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Abstract. The paper presents the high-order algorithms that we have developed for the large-eddy
simulation of incompressible flows and the results that have been obtained for the 3D tur-
bulent wake of a cylinder at a Reynolds number ofRe = 3900. c© 2001 Acad́emie des
sciences/́Editions scientifiques et ḿedicales Elsevier SAS
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Résum é. l’article pr ésente les algorithmes d’ordréelev́e que nous avons dévelopṕes pour la simu-
lation des grandeśechelles d’́ecoulements incompressibles ainsi que les résultats obtenus
pour le sillage 3D turbulent d’un cylindrèa un nombre de Reynolds deRe = 3900. c© 2001
Acad́emie des sciences/Éditions scientifiques et ḿedicales Elsevier SAS
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1. Introduction

Despite the amazing increase of the computer capacities and the efforts made to elaborate a complete
theory of turbulence, the direct numerical simulation (DNS) and the statistical approaches, based on the
Reynolds Averaged Navier-Stokes (RANS) equations, do not yet permit satisfactory computations of tur-
bulent complex flows. Between DNS and RANS stands the large-eddy simulation (LES) approach, based
on the idea of computing only the large eddies of the flow and to restrict the modeling to the smaller ones.
This approach remains, and probably for some times, adequate to compute turbulent flows. However, in
order to clearly discern the numerical approximation errors and the sub-grid-scale (SGS) modeling, using
high-order methods is from our point of view a fundamental requirement, especially to deal with some
detailed studies of fluid dynamics.
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To compute 3D wakes in channel-like geometries with a homogeneous spanwise direction, we use a
multi-domain Chebyshev-Fourier spectral approximation in space and a second order semi-Lagrangian pro-
jection method in time. The SGS model makes use of the so-called approximate deconvolution method
(ADM) [10, 22], which may be viewed as an extension of the scale similarity model [2]. In the frame of
our numerical scheme then arise the Defiltering-Transport-Filtering (DTF) algorithms that we introduced
in [19]. SGS models based on scale similarity are known to be better on a priori tests than those based on
an eddy-viscosity, typically the Smagorinsky model (see e.g. [21]), possibly associated with the dynamic
modeling [9]. However, they are also known to yield numerical instabilities, which may be overcome by
combining in more or less empirical ways the scale similarity and eddy-viscosity concepts [6]. The ap-
proach that we propose is to use the DTF modeling combined with the spectral vanishing viscosity (SVV)
method to stabilize the calculations. The SVV method, first developed to solve non-linear hyperbolic equa-
tions, typically the B̈urgers equation, with the Fourier [24] or Legendre [17] spectral method, shows indeed
the property to preserve the spectral accuracy of the approximation. Thus, the convergence of the numeri-
cal approximation toward the exact solution remains exponential, even of course if the convergence rate is
worse with a SVV term than without. Note that the present approach should not be confused with those
making use of a spectral viscosity, on the grounds of homogeneous and isotropic turbulence theory [16]).

After a the description, in Section 2, of the high-order scheme and of the associated LES modeling of
turbulent inhomogeneous flows we present, in Section 3, the results that we have obtained for a classical
benchmark: the turbulent wake of a cylinder, the Reynolds number being equal toRe = 3900. Especially
we compare results obtained when using DTF, for the SGS modeling, stabilized with SVV with the no-SGS
model approach making only use of SVV. We discuss these results in Section 4 and finally conclude in
Section 5.

2. The spectral LES model

Along the streamwise direction we use a domain decomposition technique to efficiently handle the elon-
gated geometries typically encountered when studying wake type flows. In each subdomain we use spec-
trally accurate approximations, based on Chebyshev polynomials in thex-streamwise andy-cross-flow
directions and on Fourier series in thez-spanwise homogeneous direction. The time-scheme makes use
of 3 steps: a transport step, to handle the convective term, a diffusion term, to handle the viscous term
and a projection step, to finally obtain a divergence-free velocity field. The LES modeling, i.e. the DTF
algorithm, is implemented in the transport step and the SVV stabilization technique in the diffusion step.

To model the bluff body, inside the channel, we use a smoothed penalty technique. Essentially, the
smoothing is realized through a filtering of its characteristic function, like in [8], but now we use for the
filtering an improved version of the ”raised cosine filter” in order to more precisely take into account the
position of the bluff body. Such a modeling implies that spectral accuracy is lost, at least locally. Here we
assume that the phenomenon remains local and thus does not drastically affect the flow, especially the far
wake.

The equations that we have to solve are then the filtered Navier-Stokes equations with a body force term
to model the bluff body. Denoting, as it is usual (see e.g. [21]), with an over bar the filtered quantities we
assume that the large scales of the (incompressible) flow are governed by the dimensionless equations:

Dtu = −∇p̄ +
1

Re
∇2ū + f̄ (1)

∇ · ū = 0 (2)

with Dt the material derivative andt the time,u the velocity field,p the pressure,f a force term andRe the
Reynolds number.

Let us now describe briefly the different steps of the algorithm together with the implementation of the
LES modeling (more details may be found in [4]). For the sake of simplicity in the notations but also to
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clearly outline that the diffusion and projection steps are similar to those of the DNS implementation, we
omit the over bars in their descriptions.

Transport step and DTF algorithm: The approximation of the material derivative with a BEQ (back-
ward Euler of orderQ) scheme yields, withαq, q = 0, . . . , Q a set of given coefficients:

Dtu(tn+1) =
1

∆t
(α0u

n+1 +
q=Q∑
q=1

αqũ
n+1−q) + O (∆tQ)

with un+1 ≈ u(x, tn+1) and ũn+1−q ≈ u(χ(x, tn+1; tn+1−q), tn+1−q), whereχ(x, tn+1; t) solves
the characteristics equation stemming from(x, tn+1). To compute thẽun+1−q, the natural approach is
then to determine for each mesh-pointxk the value of the velocityu at the times{tn, tn−1, .., tn+1−Q}
and at the pointsχ(xk, tn+1; tn+1−q), q = 1, .., Q. However, the “method of characteristics” cannot
be used in the frame of standard spectral methods because high-order interpolations would be too expen-
sive and moreover would yield numerical instabilities. To overcome this difficulty we use an “Operator
Integration Factor” (OIF) Semi-Lagrangian method [18, 20, 25]. The basic idea is here to transport the
un+1−q(χ(xk, tn+1; tn+1−q)) at the mesh points, so that interpolations / extrapolations are only needed
in time. This requires to solve, with in our case the RK4 (fourth order Runge Kutta) scheme and possibly
sub-time cycling, a set ofQ problems involving an advection equation (for details see [4]).

Applying now the filtering operator we get:

Dtu ≈ 1
∆t

(α0ū
n+1 +

q=Q∑
q=1

αq
¯̃un+1−q)

Then the closure problem consists in determining the¯̃un+1−q from the ūn+1−q. To do that, we use an
ADM type approach, i.e. we introduce an approximate inverse of the filtering operator. The algorithm
proposed in [19, 4] reads:

¯̃un+1−q = (1 + G(T − 1)G+)ūn+1−q

where G denotes the filtering operator,G+ the approximate inverse ofG and T (u) the trans-
port operator such that̃un+1−q = Tun+1−q. Let us remark that the straightforward approach,
¯̃un+1−q = G T G+ūn+1−q, yields a non-consistent algorithm. Indeed, in the limit∆t = 0, for which
T = 1, we haveGG+ 6= 1. The choice of the operatorsG andG+ is of course crucial. In the frame
of a Fourier-Chebyshev spectral method it of interest to apply the filtering operations in Fourier space,
where the convolution products resumes to simple products. In fact we use forG and G+ quadratic
approximations of the Gaussian filter and of its inverse, as shown in Fig. 1, but in order to avoid the mean-
ingless negative values of theG-spectrum, we cancel them in the higher wave number range (G′-spectrum).

Diffusion step and SVV stabilization: In the diffusion step one computes a provisional velocity such
that:

(
1

Re
∇2 + S − α0

∆t
) u∗ = sn+1 inΩ (3)

+B.C., e.g. u∗|Γ = un+1|Γ = uΓ (4)

whereS is the SVV stabilization operator and where:

sn+1 =
1

∆t

q=Q∑
q=1

αqũ
n+1−q +∇p∗ − fn+1
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Figure 1: Spectra of the Gaussian filter and of its approximationsG andG′. The (non-plotted) spectrum of
G+ is symmetric to the one ofG

with p∗ a provisional pressure. In the frame of a second order implementation:Q = 2 andp∗ = pn (“Goda
scheme” [11]).

Our definition of the SVV operatorS relies on the one introduced in [17] for the resolution, in the interval
(−1, 1), of 1D hyperbolic equations by using the spectral Legendre method. In this case, withPN (−1, 1)
the space of polynomials of maximum degreeN , we have:

S u := εN∂xQ(∂xu)

whereQ is the operator such that, withLk the Legendre polynomial of degreek:

Qφ ≡
N∑

k=0

Q̂kφ̂kLk, ∀φ, φ =
N∑

k=0

φ̂kLk

with εN = O(N−1), Q̂k = 0 if k 6 mN and1 > Q̂k > 0 if k > mN . Typical choices formN are
mN = O(

√
N) [17] or mN = N/2 [14]. FormN < k 6 N the numerical experiments show that a smooth

variation forQ̂k yields better results. Thus, as in [17] we will use:

Q̂k = exp(−(
N − k

mN − k
)2) , k > mN .

In our multidimensional framework such a SVV term may be extended in:

S u∗i := εN∇ ·Q(∇u∗i )

with u∗i any component ofu∗ and whereQ applies independently to each component of∇u∗i . Let us
remark that such an extension of the initial 1D definition may be discussed, especially when complex
geometries are considered [26]. Let us also mention that withL a characteristic dimensionless length of
the computational domain (subdomain in our case) then, from scaling arguments,εN = O(L/(2N)).

Projection step: To derive fromu∗ a divergence-free velocity fieldu, we solve theDarcy problem:

un+1 +∇ϕ = u∗ in Ω
∇ · un+1 = 0 inΩ

un+1 · n|Γ = uΓ · n
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and then update the pressure fieldpn+1 = pn + α0ϕ/∆t.
Solving the above Darcy problem is not straightforward. Following [1, 3] we use aunique gridPN −

PN−2 strategy. Essentially, this means that the polynomial spaces of the pressure and of the velocity
components are chosen different, so that no boundary conditions are required for the pressure which is
completely defined by its values at the inner grid-points. Thus, in the monodomain case the polynomial
interpolant of the pressure is 2 degrees less than for the velocity components in the non-homogeneous
directions. Some details on the multidomain case are given in [4].

3. Turbulent wake of a cylinder (Re = 3900)

As e.g. in [15] we are interested in the computation of the turbulent wake of a cylinder at a Reynolds
number (based on the diameter and on the mean flow velocity) ofRe = 3900. Moreover, the Navier-Stokes
equations are solved together with a transport-diffusion equation for the temperature, without coupling, i.e.
the temperature behaves as a passive scalar.

With x, y, z for the longitudinal, cross-flow and spanwise directions, respectively, the computational
domain isΩ = (−6.5, 17.5)× (−4, 4)× (0, 4), and the cylinder is of unit diameter with axis atx = y = 0.

The initial and boundary conditions are, in dimensionless form: (i) att = 0, fluid at rest (u(t = 0) = 0)
and thermally stratified (T (t = 0) = y) and (ii) Dirichlet conditions at the inlet (u(x = −6.5) = 1,
T (x = 0) = y), free-slip conditions foru and adiabaticity conditions forT at the horizontal boundaries
(y = ±4), soft outflow boundary conditions (see [8]) at the outlet (x = 17.5).

The calculations have been carried out with the following spatial approximation: number of subdomains
in x-directionS = 5, Chebyshev polynomial degree inx andy, N1 = 60 andN2 = 120 respectively,
number of Fourier-grid points inz, NF = 60. We have used a time-step∆t = 5 10−3 without sub-cycling
in the transport step. For the SVV parameters we choseεN = 1/N andmN =

√
N . Visualizations at

Figure 2: Isotherms (left) and Q criterion (right) with SVV

a given time of the 3D flow computed with the SVV method are shown in Fig. 2. At left the isotherms
T = ±1.5 are visualized and at right it is theQ criterion (see e.g. [13]). The streamwise and spanwise
components of the vorticity, as computed with the SVV method, are shown in Fig. 3. Quite similar results

Figure 3: Streamwise (left) and spanwise (right) components of the vorticity with SVV

are obtained when using the DTF algorithm associated to the SVV method for stabilization (see [4] for such
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qualitative comparisons). In Fig. 4 the time variations of the temperature at two “boundary points” of the
wake, as computed with the SVV and DTF algorithms, are presented. Large departure of the temperature
may be observed, corresponding to the crossing of some larger eddies at these specific points. Hereafter we
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Figure 4:T (t) for DTF and SVV;P = (12.54, 3.34, 1.66) (left), P = (16.46, 3.34, 1.66) (right)

present more quantitative results. First we examine mean velocity profiles and second the power spectra
obtained from the evolutions of the velocity components at some particular points of the flow. The results
are given for computations made with the SVV stabilization technique, with the DTF-SVV algorithm and
also with the SVV method when adding some noise at the inlet (“SVV+noise”). To this end, a white noise
of amplitude0.005 is added to they andz components of the inflow velocity. Our goal is both to check
the validity of our calculations and to provide detailed comparisons of the SVV, DTF-SVV and SVV+noise
results.

3.1. Mean profiles

The mean profiles have been computed from timet = 75, at which the turbulent flow may be considered
as established, to timet = 150, i.e. on a time interval corresponding approximatively to 7.5 shedding peri-
ods. Fig. 5 shows the variation of the velocity mean streamwise component along thex-axis. The right part
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Figure 5:ūx(x), alongy = z = 0 (DTF, SVV and SVV+n)

of the figure gives a zoom of the recirculation zone. First it should be mentioned that this recirculation zone
appears longer than the one observed in the experiments or in other computations [15, 12]. From our point
of view, this may directly result from the fact that the height of our computational domain only equals 8,
which is not enough to make comparisons with results obtained in an open (or quasi-open) domain. How-
ever, one remarks from [15, 12] that higher order methods seem to yield a longer recirculation zone. Second,
one observes that the discrepancies between our three computations, SVV, DTF-SVV and SVV+noise are
not important. Thus, the DTF result lies approximatively between those of SVV and SVV+noise. Mean
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Figure 6:ūx(y) (top) andT̄ (y) (bottom) forx = 1 andx = 7.36 (z = 0) (DTF, SVV and SVV+n)

streamwise velocity profiles are shown in Fig. 6. The left one is located in the recirculation zone, and the
right one downflow. Zooms of the corresponding temperature profiles are also shown in Fig. 6. Here again
one observes that the three computations yield similar results, especially close to the cylinder. Downflow,
one may assume that the small discrepancies that can be observed essentially result from a not enough long
averaging time, as pointed out by some lack of symmetry of the profiles.

3.2. Power spectra

In order to go into the details of the LES modeling, one has to analyze the frequency content of the ve-
locity field. For inhomogeneous flows, it is convenient to proceed as in experiments, from time evolutions
of the velocity components at different points. Through the Taylor hypothesis one can then produce power
spectra representative of the distribution of the turbulent kinetic energy in wavenumber space, and then
compare it to the Kolmogorov law describing the inertial range. This gives again a way to compare the
results obtained with the SVV, DTF-SVV and SVV+noise computations. In Fig. 7 are compared the time
variations at a given point of thex andy-components of the velocity, computed with SVV and DTF-SVV.
The corresponding power spectra are also presented and compared with thek−5/3 slope of the Kolmogorov
theory. Essentially one observes that the dimensionless shedding frequency (the Strouhal number) approx-
imatively equals 0.2 and that the power spectra show the expected behavior in one part of the spectrum,
before decreasing faster in a numerical dissipation frequency range. Also, one clearly observes that this
dissipation range is slightly larger for the DTF-SVV than for the SVV computations. The filtering part of
the DTF algorithm is certainly responsible for this behavior.

Power spectra obtained for SVV and SVV+noise are plotted in Fig. 8. This figure also shows the power
spectra obtained for thez-component of the velocity, using SVV, SVV-DTF and SVV+noise. One observes
similar results for this component of the velocity, except maybe that the inertial range appears to be a little
bit smaller.
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Figure 7:ux(t) (left), uy(t) (right) and corresponding spectra for DTF and SVV;P = (12.54, 0, 0)

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01  0.1  1  10

P
ow

er
 S

pe
ct

ra
  a

t P
(1

2.
54

,0
,0

) (
R

e=
39

00
)

Dimensionless frequency

Streamwise velocity (Vx)

SVV
SVV+n

K41

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1  1  10

P
ow

er
 S

pe
ct

ra
  a

t P
(1

2.
54

,0
,0

) (
R

e=
39

00
)

Dimensionless frequency

Cross-flow velocity (Vy)

SVV
SVV+n

K41

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01  0.1  1  10

P
ow

er
 S

pe
ct

ra
  a

t P
(1

2.
54

,0
,0

) (
R

e=
39

00
)

Dimensionless frequency

Spanwise velocity (Vz)

SVV
DTF
K41

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01  0.1  1  10

P
ow

er
 S

pe
ct

ra
  a

t P
(1

2.
54

,0
,0

) (
R

e=
39

00
)

Dimensionless frequency

Spanwise velocity (Vz)

SVV
SVV+n

K41

Figure 8: Top:ux (left) anduy (right) power spectra for SVV and SVV+noise;P = (12.54, 0, 0) ; Bottom:
uz power spectra for SVV and DTF (left) and for SVV and SVV+noise (right);P = (12.54, 0, 0)

8



High-order LES modeling

4. Comments

The striking point of the present study is that the no-model approach, making only use of the stabiliza-
tion technique, and the ADM type DTF modeling have yielded very similar results. This may be due to
the choice of the SVV tuning parameters,εN andmN . Especially, the SVV activation parametermN was
chosen small (mN =

√
N ). It remains that the no-model approach has yielded satisfactory results, espe-

cially when looking at the power-spectra. Even more, in the high frequency range, the no-model approach
appears better than the DTF one.

Nevertheless it is expected that taking into account the sub-grid scales contributions of the flow improves
the LES modeling. In the frame of ADM approaches, the choice of the filtering and defiltering operators
may be important. Especially, our conviction is that the ADM can only result in some non-controlled noise
for the SGS model contribution if it is not associated with a two-level grid approach, (see e.g. [5]). Thus,
for the DTF algorithm, one may think as necessary to represent the defiltered quantities on a finer grid than
the filtered ones. In this spirit, using the filterG′ (see Fig. 1), whose spectrum vanishes beyond a critical
wavenumber, saykc, is from our point of view fully justified. Using such a filter is clearly close to using
a two-level grid technique, with the advantage of the higher flexibility offered by the fact of working in
spectral space than working in physical space. Thus, for fully periodic problems, the filtered quantities
would not show spatial frequencies beyondkc, and it is only during the transport step, in which the non-
linear convective term is taken into account, that the full frequency range would be used to handle the
defiltered quantities. In the frame of a two-level grid approach, the high wave-number range should be
disregarded, since we are only interested in the computation of the filtered quantities. As a result, the fact
that with the DTF method the power spectra are slightly worse in the high frequency range than with the
no-model approach should also be disregarded. But it remains that our present choice of the filtering and
defiltering operators can certainly be improved.

Our LES modeling is fully explicit, in the sense that the filtering (and defiltering) operation is explicitly
applied. To this end, we work in spectral space, both for the Fourier and for the Chebyshev approximations.
In case of the Chebyshev approximation this corresponds to apply a filter of constant width to the2π-
periodic functionu(− cos(z)), z ∈ R, i.e. to first map the Gauss-Lobatto-Chebyshev grid to a regular grid
and then to extend it, first by symmetry and then by periodicity. This procedure is close to the one suggested
in [7], where the filtering operation in case of non-equidistant grid-points is defined by a mapping from the
computational domain to the real axis. Moreover, such a procedure may be extended to meshes different
of the Chebyshev-Gauss-Lobatto mesh, as soon as it exists a smooth even and2π-periodic mapping to
similarly associate a Fourier type grid to the computational grid (1D case).

5. Conclusion

Two variants of a high-order LES model have been described and then compared by computing the
wake of a cylinder at Reynolds numberRe = 3900. The first one makes only use of the SVV stabiliza-
tion technique, which shows the essential property to preserve the exponential convergence of the spectral
approximation. This approach may be classified as a no-model approach, in the sense that modeling the
SGS tensor is not attempted. On the contrary the second one combines an ADM type approach (the DTF
algorithm in the frame of our semi-Lagrangian method) and the SVV stabilization technique. Both quanti-
tatively and quantitatively, satisfactory and very similar results have been obtained. Especially, the power
spectra show a behavior in agreement with Kolmogov theory in a large wavenumber range.
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