obtained as
limits of different viscous approximations. We observe that in general it is difficult
to compute the solution of the boundary Riemann problem for a nonlinear system
explicitly.

3. Numerical Schemes

3.1. Definition of the schemes

We write down a semi-discrete conservative finite difference (finite volume) scheme
for the system of conservation laws (1.1) as

d

dt
Uj(t) +

1
∆x

(Fj+1/2 − Fj−1/2) = 0. (3.1)

Here Uj ≈ U(xj) with xj being the midpoint of the cell [xj−1/2, xj+1/2]. As stated
in the introduction, the numerical flux Fj+1/2 = F(Uj ,Uj+1) is determined by
(approximate) solutions of the Riemann problem at the interface xj+1/2. An equiv-
alent expression of the numerical flux (see the book by LeVeque [20]) is

Fj+1/2 =
F(Uj) + F(Uj+1)

2
− 1

2
D̂j+1/2, (3.2)

with D̂ = D̂(Uj ,Uj+1) being the corresponding numerical diffusion operator. As
an example, the Roe diffusion operator (see again [20]) is given by

D̂j+1/2 = Rj+1/2|Λj+1/2|R−1
j+1/2[[U]]j+1/2, (3.3)

where Λ and R are matrix of eigenvalues and eigenvectors of the Jacobian FU

evaluated at a suitable average state. Also, here and in the following we use the
notations

aj+1/2 =
aj + aj+1

2
, [[a]]j+1/2 = aj+1 − aj .

Clearly, the above numerical diffusion operator does not incorporate any infor-
mation about the underlying viscous approximation. Hence, the approximate solu-
tions generated by schemes such as the Roe scheme may not converge to the
physical-viscosity solution, given as a limit of the underlying viscous approximation
as the viscosity parameter goes to zero. An illustration is provided in Fig. 1, right.
Here, we present results obtained by approximating the linearized shallow water
system (2.13) with the Roe (Godunov) scheme. The exact solution, computed in
(2.23) as the limit of vanishing eddy viscosity (2.14) is also shown on the left. As
shown in the figure, the Roe scheme does not converge to this physical-viscosity
solution as the numerical viscosity (3.3) is very different from the eddy viscosity
in (2.14).

In this paper, we consider a different paradigm for numerically approximating
the initial-boundary value problem. The main difference from the standard schemes
lies in the choice of the numerical flux F in (3.1). It combines the following ingre-
dients.
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3.1.1. Entropy conservative fluxes

We assume that (1.1) admits an entropy–entropy flux pair (S, Q) and by following
Tadmor [26] we define an entropy conservative flux for (1.1) as follows.

Definition 3.1. A numerical flux F∗
j+1/2 = F∗(Uj ,Uj+1) is defined to be entropy

conservative for entropy S if it satisfies

[[V]]�j+1/2F
∗
j+1/2 = [[Ψ]]j+1/2 (3.4)

for every j. Here, V = SU is the vector of entropy variables and Ψ = V�F − Q is
the entropy potential for the entropy function S and entropy flux Q.

The existence of entropy conservative fluxes for system of conservation laws is
shown in [26] and explicit examples of entropy conservative fluxes are summarized
in [10].

It is known (see [7, Chap. 7]) that if (S, Q) is an entropy–entropy flux pair (S, Q)
with S strictly convex, then FUUV is symmetric and UV is symmetric and positive
definite. In the following, we also assume that the entropy is dissipative, namely
that

〈BUVξ, ξ〉 ≥ 0 ∀ ξ ∈ R
m. (3.5)

This condition is satisfied in physical cases. In particular, it is satisfied in all the
cases we discuss in the following.

3.1.2. Numerical diffusion operator

Let (1.5) be the underlying mixed hyperbolic–parabolic regularization of the hyper-
bolic equation (1.1). We choose a numerical diffusion operator,

D∗
j+1/2 := D∗(Uj ,Uj+1) = cmaxB(Ûj+1/2)[[U]]j+1/2. (3.6)

Here, B is the viscosity matrix in the parabolic regularization (1.5) evaluated at
some suitable averaged state Ûj+1/2 and

cmax(t) = max
j

|λmax
j |, (3.7)

with λmax
j being the largest eigenvalue of the Jacobian FU at a given state Uj .

3.1.3. Correct numerical diffusion (CND) scheme

We choose the numerical flux

Fj+1/2 = F∗
j+1/2 −

1
2
D∗

j+1/2. (3.8)

Here, F∗
j+1/2 = F∗(Uj ,Uj+1) is an entropy conservative flux (3.4) for the system

(1.1) and the numerical diffusion operator D∗
j+1/2 is defined in (3.6). The semi-

discrete scheme (3.1) with numerical flux (3.8) has the following properties.
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Theorem 3.2. Assume that the system (1.1) is equipped with the entropy–entropy
flux pair (S, Q) which is dissipative in the sense of (3.5). Then, the scheme (3.1)
with numerical flux (3.8) satisfies

(i) a (local) discrete entropy inequality (discrete version of the entropy inequality
(1.4)) of the form

d

dt
S(Uj)(t) +

1
∆x

(Q̂j+1/2 − Q̂j+1/2) ≤ 0, (3.9)

with a numerical entropy flux Q̂ that is consistent with the entropy flux Q.
(ii) The scheme is first-order accurate and the equivalent equation is

U∆x
t + F(U∆x)x =

cmax∆x

2
(B(U∆x)U∆x

x )x + O(∆x2). (3.10)

Proof. Multiplying both sides of the scheme (3.1) by the entropy variable V�
j , we

obtain
d

dt
S(Uj) +

1
∆x

(Q̃j+1/2 − Q̃j−1/2)

= +
1

2∆x
([[V]]�j+1/2F

∗
j+1/2 + [[V]]�j−1/2F

∗
j−1/2)︸ ︷︷ ︸

T1

− cmax

4∆x
([[V]]�j+1/2B(U(V̂j+1/2))UV(V̂j+1/2)[[V]]j+1/2)

− cmax

4∆x
([[V]]�j−1/2B(U(V̂j−1/2))UV(V̂j−1/2)[[V]]j−1/2). (3.11)

Here, we have introduced the numerical flux

Q̃j+1/2 := V
�
j F∗

j+1/2 −
cmax

2
(V

�
j+1/2B(U(V̂j+1/2))[[U]]j+1/2),

with Q̃j−1/2 defined analogously. Also, we have introduced the average V̂j+1/2

satisfying

[[U]]j+1/2 = UV(V̂j+1/2)[[V]]j+1/2. (3.12)

The fact that the entropy function is strictly convex implies the existence of such an
average, see [14] for a proof. Also, note that we also need the existence of this average
in the proof of entropy stability. There is no need for a closed form expression of
this average as it is not used explicitly in the numerical scheme.

By using the definition of the entropy conservative flux (3.4), the term T1 in
(3.11) can be simplified as

T1 =
1

2∆x
([[V]]�j+1/2F

∗
j+1/2 + [[V]]�j−1/2F

∗
j−1/2)

=
1

2∆x
([[Ψ]]j+1/2 + [[Ψ]]j−1/2)

=
1

∆x
(Ψj+1/2 − Ψj−1/2).
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Substituting the above expression of T1 in (3.11) yields

d

dt
S(Uj) +

1
∆x

(Q̂j+1/2 − Q̂j−1/2)

= −cmax

4∆x
([[V]]�j+1/2B(U(V̂j+1/2))UV(V̂j+1/2)[[V]]j+1/2)

−cmax

4∆x
([[V]]�j−1/2B(U(V̂j−1/2))UV(V̂j−1/2)[[V]]j−1/2) (3.13)

with

Q̂j+1/2 := V
�
j+1/2F

∗
j+1/2 − Ψj+1/2 − cmax

2
(V

�
j+1/2B(U(V̂j+1/2))[[U]]j+1/2)

and Q̂j−1/2 defined analogously. Note that Q̂(a, a) = Q(a) from the definition of
the entropy potential Ψ. The discrete entropy inequality (3.9) follows from assump-
tion (3.5).

The equivalent equation (3.10) is a simple consequence of Taylor expansion and
reveals the first-order accuracy of the scheme.

Thus, the proposed numerical scheme is entropy stable under reasonable
hypotheses on the system (1.1). Furthermore, the equivalent equation (3.10) shows
that the numerical viscosity of this scheme matches the underlying physical viscos-
ity operator in (1.5) at leading order. Hence, we claim that the scheme (3.1) with
numerical flux (3.8) incorporates the correct numerical dissipation and term it as
the CND scheme.

The Dirichlet boundary conditions for (1.1) are imposed weakly by setting

U0(t) = Ul(t). (3.14)

This amounts to setting the Dirichlet data as the value in the ghost cell [x−1/2, x1/2].
The semi-discrete scheme (3.1) is integrated in time with the SSP-RK2 time

integrator:

U∗ = Un + ∆tL(Un),

U∗∗ = U∗ + ∆tL(U∗),

Un+1 = 1
2 (Un + U∗∗),

(3.15)

that approximates the ODE system

d

dt
U(t) = L(U(t)), (3.16)

for the unknowns U = {Uj}j, defined by the scheme (3.1).

3.2. Linear systems

We illustrate the finite difference scheme (3.1) for a linear system, i.e. for (1.1) (and
the parabolic regularization (1.5)) with

F(U) = AU, B(U) = B, (3.17)
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for A,B given (m × m)-matrices. As pointed out before, if S(U) = 1
2U

TSU is a
strictly convex entropy, then the matrix SA is symmetric. Following [10], we define
the corresponding entropy conservative flux as

F∗
j+1/2 = AUj+1/2. (3.18)

We consider the following specific example.

3.2.1. Linearized shallow water system

The linearized shallow water system (2.13) is considered. We assign the data (2.18)
and (2.19). The computational domain is [−1, 1] and we use open (Neumann type)
boundary conditions at the right boundary x = 1.

The numerical solutions computed with the standard Roe scheme (3.1) and the
CND scheme (3.8) at time t = 0.25 are shown in Fig. 2. As we are interested in
computing the physical-viscosity solutions of the linearized shallow water equations,
obtained as a limit of the eddy viscosity (2.14), we also plot the exact solution com-
puted in (2.23) for comparison. Observe that the full Dirichlet boundary conditions
can be imposed at the boundary, even for the case of eddy viscosity as ũ > 0. Both
the numerical solutions are computed with a 1000 mesh points.

The results in Fig. 2 clearly show that the Roe scheme does not converge to
the physical-viscosity solution (2.23). On the other hand, the solutions computed
with the CND scheme approximate the physical-viscosity solution (2.23) quite well.
There are some small amplitude oscillations in the height with the CND scheme.
This is a consequence of the singularity of the viscosity matrix B in this case. As
there is no numerical viscosity in the scheme approximating the height, this results
in small amplitude oscillations. These small amplitude oscillations might lead to
small amplitude oscillations in the velocity. However, these oscillations are damped
considerably due to the numerical viscosity used to approximate the velocity. At
this resolution, it is not possible to observe these oscillations in the velocity.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3 Exact
Roe
CND

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8
Exact

ROE

CND

(a) Height (h) (b) Velocity (u)

Fig. 2. Solutions of the linearized shallow water equations (2.13) at time t = 0.25 with initial
data (2.18) and boundary data (2.19) computed with the Roe and CND schemes with 1000 mesh
points. The exact solution computed in (2.23) is provided for comparison.
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100
200
400
800
1600

(a) Height (h) (b) Velocity (u)

Fig. 3. Solutions of the linearized shallow water equations (2.13) at time t = 0.25 with initial data
(2.18) and boundary data (2.19) computed with the CND scheme at different mesh resolutions.
The exact solution computed in (2.23) is provided for comparison.

It is natural to question whether these oscillations can lead to instabilities as the
mesh is refined. In order to answer this question, we investigate the convergence
properties of the CND scheme on mesh refinement. The availability of the exact
physical-viscosity solution, computed in (2.23), allows us to undertake a rigorous
convergence study. The results of this convergence study are shown in Fig. 3 as
well as in Table 1. In Fig. 3, we plot the approximate height and velocity at time
t = 0.25, computed with the CND scheme at different mesh resolutions and clearly
observe that the solutions converge to the exact physical-viscosity solution (2.23)
as the mesh is refined. This convergence is also illustrated in Table 1 where we plot
the relative percentage error in L1

RE∆x(W) = 100 × ‖W(·, t) − W∆x(·, t)‖L1

‖W(·, t)‖L1
.

Here, W is the variable of interest and W∆x is the approximate solution computed
at mesh size ∆x. In Table 1, we show relative errors in L1 for both the height
and velocity. The errors are computed on a sequence of mesh resolutions and at
time t = 0.25. The corresponding experimental order of convergence is also shown.
The results clearly show that there is convergence in both variables and the small
amplitude oscillations are in fact dampened as the mesh is refined. Furthermore,

Table 1. The relative error in L1 for both the height as well as the
velocity variables for the linearized shallow water equations (2.13)
with data (2.18) and (2.19) at time t = 0.25 for different mesh
resolutions. The experimental order of convergence (EOC) is also
shown.

#(mesh points) Rel. error (h) EOC Rel. error (u) EOC

100 4.23 0.59 4.94 0.71
200 2.82 0.64 3.00 0.48
400 1.81 0.78 2.14 0.64
800 1.05 0.57 1.37 0.68
1600 0.71 0.85
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the convergence rate is slightly better than the expected rate of 0.5. We remark
that the expected convergence rate for a discontinuous solution with a first-order
scheme is 0.5. The experiment clearly shows that incorporating explicit information
about the underlying viscous mechanism in the numerical diffusion operator results
in the approximation of the physical-viscosity solution.

3.3. Nonlinear Euler equations

In one space dimension, the Euler equations of gas dynamics are

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0, (3.19)

Et + ((E + p)u)x = 0.

Here, ρ is the fluid density and u is the velocity. The total energy E and the pressure
p are related by the ideal gas equation of state:

E =
p

γ − 1
+

1
2
ρu2, (3.20)

with γ > 1 being a constant specific of the gas.
The system is hyperbolic with eigenvalues

λ1 = u − c, λ2 = u, λ3 = u + c. (3.21)

Here, c =
√

γp
ρ is the sound speed.

The equations are augmented with the entropy inequality( −ρs

γ − 1

)
t

+
(−ρus

γ − 1

)
x

≤ 0, (3.22)

with thermodynamic entropy

s = log(p) − γ log(ρ).

The compressible Euler equations are derived by ignoring kinematic viscosity
and heat conduction. Taking these small scale effects into account results in the
compressible Navier–Stokes equations:

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = νuxx, (3.23)

Et + ((E + p)u)x = ν

(
u2

2

)
xx

+ κθxx.

Here, θ is the temperature given by

θ =
p

(γ − 1)ρ
.

The viscosity coefficient is denoted by ν and κ is the coefficient of heat conduction.

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

01
5.

12
:6

1-
86

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

M
A

R
Y

L
A

N
D

 @
 C

O
L

L
E

G
E

 P
A

R
K

 o
n 

06
/0

1/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 7, 2015 7:48 WSPC/S0219-8916 JHDE 1550003

78 S. Mishra & L. V. Spinolo

For the sake of comparison, we add an uniform (Laplacian) diffusion to obtain
the compressible Euler equations with artificial viscosity:

ρt + (ρu)x = ερxx,

(ρu)t + (ρu2 + p)x = ε(ρu)xx, (3.24)

Et + ((E + p)u)x = εExx.

To evaluate the limit solution of (3.23), we construct a numerical approximation
by discretizing the mixed hyperbolic–parabolic systems (3.23) and (3.24) for a fixed
and very small value of the viscosity coefficient. We do so by the (semi-discrete)
finite difference scheme

d

dt
Uj(t) +

1
∆x

(F∗
j+1/2 − F∗

j−1/2) =
ε

∆x2
Dj . (3.25)

Here, the numerical flux is the entropy conservative flux (3.4) (see [15])

F∗
j+1/2 = [F1,∗

j+1/2,F
2,∗
j+1/2,F

3,∗
j+1/2]

�,

F1,∗
j+1/2 = (z2)j+1/2(z3)L

j+1/2, F2,∗
j+1/2 =

(z3)j+1/2

(z1)j+1/2
+ F1,∗

j+1/2, (3.26)

F3,∗
j+1/2 =

1
2

(z2)j+1/2

(z1)j+1/2

(
γ + 1
γ − 1

(z3)L
j+1/2

(z1)L
j+1/2

+ F2,∗
j+1/2

)
with parameter vectors

(z1, z2, z3) =
(√

ρ

p
,

√
ρ

p
u,

√
ρp

)
. (3.27)

The logarithmic mean of any quantity a, defined on the mesh, is denoted by

(a)L
j+1/2 =

aj+1 − aj

log(aj+1) − log(aj)
.

We define the numerical diffusion operators by setting

Dj =
[D1

j ,D2
j ,D3

j

]�
,

D1
j = 0,

D2
j = ν(uj+1 − 2uj + uj−1),

D3
j = ν

2 (u2
j+1 − 2u2

j + u2
j−1) + κ(θj+1 − 2θj + θj−1),

(3.28)

and

Dj = Uj+1 − 2Uj + Uj−1, (3.29)

for the compressible Navier–Stokes equations (3.23) and the Euler equations with
artificial viscosity (3.24), respectively.
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As an example, we consider both (3.24) and (3.23) in the domain [−1, 1] with
initial data

(ρ0, u0, p0) =

{
(3.0, 1.0, 3.0) if x < 0,

(1.0, 1.0, 1.0) if x > 0.
(3.30)

We impose open boundary conditions at the right boundary and Dirichlet boundary
conditions at the left boundary with boundary data

(ρ(−1, t), u(−1, t), p(−1, t)) = (2.0, 1.0, 2.0). (3.31)

Observe that the full Dirichlet boundary conditions are well-posed for even the case
of Navier–Stokes viscosity as the velocity field at the boundary is positive. We set
ν = κ = ε. The results for the finite difference scheme approximating the uniform
viscosity (3.24) and the physical viscosity (3.23) at time t = 0.25 are presented in
Fig. 4. The figure shows that there is a clear difference in the limit solutions of this
problem, obtained from the compressible Navier–Stokes equations (3.23) and the
Euler equations with artificial viscosity (3.24). The difference is more pronounced in
the density variable near the left boundary. Both the limit solutions were computed
by setting ε = 10−5 and on a very fine mesh of 32,000 points.
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(a) Density (ρ) (b) Velocity (u)
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(c) Pressure (p)

Fig. 4. Limit solutions at time t = 0.25 of the compressible Euler equations (3.19) with initial data
(3.30) and boundary data (3.31). The limits of the physical viscosity i.e. compressible Navier–
Stokes equations (3.23) and the artificial (Laplacian) viscosity (3.24) are compared.
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Remark 3.3. The above example also illustrates the limitations of using a mixed
hyperbolic–parabolic system like the compressible Navier–Stokes equations (3.23).
In order to resolve the viscous scales, we need to choose ∆x = O(1

ε ), with ε being
the viscosity parameter. As ε is very small in practice, the computational effort
involved is prohibitively expensive. In the above example, we needed 32,000 points
to handle ε = 10−5. Such ultra fine grids are not feasible, particularly in several
space dimensions.

3.3.1. CND scheme for the Euler equations

The CND scheme (3.1) for the Euler equations (3.19) is specified as follows: the
entropy conservative flux in (3.8) is given by (3.26) and the numerical diffusion
operator in (3.8) matches the kinematic viscosity and heat conduction of the com-
pressible Navier–Stokes equations since it is defined by setting

D∗
j+1/2 = [D1

j+1/2,D2
j+1/2,D3

j+1/2]
�,

D1
j+1/2 = 0,

D2
j+1/2 =

(
max

j

(
|uj| +

√
γpj

ρj

))
(uj+1 − uj),

D3
j+1/2 =

(
max

j

(
|uj| +

√
γpj

ρj

))(
1
2
(u2

j+1 − u2
j) + (θj+1 − θj)

)
.

(3.32)

We discretize the initial-boundary value problem for the compressible Euler equa-
tions (3.19) on the computational domain [−1, 1] with initial data (3.30) and Dirich-
let data (3.31). The results with the CND scheme and a standard Roe scheme at
time t = 0.25 are shown in Fig. 5. We present approximate solutions, computed on
a mesh of 1000 points, for both schemes. Both the Roe and the CND schemes have
converged at this resolution. As we are interesting in approximating the physical-
viscosity solutions of the Euler equations, realized as a limit of the Navier–Stokes
equations, we plot a reference solution computed on a mesh of 32,000 points of the
compressible Navier–Stokes equations (3.23) with κ = ν = 10−5. The figure shows
that the Roe scheme clearly converges to an incorrect solution near the left bound-
ary. This lack of convergence is most pronounced in the density variable. Similar
results were also obtained with the standard Rusanov, HLL and HLLC solvers (see
the book by LeVeque [20] for a detailed description of these solvers).

On the other hand, the CND scheme converges to the physical-viscosity solu-
tion. There are slight oscillations with the CND scheme as the numerical diffusion
operator is singular. However, these oscillations do not impact on the convergence
properties of this scheme. Although, the Roe scheme does not generate any spurious
oscillations, yet it converges to an incorrect solution of the Euler equations. On the
other hand, the CND scheme does converge to the physical-viscosity solution (the
Navier–Stokes limit) in spite of some spurious oscillations. It appears that the oscil-
lations are the price that one has to pay in order to resolve the physical-viscosity
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Fig. 5. Approximate solutions of the compressible Euler equations (3.19) with initial data (3.30)
and boundary data (3.31) at time t = 0.25. We compare the Roe and CND schemes on 1000
mesh points with a reference solution of the compressible Navier–Stokes equations (3.23) with
κ = ν = 10−5.

solution correctly. Moreover, the CND scheme is slightly more accurate than the
Roe scheme when both of them converge to the same solution (see near the interior
contact).

4. Second-Order CND Schemes

The CND scheme, described in the last section, was first-order accurate in space.
Consequently, it approximated shocks and contact discontinuities with excessive
smearing, particularly on coarse meshes. We can improve the resolution of numerical
schemes by constructing second-order accurate schemes.

To this end, we reconstruct the cell averages Uj of the unknown to a piecewise
linear function given by

pj(x) := Uj +
U′

j

∆x
(x − xj). (4.1)

The numerical derivative U′ is chosen to be non-oscillatory by limiting the slope,
i.e. setting

U′
j = minmod(Uj+1 − Uj ,Uj − Uj−1), (4.2)

with the minmod function defined as

minmod(a, b) =

{
sgn(a)min{|a|, |b|} if sgn(a) = sgn(b),

0 otherwise.
(4.3)
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Other limiters like the MC and Superbee limiters can also be chosen (see the book
by LeVeque [20] for the corresponding definitions). We need the cell interface values

U+
j := pj(xj+1/2), U−

j := pj(xj−1/2). (4.4)

With these reconstructed values, we modify the numerical flux (3.8) by setting

Fj+1/2 = F∗
j+1/2 −

1
2
D̃j+1/2, (4.5)

with

D̃j+1/2 = D̃(U+
j ,U−

j+1) = cmaxB(Uj+1/2)(U−
j+1 − U+

j ), (4.6)

where the constant cmax is the same as in (3.7). Note that the only difference
between the flux (3.8) and the flux (4.5) lies in replacing the difference in cell
averages in the numerical diffusion operator in (3.6) with the difference in the cor-
responding reconstructed edge values in (4.6). The overall scheme (3.1) with numer-
ical flux (4.5) is (formally) second-order accurate as the entropy conservative flux
F∗ is second-order accurate (see [26]) and the difference in the numerical diffusion
operator is a difference of second-order reconstructed values, see [10] for a proof of
the order of accuracy of schemes constructed with numerical fluxes like (4.5).

We test this second-order scheme (3.1), (4.5) for the compressible Euler equa-
tions. Let the computational domain be [−1, 1] with initial data (3.30) and Dirichlet
data (3.31).

The scheme (3.1) is specified as follows: the entropy conservative flux in numer-
ical flux (4.5) is given by (3.26). The numerical diffusion is

D∗
j+1/2 = [D1

j+1/2,D2
j+1/2,D3

j+1/2]
�,

D1
j+1/2 = 0,

D2
j+1/2 =

(
max

j

(
|uj| +

√
γpj

ρj

))
(u−

j+1 − u+
j ),

D3
j+1/2 =

(
max

j

(
|uj| +

√
γpj

ρj

))(
1
2
((u−

j+1)
2 − (u+

j )2) + (θ−j+1 − θ+
j )
)

,

(4.7)

with u±, θ± being obtained from the reconstructed conservative variables. The over-
all scheme (integrated in time with the SSP-RK2 time stepping (3.15)) is termed
as the CND2 scheme.

We compute approximate solutions of the Euler equations with initial data
(3.30) and boundary data (3.31) using the CND and CND2 schemes and show
the results, obtained on a mesh of 200 points and at time t = 0.25 in Fig. 6. The
result shows that both the first- and second-order CND schemes approximate the
physical-viscosity solution, computed as the limit of the compressible Navier–Stokes
equations, quite well. The first-order scheme smears the discontinuities as well as
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Fig. 6. Approximate solutions of the compressible Euler equations (3.19) at t = 0.25 with ini-
tial data (3.30) and boundary data (3.31). We compare the CND and CND2 schemes on 200
mesh points with a reference solution of the compressible Navier–Stokes equations (3.23) with
κ= ν = 10−5.

generates oscillations. On the other hand, the second-order scheme is clearly sharper
at discontinuities. Furthermore, it reduces the oscillations considerably.

5. Conclusion

We consider the initial-boundary value problem for systems of conservation laws
(1.1). Since the works by Gisclon and Serre [11, 12] and by Joseph and LeFloch [16],
it is known that the solutions of the initial-boundary value problem depend on
the underlying viscous approximation (1.5). Different choices of viscosity opera-
tors can lead to different solutions for the limit system of conservation laws (1.1).
These results hold for both linear as well as nonlinear systems. Even 2 × 2, strictly
hyperbolic, symmetrizable linear systems like the linearized shallow water equations
(2.13) show this behavior.

This dependence of solutions on underlying small scale effects suggests that one
should discretize the viscous approximation (1.5) directly. However, this is very
expensive computationally on account of very low values of the viscosity parame-
ter. Therefore, we need to design numerical schemes for the system of conservation
laws (1.1) that converge to the physical-viscosity solutions i.e. the limit of solu-
tions of (1.5) as ε→ 0. Unfortunately, existing numerical schemes like the standard
Godunov, Roe and HLL schemes might converge to the physically incorrect solution
of the initial-boundary value problem.
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In this paper, we design a conservative finite difference scheme (3.1) with a
numerical flux (3.8) based on the following two ingredients:

• entropy conservative fluxes (3.4);
• numerical diffusion operators (3.6).

Information about the underlying viscous approximation (1.5) is explicitly incor-
porated into the choice of the numerical diffusion operator. The resulting entropy
stable schemes are shown (numerically) to converge to the limit solution, obtained
from the underlying viscous approximation. Thus, we provide a numerical frame-
work for computing solutions of the system of conservation laws that require explicit
information about the underlying small scale effects. To the best of our knowledge,
this is the first time such schemes have been constructed in the context of initial-
boundary value problems.

We present a set of numerical experiments for both the linearized shallow water
and nonlinear Euler equations to demonstrate that our numerical schemes do con-
verge to the limit solutions of the underlying eddy viscosity or Navier–Stokes viscos-
ity, respectively. Second-order schemes are constructed and are shown to be superior
to first-order schemes in terms of accuracy as well as in suppressing oscillations that
might result from a lack of viscosity in some conservative variables. At the same
time, these second-order schemes also converge to the physical-viscosity solutions.

We concentrated on Dirichlet boundary conditions in one space dimension in this
paper. Extensions to several space dimensions and to other interesting boundary
conditions will be considered in a forthcoming paper.
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