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Abstract. Adaptive Galerkin methods for time-dependent partial differential equations are
studied and shown to be dissipative. The adaptation implies that the subset of the selected basis
function changes over time according to the evolution of the solution. The corresponding projection
operator is thus time-dependent and nondifferentiable. We therefore propose to use an integral
formulation in time. We analyze the existence and uniqueness of this weak form of the dynamical
Galerkin scheme, and we then prove that the nonsmooth projection operator introduces energy
dissipation, which is a crucial result for adaptive Galerkin methods, e.g., adaptive wavelet methods.
Numerical examples for the inviscid Burgers equation in one dimension and the incompressible Euler
equations in two and three spatial dimensions show that the selection of basis functions, for instance
by filtering out weak wavelet coefficients from the solution, introduces energy dissipation. Moreover,
for the Burgers case we can show that adaptive wavelet regularization yields convergence of the
truncated Galerkin solution to the physically relevant entropy solution. These results motivate
adaptive wavelet-based Galerkin schemes for nonlinear hyperbolic conservation laws.
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1. Introduction. Motivated by achieving high accuracy at reduced computa-
tional cost compared to uniform grid methods, numerous adaptive discretization
schemes of evolutionary partial differential equations (PDEs) have been developed
for decades; see, e.g., [6]. Real-world problems, for instance fluid and plasma turbu-
lence or reactive flows, typically involve a multitude of active spatial and temporal
scales, while adaptivity allows us to concentrate the computational effort at loca-
tions and time instants where it is necessary to ensure a given numerical accuracy,
whereas elsewhere efforts may be significantly reduced. Among adaptive approaches,
multiresolution and wavelet methods offer an attractive possibility to introduce lo-
cally refined grids, which dynamically track the evolution of the solution in space
and scale. Automatic error control of the adaptive discretization, with respect to a
uniform grid solution, is hereby an advantageous feature [9]. For a review of adaptive
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LMD-CNRS, École Normale Supérieure-PSL, 75230, Paris, Cedex 05, France (marie.farge@
ens.fr).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1147

D
ow

nl
oa

de
d 

10
/2

4/
22

 to
 1

28
.8

.9
.1

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1459782
mailto:rodrigomp@id.uff.br
mailto:rodrigomp@id.uff.br
mailto:rnguyen@zedat.fu-berlin.de
mailto:kai.schneider@univ-amu.fr
mailto:marie.farge@ens.fr
mailto:marie.farge@ens.fr


1148 PEREIRA, NGUYEN VAN YEN, SCHNEIDER, AND FARGE

multiresolution methods in the context of computational fluid dynamics (CFD) we
refer the reader to [36].

In many applications, in particular in CFD, Galerkin truncated discretizations
of the underlying PDEs, which use a finite number of modes, are the methods of
choice. Spectral methods [7] are a prominent example, and Fourier–Galerkin schemes
are widely used for direct numerical simulation of turbulence [20] due to their high
accuracy. For efficiency reasons, the convolution product in spectral space, due to
the nonlinear quadratic term and typically encountered in hydrodynamic equations,
is evaluated in physical space, and aliasing errors are completely removed. This
implementation, called pseudo-spectral formulation with full dealiasing using the 2/3
rule, is equivalent to a Fourier–Galerkin scheme up to round-off errors [7]. Thus the
discretization conserves the L2-norm of the solution. A classical test to check the
stability of pseudo-spectral codes for viscous Burgers or Navier–Stokes equations is
to perform simulations with vanishing viscosity. This allows us to verify whether the
L2-norm of the solution, i.e., typically energy, is conserved and for sufficiently small
time steps the truncated Galerkin schemes are stable. However, the solution of the
Galerkin truncated inviscid equations, e.g., inviscid Burgers or incompressible Euler,
shows a peculiar behavior in the form of oscillations, and the computed solution
is not physical. Although remarkable, this behavior is not completely unexpected.
Already T.D. Lee [23] predicted energy equipartition between all Fourier coefficients
in spectral approximations for 3D incompressible Euler, called thermalization, by
applying Liouville’s theorem from statistical mechanics.

The effect of truncating Fourier–Galerkin schemes has been studied in [24] for
the 1D Burgers equation and in [8] for the 3D incompressible Euler equation. Later,
detailed numerical studies were carried out in [34] for both the Burgers and the 2D in-
compressible Euler equations. The observed short-wavelength oscillations were named
“tygers” and were interpreted as the first manifestations of thermalization [23]. The
proposed cause was the resonant interaction between fluid particle motion and trun-
cation waves. Tyger purging was then proposed in [26] using selective removal of
a narrow boundary layer in Fourier space, close to the truncation wavenumber at
discrete time intervals.

Motivated by previous work, detailed numerical analysis of Fourier–Galerkin
methods for nonlinear evolutionary PDEs, in particular for inviscid Burgers and in-
compressible Euler, was then performed in [4]. The authors showed spectral conver-
gence for smooth solutions of the inviscid Burgers equation and the incompressible
Euler equations. However, when the solution lacks sufficient smoothness, then both
the spectral and the 2/3 pseudo-spectral Fourier methods exhibit nonlinear insta-
bilities, which generate spurious oscillations. In particular, it was shown that after
the shock formation in the inviscid Burgers equation, the total variation of bounded
(pseudo-) spectral Fourier solutions must increase with the number of increasing
modes. The L2-energy conservation of the spectral solution is reflected through spu-
rious oscillations, which is in contrast with energy dissipating Onsager solutions. A
complete explanation of these nonlinear instabilities was thus given, and “tygers” [34]
were demystified.

These issues are closely related to what is known in the turbulence literature as
the dissipative anomaly, which is the fact that time reversal symmetry is not restored
in the limit where the symmetry breaking parameter, i.e., viscosity, goes to zero. To
reproduce the expected dissipative behavior in truncated Galerkin approximations,
these unphysical oscillations must be removed. For this purpose different numerical
regularization techniques have been proposed, which are commonly used in numerical
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ADAPTIVE DYNAMICAL GALERKIN SCHEME 1149

methods for solving hyperbolic conservation laws. If the solution is not unique, the
“regularized” numerical scheme selects one weak solution, which should correspond to
the physically relevant one, e.g., the entropy solution of the inviscid Burgers equation,
which can be computed exactly using the Legendre transform [40]. These approaches
include upwind techniques [31], total variation diminishing schemes [19], shock limiters
[38], spectral vanishing viscosity [39, 18], inviscid regularization schemes [3, 22], and
classical viscosity and hyperviscosity [5]. In the case of hyperviscosity it has been
shown [16, 2] that, for sufficiently high powers of the Laplacian in the dissipative
term, the unregularized conservative dynamics is recovered, while for moderate powers
a bottleneck effect occurs in the energy-spectrum [17]. Recently, a method based on
the suppression of a narrow band of Fourier modes at discrete time-intervals has
been proposed in [26], and the resulting solution shows numerical convergence to the
entropy solution as the spatial resolution increases. This method, which has almost
no additional computational cost, can be viewed as a periodic filtering in Fourier
space, where the Galerkin projection space changes discontinuously at regular time
intervals. These discontinuous changes in the projection operators are precisely the
type of situation we seek to formalize here, but on more general grounds, taking into
account other possible projection bases.

In the context of adaptive wavelet schemes, numerical experiments with the 1D
inviscid Burgers equation showed that wavelet filtering of the Fourier–Galerkin trun-
cated solution in each time step, which corresponds to denoising and is removing the
oscillations, yields the solution to the viscous Burgers equation [27]. For the 2D incom-
pressible Euler equations [28] different wavelet techniques for regularizing truncated
Fourier–Galerkin solutions were studied using either real-valued or complex-valued
wavelets, and the results were compared with viscous and hyperviscous regularization
methods. The results show that nonlinear wavelet filtering with complex-valued wave-
lets preserves the flow dynamics and suggests L2 convergence to the reference solution.
The wavelet representation offers at the same time a non-negligible compression rate
of about 3 for fully developed 2D turbulence.

Simulations of the 3D wavelet-filtered Navier–Stokes equations [29] showed that
statistical predictability of isotropic turbulence can be preserved with a reduced num-
ber of degrees of freedom. This approach, called Coherent Vorticity Simulation (CVS)
[14], is a multiscale method to compute incompressible turbulent flows based on the
wavelet filtered vorticity field. The coherent vorticity, corresponding to the few coeffi-
cients whose modulus is larger than a threshold, represents the organized and energetic
flow part, while the remaining incoherent vorticity is noise-like. Applying wavelet-
based denoising, i.e., CVS filtering, to the 3D Galerkin truncated incompressible Euler
equations confirmed that this adaptive regularization models turbulent dissipation
and thus allows us to compute turbulent flows with intermittent nonlinear dynamics
and a k−5/3 Kolmogorov energy spectrum [13]. A significant compression rate of the
wavelet coefficients of vorticity is likewise observed, which reduces the number of ac-
tive degrees of freedom to only about 3.5% of the total number of coefficients for the
studied turbulent flows, computed at a Taylor microscale-based Reynolds number of
200.

Filtering the wavelet representation of the Galerkin truncated inviscid Burgers
and 2D incompressible Euler equations in [33], by retaining only the significant co-
efficients, showed that the spurious oscillations due to resonance can be filtered out,
and dissipation can thus be introduced by the adaptive representation.

The aim of the current work is to provide a rigorous mathematical framework to
analyze and to understand the properties of adaptive discretizations of evolutionary
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1150 PEREIRA, NGUYEN VAN YEN, SCHNEIDER, AND FARGE

PDEs based on dynamical Galerkin schemes. To this end we analyze these adaptive
Galerkin discretizations. Galerkin schemes by themselves are particularly appealing
due to their optimality properties, conservation of energy, and the ease of numer-
ical analysis using Hilbert space techniques. Introducing space adaptivity, e.g., by
wavelet filtering in each time step, implies that the projection operator changes over
time as only a subset of basis functions is used. Hence, the projection operator is
nondifferentiable in time, and we propose the use of an integral formulation. The
projected equations are then analyzed with respect to existence and uniqueness of the
solution. It is proven that nonsmooth projection operators introduce dissipation, a
result which is crucial for adaptive discretizations of nonlinear PDEs. Existence and
uniqueness of the solution of the projected equations is likewise shown. Tools from
countable systems of ordinary differential equations and functional analysis in Banach
spaces are used. For related background we refer the reader to the text books [11, 37]
and [15].

The remainder of the article is organized as follows. Dynamical Galerkin schemes
are defined in section 2, and the existence and uniqueness of the projected equations
is analyzed, giving an explanation of the introduced energy dissipation. Space and
time discretization of the Burgers and incompressible Euler equations is described in
section 3. Numerical examples are presented in section 4 to illustrate the dissipation
mechanism. Section 5 shows applications of the CVS filtering to the inviscid Burgers
equation in 1D and the 2D and 3D incompressible Euler equations. Some conclusions
are drawn in section 6.

2. Dynamical Galerkin schemes.

2.1. Motivation. Evolutionary PDEs can be discretized with a Galerkin method
in space, by projecting the equation onto a sequence of finite dimensional linear spa-
ces, which approximate the solution in space when the discretization parameter, h,
goes to zero. Using truncation to a finite number of modes, the infinite dimensional
countable system of ordinary differential equations in time can be reduced. An im-
portant restriction of such methods is that the projection space typically does not
evolve in time and the number of modes is fixed. Here, we propose a formulation of
adaptive Galerkin discretizations where the projection operator and the number of
modes can change over time, and we show that under suitable conditions adaptation
can introduce dissipation.

2.2. Formal definition. Let H be a Banach space, and consider the evolution
equation

u′ = f(u),(2.1)

where u′ denotes the weak time derivative of u and f is defined and continuous from
some sub-Banach space D(f) ⊂ H into H. Equation (2.1) is completed by a suitable
initial condition u(0) = u(t = 0). To be more specific, we shall focus below on the
case of the one-dimensional Burgers equation on the torus R/Z:

∂tu+ u∂xu = ν∂xxu,(2.2)

which corresponds to (2.1) with

f(u) = ν∂xxu− u∂xu(2.3)

and u = u(x, t).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE DYNAMICAL GALERKIN SCHEME 1151

The classical Galerkin discretization of (2.1) is defined as follows: for h > 0, let
Hh be a fixed finite dimensional subspace of D(f), such that⋃

h>0

Hh = H,

where the adherence is taken in H, and let Ph be the orthogonal projector on Hh.
Find uh : [0, T ] ∈ Hh such that

u′h = Phf(uh) = Ph(ν∂xxuh − uh∂xuh).(2.4)

Now for t ∈ [0, T ], assume that Ph(t) is an orthogonal projector on some finite dimen-
sional subspace Hh(t) of H. The dimension of Hh(t) is allowed to change in time,
but we assume that Hh(t) remains within a fixed finite dimensional subspace H0

h. Ph
therefore takes its values in the set of orthogonal projectors H0

h → H0
h, which we de-

note by Π0
h, with its natural smooth manifold structure as a closed subset of all linear

mappings H0
h → H0

h. We want to find uh : [0, T ] ∈ Hh(t), which is an approximation
of u.

Let us first assume that Ph is a smooth function of time. As in the case where
Ph is time independent, we apply Ph(t) to the differential equation to get

Ph(t)u′h(t) = Ph(t)f(uh(t)),(2.5)

but now, since Ph does not commute with the time-derivative, this equation is not
sufficient to determine u′h(t) entirely. We need another equation to fix the component
of u′h(t) which is in the orthogonal of Hh(t), i.e., in H⊥h (t).

To derive this equation, we start from the condition that uh(t) ∈ Hh(t) for every
t, which is equivalent to

Ph(t)uh(t) = uh(t).(2.6)

Differentiating in time this identity leads to

Ph(t)u′h(t) + P ′h(t)uh = u′h(t)(2.7)

or, equivalently,

(1− Ph(t))u′h(t) = P ′h(t)uh(t),(2.8)

which is exactly the equation we were looking for. By adding (2.5) and (2.8) together,
we obtain the definition of the dynamical Galerkin scheme:

u′h(t) = Ph(t)f (uh(t)) + P ′h(t)uh(t).(2.9)

By comparing this differential equation with (2.4), we observe the appearance of a new
term proportional to the time-derivative of Ph. This is the essential ingredient that
characterizes the dynamical Galerkin scheme. We now show the following lemma.

Lemma 2.1. Any solution of (2.9) such that uh(0) ∈ Hh(0) also satisfies uh(t) ∈
Hh(t) for all t, and moreover

1

2

d

dt
‖uh(t)‖2 = (uh(t), f(uh(t))).(2.10)
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1152 PEREIRA, NGUYEN VAN YEN, SCHNEIDER, AND FARGE

Proof. By differentiating Ph(t)2 = Ph(t) and Ph(t)3 = Ph(t), respectively, we
obtain the identities

Ph(t)Ph(t)′ + Ph(t)′Ph(t) = Ph(t)′ and Ph(t)Ph(t)′Ph(t) = 0,

which imply that

d

dt
((1− Ph(t))uh(t)) = 0,(2.11)

and the first part follows. To prove the second part, take the inner product of the
equation with uh:

1

2

d

dt
‖uh(t)‖2 = (uh(t), f(uh(t))) + (uh(t), P ′h(t)uh(t)),(2.12)

where the last term can be rewritten

(Ph(t)uh(t), P ′h(t)Ph(t)uh(t)) = (uh(t), Ph(t)P ′h(t)Ph(t)uh(t)) = 0,

which proves (2.10).

The above computations are valid when Ph is differentiable, which is a severe
restriction and forbids us in particular to switch on and off dynamically some functions
in the basis of integration, which is the goal that we had set for ourselves in the
beginning. To pursue this goal we therefore need to extend the definition of the
scheme to nondifferentiable Ph. For this we consider the integral formulation of (2.9),
namely

uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

P ′h(τ)uh(τ)dτ.(2.13)

This equation can be rewritten using a Stieltjes integral with respect to Ph,

uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

dPh(τ)uh(τ),(2.14)

which we call the integral formulation of the dynamical Galerkin scheme.
This equation makes sense as soon as Ph has bounded variation (BV), which gives

it a much wider range of applicability than (2.9), allowing in particular discontinuities
in Ph. To solve such an equation we need to resort to the theory of generalized ordinary
differential equations, which we now recall.

2.3. Existence and uniqueness of a solution to the projected equations.
The rigorous setting for integral equations such as (2.14) involving Stieltjes integrals is
explained in detail in the book [37]. An alternative introduction can be found in [32].
We summarize the main consequences of the theory for our problem in the following
theorem.

Theorem 2.2. Assume that Ph(t) : [0, T ] → is BV and left-continuous, that
Ph(0)uh(0) = uh(0) (i.e., uh(0) ∈ Hh(0)), and that f : H0

h → H is locally Lipschitz.
Then

(i) There exists T ∗, 0 < T ∗ ≤ T , such that the integral equation

uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

dPh(τ)uh(τ)(2.15)

has a unique BV, left-continuous solution uh : [0, T ∗]→ H0
h.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE DYNAMICAL GALERKIN SCHEME 1153

(ii) This solution satisfies

∀t ∈ [0, T ], Ph(t)uh(t) = uh(t).(2.16)

(iii) uh is continuous at any point of continuity of Ph, and more generally, for
any t,

uh(t+)− uh(t) = (Ph(t+)− Ph(t))uh(t)(2.17)

or, equivalently,

uh(t+) = Ph(t+)uh(t).(2.18)

(iv) The energy equation (2.10) for smooth Ph is replaced in general by

1

2
(‖uh(t)‖2 − ‖uh(0)‖2)(2.19)

=

∫ t

0

(uh(τ), f(uh(τ)))dτ − 1

2

∑
{i|ti<t}

‖(1− Ph(t+i ))uh(ti)‖2,

where (ti)i∈N are the points of discontinuity of Ph.

Proof. To prove part (i) of the theorem we first need to familiarize ourselves
with a few key concepts used by [37].

Definition 2.3. Let G = {x ∈ Rn | ‖x‖ ≤ c} × [0, T ], let h : [0, T ] → R be
a nondecreasing, continuous from the left function, and let ω : [0,+∞) → R be a
continuous, increasing function with ω(0) = 0.

We will say that a function F : G → Rn belongs to the class F(G, h, ω) if and
only if

‖F (x, t2)− F (x, t1)‖ ≤ |h(t2)− h(t1)|(2.20)

and

‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖ ≤ ω(‖x− y‖)|h(t2)− h(t1)|(2.21)

for all (x, t2), (x, t1), (y, t2), (y, t1) ∈ G.

The proof of the existence is based on the Schauder–Tichonov fixed point theorem,
using Theorem 4.2 on page 114 of [37]. The uniqueness can be shown using Theorem
4.8 on page 122 of [37] proving the local uniqueness property in the future, i.e., for
increasing t.

Now let us turn to (ii). The idea is to approximate Ph by a family of smooth
functions Ph,ε, ε > 0, and then to apply Lemma 2.1 to the corresponding solution
uh,ε, giving

(1− Ph,ε(t)) uh,ε(t) = 0(2.22)

and then passing to the limit. For this we need uh,ε(t) → uh(t), which means that
the solution depends continuously on Ph (see Chapter 8, page 262 of [37]: continuous
dependence on parameters).

The continuity of uh in part (iii) follows directly from the fact that Ph is left-
continuous and BV.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1154 PEREIRA, NGUYEN VAN YEN, SCHNEIDER, AND FARGE

The energy equation in part (iv) can be shown by integrating (2.12) in time and
replacing P ′h(t)uh(t) by (1− Ph(t))u′h(t); cf. (2.8).

In the case when the projector Ph(t) depends on u(t), e.g., when using adaptive
wavelet thresholding, we have

uh(t) = uh(0) +

∫ t

0

Ph(τ)f(uh(τ))dτ +

∫ t

0

dPh(τ)uh(τ),(2.23a)

Ph(t) = Φ(uh(t)).(2.23b)

Theorem 2.4. Under certain conditions, the system (2.23a) has a unique solu-
tion.

Proof. We proceed by iteration. Let P 0
h be the projector on the time-independent

approximation space H0
h, and letu0h be the corresponding solution of (2.23a). We then

define recursively

Pn+1
h (t) = Φ(unh(t))(2.24)

and un+1
h as the solution of (2.23a) with Ph = Pn+1

h .

3. Space and time discretization. For space discretization in the numerical
results below we use a classical Fourier pseudo-spectral scheme [7]. The spectral
Fourier projection of u ∈ L1(Td) where T = R/(2πZ) is given by

PNu(x) = uN (x) =
∑
|k|.N/2

ûk e
ik·x , ûk =

1

(2π)d

∫
Td

u(x) e−ik·x dx.(3.1)

Note that |k| . N/2 is understood in the sense −N/2 ≤ k < N/2 and correspondingly
in higher dimensions for each component of k.

Applying the spectral discretization to the one-dimensional inviscid Burgers equa-
tion (d = 1),

∂tu+
1

2
∂xu

2 = 0 for x ∈ T and t > 0(3.2)

with periodic boundary conditions and suitable initial condition u(x, t = 0) = u0(x)
yields the Galerkin scheme

∂tuN +
1

2
∂x
(
PN (uN )2

)
= 0 for x ∈ T and t > 0,(3.3)

which corresponds to a nonlinear system of N coupled ODEs for ûk(t) with |k| . N/2.
A pseudo-spectral evaluation of the nonlinear term is utilized, and the product in
physical space is fully dealiased. In other words, the Fourier modes retained in the
expansion of the solution are such that |k| ≤ kC , where kC is the desired cut-off wave
number, but the grid has N = 3kC points in each direction, versus N = 2kC for a
nondealiased, critically sampled product. This dealiasing makes the pseudo-spectral
scheme equivalent to a Fourier–Galerkin scheme up to round-off errors [7], and is thus
conservative.

For the two- and three-dimensional incompressible Euler equations (d = 2, 3) with
periodic boundary conditions,

∂tu + (u · ∇)u = −∇p for x ∈ Td and t > 0,(3.4)

∇ · u = 0,
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ADAPTIVE DYNAMICAL GALERKIN SCHEME 1155

a similar spectral discretization can be applied. The pressure p is eliminated using
the Leray projection onto divergence-free vector fields. Eventually a nonlinear system
of coupled ODEs is obtained for the Fourier coefficients of the velocity ûk(t).

For time discretization of the resulting ODE systems we stick to classical Runge–
Kutta schemes, of order 4 for the 1D Burgers equation and the 3D Euler equations,
while for 2D Euler 3rd order Runge–Kutta a low storage formulation is used; see [30],
on page 20. For details on the convergence and stability of the above spectral schemes
we refer the reader to [4]. Implementation features for the 1D Burgers equation and
the 2D Euler equation can be found in [28] and [33]. For details on the scheme for
3D Euler we refer the reader to [13].

The Fourier space discretization described above could be replaced by any other
Galerkin discretization, using, for instance, finite elements, or wavelets as basis func-
tions. The interest of using wavelets is to introduce adaptive discretizations; see, e.g.,
[36, 12]. In this case the projector P is changing over time and is nonsmooth, which
means that dissipation is introduced by removing/adding basis functions during the
time stepping. This technique has been previously used for regularizing the Burgers
equation and the incompressible Euler equations without a rigorous mathematical
justification.

To test the influence of wavelet thresholding we introduce the concept of pseudo-
adaptive simulations. The Fourier–Galerkin discretization is used to solve the PDE,
but in each time step the numerical solution uN is decomposed into a periodic or-
thogonal wavelet series of L2(Td). For d = 1 we thus have the 1D truncated wavelet
series

PJuN (x) = uJN (x) = u00 +

J−1∑
j=0

2j−1∑
i=0

ũjiψji(x) , ũji =

∫
T
uN (x)ψji(x)dx,(3.5)

where u00 is the mean value of the solution and ũji are its wavelet coefficients. The
wavelet ψji(x) = 2j/2ψ(2jx − i) quantifies fluctuations at scale 2−j around position
i/2j and N = 2J denotes the total number of grid points, corresponding to the
finest resolution. Figure 1 illustrates Shannon and Meyer wavelets together with the
corresponding Fourier transforms, which have compact support. This implies that
both are trigonometric polynomials and can be spanned by a Fourier basis. For
extensions to higher dimensions using tensor product constructions of wavelets, we
refer the reader to [10]. From a computational point of view the additional cost
of wavelet thresholding is negligible, as the fast wavelet transform has only O(N)
complexity, compared to O(N logN) for the fast Fourier transform used in the pseudo-
spectral schemes.

Wavelet filtering, which is the basis of the Coherent Vorticity Simulation (CVS)
[14], introduces a sparse representation of the solution by removing weak wavelet
coefficients. Thresholding of the wavelet coefficients with a threshold ε, which typically
depends on time, is performed. This yields a projection of the numerical solution uN ,

P εJuN (x) = uJε (x) = u00 +

J−1∑
j=0

2j−1∑
i=0

ρε (ũji)ψji(x) ,(3.6)

where ρε is the (hard) thresholding operator defined as

ρε(x) =

{
x for |x| > ε,
0 for |x| ≤ ε,(3.7)
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Fig. 1. Shannon wavelet (top) and Meyer wavelet (bottom) in physical space ψ(x) (left) and

the corresponding modulus of the Fourier transform |ψ̂(k)| (right).

and ε denotes the threshold. The thresholding error can be estimated (see, e.g., [9]),
and we have

||PJuN (x)− P εJuN (x)||2 ≤ Cε .

Using pseudo-adaptive simulations the CVS algorithm can be summarized as follows
[33]:

(i) The Fourier coefficients of the solution ûk for |k| . N/2 are advanced in time
to t = tn+1 and an inverse Fourier transform is applied on a grid of size N to
obtain uN .

(ii) A forward wavelet transform is performed to obtain PJuN (x), according to
(3.5).

(iii) CVS filtering removes wavelet coefficients having magnitude below the thresh-
old ε. The threshold value is determined iteratively [1] and initialized with
ε0 = q

√
||u||2/2/N, where q is a compression parameter. The iteration steps

are then obtained by εs+1 = qσ[ũsji] until εs+1 = εs, where ũsji are the wave-
let coefficients below εs and σ[·] is the standard deviation of the set of these
coefficients.

(iv) A safety zone is added in wavelet space. The index set of retained wavelet
coefficients in step iii) is denoted by Λ and for each retained wavelet coefficient
indexed by (j, i) ∈ Λ neighboring coefficients in position and scale (5 in the
present case) are added, as illustrated in Figure 2.

(v) An inverse wavelet transform is applied to the wavelet coefficients above the fi-
nal threshold, and a Fourier transform is then performed to obtain the Fourier
coefficients of the filtered solution at time step tn+1.

Different choices of the wavelet basis for regularization have been tested, e.g., in
[33], including various orthogonal wavelets and a Dual-Tree Complex Wavelet basis
we refer to as “Kingslets” [21]. The value of the compression parameter q controls the
number of discarded coefficients, and in previous studies we found experimentally the
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(j − 1, ⌊i/2⌋)
(j, i− 1) (j, i) (j, i+ 1)

(j+1, 2i) (j + 1,
2i+ 1)

Fig. 2. Safety zone in wavelet coefficient space around an active coefficient (j, i) in position i
and finer (j + 1) and coarser (j − 1) scales.

value q = 5 for “Kingslets” (complex-valued wavelets), and for orthogonal wavelets
we used q = 8.

Adding a safety zone is necessary due to the lack of translational invariance of
orthogonal wavelets, but also for local dealiasing. The idea is to keep neighboring
coefficients in space and scale and to account for translation of shocks or step gradients
and the generation of finer scale structures. For complex-valued wavelets, which are
translation invariant, no safety zone is required, as shown in [33]. For details and
further discussion on possible choices of the safety zone we refer the reader to [29].

4. Numerical experiments. In the following we show results to illustrate the
properties of the dynamical Galerkin scheme and in particular their ability to in-
troduce energy dissipation into the numerical method, which can be useful for sta-
bilization. As examples we consider first the inviscid 1D Burgers equation using
periodic boundary conditions. The initial condition is a simple sine wave given by
u(x, t = 0) = sin(2πx) for x ∈ T. Unless explicitly noted, computations are done with
N = 2048 collocation points, and the time step ∆t is chosen so that ∆x/∆t = 16,
where ∆x = 1/N is the grid discretization size. This choice ensures the CFL condition
is met [7].

4.1. Punctual selection in the Fourier basis. The simplest illustration which
we develop as a proof of concept is a punctual selection in the Fourier basis. Starting
at some time instant tb and during an entire interval [tb, te], we set to zero the Fourier
coefficients corresponding to a given wave number kf after each time step (both
positive and negative modes are erased, such that the solution remains real). The
projection operator thus becomes time dependent and discontinuous, and we have

PN (t)
kf
[tb,te]

u(x) =

{ ∑
|k|.N/2,|k|6=kf ûk e

ik x for t ∈ [tb, te],∑
|k|.N/2 ûk e

ik x elsewhere.
(4.1)

The removal of these modes will instantly dissipate energy of the numerical solution,
but from there on energy is conserved. And this is the case still after the reintro-
duction of the coefficients in the projection basis, despite the discontinuity of the
projection operator. Indeed, according to (2.19) dissipation is observed as long as
‖(1− Ph(t+))uh(t)‖2 is nonzero, but at t = te this quantity is null, and therefore en-
ergy is conserved. We note that since a multistage time marching scheme is employed,
it is necessary to reset to zero the removed coefficients after each substage to ensure
they have no effect on the solution.

We show in Figure 3(a) the time evolution of the energy when the filtering wave
number is kf = 2. The projection operator changes at tb = 0.16 and is then restored
at te = 0.2. Dissipation is introduced by this change of projection basis and, up
to numerical errors, the lost energy amounts to the energy content of the discarded
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Fig. 3. Filtering of one mode in (a) Fourier space and (b) wavelet space for the inviscid 1D
Burgers equation. Time evolution of energy. As expected, energy loss is observed.

10 -5 10 -4
10 -16

10 -14

10 -12

10 -10

10 -8 Fourier
Shannon
Meyer
Daubechies 12

Fig. 4. Difference between dissipated energy and filtered energy (equation (4.2)) as a function of
the time step ∆t, when a single Fourier mode or wavelet coefficient is filtered. A residual difference
remains when Daubechies wavelets are employed.

coefficients. This can be seen in Figure 4, where we plot, as a function of the time
step ∆t, the quantity

δ = (‖uN (0)‖2 − ‖uN (tb)‖2)− ‖(1− PN (t+b )
kf
[tb,te]

)uN (tb)‖2,(4.2)

which should be zero according to (2.19), since the PDE is energy conserving up to
time tb. One observes that δ indeed converges to zero up to machine precision (of order
10−15) as ∆t is decreased. It is interesting to mention that the method developed in
[26] employs a punctual periodic filtering in Fourier space to regularize solutions of
the inviscid Burgers equation, so the above discussion formalizes the dissipation step
used there.

4.2. Punctual selection in real orthogonal wavelet bases. To illustrate
dissipation through reprojection on a wavelet basis, we extend the previous idea of a
punctual selection now to wavelet space. The solution of the Fourier–Galerkin method
is decomposed in each time step into an orthogonal wavelet basis, as in (3.5). One
single energy containing coefficient, of scale index jf and position index if , is then set
to zero after every time step during some given time interval [tb, te]. The projection
operator is once again time dependent and discontinuous and may be written as
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ADAPTIVE DYNAMICAL GALERKIN SCHEME 1159

PJ(t)
jf ,if
[tb,te]

u(x) =

{
u00 +

∑J−1
j=0

∑2j−1
i=0 ũjiψji(x)(1− δjjf δiif ) for t ∈ [tb, te],

u00 +
∑J−1
j=0

∑2j−1
i=0 ũjiψji(x) elsewhere

(4.3)

for a chosen orthogonal wavelet ψji(x).
We show in Figure 3(b) the energy time evolution for the case of projections in

the Meyer wavelet basis. The filtered coefficient corresponds to jf = 1 and if = 1.
As before, the filtering happens from time tb = 0.16 to te = 0.2. Energy is punctually
dissipated as of the first change in the projector, but is otherwise conserved. Figure 4
also shows the convergence of the quantity δ from (4.2), now with the projector
replaced by (4.3). Similar results are also obtained with projections onto a Shannon
wavelet basis.

Interestingly, the same convergence is not observed in Figure 4 when Daubechies
wavelets are used. As illustrated in Figure 1, working with Shannon wavelets is actu-
ally equivalent to working with the Fourier basis, since it is compactly supported in
spectral space, with a sharp cut-off. Combining multiscale Shannon wavelets amounts
to covering the spectral space up to some Galerkin cut-off frequency. When project-
ing with this basis, one is simply damping some existing Fourier coefficients without
introducing new wave numbers. Hence, when going back to the fully dealiased Fourier
space, no further energy is lost. The Meyer wavelet is likewise compactly supported
in spectral space; however, the projection onto Meyer wavelets is only equivalent to a
Fourier projection when the number of Fourier modes is increased from N to 3/2N ,
which is the case when dealiasing is applied. Therefore, in both cases the dissipated
energy indeed corresponds to the energy lost due to the discontinuity of the projection
operator. The Daubechies wavelet, on the other hand, is not compactly supported
in spectral space. When a projection is made in wavelet space and some coefficient
is discarded, this will affect wave numbers beyond the dealiased ones, which then
cease to vanish. After returning to Fourier space, the dealiasing operation will set
all these to zero, and further energy dissipation occurs. For this reason, the quan-
tity δ shows a residual value as the time step decreases and does not attain machine
precision, as seen in Figure 4. In this simulation, Daubechies 12 wavelets were em-
ployed and the projector corresponds to (4.3) with jf = 0 and if = 0. Note that
the indices are chosen so that the amount of dissipated energy is comparable in all
cases.

This additional energy dissipation can once again be understood as due to a
change in the projector, i.e., going from the wavelet projector removing one coefficient,
given in (4.3), to the Fourier projector given in (3.1). In other words, it is the fact
that these two projectors do not commute when Daubechies wavelets are used (or any
other basis not compactly supported in Fourier space, i.e., within the fully dealiased
spectral space) which leads to more dissipation than that introduced by the filtering.
This shows that pseudo-adaptive simulations, such as those discussed in section 3,
must be interpreted with care, since they may not exactly reproduce what one would
get with a fully adaptive scheme in wavelet space. Still, they are valuable tools to
predict the solutions’; behavior in a simpler and faster setup, and we shall apply them
to illustrate the introduction of dissipation in conservation laws through a dynamical
Galerkin scheme.

5. Application to the inviscid Burgers equation and incompressible
Euler using CVS filtering. In the following section we present in a concise way
some results from the literature to illustrate the dissipation properties of adaptive

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 5. CVS-filtered Galerkin truncated inviscid Burgers equation using complex-valued wavelets
(Kingslets, in black) together with the nondissipative Galerkin truncated solution (blue) at times
t = 0.1644, 0.1793, and 0.3. The solutions are periodically shifted to the right, so that both the
resonances and the shocks can be easily seen.

Galerkin methods using CVS filtering. We show some numerical examples for the 1D
inviscid Burgers equation including some space-time convergence and for the incom-
pressible Euler equations in two and three dimensions. For details on the numerical
simulations we refer the reader to [33] and [13].

5.1. Inviscid Burgers. We consider the inviscid Burgers equation (3.2), dis-
cretized with a Fourier pseudo-spectral method and endowed with CVS filtering, de-
scribed in section 3, using N = 16384 Fourier modes. For the used sinusoidal initial
condition u(x, t = 0) = sin(2πt) the time evolution of the reference solution, the so-
called entropy solution, can be easily computed with the method of characteristics,
separately in each half of the domain. Figure 5 shows the solution of the standard
Fourier–Galerkin method, which preserves energy, and the solution obtained with the
dynamic Galerkin scheme using CVS filtering with “Kingslets.” We observe that the
oscillations (also called resonances; see [34]), which appear as soon as the shock is
formed, are removed using CVS filtering. This is further confirmed in Figure 7 (left),
where the oscillations are shown to be completely filtered out and a smooth solution
close to the reference solution is obtained.

To assess the filtering performance, we develop a space-time convergence analysis
by computing the time integrated relative L2-distance from the filtered solution uN
to the analytical reference solution uref . We compute

E =

∫ t1

t0

‖uN (t)− uref(t)‖2

‖uref(t)‖2
dt(5.1)

for different space resolutions while keeping fixed the previous relation between time
and space discretization, that is, ∆x/∆t = 16. Since the filtering is only relevant
after the shock formation, we actually start the analysis from a time right before
the shock time ts = infx [−1/u′(x, 0)] ≈ 0.1592, i.e., t0 = ts − ∆t, and carry out
the integration up to t1 = 0.3. Results for complex-valued Kingslets and real-valued
Shannon wavelets with and without the safety zone discussed in section 3 are shown
in Figure 6. We can observe that CVS with Kingslets is in excellent agreement with
the reference solution, showing an O(∆x) convergence rate. Although typically one
order of magnitude poorer (an underperformance that we now quantify but which
has only been visually verified in [33]), CVS with Shannon wavelets also shows first
order convergence towards the reference solution if the safety zone is present. We note
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Fig. 6. Time integrated relative L2-error (equation (5.1)) as a function of space resolution ∆x.
(a) Kingslets. (b) Shannon wavelet with the safety zone. (c) Shannon wavelet without the safety
zone. The straight lines have slope 1.

Fig. 7. (a) Detail of the solution of CVS-filtered Galerkin truncated inviscid Burgers equation
using complex-valued wavelets (Kingslets, in black) together with the nondissipative Galerkin trun-
cated solution (blue) at time t = 0.1644. (b) Time evolution of the energy E(t) of CVS filtered
solutions for different wavelets with and without safety zone together with the analytical result.

that this is the same convergence rate observed with the periodic Fourier filtering of
[26]. In comparison to this method, CVS has the disadvantage of being less simply
implemented but offers the attractive feature of compression, with only a very reduced
number of degrees of freedom being necessary to reproduce the physical reference
solution. Meanwhile, as anticipated in section 3, Figure 6(c) shows that CVS is not
able to properly regularize the solution when employing real orthogonal wavelets if a
safety zone is not introduced.

The evolution of the energy E = 1
2 ||u||

2 shown in Figure 7 (right) further quan-
tifies the dissipation of the adaptive schemes for different real orthogonal wavelets.
Once again, in the presence of the safety zone the wavelet adaptation removes suffi-
cient energy, matching thus the analytical energy evolution. However, it is now seen
that without the safety zone not enough energy is dissipated and the solution is not
properly regularized. For a detailed description of similar simulations and a physical
interpretation we refer to [33].

5.2. Incompressible Euler equations. To illustrate the effect of dissipation
when adapting the basis functions using projectors changing over time we consider
the incompressible Euler equations given in (3.4) and discretize them with a classical
Fourier–Galerkin scheme. In these pseudo-adaptive simulations we apply in each time
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Fig. 8. Filtering of 2D incompressible Euler using complex-valued wavelets (Kingslets). Left:
Contours of the Laplacian of vorticity ∆ω at t = 0.71. The Galerkin truncated solution is shown in
gray, and the CVS solution is given in black. Right: 1D cut of the Laplacian of vorticity for the oscil-
latory Galerkin truncated solution and the wavelet-filtered smooth solution. Reprinted with permis-
sion from Phys. Rev. E, 87 (2013), 033017, https:doi.org/10.1103/PhysRevE.87.033017. Copyright
(2013) by the American Physical Society.

step CVS filtering. Detailed results can be found in [33] and [13] for the 2D and 3D
cases, respectively.

In the 2D case a random initial condition is evolved in time with third order
Runge–Kutta time integration using a resolution of N = 10242 Fourier modes [33].
Visualizations of the Laplacian of vorticity ω = ∇ × u in the fully developed non-
linear regime are shown in Figure 8 (left). For the Galerkin truncated solution we
find oscillations in the isolines in ∆ω (a small scale quantity, which is sensitive to
oscillations), while the regularized solution using complex-valued wavelets with CVS
filtering yields a smooth solution. A 1D cut in Figure 8 (right) illustrates that in the
CVS solution the oscillations have been indeed removed. In Figure 9, time evolution
of enstrophy, defined as 1

2 ||ω||
2
2, shows that in contrast to the Galerkin truncated sim-

ulation the CVS computation is dissipative, and the enstrophy departs from the one
of the conservative Galerkin truncated case, and it decays for times larger than 1.4.
For more details, including a physical interpretation, we refer the reader to [33].

The 3D Fourier–Galerkin computations of incompressible Euler have been per-
formed at resolution N = 5123 in a periodic cubic domain with a fourth order Runge–
Kutta scheme for time integration [13]. A statistically stationary flow of fully devel-
oped homogeneous isotropic turbulence obtained by DNS is used as the initial con-
dition. For CVS filtering Coiflet 12 wavelets [10] were used. Note that the wavelet
decomposition and subsequent filtering have been applied to the vorticity ω = ∇×u
(and not to the velocity u) in each time step, and subsequently the filtered velocity
has been computed by applying the Biot–Savart operator (∇×)−1 in Fourier space.

The time evolution of the energy, 1
2 ||u||

2
2, and enstrophy, 1

2 ||ω||
2
2, in Figure 10

first shows that the Galerkin truncted Euler computation preserves energy and that
enstrophy grows rapidly in time due to the absence of regularization. For CVS we
can observe that energy is dissipated, similar to what is observed for Navier–Stokes
and that enstrophy also exhibits a similar evolution as Navier–Stokes and does not
grow rapidly.
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Fig. 9. Filtering of 2D incompressible Euler using complex-valued wavelets (Kingslets). Evo-
lution of enstrophy 1/2||ω||22 for the Galerkin truncated case and the adaptive wavelet fil-
tered case using Kingslets. Reprinted with permission from Phys. Rev. E, 87 (2013), 033017,
https:doi.org/10.1103/PhysRevE.87.033017. Copyright (2013) by the American Physical Society.

Fig. 10. Energy (left) and enstrophy (right) evolution for 3D incompressible Euler us-
ing for Galerkin truncated Euler (Euler), wavelet filtered Euler (CVS), and Navier–Stokes
(NS). HV and EV stand for hyperviscous regularization and Euler–Voigt, respectively, which
are not discussed here. Reprinted with permission from Phys. Rev. E, 96 (2017), 063119,
https://doi.org/10.1103/PhysRevE.96.063119. Copyright (2017) by the American Physical Society.

Fig. 11. Vorticity isosurfaces, |ω| = M + 4σ (where M is the mean value and σ the stan-
dard deviation of the modulus of vorticity of NS) for 3D incompressible Euler using Galerkin
truncated Euler (Euler, left), wavelet filtered Euler (CVS, center), and Navier–Stokes (NS,
right) at time t/τ = 3.4. Reprinted with permission from Phys. Rev. E, 96 (2017), 063119,
https://doi.org/10.1103/PhysRevE.96.063119. Copyright (2017) by the American Physical Society.
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Visualizations of intense vorticity structures in Figure 11 for CVS and Navier–
Stokes show their similar tube-like character, while the Galerkin truncated Euler
solution is similar to Gaussian white noise without the presence of coherent structures.
For details, including a physical interpretation of the results, we refer the reader
to [13].

6. Conclusions. We presented a mathematical framework for analyzing dynam-
ical Galerkin discretizations of evolutionary PDEs. The concept of weak formulations
of countable ODEs with nonsmooth right-hand side in Banach spaces is used. We
showed that changing the set of active basis functions, which implies that the projec-
tion operators are nondifferentiable in time, can introduce energy dissipation. This
feature is of crucial interest for adaptive schemes for time dependent equations, e.g.,
adaptive wavelet schemes for hyperbolic conservation laws, and yields a mathematical
explanation for their regularizing properties due to dissipation.

Numerical experiments illustrated the above results for the inviscid Burgers equa-
tion and the incompressible Euler equations in two and three space dimensions. To
this end the concept of pseudo-adaptive simulations was introduced to test the in-
fluence of wavelet thresholding, while solving the PDE with the classical Fourier
Galerkin discretization. The results showed that adaptive wavelet-based regulariza-
tion (i.e., filtering out the weak wavelet coefficients) of Galerkin schemes introduce
dissipation together with related space adaptivity. The latter can be used for reducing
the computational cost in fully adaptive computations. Moreover for the 1D Burgers
equation we showed convergence towards the entropy solution. For the 2D and 3D
Euler equations we found that oscillations present in the Galerkin truncated case are
removed and energy is dissipated. However, for 2D and 3D Euler in general no exact
reference solutions are available, and further analyses are necessary, which are left for
future work. Finally, let us mention that an interesting link exists with LES models
(see e.g., [35]), as the equivalence between nonlinear wavelet thresholding (using Haar
wavelets) and a single step of explicitly discretized nonlinear diffusion can be shown;
see [25].

This work opens some perspectives for the systematic studies of nonlinear hyper-
bolic conservation laws using adaptive Galerkin discretizations, in particular wavelet-
based schemes and their regularization properties introducing viscous dissipation. In
particular, it would be interesting to analyze whether the proposed wavelet filtering
scheme is also able to handle the oscillations observed in the hyperviscous case [17,
2], which are due to bottlenecks in the energy spectrum and have a different nature
than those due to the Galerkin truncation of the inviscid equations.

Acknowledgment. The authors would like to thank Greg Hammett for a dis-
cussion which strongly motivated this work. NVY thanks the Humboldt Foundation
for post-doctoral support.
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[8] C. Cichowlas, P. Bonäıti, F. Debbasch, and M. Brachet, Effective dissipation and turbu-
lence in spectrally truncated Euler flows, Phys. Rev. Lett., 95 (2005), 264502.

[9] A. Cohen, Wavelet methods in numerical analysis, in Handbook of Numerical Analysis, Vol.
VII, P. G.Ciarlet and J. L.Lions, eds., North-Holland, Amsterdam, 2000.

[10] I. Daubechies , Ten Lectures on Wavelets, CBMS-NSF Res. Conf. Ser. Appl. Math. 61, SIAM,
Philadelphia, 1992, https://doi.org/10.1137/1.9781611970104.

[11] K. Deimling, Ordinary Differential Equations in Banach Spaces, Springer, New York, 1977.
[12] T. Engels, K. Schneider, J. Reiss, and M. Farge, A wavelet adaptive method for multiscale

simulation of turbulent flows in flying insects, Commun. Comput. Phys., 30 (2021), pp.
1118–1149.

[13] M. Farge, N. Okamoto, K. Schneider, and K. Yoshimatsu, Wavelet-based regularization
of the Galerkin truncated three-dimensional incompressible Euler flows, Phys. Rev. E, 96
(2017), 063119.

[14] M. Farge, K. Schneider, and N. Kevlahan, Non-Gaussianity and coherent vortex simulation
for two-dimensional turbulence using an adaptive orthogonal wavelet basis, Phys. Fluids,
11 (1999), pp. 2187–2201.

[15] A. F. Filippov, Differential Equations with Discontinuous Right Hand Sides, Math. Appl. 18,
Springer, Dordrecht, The Netherlands, 2013.

[16] U. Frisch, S. Kurien, R. Pandit, W. Pauls, S. S. Ray, A. Wirth, and J. Z. Zhu, Hyper-
viscosity, Galerkin truncation, and bottlenecks in turbulence, Phys. Rev. Lett., 101 (2008),
144501.

[17] U. Frisch, S. S. Ray, G. Sahoo, D. Banerjee, and R. Pandit, Real-space manifestations of
bottlenecks in turbulence spectra, Phys. Rev. Lett., 110 (2013), 064501.

[18] D. Gottlieb and J. S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput.
Appl. Math., 128 (2001), pp. 83–131.

[19] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49
(1983), pp. 357–393.

[20] T. Ishihara, T. Gotoh, and Y. Kaneda, Study of high-Reynolds number isotropic turbulence
by direct numerical simulation, Annu. Rev. Fluid Mech., 41 (2009), pp. 165–180.

[21] N. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Appl.
Comput. Harmon. Anal., 10 (2001), pp. 234–253.

[22] B. Khouider and E. S. Titi, An inviscid regularization for the surface quasi-geostrophic
equation, Commun. Pure Appl. Math., 61 (2008), pp. 1331–1346.

[23] T. D. Lee, On some statistical properties of hydrodynamical and magneto-hydrodynamical
fields, Quart. Appl. Math., 10 (1952), pp. 69–74.

[24] A. Majda and I. Timofeyev, Remarkable statistical behavior for truncated Burgers-Hopf dy-
namics, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 12413–12417.
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