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CONVERGENCE RATE OF APPROXIMATE SOLUTIONS TO
CONSERVATION LAWS WITH INITIAL RAREFACTIONS*

HAIM NESSYAHU! AND TAMIR TASSA!

Abstract. The authors address the question of local convergence rate of conservative Lip* -
stable approximations u®(z,t) to the entropy solution u(z,t) of a genuinely nonlinear conservation
law. This question has been answered in the case of rarefaction free, i.e., Lip*-bounded, initial
data. It has been shown that by post-processing u®, pointwise values of u and its derivatives may
be recovered with an error as close to O(e) as desired, where ¢ measures, in W—11, the truncation
error of the approximate solution u®.

This paper extends the previous results by including Lip* -unbounded initial data. Specifically, it
is shown that for arbitrary LooNBYV initial data, u and its derivatives may be recovered with an almost
optimal, modulo a spurious log factor, error of O(¢|Inel|). This analysis relies on obtaining new Lip™ -
stability estimates for the speed a(u®), rather than for u® itself. This enables the establishment of an
O(e|Ing|) convergence rate in W11, which, in turn, implies the above mentioned local convergence
rate.

This analysis is demonstrated for four types of approximate solutions: viscous parabolic regular-
izations, pseudoviscosity approximations, the regularized Chapman-Enskog expansion and spectral-
viscosity methods. This approach does not depend on the geometry of the characteristics of the
solution and, therefore, applies equally to finite-difference approximations of the conservation law.

Key words. conservation laws, Lip* -stability, W —1:!-consistency, error estimates, parabolic
regularizations, spectral-viscosity methods

AMS subject classifications. 35L65, 65M15, 65M70, 35K55

1. Introduction. We study the convergence rate of approximate solutions of
the single convex conservation law

(1.1) %[u(x,t)] + %[f(u(z,t))] =0, t>0, f">a>0,

with compactly supported (or periodical) initial condition
(1.2) u(z,t =0) = ug(z), wuo € LooNBV.

Our main focus in this paper is the extension of previous convergence results by
allowing possibly LipT-unbounded initial conditions,

(1.3) luo(z) || Lip+ < o0,
where, || - ||;p+ denotes the usual Lip*-seminorm
+
|w(z)||Lip+ = esssup (M> , ()T = max(-,0).
z#y -y

It is well known that the solution of (1.1) is not uniquely determined by the initial
condition (1.2) in the class of weak solutions. The unique physically relevant weak
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CONVERGENCE RATE OF APPROXIMATE SOLUTIONS 629

solution is the one which may be realized as a small viscosity solution of the parabolic
regularization

(1.4) ?—[ue(xt)]+£[f(us(wt))]=66—2[Q(u€(xt))] Q >0, €]0
eI 5 ’ 912 b= ‘

We recall that these admissible, so-called entropy solutions, are characterized by
their Lip*-stability [T1]:

lla(u(,0))llLip+
(1.5) la(u(, )llLip+ < 1+ tlla(u(-, 0)) || Lip+

Therefore we seek the convergence rate of conservative approximations to (1.1),

a() = f'().

/us(:r,t)d:r = /uo(x)dx, t>0,

T
'

which mimic this one sided Lipschitz stability of the exact entropy solution. This
leads to the following.

DEFINITION 1.1. A family {u®(z,t)}es0 of approzimate solutions of the conser-
vation law (1.1) is strongly Lip™ -stable if

€ ||0,(’U,€(‘,0))||Lip+
(1.6) lla(u® (-, )|+ < 7 + tlla(us (-, 0))|| Lip+’

e > 0.

Our first convergence rate result is the content of the following theorem.
THEOREM 1.1. Let {u®(z,t)}c>0 be a family of conservative and strongly Lip*-
stable approzimations to the entropy solution of (1.1)—(1.2), u(x,t). Then we have
the following.
(a) If |luo|lLip+ < o0, the following error estimate holds (Ki and K denote
constants which depend on T) :

(1.72) |lu®(T) = u(, T)llw-11
< Kaflut (5 0) = u(, 0)llw-110 + Kalluf + f(u)all Lo (o,11,w-11(R0))3

(b) If ||uollLip+ = o0 and the approzimate solutions are also Li-stable, the fol-
lowing error estimate holds:

o () =, D10 < 0 () 19,0 = e Ol

(1.7b) +0(e)[lu* (-, 0)[[Bv + O(e)llu(-, 0)| Bv
+0 (IInel) [lug + f(u)ll Lo (l0,11,w 11 (R2))-

Remark 1. An approximate solution operator, S¢(t), is considered L;-stable, if
for any two initial conditions, ug and vy,

(1.8) ||Ss(t)UQ - Ss(t)'UO”Ll(%m) < COnStt”;S’e(O)UQ - SS(O)U()HLIQRE), t > 0.

Remark 2. The norm ||w(x,t)|lw-1.1 is defined, when [g w(z,t)dx = 0, as follows:

Hw@JWWﬂJ=Hw@JWW4um)EWK w(E, Hde

Li(Rz)
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Remark 3. The use of stability with respect to the Lip*-seminorm in order to
establish uniqueness for the Cauchy problem (1.1)-(1.2), goes back to Oleinik [O]
(see also Theorem 1.3). Stability, in a similar sense, with respect to that seminorm,
was also used in [BO] in order to obtain the total variation boundedness and entropy
consistency of some finite difference approximations to (1.1) and, consequently, their
convergence to the entropy solution. However, this analysis lacks convergence rate
estimates.

The first to have used Lip*-stability in order to quantify the convergence rate, was
Tadmor [T1]. He used the LipT-stability of both the entropy solution and its parabolic
regularization, (1.4), in order to quantify the convergence rate of the regularization.
The same ideas were also used in [NT, NTT] in the context of finite difference ap-
proximations. These works employed the Lip*-stability of the approximation itself,
u®(z,t), namely, an estimate of the sort

||u€('70)||Lip+
1.9 WS ()| s < , 0<B<a,
(19) GOl < T e )

in order to obtain convergence rate in the case of Lip*-bounded initial data. In
fact, in that case, our first W~11-error estimate, (1.7a), bolds even if the family of
approximate solutions is merely Lip*-bounded,

(1.10) lu®(-, )| Lip+ < Consty,. € >0,

and does not satisfy the strong Lip™-stability requirement (1.6).

However, estimates such as (1.9) or (1.10) are not sufficient in the case of Lip*-
unbounded initial data and a stronger Lip*-stability, (1.6), of a(u®(x,t)) is required.

As a counterexample we mention the Roe scheme (consult [B]): When ||uo|| ip+ <
oo this scheme remains LipT-bounded, (1.10), and converges to the exact entropy
solution. However, it is not strongly Lip*-stable and, therefore, it fails to converge
to the entropy solution in case of Lip™-unbounded initial data (as demonstrated by
the steady state solution obtained by this scheme for ug(z) = sgn(z)).

The strong Lip*-stability, (1.6), is indeed one of the main ingredients in establish-
ing convergence rate estimates when initial rarefactions are present. Unfortunately,
many well-known approximations of (1.1) fail to satisfy this restricted condition. How-
ever, these approximations are still LipT-stable in a weaker sense than that of Defi-
nition 1.1. This weaker Lip*-stability proves sufficient in order to establish the same
convergence rates as in Theorem 1.1.

DEFINITION 1.2. Let {u®(x,t)}c>0 be a family of approzimate solutions of (1.1)
and let

We(t) = lla(u® (-, 6))l Lip+-
Then this family is e-weakly Lip*-stable if there ezists a constant M such that when-
ever
M

— b

We(0) < —

the following estimates hold for every T > 0:

T €
(1.11) elo WO < (1> :

€
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T T .
(1.12) / e WOy < 0 (el .
0

Remark 1. Any strongly Lip*-stable family of approximate solutions is also e-
weakly Lip*-stable (for any value of the constant M).

Remark 2. We henceforth refer by Lipt-stability to either weak or strong Lip™-
stability. This notion of Lip*-stability is stronger than (1.9), in view of the mono-
tonicity of a(-).

The following theorem asserts that the convergence rate estimates, given in The-
orem 1.1 for strongly Lip*-stable approximations, hold also for e-weakly Lip*-stable
ones.

THEOREM 1.2. Let {u®(z,t)}e>0 be a family of conservative and Lip™-stable
approximations to the entropy solution of (1.1), u(x,t). Then,

(a) If |lug||Lip+ < 00, error estimate (1.7a) holds;
(b) If |luo||lip+ = oo and the approzimate solutions are also Ly-stable, error
estimate (1.7b) holds.

In order to have convergence, the stability of the family of approximate solutions
is not sufficient. The second crucial ingredient is consistency.

DEFINITION 1.3. The family {uf(x,t)}.>0 of approzimate solutions is W—11-
consistent with (1.1)—(1.2) if

Const - £ if luollLip+ < 00
. €. _ . _ < ip s
(113) 10 = uaClwss < { oy oy o o 222
and
(1.14) llug + f(u)zll L o,7),w-11(,)) < Constr - € .

In view of Theorem 1.2 and Definition 1.3, we may now conclude the following
convergence rate estimates.

COROLLARY 1.1 (W~ 1l.error estimates). If the family {uf(x,t)}c>0 of approzi-
mate solutions is conservative, W ~11-consistent with (1.1)—(1.2), L;-stable and Lip* -
stable, then for every T > 0 there exists a constant Ct such that

(1.15a) (-, T) — u(:, T)lw-11 < Cr - &,

where

(1.15b) =4 ¢ if Juollzeps <o,
: ellne|  if |lug|lLip+ = oo.

Remark 1. Error estimate (1.15) suggests that whenever initial rarefactions are
present, the convergence rate in W~11 is nearly O(¢). The |Ine¢| term, which some-
what slows the rate of convergence, is a consequence of the initial rarefaction (as we
show later on).

Remark 2. Error estimate (1.15) relates to that of Harabetian in [H]. He has
shown an O(e|lne|) convergence rate in L; for the viscous parabolic regularizations,
(1.4), when the exact entropy solution amounts to a pure rarefaction wave.

The W11 error estimate (1.15) may be translated, along the lines of [T1, NT],
into various global, as well as local, error estimates which we summarize as follows.
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COROLLARY 1.2 (Global and local error estimates). Let {uf(z,t)}e>o be a family
of conservative, W ~11_consistent, Ly-stable and Lip* -stable approzimate solutions of

the conservation law (1.1)—(1.2). Then the following error estimates hold (£ is as in
(1.15b)):

(El) ”us(wT) - u(’fT)”WS'P S C’T : é(l—sp)/Zp’ -1 <s S

(E2) |(us (-, T) * ¢5)(x) — u(x,T)| < Const, - &P/ P+ § ~ g/ (P+2),

Lo (:c—é,x+6))

and ¢5(z) = 3¢ (%) is any unit mass C}(—1,1)-mollifier, satisfying

where

1
Const; 7 = Constr - (1 + —- 927

p!

1
/ *¢(z)dz =0 for k=1,2,...,p—1;
-1

(E3) |uE (x?T) - u($’ T)l < ConStz,T : \3/_5:,

Const, 7 = Consty - (1 + lluz (Dl o %,zﬂs@)) .

Remark. A similar treatment enables the recovery of the derivatives of u(z,t) as
well, consult [T1, §4].

We would like to point out two straightforward consequences of Theorem 1.1,
interesting for their own sake. The first is a simple proof of the uniqueness of Lip*-
stable solutions to (1.1)—(1.2), Theorem 1.3, and the second is the W —11-stability of
entropy solutions of (1.1), Theorem 1.4.

THEOREM 1.3. Weak solutions of the convex conservation law (1.1) which are
Lip*-stable, (1.5), are uniquely determined by their initial value.

THEOREM 1.4. Let u and v denote two entropy solutions of the conservation law
(1.1), subject to the Lo, N BV initial data uo and vg, respectively. Then

(1.16) lv(-,t) — u(-, t)|[w-1.1 < Consty - |lvo — uol| T 1.1,

where 1 =1 if ug and vy are Lip*-bounded and n = % otherwise.

This paper is organized as follows.

After §2 in which we prove our main results, Theorems 1.1-1.4, the rest of the
paper is devoted to applications to various types of approximations.

In §3 we deal with the family of viscous parabolic regularizations, (1.4). We prove
that these approximations are Lj-contractive, W ~1l-consistent and Lip*-stable, in
order to conclude that they converge to the exact entropy solution and satisfy the
convergence rate estimates (E1)—-(E3). We further show that if the viscosity coefficient
satisfies

(1.17) (4) <o

a/
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then the resulting approximation is even strongly Lip*-stable. The most natural
choice (already presented by Von-Neumann, Lax and Wendroff, consult [RM]) of a
monotone regularization coefficient, Q(u), which satisfies (1.17) is Q(-) = a(-). Hence,
we refer to regularizations which satisfy condition (1.17) as “speed-like.”

In §4 we apply our analysis to pseudoviscosity approximations. These approxi-
mations are parabolic regularizations with a gradient dependent viscosity,

0
uf + f(u®)s = eQ(uf,p%)z, p° = ug, 531?5

10

Such approximations, with @ = Q(p®), were introduced by von Neumann and Richt-
meyer in [NR] and discussed later in [MN]. We derive conditions on the pseudovis-
cosity coefficient, @), under which the resulting approximation is Lip*-stable and
W11 consistent and, consequently, satisfies error estimates (E1)—(E3).

In §5 we discuss the regularized Chapman-Enskog expansion for hydrodynamics
(consult [R] and [ST]). We focus our attention on Burgers’ equation and demonstrate
our analysis in this case.

Finally, in §6, we show how the Spectral Viscosity (SV) method (consult [MT],
[T2], and [T3]) fits into our framework as well. In the course of the analysis performed
there, we introduce an extension argument which removes the need for an a priori Leo-
bound. This argument may also be used for other approximate solutions of (1.1) for
which an a priori Le-bound is not known in advance.

We close the Introduction by referring to the applicability of our framework to
finite difference schemes, {v2%}az>0 - It is shown in [NT, NTT] that finite difference
schemes in viscosity form are conservative, BV -bounded and W11 consistent with
(1.1)~(1.2). Hence, so that our convergence rate results will apply to these schemes,
all that remains to show is that they satisfy our strict notion of Lip*-stability, (1.6) or
(1.11)—(1.12). However, the best Lip™-stability estimates which have been established
for finite difference schemes are of the form (1.9). Since we have not been able, so far,
to sharpen those estimates, we do not include a treatment of these approximations in
the present paper.

2. Proof of main results. We begin this section by proving our basic conver-
gence rate estimates, as stated in Theorems 1.1 and 1.2 in the Introduction. Since
Theorem 1.1 deals with strongly Lip*-stable approximations, which are, as noted
before, weakly Lip™-stable as well, it suffices to prove Theorem 1.2.

Proof of Theorem 1.2. We deal with conservative approximations to (1.1) which
take the following form

(2.1) gz[ug(x,t)] + (%[f(us(x,t))] =r(z,t), t>0, €0,

where 7¢(z,t) is the truncation error of the approximation, and we need to estimate,
in W11, the error

e (z,t) = u(z,t) — u(x,t).

Step 1. We first assume that both the exact entropy solution, u(z,t), and its
approximation, u®(z,t), have a Lip™-bounded initial data, i.e.,

(2.2) Ly = max{|la(u(-, 0)) [l Lip+, lla(u® (-, 0)) | ip+ } < 00
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Subtracting (1.1) from (2.1) we arrive at the equation which governs the error
e(z,1),

(23) 16 (@ 0]+ 5[0 (@ 0, 0] = ¥ (2,0), 130,

where
a*(z,t) = / 0 (Euf (2, ) + (1 — E)ulz, ) de.

Note that the monotonicity of a(-) implies that
(2.4) min{a(u),a(uv®)} < @ (z,t) < max{a(u),a(u®)}.
Integration of (2.3) with respect to z yields

2.5) S (0, 0)] + (2, )5 [ (2, 0)] = R0, £,

where

x

Es(x’t) = /Z 6€(§,t)d§, RE((L‘,t) =/ rs(£1t)d£~

—0o0 — 00

Integration of (2.5) over R against sgn(E*¢) and rearranging, yield that

d € =& 8 € 154
(2.6) 1Bl < | a(x,t) | =5 |E%(2,0)] ) do + IR, )Ly

t . ox
The main effort henceforth is concentrated on upper bounding the integral on the
right-hand side of (2.6). To this end we suggest to divide the real line into intervals,

R=UnIn(t), In(t) = [zn(t), Tn+1(t)),

in such a way that neither sgn(e®) nor sgn(E*¢) change within the interior of these
intervals (the implicit assumption of piecewise smoothness of the solution, as in [L],
may be removed by considering a further vanishing parabolic regularization which is
omitted). We use this division to define the following function:

a(u(z,t)) if zel,(t) and E¢(z,t) >0

In(t)’
(2.7) af(z,t) =
a(u®(z,t)) if z € I,(t) and E*(z,t) <0

In(t).

We now claim (and prove later on) that

(2.8) /sz(:c,t) (—%|E5(x,t)|> de < /zds(x,t) (—%|E€(a:,t)|) da.

Integration by parts of the right-hand side of (2.8) yields

(2.9) /Z & (z,1) (—;—x|E5(a¢,t)|> dz < / %[&s(x,t)] Bz, )| da.
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The following inequality (whose proof is postponed) provides us an upper bound for
the integral on the right-hand side of (2.9):

(2.10a) / ()] 1B, )ldw < LB, D)l
where

+
i) ) = max s SRS Jolu . OVl }-

Inserting (2.9) and (2.10a) into (2.6), we arrive at the inequality

d £ £
(2.11) gl G Olw-1n < L @lles ¢ w12 + Ir*C, Ollw 1.1,
which implies that

T £
e (5 T lw-11 < edo ZO% e (. 0) lw-1a

T T .
b el s
0

Since, by the definition of L in (2.2), W¢(0) < L{, we conclude, in view of Lip*-
stability (see Definition 1.2), that

(2.12)

T . L+
(2.13) efo WoMdt < Const;, Consty ~ -A—;—,
and
T T we(ra
(2.14) / eJ. W g < Consty,  Consta ~ |InM — InL|.
0

Using (2.13), (2.14) and (2.10b) in (2.12), proves the desired error estimate (1.7a).
Finally, in order to conclude Step 1, we return to justify (2.8) and (2.10):
First, we prove (2.8) by showing that the inequality holds in each interval I, (t),
i.e,

(2.15) " as(z,t) <—%|E€(z,t)|) dr < /I,,(t) at(z,t) (—5%|E5(x,t)|) dz.
Suppose that E¢(-,t) > 0 in I,(¢). Then by definition (2.7),

(2.16) at(z,t) = a(u(z,t)) Ve e I,(t).

There are two possibilities to consider. If e°(z,t) > 0 in I,(t) then by (2.4)

at(z,t) > a(u(z,t)),
(2.17) 5
—6—x|E€(x,t)| = —sgn(E°(z,t)) - e°(z,t) <0 Vz € I, (t).

Therefore, (2.15) follows in this case by (2.16) and (2.17). If, on the other hand,
ef(z,t) <0 in I,(t), then

(2.18) at(z,t) < a(u(z,t)), —(%|EE(:E, t) >0 Vze ()
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and (2.15) follows in this case as well. The case E°(-,t) |1, ()< 0 is treated similarly.
This concludes the proof of (2.8).

Next, we prove inequality (2.10). In view of definitions (2.7) and (2.10b), we
conclude, using the Lip*-stability of the exact solution,

Lg
lla(u(-, t)llLip+ < m,

that 6 > [a°(, t)] satisfies the following inequality in the sense of distributions:

(2.19) %[ds( < LE(t +Z[a Tn(t) +0,t) — a°(zn(t) — 0,1)]6(x — zA(t)),

the sum being taken over all division points z,(t) where a°(-,t) experiences a jump
discontinuity, namely where sgn(E*(-,t)) changes. But, E°(-,t) — being a continuous
primitive function — vanishes at these points. Hence, integration of (2.19) against
|E#(z,t)| proves (2.10a) and completes Step 1.

Step 2. Now we turn to the case of initial rarefactions and prove error estimate
(1.7b). To this end we introduce the function ¥s(-) = 3%(3),6 > 0, which is the
dilated mollifier of

1 |z|<1
2.2 = 2’
Clearly
(2.21) v ¥ w — wllz, < O@)||lwllsv,
and
1
(2.22) s * g < O (3) 510,

With this in mind we return to the conservation law (1.1) and its approximate solution
(2.1) and define a new pair of solutions, us and u§, corresponding to the mollified
initial data:

02 D0+ o [Flusle, )] = 0, w(,0) = s+ ul-,0);

220 Dfuile, )+ o (i ] = i@, w(,0) = s xu(,0).

We are now able to estimate the W~1l-error in (1.7b) by decomposing it as
follows:

”us(’T) - u('aT)”W—lvl
(2.25) <l T) — ug( T)llw-10
Hllug (-, T) — us(, T)llw-r2 + lus(-, T) —u(, T)llw-11-

Since for compactly supported functions, ||w|w-11 < |supp{w}| - ||w|L,, we may
bound the first term on the right-hand side of (2.25), using (1.8), (2.24), and (2.21),
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as follows (Qr denotes the compact support! at t = T):

0" (,T) = w5 T)lw-ss < 197]- [, T) — w5, D,
(2.26) < Q7] - Crllu®(-,0) — u3(-,0)]lL,

< [Qr[- Cr - O@)|[v® (-, 0)llBv = O(8)|lu®(-, 0) || Bv-

Similarly, the last term on the right-hand side of (2.25), may be bounded by
(227) ||'U,5(,T) - 'LL(-, T)”W—l»l < 0(5)|lu(a O)HBV
Hence, it remains only to deal with the term [|u§(-,T) — us(-, T)|lw-1.1. This requires
6 to be appropriately chosen so that

(2.28) WEO) <%, Wi = la(us( )l

and, consequently, the Lip*-stability estimates (1.11)—(1.12) hold. If D denotes the
largest positive jump in u®(-,0) then the choice § = 2D max[a’(u(-,0))]e/M will
do for (2.28). By doing so, we may conclude the e-weak Lipt-stability estimates,
(1.11)—(1.12), for W§(t):

T e T T €
eJo Wi SOG); / ele Wi 4y < 0 nel).
0

These estimates, together with error estimate (2.12) for e§ = u§ — us, imply that
(2.29) [lug(,T) — us(-, T)llw-11

< 0 (L) 1450) — s -1 + O(1 )52 oy w-13821
Since |95 * wlw-11 < [|w|lw-1.1, estimate (2.29) implies that
(2.30) 45, T) = s, T)llw-1o

<0 (2) 19,0) = e Olbw-1a + Ol - Il i3m0

Therefore, since § = O(¢), (1.7b) follows from (2.25), (2.26), (2.27), and (2.30) and
the proof is thus concluded. 0
Remark. Note that if the approximate solution smoothens the initial data so that

o0l <0 (2).
e.g., the SV method, there is no need to mollify the initial data of the approximation,
as we did in (2.24). Hence, in this case, the error term (2.26) does not exist and,
therefore, error estimate (1.7b) holds even if the approximate solution is not L,-stable.
We close this section with the proof of Theorems 1.3 and 1.4.
Proof of Theorem 1.3. Let u be the entropy solution of (1.1)-(1.2) and v be
another weak solution of (1.1)—(1.2) which is also Lip*-stable in the sense of (1.5).
Setting u® = v, € > 0, we have

w(-,0) —u(-,00)=0 and ui+ f(u®); =0 Ve>0.

! Note that in case u (-, T') is not compactly supported, the exponential decay which characterizes
the tail of various viscosity-like approximations will suffice for our estimates.
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Hence, error estimate (1.7b) implies that
[v(,T) —u(, T)w-11 = [u( T) = u(-, T)lw-11 < O(e)|uollpv Ve > 0.

Letting € | 0, we conclude that u = v. 0

Proof of Theorem 1.4. We set u® = v for all € > 0 and use error estimates (1.7a)
and (1.7b), given in Theorem 1.1. Since u® is an exact entropy solution of (1.1), the
truncation error term on the right-hand side of both estimates vanishes.

In case both ug and vg are Lip*-bounded, estimate (1.7a) holds and (1.16) follows
with Const; = K; and n = 1.

If either of the initial conditions is LipT-unbounded, estimate (1.7b) holds and
we conclude that

1
Io648) = w10 < 0 £ ) o = wollw-12 +0(e) (ool + luollov)

for all € > 0. Taking € = ||vg — u0||év,1‘l, proves (1.16) with n = 1. 0
3. Viscous parabolic regularizations. We consider here viscous parabolic
regularizations to (1.1) of the form (1.4). These regularizations are the following:
e Conservative;
o L,-bounded, |u®(-,t)|lL.. < |luollr;
e [L-contractive and, therefore, thanks to translation invariance, BV -bounded
(see Theorem 4.1, later on, for a proof of L;-contraction in a more general
setting);
e WLl consistent in the sense of Definition 1.3, since u®(-,0) = ug(-) and

lug +f (u)allw-11=eQ)sllz, <& max |Q ()| ]lu (-, t)lBv < O(e);
[ul<lluollLoo
e Lip*t-stable (Theorem 3.1).

In view of the above, error estimates (E1)—(E3), given in Corollary 1.2, apply to this
family of approximate solutions.

We are therefore left only with the task of proving Lip™-stability; this is done in
the following theorem and lemma.

THEOREM 3.1. The (possibly degenerate) parabolic reqularization of (1.1),

9, ¢ 9 o e 0 c /
(3'1) a[u ($7t)] + %[f(u (l‘,t))] = €W[Q(u ($7t))]7 Q > 07 € l 0’
is strongly Lip*-stable if
(32) (£) <o

and e-weakly Lip™ -stable otherwise.
Proof. Let us first assume that Q' is strictly positive so that the solution u¢ is
smooth. Multiplying (3.1) by o'(u®(z,t)) we get

2
(33) 2 a(u)] + 0u) 5-[a(u)] = /() 55 Q).
By denoting
(3.4) wt = w (2, 8) = 28D _ gre) 2L
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the right-hand side of (3.3) may be rewritten as follows:

o2 Bu* ‘w)Y
65) ) loue)=c [Q’(uf) (2 (wf)?} .
Differentiation of (3.3) with respect to z and using identity (3.5) yields
ow® ow®
(3:6) - + (wF)? + a(u) 5 =
o0 Q) ot Q) owt Q) (@)’
e |9 ) Oz? + a’(uf) Y oz +2<a’(uf)> Y or + (a’(ue)) a’(uf)}

Since u¢ is smooth and compactly supported, w*(-,t) attains its maximal value, say
in z = z(t), and

€ Qws
(3.7) w0020, o (a(e),) =0, S ((0),0) <0,
Hence, denoting
(3.8) We(t) = w(z(t), 1) = lla(w (-, 1) |ip+

we conclude by (3.6), (3.7), and the positivity of-a’ and @Q’, that

(3.9) % +(W)? < eK(WF)’,
where
1 Q) !
_ u
(3.10) K= e, [( a’(u‘f)) }

In view of Lemma 3.1 below, inequality (3.9) implies e-weak Lip™-stability. In case
that condition (3.2) holds, K = 0 and inequality (3.9) amounts to Ricatti’s inequality

dwe

a2<
o H V<o,

which implies strong Lip™-stability.

If Q' > 0, equation (3.1) is degenerate and, therefore, admits nonsmooth solutions.
This case may be treated, as in [VH], by introducing a further regularization. We
replace Q(-) by the strictly monotone regularization term Qs(-) = Q(-) + éa(-). Note
that with this choice of Qs, the value of K, (3.10), does not change. Hence, the
corresponding solution, u§, satisfies inequality (3.9) and by letting 6 | 0, we obtain
the same inequality for the limit solution. 0

Remark. The most common choice of a regularization coefficient is Q(u) = wu.

For this special choice of Q(u), the speed-like condition (3.2) reads (%)” < 0; consult
[LFX].
LEMMA 3.1. Let y°(¢t) denote the solution of

dy®

(3.11) =

+ () =eKx)?®, K>0, t>0,
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where
CE
€ — [
(3.12) y*(t=0) = e
and c® satisfies
(3.13) 0<c<cf<e<l, e]0.
Then, for any T > 0,
T €
(3.14) o VO < (1>
€
and
T T .
(3.15) / eJe VO g < O(|Ine)).
0

The proof of this Lemma is postponed to the Appendix. Note that Lemma 3.1,
together with (3.8) and inequality (3.9), show that the approximate solutions u®(z, t)
are e-weakly Lip*-stable with any constant M < 1/K (see Definition 1.2).

4. Pseudoviscosity approximations. One of the methods for the approxima-
tion of phenomena governed by hyperbolic conservation laws is considering parabolic
regularizations with a gradient dependent viscosity. These so-called pseudoviscosity
approximations take the form

(4.1) ui + f(u¥)e = eQu,p%)z, P°i=uj, €]0,
(4.2) u®(x,0) = uo(z),
where
0Q
(4.3) o >

Note that this class of parabolic regularizations is wider than the class of viscous
parabolic approximations, (3.1).

First, we note that these conservative approximations satisfy the maximum prin-
ciple and, therefore, the solution remains uniformly bounded by |uo||L.. -

Next, the following theorem (whose proof is postponed to the Appendix) asserts
that the solution operator of the pseudoviscosity approximation is L;-contractive.
Therefore, thanks to translation invariance, the solution u¢ remains BV -bounded.

THEOREM 4.1 (L;-contraction). Let u® and v be two solutions of (4.1) and (4.3).
Then

(4.4) [w® (- 8) = o5 )z, < fluf(,0) = v°(,0)llLy, > 0.
Finally, we address the question of Lip*-stability. We show that under suitable

assumptions on the pseudoviscosity coefficient, Q(u, p), the solution of (4.1) is weakly
Lip*-stable.



CONVERGENCE RATE OF APPROXIMATE SOLUTIONS 641
THEOREM 4.2 (Lip*-stability). Let Q denote the domain in R?,
Q = [inf ug, sup ug] % [0, 00).

Assume that the following hold for all (u,p) € Q (M; and My denote some constants):

(A1) 1Qp(u, D), |Qup(u,p)| < My;
(A2) Quu(uvp) < M; - p;
(43) Qpp(u,p) < 0.

Then the solution of (4.1)—(4.3) is e-weakly Lip™ -stable.
Proof. We first deal with the uniformly parabolic case, @, > 6 > 0. Let us denote

we(z,t) = %{a(us(x,t))], We(t) = maxw®(z,t) = [la(u®(, 1))l Lip+ -

In view of Lemma 3.1, it suffices to show that there exists a constant K > 0, such
that

d
(4.5) d—twe(t) + (We(t))? < eK(We(t)3, t>0.
Multiplying (4.1) by a’(u®) and differentiating with respect to x, we find that w =
w*(z,t) satisfies

2 1,,,2\2
w w wy + A'w
wy + w2 +awy =¢- Qw7 +2Qu,,a7(wgc + A'w?) +Q,,,,(%a,——)—

3
+ Quwz + Qp - (wm + 24" wwy + A”%)] ,

where a = a(uf) and A = A(u®) = 1/d’(u).

Let (z(t),t) be a positive local maximum of w. Then w > 0 in that point and,
since a’ > a > 0, (1.1), also p* = u > 0 there. Furthermore, w; = 0 and wgyz <0
in that point. Therefore, in view of (4.3) and assumptions (A1)—(A3), the above
inequality implies that

wy + w? < eKwd

in (z(t),t), for some constant K which depends on M;, M,, a and the uniform
bounds on A’ and A”. Therefore, (4.5) holds and that concludes the proof for the
nondegenerate case.

In the degenerate case, we replace Q(u,p) by Qs(u,p) = Q(u,p) + 6p so that the
resulting pseudoviscous approximation will be uniformly parabolic, 0Qs/dp > § > 0,
and admit a smooth solution, ui. Note that Qs, 6§ | 0, still satisfies conditions
(A1)—(A3) with constants, say, M; + 1 and Mj. Therefore, inequality (4.5), with K
independent of 6, holds for ug, 6 | 0, and consequently it holds for u® as well. ]

Remark. Theorem 4.2 implies, in particular, the (e-weak) Lip*-stability of viscous
parabolic regularizations, (3.1), stated earlier in Theorem 3.1. These regularizations
are identified by viscosity coefficients of the form

(4.6) Q(u,p) = q(u)-p, q(u) >0.
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Such coeflicients satisfy assumptions (A1)-(A3), provided that q(-) is sufficiently
smooth.

We therefore conclude, in light of Theorems 4.1 and 4.2, that Theorem 1.2 applies
to approximation (4.1) under assumptions (4.3) and (A1)—(A3). Hence, if in addition,
approximation (4.1) is W1 !-consistent with (1.1), i.e.,

lut + f(u)sllw-11(x.) < O(e),
or simply,
(4.7) 1Q (v, ug) Ly v,y < Const,

Corollary 1.2 may be applied and error estimates (E1)—-(E3) hold. We propose below
a condition on Q(u,p) which guarantees W ~1!-consistency, (4.7).
PROPOSITION 4.1. If there exists a constant C > 0, such that

(4.8) |Q(u,p)| < Clp| V(u,p) € [inf ug, sup uo] x R,

then equation (4.1) is W41 -consistent with (1.1).
Proof. Condition (4.8) implies that

1Q (v, uz) L, (»,) < Cllugliz, = Cllvf|lsv < Clluollsv-

Therefore, (4.7) holds and the proof is concluded. 0
An example of a family of pseudoviscosity coefficients which satisfy all the above
requirements, i.e., (4.3), (A1)—(A3), and (4.8), is the following:

(4.9) Q(u,p) = Q™ (u,p) = q(u) [(1 + |pl)” — 1] sgn(p), q(u) 20, 0<B<1.

Note that by letting 3 go to zero we obtain ) = 0, which corresponds to the hyperbolic
conservation law, while the other extreme case, 3 = 1, coincides with the standard
viscous parabolic coefficient, (4.6).

A special class of pseudoviscosity approximations, (4.1), where Q = Q(p),

(4.10) up + f(u)e = €Q(p%)s, Q' 20, €10,

was introduced by von Neumann and Richtmeyer in [NR]. In [MN] it is shown, by
means of compensated compactness, that under further assumptions on the pseu-
doviscosity coeflicient, there exists a subsequence of weak solutions of (4.10), subject
to the initial data (4.2), which converges in L} _ to the corresponding entropy solution
of (1.1), provided that up € W2,

One of the additional restrictions assumed on @ in [MN] is that it acts only on
shock-waves and does not smear out rarefactions. Namely,

(4.11) Q'(p)=0 Vp>0 and Q'(p) >0 Vp<O.

Note that restriction (4.11) guarantees Lip*-stability, since conditions (4.3) and (A1)-
(A3) are clearly satisfied in this case.

An example of a family of such pseudoviscosity coefficients which lead to W —11-
consistent approximations (in view of Proposition 4.1) is

(4.12) Q%(p) = [@"P(u,p)] =1-(1-p )%, 0<B<1,

Q)8 (y, p) being defined in (4.9). The choice which corresponds to 3 =1, Q'(p) =
p~, activates the regular parabolic regularization only on shock-waves and leaves
rarefactions untouched.
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5. The regularized Chapman-Enskog expansion. In this section we discuss
the regularized Chapman-Enskog expansion for hydrodynamics, proposed by Rosenau
[R]. This so-called R-C-E approximation is studied in [ST], where it is shown that
it shares many of the properties of the viscosity approximation, e.g. existence of
traveling waves, monotonicity, L;-contraction and Lip*-stability.

Let us briefly recall the main results of [ST]. The R-C-E approximation is pre-
sented in the form

(5'1) uf + f(ue):v =€ [Qme * u;]z , €10,
(52) uE(.,O) = uO(')’
with the choice of the unit-mass viscosity kernel
1 1 T
— Zelzl -~ o=
(5.3) Q@) =3¢, Qme(e) = —Q ().

This is a pseudolocal dissipative approximation of the conservation law, where the vis-
cosity coefficient is being activated by means of convolution rather than multiplication
(compare (5.1) to (3.1)).

When m — 0, Qm. tends to the Dirac measure and the R-C-E approximation,
(5.1), turns into the viscous parabolic approximation

ug + f(u)e = Euiz'

Equation (5.1) may be rewritten in the equivalent form

(5.4) U + f(u)e = ——5= [u® — Qme *uf].

The solution of (5.4) remains as smooth as its initial data [ST, Thm. 2.1] and,
therefore, if the initial data are discontinuous, weak solutions must be admitted. Since
such solutions are not uniquely determined by the initial data, (5.4) is augmented with
a Kruzkov-like [K] entropy condition [ST, (4.1)],

(5.5) orlu — el + - {sgn(ut — e)lf(u) ~ F()])
<~ (v — o] — sgn(u ~ O[Q. » (u — o))}

for all ¢ € R. In particular, by substituting ¢ = +sup |[uf| or ¢ = —sup |uf|, we
obtain from (5.6) that u* is, respectively, a supersolution or a subsolution of (5.4) and
therefore a weak solution. Hence, u° is considered an entropy solution of (5.4) if it
satisfies inequality (5.5) in the sense of distributions for all ¢ € R.

The above inequality, (5.5), implies an L;-contraction,

(- 8) = v, )|y < flu(-,0) = v°(-, 0)|l Ly,
and hence BV-boundedness,
[u*(, )llBv < lluollBv-
Since, by (5.1),

l[uf + f(u)zllw-11 < el|Qme * uzllz, < ellQ@mellz: lluollv < O(e),
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we also have W~11_consistency.

Finally, we deal with the question of Lip*-stability. Adding the smoothing vis-
cosity term 6uS® to (5.4) and differentiating with respect to z, we get that w = uS?
satisfies

1(,, €06 2 £, 1
wg +a' (u°) - w* + a(u®®) - wy = —%[W—Qms*w]-l'&vm-
Letting 6 | 0, we get that W (t) = max, w(z,t) is governed by the Ricatti differential
inequality

(5.6) W'(t) + aW?(t) < 0.

Restricting our attention to Burgers’ equation, a(u) = u, the R-C-E approximation
turns to be strongly Lip*-stable, in virtue of (5.6).

Therefore, we conclude, in view of Theorem (1.1), that the R-C-E approximation
converges to the entropy solution of Burgers’ equation and error estimates (E1)—(E3)
hold. This extends, for Burgers’ equation, the convergence rate result of [ST, Cor.
5.2] which was restricted to uy € C1.

6. The spectral viscosity method. The method of Spectral Viscosity (SV) is
used for the approximate solution of (1.1) in the 27-periodic case. The family of ap-
proximate solutions, {un(z,t)}, constructed by this method, consists of trigonometric
polynomials, un(z,t) = Zsz_ ~ Gk (t)e*®, which approximate the spectral projection
of the exact entropy solution, Pyu.

This method takes the following conservative form (consult [T3]):

S P (,10)) = en e Qu(a,0) + (a1,

0
—’U,N(.'L',t) + or

CAVIN =

(6.2) un(-,0) = Pyuo(:)-

The right-hand side of (6.1) consists of a vanishing viscosity amplitude of size e | 0
and a viscosity kernel, Qn(z,t) ZI kl=mn Qi (t)e™**, activated only on high wave

numbers, |k| > mpy >> 1. As in [T3] we deal with real viscosity kernels with increas-
ing Fourier coefficients, Q = Q| k|, which satisfy

29
(6.3) 1- (TTT) <Qk(t) <1, |k| >mpy, q= Const > 1.5,

and the spectral viscosity parameters, ey and my, behave asymptotically as

1

)
R — ~ N 24
NelogN’ my~N2a, 0<6f<1.

(6.4) EN ™~

The use of the projection Py on the initial data is problematic since even if ug has
a bounded variation, ||Pyuo| gy may grow as much as O(log N). This may be avoided
by taking, for instance, the spectrally accurate de la Vallee Poussin projection,

N A 1 k| < 2,
(6.5) uN(x,O) = VPNUO = Z O'kﬁ,o/cezkz, O =

k=—N 2-2 |k > &
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which satisfies

lun (-, 0)llBv = IV PnuollBv < 3|uollBv-

This, according to the total-variation boundedness of the SV method (consult [T3,
Cor. 2.3]), implies that

(6.6) ||uN(-,t)||Bv < Constt, te€ [O,T]

Hence, we hereafter assume (6.5). At the end of this section we will deal with the case
described in (6.2) of employing the regular spectral projection on the initial data.

The SV method smoothens the initial data by smearing its discontinuities: Since
uo() = Y pe_ oo Goke™™ € BV, it follows that dgx = O (1). Hence

0 Y ] & )
l%[uN(,O)]l = Z ikokiore™®| < Z |k] - [tok| < O(N),
k=—N k=—N
and therefore
(6.7) lun (-, 0)|| Lip+ < O(N) < oo0.

We now turn to deal with the Lip*-stability of this approximation. To this end
we rewrite (6.1), as in [T3, eq. (2.4a)], in the following form,

682  mun(e0)+ o flun(@0)

ot
92 0 0
= ENWUN(:L'J) - SN%RN(.’L‘, t) * %UN(:L',t) + En,
where Ey = 6%(1 — Pn)f(un) is a spectrally small error term and

N
(6.8b) Ry(z,t)= Y. Ru(t)e™, Rk(t):{
k=—N

1 R |k| < mpy,
1-Qk() [kl >mn.

Multiplying (6.8a) by o'(un) and differentiating with respect to z yields for w =

a%a(uN):

3
6.9) w; + a(un)ws +w? = en |Wwee + 24" (un )ww, + A"(uN)——-—w
!
a (’LLN)

0 0 0? 0
— &N [a”(uN)A(uN) (%RN * %UN) w+a (un) (@RN * EEUN)]
+ " (un)A(un)wEN + a'(uN)%EN.

Here, asin §4, A(-) = 1/a’(-). As before, we find that W (¢) = max, w(z, t) is governed
by

d

(6.10) %W(t) + (W (t)? <enK(W(t))® + BNW(t) + N,
where

_ A"(u)\ "
(6.11) K= e ( a' (u) ) ’
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0 0
BN = M; - {ENHE;RN * —un|lL. + ||EN||LOO] ;

8
(6.12) o
My= | Jmax la” (u)A(u)|
and
o2 ) )
o =Mz [enl g e el + g Bl |

a’(u).

= m.
[u|<llunllLoo

We now use estimates, obtained in [T3], in order to estimate Sy and yy. First, we
recall that [T3, Lem. 3.1] supplies us with a uniform bound for the spatial derivatives
of R N

as
0x®

Using (6.14) with s = 1,2 and the BV-boundedness (6.6), we conclude that

(6.14) | =—Rn (1), < Const-my*logN, 0<s<2¢-1.

0 0 0 9
_ _ < |2 . < )
(6.15) HBzRN * az“N||L°° < llaxRN”L“’ |lun|lsv < Const - my log N

and

2

0 0 0?
(6.16) ”WRN * %UNHLOO < ||WRN“LOO - llun||Bv < Const - m?\, log N.

Since || En||z., and || 2 En||L.. are spectrally small, hence negligible, we conclude by
(6.12), (6.13), (6.15), (6.16), (6.4), and (6.3) that

(6.17) BN ~ NO((1/9)-1) 10, YN~ NO(3/29)-1) 10.

We may now state and prove the following weak Lip™-stability result.

THEOREM 6.1. Consider the SV method (6.1) and (6.3)—(6.5), approzimating
the conservation law (1.1)—(1.2). Assume that a = f’ satisfies (517)” < 0. Then the
approzimate solutions are e-weakly Lip* -stable, with € = %

Proof. Our assumption on a(-) implies that K, given in (6.11), equals zero. Hence,

(6.10) reads in this case:

(6.18) Tw(t) <~ (WO + By (0 + .

Solving (6.18) we get that

Wy —W-

(6.19) W(t) <wy + per—w)t 1’

where

(6.20) wi:ﬂ}vﬂ:\/[;?\;-f-‘l’)’]v) 17=WEtzO)_w_.
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Note that wy and n depend on N. Furthermore, by (6.20), (6.17), and (6.3) it follows
that

(6.21) wy = O (yAy) ~ NOGAD=1/D __ g,

N—oo

Also, since by (6.7),
(6.22) W(it=0)~N,
we conclude by (6.20) and (6.21) that

(6.23) n—s1.

N — oo

We claim that the weak Lipt-stability conditions, (1.11)—(1.12), hold here with
e = %. Namely,

T
(6.24) edo WO < o(N)
and
T T
(6.25) / ele W 4 < Olog N).
A ;

In order to prove these two estimates we integrate (6.19) and find that

T ne(w+—w_)T -1
(626) /t W(T)dT S w- (T - t) + lOg l:ne(w+—w_)t —1 ] :
Hence
T (wp—w)T _q (wy—w)T _ 1
exp / W(r)dr| < ev-T. L +ev- T e
A n—1 n—1
But since
wy — w—
6.27 -1=
(6.27) K W(t=0)—wy’
we conclude that
T (wy—w)T _ 1
exp[/m‘VOﬂdﬁ <enT el Cmo—— (W(t = 0) ~wy)
0 Wy —W-

and (6.24) follows by using (6.21) and (6.22).
As for (6.25), inequality (6.26) implies (note that w_ < 0):

/OT exp {/tT W(T)dT:\ dt

<-T (ne(““f_“’—)T - 1)

(6.28)

(wy—w_)T _ 1 (wy—w_)T _ 1
+ ne log (ne ) .
Wy — W— n—1
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First, we observe that (6.21) and (6.23) imply that

(6.29) netw+—w-)T _1 __, 0.

N—o0
Now, in order to estimate the second term on the right-hand side of (6.28) we deal
with each of its two multiplicands. Using (6.27), (6.21), and (6.22) we find that

ne(w+—w_)T -1 e(w+—w_)T e(w+—w_)T -1

(6.30) TR 7 ey Sy S— T 0+T=T.

Furthermore, by (6.27), (6.21), and (6.22),

776(w_'_—w_)T -1 e(w+—w_)T -1

=ew+rw )T 4 =~ (W(t=0)—wy)~N.

31
(6:31) n—1 Wy — W_

Hence, (6.28)—(6.31) prove (6.25) and the proof is thus concluded. 0
COROLLARY 6.1. Consider the SV method (6.1) and (6.3)—(6.5), approzimating
the conservation law (1.1)—(1.2). Then

Cre if llwollLip+ < o0,
(6:32) llun (- T) = ul, Dllw-22 < {CT€| Ine| if [|uollLip+ = 00 and (L)" <0,
withe = N=9 .

Proof. The case of Lip*-bounded initial data is straightforward and we, therefore,
concentrate on the case that |lug||Lipy = 00 and (&)” < 0. Since, by Theorem 6.1,
we have %-weak Lip*-stability in that case, and since % <e=N7% uy are also
e-weakly Lip*t-stable. Hence, it remains to show e-W ~11-consistency.

W11 consistency with (1.1),

< KTN_ov

0 0
TR + g—f(UN)
t z Lm([O’T]’W_I’IGRz))

has already been shown in [T3, eq. (3.9b)]. As for W~11consistency with the initial
condition, we claim that

(6.332)  |lun(-0) —u(-,0)[lw-11 = [VPyUp — Up|lL, < KoN~*log N,

where

(6.33b) Uo(z) / " wol6)d.

—m

In order to prove (6.33), we recall that (consult [Q, egs. (2.12), (2.14), (2.15)])
(6.34) |PxUo — U1, < Const -log N - N~™|U{™ ||, m > 0.

Taking m = 2 in (6.34) we find that the initial error allowed by W ~—1:1-consistency,
is exhausted in this case:

(6.35) |1PnUo — Uo||L, < Const - N2 log N |ug|| v -
We leave to the reader to verify that

(6.36) |V PnUy — PyUs||L, < Const- N~2log N.



CONVERGENCE RATE OF APPROXIMATE SOLUTIONS 649

Hence, (6.33) follows from (6.35) and (6.36), and the proof is completed. 0

We have thus far restricted our attention to the case (%)" < 0. In the general
case, the cubic term on the right-hand side of (6.10) does not vanish. Still, one
can prove (along the lines of the proof of Lemma 3.1) weak LipT-stability of order

en = N~ %log N, provided that

c
W(it=0)<
(t=0=—%
for some ¢ < 1. Alas, this condition does not hold in our case (consult (6.4) and

(6.22)). We, therefore, suggest to overcome this problem by considering a speed-like
SV method,

(6371 grun(a,) + o Puf(un(z,1)) = en o Q1)+ 2alun(z, 1)

ot Oz
with (6.3)—(6.5) as before. This method, still conservative, differs from the regular
SV method, (6.1), only in the spectral viscosity term on the right-hand side, where
un was replaced by a(uy).

Remark on an a priori Lo, bound. The question of uniform L..-boundedness of
this modified SV method may be tackled along the lines of [S]. However, we suggest
here a simple argument which enables us to circumvent that question.

Since the initial data are always assumed bounded, (1.2), the exact entropy so-
lution of (1.1)—(1.2) will not be affected if we charige the flux f outside the interval
Iy = [minwug, maxug]. Therefore, we choose to smoothly extend f from I to R,
so that f, a = f’,a’,a”, etc. remain uniformly bouded on R. By doing so we may
conclude that f()(uy), and by convexity, A® (uy) as well, i > 0, are all uniformly
bounded even if uy is not. Since our estimates depend only on ||f® (uy)|L., and
|A® (up)|| L., and never on the Loo-bound of uy itself, this argument is sufficient for
our needs and no a priori Ly,-bound is required.

We would like to comment that L..-boundedness proofs for approximate solu-
tions of (1.1)—(1.2) may be sometimes tedious (as in our present case). Hence, it
is sometimes customary to assume an a priori L.,-bound, based, for instance, on
numerical evidence. The above, to the best of our knowledge, innovative extension
argument, may be applied to such approximations as well, so that assumptions, not
fully justified, may be avoided.

The convergence rate estimates for this modified SV method are given in the
following theorem.

THEOREM 6.2. Consider the modified SV method (6.37) and (6.3)—(6.5), approz-
imating the conservation law (1.1)-(1.2). Then uy converges to the eract entropy
solution u(z,t), as N — oo, and for every T > 0 there exists a constant Cr such that

(6.388.) ||UN(,T) - ’U,(‘,T)llw—l,l < CT . 5,

where

(6.38b) E= { € of luollipr <00,y o y-o,
ellnel  if |luollLp+ = o0,

Proof. We first note that (6.37) is still L;-stable (consult the proof of [T3, Lem.
2.2]) and hence (6.6) still holds. Therefore, (6.37) describes a family of conservative,
L,-stable and BV-bounded approximate solutions of (1.1)—(1.2).
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Next, we address the question of weak Lip™t-stability. We rewrite (6.37) as

0 0 o2 0 0
prigy + %f(uzv) = €N(—9§a(u1v) - EN‘a‘ERN * —a;a(uzv) + En,

where Ry and Ey are as in (6.8). Multiplying by a'(uy) and differentiating with
respect to x, we find that w = a(uy), satisfies (compare to (6.9)):

wi + a(un)wg + w? = ey [0 (un)Waz + a” (un ) A(un ) wws)

e [a" ) Atun) (2R alum) ) w0+ ') (s R+ matun) )|

5}
+a"(un)A(un)wEN + a/(uN)EEEN'
We conclude that W (t) = max, w(z, t) satisfies

d
dt

where By and yn are not the same as in (6.12) and (6.13) but still satisfy (6.17) (since
|la(un)||Bv remains uniformly bounded). This, according to the proof of Theorem
6.1, implies the f-weak Lip™-stability of (6.37).

Hence, by Theorem 1.2, error estimates (1.7) hold with e = &. Since it 1s easy
to verify that our modified SV method is also W~1!-consistent of order N~?, error
estimates (6.38) follow. 0

Before concluding this section we consider the case of Py projecting the initial
data, (6.2). We recall that the resulting approximation, uy, may not be bounded in
BV and in fact ||un|| gy may grow as much as O(log N). We note that this slightly
changes our convergence rate results, stated in Corollary 6.1 and Theorem 6.2, so that
(6.32) and (6.38) hold with ¢ = N~%log N, rather than ¢ = N~¢.

The first effect of replacing V Py by Py is that estimate (6.17) changes to

—W(t) + (W(t))* < BNW(t) + 7w,

By ~ NOWDDiogN | 0, gy ~ NOG/20"D1eg N | 0,

(consult (6.12), (6.13), (6.15) and (6.16)). This, however, does not change the final
result of 5-weak-Lip+-stab1hty with ¢ = 1 . Hence, by Theorem 1.2, error estimates
(1.7) still hold with € = &. In view of (6. 35) it remains only to consider the W 1.1
consistency of un(x,t) with (1.1). Ignoring the spectrally small discretization error
En = £(I — Pn)f(un), we obtain from (6.1) (the proof for (6.37) is similar) that

“—a%uzv(‘,t) + %f(w(»t))” R

<en ”QN(”") * _a_uN()t)

w-1.1 L,

Using (6.4), Young inequality and the fact that ||Qn(:,t)||z, does not exceed O(log N)
(consult [T3, eq. (3.9b)]), we get

(6:39) |+ gt < enlQut ol llov

< Const - (log N)2 = O(N~%log N).

1
Nflog N

Hence, the order of W ~1:1-consistency reduced from O(N~¢) to O(N~%log N). There-
fore, (1.7), (6.35), and (6.39) imply an O(N~%log N) convergence rate in W11,
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Appendix.

Proof of Lemma 3.1. By rescaling € we may assume that K = 1. Since y°(¢) is the
solution of a perturbated Ricatti’s equation, (3.11), we denote by y(¢) the solution of
the regular Ricatti’s equation,

dy

Al = +yt=
(Ala) Ty =0

subject to the same initial condition,

€

(A.1b) y(0) = y°(0) = %, 0<e<cf<eé<l
The solution of (A.1) is
1 \!
A2 t) = (t + ———) ,
(A.2) y(t) 7 (0)
while the solution of (3.11)—(3.12) is given implicitly by
. -1

(A.3) ye(t)z(t+D€+eln<ly )) ,

eV
with

1 y°(0) )

A4 Df = —¢ln <——— .
.. 70 U\ T

First, we note that (3.12) and (3.13) imply that y°(¢) is monotonically decreasing.
Hence

(A.5) ye(t) <y°(0) Ve>0.
Furthermore, since by (3.11) and (A.la)

(A.6) O = yt) V>0,
it follows, using (A.2) and monotonicity, (A.5), that

1\ !
(A7) ¥ () >y (T) > y(T) = <T+ m) vt € [0,T].

With the upper and lower bounds on y*(t), (A.5) and (A.7), we may estimate the
terms in (A.3) and (A.4). We start with the last term in the brackets in (A.3). Using
(A.5) and (A.1b) it may be upper-bounded as follows, for all ¢t > 0:

8111(—1—‘:,{——):—6111(5——1)

E_ys 154
< el 1) <—em(L-1)=0()
< n 8y€(0) S —€ z = £).

On the other hand, using (A.7) together with (A.1b), we get a lower bound for this
term:

(A.8)

1

€ T+ —p
(A.9) sln(ly )Z—eln(_%((ﬁ_1>=0(e|lne|), 0<t<T.

e Y
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Next, we estimate the constant D¢, given in (A.4). Using (A.1b), (A.8), and (A.9)
we obtain the following bounds:

T + =45
(A.10) Df < E +eln (—-—f—ﬁ - 1) = O (¢]|Inel);
(A.11) D* -i; +eln (% - 1) = O(e).

Hence we conclude by (A.3) and (A.8)—(A.11) that
-1
(A.12) v () = [t+0(6)+0(5|1n6|)] , 0<t<T.

With (A.12), estimates (3.14) and (3.15) may easily be verified. Indeed,
T + O(e) + O (¢|Ing) <0 (1)
€

O(e) + O (¢|Inel)
/T ef:Tye(T)det _ /T T + O(e) +O(8|1n€|)dt <O(|lne|)
o “Jo t+0(e)+O0(e|lnel)  — ’

and the proof is thus completed. 0
Proof of Theorem 4.1. Let u®(z,t) and v¥(z,t) be two solutions of (4.1). We
assume that the regularization (4.1) is uniformly parabolic, @, > 6 > 0, hence u*

and v€ are smooth. L-contraction for the degenerate case, Qp > 0, easily follows by
adding the term &p to the pseudoviscosity coefficient Q(u, p) and letting & l 0.

efoT yE (t)dt =

and

As in [L], we divide the real line into intervals, ® = U, I(t), In(t) = [zn(t)
Zn+1(t)), so that
(A.13) (=)™ [us(-,t) — v°(:, 1)] >0

I.(t)
and consequently

(A.14) uf(zn(t), 1) = v°(zn(t), ).
Using (A.13) and (A.14) we conclude that
d
||’LL ( t) - vs('vt)”Ll(%)
d Tny1(t) . .
(A.15) == ; /:z:n(t) [uf(z,t) — v°(z,t)|dz

Tnt1(t)
1 / s (2, 1) — v (2, )de
Tn(t)

Using (4.1) and carrying out the integral on the right-hand side of (A.15) we find that

[
3

—Jluf (1) — v )l )

(A.16) = S0 - £+ £07)]

ZTnt1(t)

Tn (t)
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The first term on the right-hand side of (A.16) vanishes in view of (A.14). Equality
(A.14) also implies that the second term may be written as
p) Tny1(t)
A17 S —1"5,t—5,t] ,
A1) e[ w) [0 () - e ) L

where w® is a mid-value between u and vS. Since (A.13) implies that

A CUR )| T
and
9 [(—1)"(u5(x,t) — v (z, 1)) >0
Oz ! T=xn (1)

and since @)p > 0, we conclude that (A.17) is nonpositive. Therefore, (A.16) implies
that

d € (4
(1) = v, )y <0,

namely, the solution operator of (4.1) is L;-contractive. 0
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