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It is shown that the solutions of inviscid hydrodynamical equations with suppression of all spatial Fourier
modes having wave numbers in excess of a threshold KG exhibit unexpected features. The study is carried out for
both the one-dimensional Burgers equation and the two-dimensional incompressible Euler equation. For large KG

and smooth initial conditions, the first symptom of truncation, a localized short-wavelength oscillation which we
call a “tyger,” is caused by a resonant interaction between fluid particle motion and truncation waves generated by
small-scale features (shocks, layers with strong vorticity gradients, etc.). These tygers appear when complex-space
singularities come within one Galerkin wavelength λG = 2π/KG from the real domain and typically arise far
away from preexisting small-scale structures at locations whose velocities match that of such structures. Tygers
are weak and strongly localized at first—in the Burgers case at the time of appearance of the first shock their
amplitudes and widths are proportional to KG

−2/3 and KG
−1/3, respectively—but grow and eventually invade the

whole flow. They are thus the first manifestations of the thermalization predicted by T. D. Lee [Q. J. Appl. Math.
10, 69 (1952)]. The sudden dissipative anomaly—the presence of a finite dissipation in the limit of vanishing
viscosity after a finite time t�—which is well known for the Burgers equation and sometimes conjectured for the
three-dimensional Euler equation, has as counterpart, in the truncated case, the ability of tygers to store a finite
amount of energy in the limit KG → ∞. This leads to Reynolds stresses acting on scales larger than the Galerkin
wavelength and thus prevents the flow from converging to the inviscid-limit solution. There are indications that
it may eventually be possible to purge the tygers and thereby to recover the correct inviscid-limit behavior.
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I. INTRODUCTION AND FORMULATION

When the motion of a fluid is described at the microscopic
level, a conservative Hamiltonian formulation is appropriate
and statistical steady states can be described using Gibbs
ensembles. At the macroscopic level, however, one obtains a
dissipative hydrodynamical description because macroscopic
motion can be irreversibly degraded into thermal molecular
motion. Curiously, T. D. Lee observed that, starting from
the hydrodynamical or magnetohydrodynamical equations
for an ideal fluid, one can obtain a conservative dynamical
system to which Gibbsian statistical mechanics becomes
applicable [1]. For this he used a Galerkin truncation of the
equations, a procedure that keeps only a finite number of spatial
Fourier harmonics. For the case of the Galerkin-truncated
three-dimensional (3D) incompressible Euler equation, Lee
obtained thermalized equilibrium statistical states having
an equipartition of kinetic energy among all the Fourier
harmonics and thus a k2 energy spectrum. This is very far
from the spectrum of fully developed turbulence, as observed
experimentally, which could lead one to believe that Galerkin
truncation applied to the Euler equation cannot tell us anything
about the dissipative states of turbulence.

Kraichnan was the first to think otherwise. Considerations
of the Galerkin-truncated equilibria of the 2D Euler equation
played an important role in his conjecture about an inverse
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energy cascade [2,3]. In 1989 he and S. Chen went much
further and wrote ( [4], p. 162)

the truncated Euler system can imitate NS [Navier-Stokes]
fluid: the high-wavenumber degrees of freedom act like a
thermal sink into which the energy of low-wave-number
modes excited above equilibrium is dissipated. In the limit
where the sink wavenumbers are very large compared
with the anomalously excited wavenumbers, this dynamical
damping acts precisely like a molecular viscosity.

Supporting evidence was found in 2005 with very-high-
resolution spectral simulations of the 3D Galerkin-truncated
Euler equation that showed the following: When initial
conditions are used that have mostly low-wave-number modes,
the solutions have long-lasting transients in which only the
high-wave-number modes are thermalized, while the lower-
wave-number modes behave in a way similar to that for viscous
high-Reynolds-number flow [5]. This seems to hold not only
when the low-wave-number modes are weak (as implicitly
assumed by Kraichnan who invoked the fluctuation-dissipation
relations) but also in the strong turbulence regime that displays
a K41-type inertial range. One possible interpretation is that
the thermalized modes act as a kind of artificial molecular
world, thereby allowing dissipative (Navier-Stokes) dynamics
for the lower-wave-number modes.

We understand far too little about the mathematics of
the 3D Euler and Navier-Stokes equations to start a serious
analytical investigation of what happens to solutions of
the Galerkin-truncated 3D Euler equation when KG → ∞.
However, such matters may be within reach for the 1D inviscid
Burgers equation, a well-understood problem in the absence of
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truncation. Even in that “simple” case, the behavior at large KG

is far from obvious. Indeed, there are known instances where
an energy-conserving modification of the inviscid Burgers
equation with a small parameter is found not to converge1 to
the inviscid limit [6,7] (see also [8]). Hence, caution is needed
and we discuss this issue further below.

There is also an important practical reason to be interested
in Galerkin-truncated hydrodynamics. Spectral methods (and
their pseudospectral variants) are among the most precise
methods for the numerical integration of hydrodynamical
equations [9]. By necessity, a finite resolution must then be
used. In other words, one integrates not the full hydrody-
namical equations but their Galerkin-truncated modifications.
If the high-wave-number modes are sufficiently damped by
viscous dissipation the difference may be extremely small. Yet
the desire to push the Reynolds number can lead to serious
truncation errors. Furthermore, in investigations of the blowup
problem for the 3D Euler equation (cf., e.g., Refs. [10,11] and
references therein) it is important to be able to distinguish
genuine blowup from truncation effects.

We had one additional reason to investigate what exactly
are the consequences of Galerkin truncation. M. E. Brachet
[12] informed us about a strange phenomenon observed when
Galerkin truncation is used in conjunction with the 1D inviscid
Burgers equation:

∂tu + u∂xu = 0; u(x,0) = u0(x). (1)

The initial condition u0(x) has just a few Fourier harmonics
and the number of retained Fourier modes is large. The first
symptom of Galerkin truncation found by Brachet was a
spurious oscillation in physical space, seemingly born not at
all where one would expect it, namely, in the neighborhood
of genuine small-scale structures such as shocks and their
precursors called preshocks, but completely “out of the blue” at
a place having no particular small-scale activity, as illustrated
in Fig. 1.

In this paper we understand why this happens, both for the
Burgers equation and for the Euler equation (so far mostly
in 2D). The phenomenon is here called tyger after William
Blake’s poem for reasons given later. Before proceeding to
explain the organization of the paper, it is useful to define our
Galerkin-truncated problem more precisely for the case of the
Burgers equation (the 2D Euler case is formulated in Sec. II C).
We restrict ourselves to 2π periodic solutions which can be
expanded in a Fourier series:

u(x) =
∑

k=0,±1,±2...

eikx ûk. (2)

Let KG be a positive integer, here called the Galerkin truncation
wave number. We define the Galerkin projector P

KG
as the

low-pass filter which sets to zero all Fourier components with
wave numbers |k| > KG. In other words,

P
KG

u(x) =
∑

|k|�KG

eikx ûk. (3)

1In a weak or distributional sense, that is, after multiplication by
suitable smooth test functions and integrations by parts.

The (untruncated) inviscid Burgers equation, written in con-
servation form, is

∂tu + ∂x(u2/2) = 0; u(x,0) = u0(x). (4)

The associated Galerkin-truncated (inviscid) Burgers equation
whose solution is denoted v(x,t) is obtained by applying the
low-pass filter to both the initial condition and the nonlinear
term [13]. It reads

∂tv + P
KG

∂x(v2/2) = 0; v0 = P
KG

u0. (5)

As is well known, the gradient ∂xu of the solution to the
inviscid Burgers equation with smooth initial data typically
blows up after a finite time t�. At t� the solution u has a
cubic-root singularity, called a preshock [14,15]. Beyond t�
the solution can be continued by introducing a small viscous
term into the right-hand side of (1); in the limit of vanishing
viscosity one obtains what we here call the inviscid-limit
solution, which has one or several shocks [16]. This is
a generalized solution which satisfies the inviscid Burgers
equation only in a weak sense. The inviscid-limit solution
has a dissipative anomaly; that is, it dissipates energy even in
the limit of vanishing viscosity. In contrast, the solution to the
Galerkin-truncated equation (5) stays smooth and conserves
energy forever.

This paper has two main parts: Section II deals with the
numerical exploration of the tyger phenomenon and includes
soft phenomenological interpretations of our various findings.
More specifically, in Sec. II A we identify the resonant particle-
wave interaction mechanism responsible for the birth of tygers.
In Sec. II B we present the whole temporal scenario from the
birth of tygers to full thermalization. In Sec. II C we show
that the 2D incompressible Euler equation also gives rise to
tygers by a mechanism similar to what we find for the Burgers
equation. In Sec. II D we investigate the energetics (dissipative
anomaly) and the issue of the (weak) limit of the truncated
solutions when KG → ∞. Section III is restricted to the birth
of tygers for the Burgers equation; it involves state-of-the-art
simulations of the scaling properties with KG up to 40 000
and also a fair amount of analytic theory. Open problems and
conclusions are presented in Sec. IV. There are four technical
appendices.

II. SIMULATIONS AND PHENOMENOLOGY

A. Tygers and resonance

Henceforth, when we write about a or the “untruncated
solution of the Burgers equation,” without specifying more, it
is the inviscid limit of the untrucated Burgers equation which
is understood. A particularly simple 2π -periodic solution of
the Burgers equation is obtained with the initial condition

u0(x) = sin x, (6)

which has two stagnation (zero-velocity) points, x = 0 with
positive strain (gradient) and x = π with negative strain. The
latter gives rise to a cubic-root preshock singularity at the time
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FIG. 1. (Color online) Growth of a tyger in the solution of the
inviscid Burgers equation with initial condition v0(x) = sin(x − π/2)
(to avoid graphical edge effects). Galerkin truncation at KG = 700.
Number of collocation points N = 16 384. Output time as labeled.
Observe that the bulge appears far from the place of birth of the shock.
In the PDF online version of this paper all high-resolution figures are
fully zoomable.

t = t� = 1.2 Hereafter, the initial condition (6) and its space
translates is referred to as “single-mode initial condition.”

With this initial condition, the tyger phenomenon is
particularly simple to observe. Figure 1 shows the solution
of the truncated Burgers equation with KG = 700 at t = t� and

2Elementary facts about the solution of the Burgers equation and its
singularities are recalled in Appendix B.
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FIG. 2. (Color online) Close-up views of the discrepancy ũ(x)
at time t = t� = 1 and t = 1.03 in the tyger regions [panels (a) and
(c), respectively] and in the preshock region [panels (b) and (d),
respectively]. Same conditions as Fig 1. Note that the tyger bulge
grows much faster than the preshock bulge.

at slightly later times.3 Near x = 3π/2 ≈ 4.712 the cubic-root
preshock singularity at t� and the shock beyond that time are
standard features. The new one is the “tyger,” a growing bulge
near the positive-strain stagnation point.4 A more detailed view
is shown in Fig. 2, which shows the discrepancy ũ ≡ v − u

between the truncated solution and the untruncated one and
zooms into the tyger region and the preshock regions at time
t� and shortly thereafter. The bulges seen consist basically of
oscillations at the Galerkin wavelength,

λG ≡ 2π

KG

, (7)

with a localized envelope function which is symmetrical
around the center; this symmetry is actually destroyed later
by nonlinearity, as we see in Sec. II B.

We now use a multimode initial condition,

u0(x) = sin(x) + sin(2x + 0.9) + sin(3x), (8)

for which the first singularity is at t� = 0.2218. Simulating
the truncated solution, again with KG = 700, we see (cf.
Fig. 3) that at t = 0.25 there is a well-developed shock (near
x = 1.30), decorated by tygers on each side.

The tygers are centered around points where the velocity
equals the half-sum of the limiting velocities when approach-
ing the shock from the left and the right. For the Burgers
equation this is precisely the velocity of the shock. Note that
there is yet another point (around x = 3.30) which has the
same velocity but no tyger; it has, however, a negative strain.

3The numerical method used to integrate the Burgers equation is
described in Appendix A.

4A tyger is already seen but not commented upon in the last two
panels of Fig. 6.2 of [17]. M.-E. Brachet [12] was the first to draw
our attention to this phenomenon for the case of the initial condition
sin x but did not propose an explanation.
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FIG. 3. (Color online) Three-mode initial condition. Other pa-
rameters as in Fig. 1. Tygers appear at the points having the same
velocity as the shock and positive strain.

Thus, tygers appear to be born at points of positive strain
having the same velocity as a shock.

We turn now to the phenomenological explanation of the
tyger phenomenon, leaving more systematic theory for Sec. III.
The presence of the Galerkin truncation projector P

KG
makes (5)

nonlocal in physical (x) space. A localized strong nonlinearity,
such as is present at a preshock or a shock, acts as a source
of a truncation wave whose spatial dependence is the Fourier
transform of the low-pass filter projector.5 More precisely, in
physical space the nonlinear term involves a convolution with

g
KG

(x) ≡
k=KG∑

k=−KG

eikx = sin
(
KG + 1

2

)
x

sin
(

x
2

) . (9)

Away from the source (where it is close to a Dirac measure
for large KG), this “truncation wave” is mostly a plane wave
with wave number close to KG (see Fig. 4) and thus has a
wavelength close to the Galerkin wavelength,

λG ≡ 2π

KG

. (10)

Observe that if a preshock/shock is moving with velocity vs,
the associated truncation wave becomes a progressive wave
with phase velocity vs.

5The feeding mechanism producing truncation waves is analyzed
more systematically in Sec. III.

1 2 3 4 5 6

0

500

1000

1500

g K
G

(x
)

x

−0.05 0 0.05

0

500

1000

g K
G

(x
)

x

FIG. 4. (Color online) Truncation wave with wave number
KG = 700.

Away from the shock region, the Burgers equation can
be interpreted as describing a particle dynamics: From a
Lagrangian point of view, fluid particles just move with
their velocity unchanged. In the presence of truncation, those
particles which happen to have a velocity equal to the phase
velocity of a truncation wave can resonantly interact with such
waves.6

Resonant particle-wave interaction is a well known phe-
nomenon. It is used, for example, in plasma physics to explain
Landau damping [19]: The near coincidence of the velocity
of particles and of the phase velocity of Langmuir wave
allows efficient interactions between the two. This can lead
to wave attenuation (actual Landau damping) or enhancement
(beam instability, bump on the tail instability, . . .). There are,
however, substantial differences between the Vlasov equation
(governing the Landau instability) and the truncated Burgers
equation. For example, the Langmuir wave evolves through
energy transfers via the resonance, a problem which in the
linear approximation can be solved by use of the Laplace
transform (leading to Landau’s rule for a pole-avoiding inte-
gration path); in contrast, our truncation waves are completely
prescribed by the singularities (preshocks or shocks) and
undergo no damping in the linear approximation. Furthermore,
the linear approximaton does not have an easy analytic solution
(cf. Sec. III). In Landau damping, resonant particles get
trapped and a characteristic “cat eyes” phase-space distribution
with progressively thinning filamentary structure is obtained
(cf. Fig. II-1 of [20]). In the truncated Burgers dynamics
thinning is arrested by truncation.

The radiation of truncation waves begins only at or close
to the time of formation of a preshock. After a time τ has
elapsed, those fluid particles having a velocity v that does not
match the preshock velocity vs may not feel much pull from the
truncation waves if phase mixing is present. More precisely,
resonant interactions are confined to particles such that

τ�v ≡ τ |v − vs| � λG. (11)

6Nonlinear evolution equations for which there is no concept of
fluid particle, such as the Constantin-Lax-Majda model [18], do not
display the tyger phenomenon.
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If τ is small, as in Figs. 1 and 3, the region of resonance will
be confined to a small neighborhood of the point of resonance.
In Sec. III B we see that around the time of appearance of
a preshock the width of the associated resonance regions
is typically the order of KG

−1/3. Outside of such regions,
including near the preshock, the effect of truncation waves is
just a small-amplitude oscillation at the Galerkin wavelength,
which on Figs. 1 and 3 shows up as a thickening of the line
with respect to the inviscid-limit solution.

Actually, only resonance points with positive strain produce
tygers. In a region of negative strain a wave of wave number
close to KG will be squeezed, potentially acquiring a larger
wave number and thus disappearing beyond the truncation
horizon, which acts as a kind of black hole.

Observe that in the immediate neighborhood of a preshock
or of a nascent shock the strain is also negative and actually
very large. Although the strongest truncation waves are
generated near such points (as one would infer by a Gibbs-
phenomenon argument), their growth is severely hampered
by the negative strain. Hence, the bulge near the preshock
grows in time much more slowly than that at the positive-strain
resonance point, as illustrated in Fig. 2. Actually, the effect of
truncation near a shock will remain very small (and almost
invisible without zooming) until the tyger has fully spread
out on the ramp (cf. end of Sec. II B). This situation is in
contrast with what one observes with other energy-conserving
semidiscrete schemes,7 such as the dispersive one studied by
Goodman and Lax [7].

B. From tygers to thermalization: The temporal evolution

It is well known that the Galerkin-truncated solution of
the Burgers equation will eventually thermalize to a Gaussian
state. The simplest case is when the initial velocity v0

integrates to zero over the spatial period. An ergodicity
argument, supported by numerical simulations, suggests that
the thermalized state has equipartition of energy between all
Fourier modes and thus is just low-pass filtered white noise in
the x variable [13,21].

How does the highly organized and localized tyger structure
seen in Figs. 1 and 3 evolve into such a totally random state?

The birth of tygers around the time t� of the first preshock
is studied in Sec. III. In particular, in Sec. III A, we present
evidence for scaling properties with KG of both tyger amplitude
and width at t = t�. Here we focus on the temporal evolution at
later times. The panels of Fig. 5, corresponding to the single-
mode initial condition and KG = 700, show the evolution of
the tyger in terms of the discrepancy ũ = v − u from t = 1.07
to t = 1.50, shortly after its birth around t� = 1. The first
few panels display very symmetrical (even) bulges whose
amplitudes grow in time, because truncation wave input has
accumulated, while their width decreases (thinning), as a
consequence of phase mixing. Rather quickly, the decrease
in width leads to a collapse of the tyger around t = 1.19.
This is preceded and accompanied by a growing asymmetry
of the tyger for which we offer the following interpretation.
The tyger contains kinetic energy in the form of modulated

7A semidiscrete scheme is continuous in time and discrete in space.

oscillations at the Galerkin wavelength (we shall see that this
increasing energy compensates the loss of energy in shocks).
Over scales large compared to the Galerkin wavelength but
small compared to the tyger width, this kinetic energy gives
rise to an x-dependent Reynolds stress, which pulls the tyger
envelope up where the envelope has a negative slope and down
where the slope is positive. The resulting asymmetry becomes
very conspicuous after the collapse, as seen in the last panel of
Fig. 5. This panel has at least two other noteworthy features. To
the right and left of the central point x = π we see two pieces
that look like a portion of (KG-truncated) white noise; this is
the very beginning of thermalization. Observe that the right
piece is shifted vertically with respect to the left one and that
the transition looks almost like an antishock (a shock which
goes up rather than down, as prescribed by the inviscid limit).

Let us also observe that around the time of collapse there
is an apparent change of symmetry. Since the single-mode
initial condition is odd (after shifting the origin of the x axis
to the center of the tyger) it stays odd at all later times. This
is, however, a statement about the full solution, down to the
Galerkin wavelength. If we concentrate on the larger-scale
aspect (the envelope of the bulge), we find that the discrepancy
is even until somewhat before collapse and odd after collapse.

For later phases of the tyger growth, it is better to show
simultaneously the truncated solution and the untruncated one.
Also, we switch to the three-mode initial condition which has
less symmetry and is thus more generic. Figure 6 shows the
evolution from t = 0.3, slightly after the first singularity at t� =
0.2218, to t = 4.5 when the solution of the truncated problem
is basically completely thermalized. From t = 0.3 to t = 0.8
we observe that the chaotic-looking thermalized regions born
after collapse are growing in extent and are affecting more
and more of the ramplike structures which are a well-known
feature of the solution of the untruncated Burgers equation
after the formation of shocks. In short, we say that “the tyger
spreads out on the ramp.”

As long as significant tyger activity has not reached the
shocks, their positions, amplitudes, and motions are correctly
described by the Burgers equation, down to the Galerkin
wavelength. We have checked that during this phase even
shock merger is unaffected by truncation (an instance is seen
around t = 1.0). Later, strong tyger activity near the edges of
shocks is able to shift them slightly (this is visible at t = 1.3).
Once the shock amplitude has decayed to values much less than
the tyger fluctuations, the solution looks globally thermalized
(t = 4.5). It must be noted that the mechanism which prevents
thermalization in the Fermi-Pasta-Ulam problem [22] does not
seem to be present here.

C. 2D Euler

So far we have worked with a very special hydrodynamical
equation: The Burgers equation is integrable and compressible
and its solutions generically blow up after a finite time.
Is the tyger phenomenon also present when none of these
properties hold, as is the case for the 2D incompressible Euler
equation with smooth (analytic) initial data and space-periodic
boundary conditions?

The short answer is “yes.” We have numerically investigated
quite a number of different initial conditions, including the
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FIG. 5. (Color online) Evolution of the tyger (discrepancy) for same conditions as in Fig. 1: growth, thinning, asymmetrization, collapse,
and chaotization.

two-mode standard orthogonal case (SOC) initial condition
used in [23] and random initial conditions. The simulations
were done with resolutions from 5122 to 81922. Here we
report the results for the random initial condition, which is 2π

periodic in x1 and x2. The Fourier space consists of couples
of signed integers k ≡ (k1, k2). It is here decomposed for
convenience into shells corresponding to a K � |k| < K + 1,
where K is an integer. Each such shell has N (K) Fourier
modes. For k in the Kth shell, the Fourier coefficients ω̂k

of the initial vorticity are taken all with the same modulus
2K7/2 exp(−K2/4)/N(K) and with phases that are uniformly
and independently distributed in the interval [0,2π ], except
that opposite wave vectors are given opposite phases to
preserve Hermitian symmetry. The tyger calculations shown
here are all with resolution 10242 and Galerkin truncation wave
number KG = 342 = (1024 + 2)/3. The particular realization
used as initial condition in the present calculation can be
retrieved from Ref. [24]. Figure 7 shows the vorticity and
its Laplacian at t = 0 and t = 0.66, the latest time at which
no tyger is seen (at least in the fields displayed). Although for
the untruncated solution real singularities are ruled out at any
finite time, there is strong enhancement of spatial derivatives
of the vorticity [25]. The highest values of the Laplacian is
found in the straight cigarlike structure seen near the center of
the figure which—as we shall see—will play an important role

in tyger generation.8 Furthermore this cigar moves very little
because there is a velocity stagnation point near its center.9

Figure 8, which is centered on the strongest cigar, shows
the development of tygers. In terms of the Laplacian of the
vorticity they become visible around t = 0.71 and then become
much stronger.

A further look at a tyger is provided in Fig. 9, which zooms
into one of the tygers and also shows the Laplacian of the
vorticity along a cut.

We immediately see that, as for the 1D Burgers equation,
most of these tygers have come out of the blue, namely,

8All the simulations at resolution up to 81922 (not shown here)
indicate that, just before being affected by truncation, the strongest
small-scale activity is in such cigars; they are very thin in the
transverse direction and their centerlines have a large radius of
curvature; they are located near hyperbolic critical points of the
vorticity where there is strong compression in the transverse direction
and strong extension in the longitudinal direction.

9We also observed in a number of simulations that, before truncation
becomes important, critical hyperbolic points of the stream function
(stagnation points) and of the vorticity are close to each other; this
may be due to having most of the enstrophy concentrated within a
relatively narrow wave number band.
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FIG. 6. (Color online) Long-time evolution of three-mode initial condition (other parameters as in Fig. 1). The cyan curve (light gray) is
the Galerkin-truncated solution and the red one (black) the untruncated inviscid-limit solution. Observe that tygers progressively invade the
ramps between shocks but that shocks remain sharp and correctly placed as long as the spreading out of the tygers on the ramps has not reached
them. At very long times, the truncated solution is thermalized.

appearing at places which had no preexisting small-scale
activity; more precisely, they appear when complex-space
singularities come within one Galerkin wavelength (2π )/KG

of the real domain. The streamlines shown in Fig. 8 indicate
that tyger activity appears at places where the velocity is
roughly parallel to the central cigar. As already pointed out,
the cigar hardly moves; this condition is thus equivalent to
having fluid particles whose distance to the cigar remains
roughly constant. Insofar as the cigar may be considered as
a 1D straight object, the truncation waves generated by the
cigar will have crests parallel to the cigar and those fluid
particles which move parallel to the crest keep a constant phase
and thus have resonant interactions with the truncation waves.
So far, this is basically the same mechanism as discussed in
Sec. II A for 1D Burgers dynamics except, of course, that, the
flow being now incompressible, the velocity within the tyger
is mostly perpendicular to the direction of fastest variation.
If we now consider the one-parameter family of straight lines

perpendicular to a given cigar, each such line will have some
number (possibly zero) of resonance points; altogether they
form the tygers. Since the flow outside cigars is fully 2D,
these tygers have no reason to be parallel to the cigars.

Observe that there are some points where this kind of
resonance condition holds but no tyger is seen, for example,
in Fig. 8 at t = 0.71 near x1 = 3.8 and x2 = 3.4. This can
be interpreted in terms of strain: An incompressible flow
has at each point a strain matrix with two perpendicular
eigendirections, one for positive strain and the other one for
negative strain. Figure 8 has little pink (light gray) segments
indicating the direction of positive strain. Tyger activity is
found only at resonance points where the (positive) strain
direction is not far from being perpendicular to the cigar.
More precisely, it is easily shown that it has to be within
less than π/4 of this direction. Otherwise, the near-truncation
activity generated by resonance is sheared quickly beyond the
truncation horizon.
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FIG. 7. (Color online) (a) Contours of vorticity with random initial conditions: positive values in dark blue (black); negative values in light
blue (light gray). (c) Same at time t = 0.66 (before appearance of tygers). (b),(d) Contours of the Laplacian of the vorticity at times t = 0 and
t = 0.66, respectively. Notice the thin elongated red (black) “cigars” which play here the role of the preshocks/shocks in the Burgers case.

It is also of interest to show truncation effects and tygers
in Fourier space. Figure 10 shows, at various times, the
moduli of the Fourier coefficients in the (k1, k2) plane on
a logarithmic scale. The lowest value contours are at the
10−15 level, while rounding errors are about 10−16. Note that
the Fourier-space picture is organized in the form of one
main lobe, perpendicular to the physical-space central cigar
and secondary lobes associated to less intensive small-scale
structures. At the earliest time t = 0.4 no truncation effect
near |k| = KG = 342 is visible.10 At t = 0.49, long before
tygers become visible on the Laplacian of the vorticity in
physical space, Fourier-space truncation becomes visible. This
truncation at first affects the wave vectors in the direction
of the main lobe that is perpendicular to the central cigar.
Truncation effects then spread progressively to other angular
directions but appear to do so continuously, in contrast to
physical space where tygers are born out of the blue. We can
actually see such early truncation effects in physical space by

10With much higher precision, truncation effects would become
visible.

taking more spatial derivatives and thus putting more weight
on high wave numbers. At t = 0.49, Fig. 11 shows contours of
the tri-Laplacian (∇2)3ω with wiggly tygers. By performing
various cuts (not shown), we checked that the spatial variation
is mostly perpendicular to the cigar.

Recently we checked that many features observed for 2D
incompressible Euler tygers are also present in the 3D case.
The details will be reported elsewhere.

D. The dissipative anomaly and the lack of weak limit

Earlier in this paper, we saw that for large values of the
truncation wave number KG, the Galerkin-truncated solution
remarkably preserves many features of the inviscid limit such
as shocks and their dynamics. So we ask the following: Could
it be that the Galerkin-truncated Burgers equation converges
in a suitable sense to the inviscid limit solution as KG →
∞? This question was actually the main motivation of the
present work. We shall see that the answer is “no,” but a
qualified no.

First, for the kind of analytic initial conditions considered
here that go singular at some finite time t�, the answer to the
above questions is actually “yes” for times 0 � t < t�. At such
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FIG. 8. (Color online) A 2D tyger: before (t =
0.66), early (t = 0.71), and later (t = 0.75). The
panels, moderately zoomed, center on the main
cigar. Contours of the Laplacian of vorticity in red
(black), ranging from −200 to 200 by increments of
25, streamlines in gray, ranging from −1.6 to 1.6 by
increments of 2, and positive strain eigendirections
in pink (light gray) segments. Notice tygers ap-
pearing at t = 0.71 in the form of wavy red (black)
contours at places where the velocity is roughly
parallel to the main cigar; later, the tygers grow
in strength and extension. A blue (black) x mark
is added at t = 0.71 to underline that there is no
tyger, in spite of resonance, because of a wrong
strain direction.

times, the solution of the Burgers equation in Fourier space for
large wave numbers is bounded by Ce−δk (see Appendix B).
The effect of truncation is thus exponentially small in KG and
should go away when KG → ∞. For the 2D incompressible
Euler equation with periodic analytic initial data, analyticity
holds for arbitrary large times and thus the Galerkin-truncated

solution is expected to converge to the untruncated solution.11

For 3D flow the situation may depend on whether there

11Evidence for this may be found in [27]. This result was proven
recently by Bardos and Tadmor [26].
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FIG. 9. (Color online) (Top) Zoomed version of contours of the
Laplacian of vorticity at t = 0.71. (Bottom) Plot of the Laplacian of
vorticity along the horizontal segment near x2 = 3, shown in the top
panel.

is finite-time blowup, a question which is very much open
(cf. [10,11] and references therein.)

Returning to the 1D Burgers case, what about t > t�, when
shocks are present and the solution is dissipative, whereas the
Galerkin-truncated solution is conservative? How can such
a conservative system mimic the dissipative anomaly? One
could imagine that the small-scale tyger activity plays the role
of molecular motion and that motion on scales much larger
than the Galerkin wavelength is governed by the inviscid-limit
Burgers equation.

This is, however, not the case. Tadmor investigated the
limit—in a suitable sense defined below—of the truncated
solution and found that it cannot be dissipative (Ref. [17],
p. 31). The limit considered by Tadmor and in other papers
studying conservative modifications of the Burgers equation
with strong oscillations [6–8] is a distributional weak limit.
Assuming that the Galerkin-truncated solution v has a weak
limit v satisfying the Burgers equation, and using the basic
dynamical equations (4) and (5), Tadmor shows that v2 has
the weak limit (v)2, from which he infers that the limit
is actually a strong one which implies energy conservation
and contradicts the dissipative character of the solution to
the Burgers equation. Recently numerical simulations of the
inviscid Galerkin-truncated Burgers equation with KG up to
about 104 showed indeed that such solutions do not converge
to the inviscid limit of the untruncated solution [27].

The simplest instance of such a weak limit is just to apply a
low-pass filter to the solution with a fixed threshold K for the
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FIG. 10. (Color online) Contours of the modulus of the vor-
ticity Fourier coefficients at various times. Negative k1 values are
not shown because of Hermitian symmetry. Contour values are
10−1, 10−2, . . . ,10−15 from inner to outer (in color version, green,
blue, and pink highlight the values 10−5,10−10, and 10−15, respec-
tively). Galerkin truncation effects are visible above the rounding
level already at t = 0.49 and become more and more invasive.

modulus of the wave number, while letting KG → ∞. It is then
easy to show that one can find a subsequence n1,n2, . . . of the
sequence of integers KG such that the low-pass filtered solution
has a limit [28]. We have obtained evidence that, without taking
subsequences, there is no weak limit. Indeed, Fig. 12 shows
the low-passed solution with the same threshold K = 100 for
the same initial condition and the same output time, but for
two very large and well-separated values of the truncation:
KG = 5461 (denoted 5K) and KG = 21 845 (denoted 21K).
The solutions agree very well with the untruncated solution
at shocks and nearby but the 5K and 21K tygers differ
significantly, even after application of the low-pass filter. It
may thus be that there is no weak limit as KG → ∞.12

We can supplement this with a more physical and fluid
mechanical explanation of why the truncated solution cannot
converge (weakly) to the inviscid-limit solution. We have

12In contrast to what happens for the Lax-Levermore study of the
KdV equation [29].
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FIG. 11. (Color online) Contours of tri-Laplacian of the vorticity
(top, zoomed; bottom superzoomed) showing a tyger already at
t = 0.49.

seen in Sec. II B that shocks behave just as predicted by
the inviscid limit for a substantial length of time (until tyger
spreading on the ramp reaches the shocks). Because of this,
the hypothetical limit of the truncated solution would be losing
energy at the shocks, just as the ordinary Burgers equation.
The energy lost has to be found in the tygers in the form of
high-wave-number oscillations. Decomposing the truncated
solution v = u + ũ (where u is the inviscid-limit solution)
we obtain tyger Reynolds stresses ũ2/2, where the overline
means a mesoscopic spatial averaging over a distance large
compared to the Galerkin wavelength and small compared
to any macroscopic scale (for example, using a low-pass
filter with threshold K = 100 for the case KG = 5461). If the
mesoscopic tyger energy and thus the Reynolds stress is not
spatially uniform, its gradient will drive the flow away from
the inviscid limit. This is the same mechanism that makes the
tyger asymmetrical, as already mentioned. Is there a way to
obtain the correct inviscid limit by eliminating the undesirable
Reynolds stresses through some kind of tyger purging? We
come back to this important practical issue in the last section.

Finally, let us remark on our choice of the word tyger
for the oscillations which are a result of Galerkin trunca-
tion. Historically, the distinction between conservative and
dissipative systems has played a crucial role in not only
man’s scientific pursuits, but also in a deeper cultural context.
For centuries there was a certain sanctity associated with
things conservative as opposed to being dissipative. Hence,
before Galileo’s telescope revealed the “transient” nature of
celestial occurrences (e.g., sun spots), man had always ascribed
heavenly objects as conservative and the more mundane,
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FIG. 12. (Color online) Plots of solution of the Galerkin-
truncated Burgers equation, with KG = 5461 in cyan (light gray) and
KG = 21 845 in black, low-pass filtered at wave number K = 100,
at various times. Initial condition v0(x) = sin(x) + sin(2x − 0.741).
The untruncated solution is shown in red (black, mostly straight
line).
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transient, and earthly occurrences as dissipative. The fine
balance of the two seemed essential for all existence.

In the backdrop of this and in our investigations of truncated
systems, William Blake’s poem “The Tyger” assumes special
significance [30]. In most interpretations, Blake’s tyger is,
of course, not the animal itself;13 it is a metaphor for the
symmetry of seemingly different, even opposite, processes
which nonetheless combine to make a coherent whole. Thus,
apparent oppositions such as life and death, light and darkness
are seamlessly unified. In our present study, we explore the
interplay of conservative and dissipative dynamics, how one,
surprisingly, might be embedded into another. As a result, it
was quite natural for us to call this phenomenon a tyger.

III. DETAILED ANALYSIS OF THE BIRTH OF
THE BURGERS TYGER

So far our point of view has been that of the (numerical)
experimentalist, with some amount of phenomenological
theory used to interpret the results whenever possible. In
this section we use a lot more “systematic theory,” namely,
expansions for large values of the Galerkin truncation wave
number KG. In principle, such expansions can be carried out
beyond leading order; however, we do not attempt this, let
alone obtain rigorous bounds for errors. Indeed, some of
the approximations used below are akin to what one calls
“patching” (as opposed to “matching”) in boundary layer
theory, that is, approximations which can give the correct
exponent of a power-law leading term but cannot predict the
correct constant in front.

Let us now give a general overview of how we intend to
proceed. We concentrate on a single problem, that of the birth
of the tyger for the 1D Burgers equation with single-mode
initial condition. The birth, which takes place around the
“Galerkin time” tG when complex singularities come within
one Galerkin wavelength from the real domain, is part of an
early phase which extends from t = 0 to the time of the first sin-
gularity t = t� = 1. In Sec. III A we see that the early tyger at
t = t� has remarkable scaling properties with KG. Our intention
here is to understand analytically how this comes about. For
this, our strategy is to devise various models/approximations
which make the problem simpler while hopefully keeping the
leading-order behavior unaffected. There will be three levels
of modeling: (i) linearization around the untruncated solution,
(ii) ignoring the “exponentially small” phase up to the Galerkin
time tG, and (iii) “freezing,” that is, replacing the untruncated
solution u(x,t) by u�(x) ≡ u(x,t�) for t ∈ [tG, t�]. In Sec. III B
we explain how to do this and why it is justified. The problem
is then reduced to studying a linear first-order differential
equation with constant coefficients in a finite dimensional
space (Sec. III C). It was brought to our attention recently
by J. Goodman that this differential equation has features in
common with that studied by Goodman, Hou, and Tadmor
(subsequently cited as GHT) in connection with the stability
of the pseudospectral method in the presence of aliasing [31].

13Actually, at the time of William Blake, the spelling of the animal
with a “y” was already obsolete.
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FIG. 13. (Color online) A log-log plot of the discrepancy-based
amplitude a of the tyger at time t = t� as a function of KG. Initial
condition u0(x) = sin x. The data points are shown by solid red circles
(black circles) and the thick black line is the best power-law fit ∝
K

−2/3
G , which holds over two decades.

A. Scaling properties of the early tyger

In Sec. II we have seen that tygers are born at suitable
resonance points in the form of bulges made of oscillation at
the Galerkin wavelength with a very symmetrical envelope.
Eventually, Reynolds stresses will distort this envelope. At
the time t� of the first singularity this is not yet the case.
Now we concentrate on the scaling properties for high KG of
the amplitude a and width w of such early tygers, in terms
of the discrepancy ũ = v − u. Here we limit ourselves to
the single-mode initial condition. Figures 13 and 14 show,
respectively, the amplitude and width as a function of KG for
values ranging from 100 to 40 000. The amplitude is measured
at the maximum closest to the center of the tyger, located a
distance π/(2KG) away. The width is measured at half of this
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FIG. 14. (Color online) Log-log plot of the width (at half
amplitude) of the tyger. Otherwise, the same as in Fig. 13. The best
power-law fit is now ∝K

−1/3
G , which holds over nearly two decades.
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amplitude. It is seen that both have clean scaling laws for
sufficiently large KG: Subdominant corrections are perceptible
on the log-log plots only for KG < 200. The leading-order
behavior is

a ∝ KG
−2/3, w ∝ KG

−1/3. (12)

The following sections are mostly devoted to explaining these
scaling laws.

B. Three successive approximations

As already observed in Sec. II D, initial conditions with a
finite number of Fourier harmonics, such as the single-mode
case, are for a while analytic in the complexified space variable
within a strip around the real domain of width δ(t). As long
as δ(t)KG 	 1 the effect of truncation is exponentially small.
This is why the kind of tygers reported in Sec. II are not seen
before tG, when complex singularities come within roughly
one Galerkin wavelength from the real domain. For large KG,
this happens only a short time O(KG

−2/3) before the time t� of
the first singularity (cf. Appendix B). Hence, by the time t�,
truncation has been felt significantly only for a lapse of time
O(KG

−2/3). The phase mixing argument given in Sec. II A and
in particular (11) tell us that the coherent buildup of a tyger
will affect only those locations whose velocity differs from
that at resonance by an amount �v such that

�v � 2π

KG
−2/3KG

∝ KG
−1/3. (13)

Since at such times, the velocity v of the truncated solution
is expected to stay close to the velocity u of the untruncated
solution and the latter varies linearly with x near the resonance
point, the width of the t� tyger is itself proportional to KG

−1/3,
as indicated by the simulations.

Is there an equally simple argument to understand why
the amplitude scales as KG

−2/3? One possibility would be to
observe that at t� the untruncated solution has a cubic root
behavior near the preshock location (cf. Appendix B ). If we cut
out a small interval of one Galerkin wavelength λG, we will be
“missing” an energy ∼ ∫ λG

0 x2/3dx ∼ KG
−5/3. Remembering

that the Galerkin-truncated equation conserves energy, if we
assume that this missing energy is transferred entirely to a tyger
of width KG

−1/3, we obtain precisely an amplitude ∝KG
−2/3.

There is, however, no reason to assume that near the preshock
the effect of truncation can be reduced to carving out a little
interval of one Galerkin wavelength. It is doubtful that this
energy argument can be turned into something rigorous.

We turn now to more systematic arguments. Before t�,
when δ(t) > 0, it is easily shown that the Galerkin-truncated
solution converges strongly to the untruncated solution. The
simulations reported in Sec. III A suggest that this still holds
at t = t�, since the amplitude of the discrepancy goes to zero.
Furthermore, the nonlinear effect of Reynolds stresses, as
discussed in Sec. II D is of even higher order. Indeed, within the
bulge the Reynolds stresses will be ∼KG

−4/3; since they change
spatially on a scale ∼KG

−1/3, the gradient of Reynolds stresses
is ∼KG

−1; over a time interval ∼KG
−2/3 this will change the

bulge amplitude by ∼KG
−5/3, which is small compared to the

amplitude of the bulge itself.

All this suggests that the early tyger development can
be captured by somehow linearizing the Galerkin truncated
solution around the untruncated one. Let us rewrite the basic
dynamical equations (4) and (5) in terms of the discrepancy:

ũ ≡ v − u. (14)

We obtain

∂t ũ + P
KG

∂x

(
uũ + ũ2

2

)
= (

I − P
KG

)
∂x

u2

2
, ũ(0) = 0, (15)

where I stands for the identity operator and the zero initial
condition follows from u0 = v0, a consequence of having a
finite number of modes initially.

Observe that the right-hand side of (15) provides no input
to wave number below the truncation. Actually, this input is
hidden in the left-hand side. To make this clear, we need to
decompose the various fields into their Galerkin-truncated part
and the remainder. We set

u = u< + u>, (16)

u< ≡ P
KG

u, u> ≡ (I − P
KG

)u. (17)

Next, to similarly decompose ũ, we use (I − P
KG

)ũ = −u>,
which follows from the fact that v = u + ũ has no harmonics
beyond the truncation. Hence, we have

ũ = u′ − u>, (18)

u′ ≡ P
KG

ũ. (19)

In what follows we work mostly with u′, which has no
harmonics beyond the truncation and which we call the
perturbation. As we shall see, around t�, the perturbation is
small. In contrast, beyond the truncation, the discrepancy is
just equal to minus the untruncated flow; it is thus known but
in no way small. Now we apply P

KG
to (15) and use the various

decompositions to obtain

∂tu
′ + P

KG
∂x

(
uu′ + (u′)2

2

)
= P

KG
∂x

(
u<u> + (u>)2

2

)
. (20)

The right-hand side of (20) is a known function which we
call the beating input and denote f because it describes
how harmonics of the untruncated solution, located beyond
the truncation, interact with themselves or with subtruncation
harmonics to give a subtruncation input. This beating input,
which is shown in the lower panel of Fig. 19, consists
basically of spatial oscillations at the Galerkin wavelength,
modulated by an envelope that peaks at the preshock. This is
the precise content of what we called “truncation waves” in
the phenomenological approach of Sec. II A.

We are now in a position to define the three approximations
made for large KG, which we call, respectively, linearization,
reinitialization, and freezing:

(1) the term (u′)2 in the left-hand side of (20) is
discarded;

(2) the perturbation u′ is set to zero at time tG;
(3) the untruncated solution is frozen to its t� value.

Concerning linearization, we already observed that nonlin-
ear effects will be weak if the scaling laws for the t� tyger are
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2/3
G a(KG), calculated (i) from ũ, (ii) from

the linearized approximation for u′, and (iii) from the freezing plus
reinitialization approximation, all versus KG. The data corresponding
to (i) and (ii) are indistinguishable and shown as blue solid circles
(black upper curve). The data corresponding to (iii), shown by black
solid circles with a red border (black lower curve), have the same
scaling but a multiplicative constant about 20% lower.

indeed given by (12). Reinitialization is justified because, prior
to the Galerkin time tG, only exponentially small perturbations
are present, and here we are only trying to capture algebraically
small terms. It is then convenient to introduce a new shifted
time variable:

τ ≡ t − tG. (21)

To avoid unnecessary constants, we choose tG = t� − KG
−2/3.

Hence, in the τ variable, the first real (preshock) singularity is
at

τ� ≡ KG
−2/3. (22)

We also take the liberty to still denote the perturbation by u′
when it is expressed in terms of the shifted time. As to the
freezing, replacing u(t) with u� ≡ u(t�), it appears justified
since the untruncated solution hardly changes between tG and
t�, except at wave numbers much larger than KG which do not
contribute to (20). Freezing changes (20) into an equation with
constant coefficients. In particular the beating input becomes
time-independent.

Although there are good theoretical reasons to make
these three approximations, we also tested them numerically.
Figure 15 shows the scaling law for the tyger amplitude at
t� in compensated form (after multiplication by KG

+2/3) for
(i) the full problem, (ii) with only linearization assumed, and
(iii) with in addition reinitialization and freezing assumed. All
three cases have the same scaling law. Linearization brings
about only a minuscule change, as expected. The other two
approximations make a difference of about 20%, an indication
that they can be refined.

C. Tyger birth: The minimal model

With all three approximations formulated in the previous
section, the temporal dynamics of the perturbation near t� is
simply given by

d

dτ
u′ = Au′ + f, u′(0) = 0, (23)

A ≡ −P
KG

∂x (u� •) , (24)

f ≡ P
KG

∂x

(
u<

� u>

� + (u>

� )2

2

)
. (25)

It is important to stress that, because of the freezing approxima-
tion, A and f are evaluated at t� and thus are time-independent.

We now write this equation as a finite-dimensional linear
differential equation by working in Fourier space and see that
A is actually a matrix. Some of the quantities that we look
at are more conveniently represented by taking the initial
condition u0 = sin x, which has the tyger born near x = 0
and the preshock at x = π . For other quantities the choice
u0 = − sin x is better. We refer to the former as “origin at the
tyger” and to the latter as “origin at the preshock.” Note that in
both cases, the initial condition being real and odd, so are the
untruncated solution u, the truncated one v, the perturbation
u′, and the beating input f . Hence, their Fourier coefficients
ûk , v̂k , û′

k , and f̂k are pure imaginary and odd functions of k.
With this notation, it is easy to rewrite (23)–(25) as a system
of 2KG + 1 equations, indexed by k ∈ [−KG,KG]:

d

dτ
û′

k =
KG∑

k′=−KG

Akk′ û′
k′ + f̂k , û′

k(0) = 0, (26)

Akk′ ≡ −ik û�, k−k′, (27)

f̂k ≡ ik
∑

p+q=k

(
û<

�p û>

�q + 1

2
û>

�p û>

�q

)
. (28)

It is important to observe that, û<

�, k−k′ being pure imaginary,
the entries of the matrix A are all real.

Here we observe that GHT were led, at the technical
level, to studying a homogeneous version of (26) without the
beating input f (and thus without resonant wave interactions).
In their work, the velocity u is also prescribed but mostly
taken to be sin(x) or sin(px). The operator/matrix Akk′ differs
only marginally from ours, due to the deliberate presence of
aliasing.

It is, of course, quite easy to solve (26)–(28) numerically
for the perturbation û′(τ�). Figure 16 shows its imaginary
part for three large values of KG. Most of the activity is
concentrated in boundary layers near ±KG (we only show the
right boundary layer because the function is odd). In the “tail”
outside of this boundary layer the amplitude of the perturbation
is very small. The Fourier space boundary layer contains all
the information about spatial oscillations on scales close to the
Galerkin wavelength. If a tyger is localized in physical space
near X, the Fourier amplitude will have a phase factor e−ikX.
For this particular set of figures we have taken the origin at the
preshock. In the boundary layer the most conspicuous features
are even-odd oscillations, which are a signature of a tyger
located at X = π . The oscillations are not completely sym-
metrical between positive and negative values, an indication
that there is also some small-scale activity near the preshock
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FIG. 16. (Color online) The boundary layer in Fourier space near KG. Shown are the imaginary parts of û′(t�) for three values of KG. The
origin is at the preshock. The even-odd oscillations indicate that most of the activity is at the tyger, a distance π away.

at X = 0. The low-amplitude tail to the left of the boundary
layer has no oscillations, indicating that it comes mostly from
the neighborhood of the preshock. The width of the boundary
layer is found to scale approximately as KG

1/3, that is, the
inverse of the tyger width, as expected from Heisenberg’s
“uncertainty principle.”14 As to the peak amplitude of the
perturbation in the boundary layer, it is found to scale as KG

−1.
After subtraction of the high-k contribution stemming from the
neighborhood of the preshock,15 we found that the upper part
of the envelope of the boundary layer has the following scaling
representation:

Im û′
k = KG

−1F

(
KG − k

KG
1/3

)
, F (x) = 0.448 e−3.45x, (29)

which implies a collapse of all the boundary layer data after
suitable rescaling, as illustrated in Fig. 17.

Note that by Fourier transformation, (29) immediately
implies the basic scaling laws (12) for the width and amplitude
of the tyger. As we have seen, the KG

−1/3 dependence of the
width is just a consequence of the phase mixing condition (11).
In the next section we try to understand how the amplitude
factor comes about.

D. Tyger birth reduced to a simple (?) linear algebra problem

Obviously, (23) can be solved for the perturbation at time
τ� = t� − tG:

u′(τ�) = A−1(eτ�A − I)f =
( ∞∑

n=0

An τn+1
�

(n + 1)!

)
f. (30)

If the matrix A is singular (as it actually is), the middle equation
of (30) is not directly meaningful, but the right-hand side
remains meaningful.

14Here we mean, of course, only a property of the Fourier transforma-
tion which underlies Heisenberg’s proof of the quantum-mechanical
uncertainty principle.
15This can be done by replacing pairs of successive even-odd

Fourier amplitudes with their half differences and their opposites,
respectively.

From this it becomes clear that much is controlled
by the spectral properties of the operator A. We are
thus led to consider the associated eigenvalue/eigenvector
equation

Aψ = λψ, (31)

which plays for the Galerkin-truncated problem the role of
the standard Orr-Sommerfeld equation [32] and is thus called.
Detailed spectral properties of the Orr-Sommerfeld operator
A, which is neither Hermitian nor antihermitian, are discussed
in Appendix D. The eigenvalues, most of which are complex,
come in opposite pairs, the associated complex eigenvectors
being either even or odd functions of k. In addition, there
is a zero mode, that is, an eigenvector with eigenvalue zero.
We denote the eigenvalues by λj where j is a signed integer
varying from −KG to KG. For positive j , λj is the j th
eigenvalue with positive imaginary part, eigenvalues being
ordered by increasing moduli; λ−j = −λj and λ0 = 0. A
complete set of complex eigenmodes is denoted ψ (j ) and their
Fourier coefficients by ψ

(j )
k . When KG is large, the eigenvalues

with large indices j are almost pure imaginary and the largest
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FIG. 17. (Color online) The envelopes of the various boundary
layers shown in Fig. 16 (with preshock contributions subtracted
out), collapsed into a single curve after rescaling. Red (black)
circles, KG = 20 000; blue (black) squares, KG = 15 000; red (black)
triangles, KG = 10 000; blue (black) diamonds, KG = 5000. The
thick black line is the exponential fit (29).
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(in moduli) eigenvalues are very close to ±iKG.16 The typical
spacing between the moduli of successive eigenvalues is order
unity for large KG.

Also of importance are the strength and scaling properties
of the beating input, which are discussed in Appendix C. Its
Fourier coefficients f̂k are pure imaginary and odd functions
of k. We saw that the tyger has the unexpected feature that it
appears away from the preshock. However, the beating input,
which is caused directly by truncation, is mostly localized
where the untruncated solution displays its highest small-scale
activity, namely, near the preshock. With the origin taken at
the preshock, the imaginary part of the beating input Im f̂k

peaks at truncation k = KG with |f̂
KG

| = O
(
KG

−1/3
)
. When

moving down from KG to lower k, it falls off rather slowly as
(KG − k)−1/3 while keeping a constant sign. Thus in Fourier
space we have a rather broadband beating input. In the physical
space the beating input is mostly an oscillation at the Galerkin
wavelength, whose envelope falls off as |x|−2/3, where |x| is
the distance from the preshock location.

Let us now decompose the beating input f and the solution
u′(τ�) in terms of the eigenmodes:

u′(τ�) =
∑

j

u′(j )(τ�)ψ (j ), f =
∑

j

f (j )ψ (j ). (32)

It then follows from (30) that

u′(j )(τ�) = eλj τ� − 1

λj

f (j ), (33)

in which it is understood that the fraction takes the value τ�

when λ = 0. An important role is played by those eigenvalues
for which

|λj |τ� ∼ 1; (34)

these are called threshold eigenvalues. Since τ� ∝ KG
−2/3

there is a whole range of eigenvalues well below and well
above the threshold. The corresponding eigenmodes are called
“low-lying” and “high-lying” modes, respectively. Well below
threshold the fraction in (33) can be Taylor expanded, yielding
to leading order τ�f

(j ): Those modes are essentially unaffected
by their interaction with the flow through the Orr-Sommerfeld
operator A. We have checked that such modes are responsible
for the low-amplitude oscillatory tail to the left of the boundary
layer seen in Fig. 16. Well above threshold, the modulus of the
fraction is much smaller than τ� because eλj τ� is essentially a
phase factor17 and one can thus suspect that high-lying modes
do not contribute much to the boundary layer. Making this
argument solid requires a better control over the phases than
we have been able to achieve analytically. We have thus carried
out numerically partial summations of the right-hand side of
(32), on the one hand starting from low-lying eigenmodes and
adding progressively higher-lying eigenmodes and on the other

16u� = sin x, which is not of great relevance here, it may be shown
that the eigenvalues of A are pure imaginary. In contrast, for the same
velocity but aliased boundary conditions, GHT find a real part equal
to ±1/2.
17The real part of the eigenvalues becomes negligibly small for all j

when multiplied by τ�.

hand doing it in reverse. In both instances we found that the
boundary layer of Fig. 16 emerges mostly from modes near
the threshold.18

When (33) is applied near threshold, the 1/λj yields a
factor τ� ∝ KG

−2/3, while the beating input has an overall
factor ∝KG

−1/3. Together, this produces a KG
−1 amplitude

factor in a boundary layer of thickness ∝KG
1/3, needed to

explain the KG
−2/3 law for the amplitude of the t = t� tyger

in physical space. What we just explained is, however, far
from a proof since (i) we did not show analytically that
the dominant contribution to the boundary layer comes from
threshold modes and (ii) a KG

−1 amplitude factor for the
beating input f does not necessarily imply the same factor
for its threshold components f (j ).

IV. OPEN PROBLEMS AND CONCLUSION

We must now conclude our adventures in Tygerland.
Although this project has been unfolding over three years,
we have the feeling that we only indented the subject, as far as
true mathematical understanding is concerned. For example,
in Sec. III, devoted just to the birth of tygers, we have not
identified analytically the important mechanism which allows
threshold modes to populate the boundary layer seen in Fig.
16.

As to the after-birth events, they have so far only been
the subject of numerical experimentation and occasional
phenomenological theory. The collapse of the tyger, shortly
after the time of appearance of the first shock, seen in
Fig. 5, is strongly reminiscent of the collapse phenomenon
in plasmas [34]. The immediately subsequent development, as
we have seen in Sec. II B, involves at least two phenomena. One
is the spreading out on the ramp, the moving of the tyger along
the ramps of the untruncated Burgers solution, which perhaps
can be explained by advection effects; the other one is that the
small-scale motion loses the highly organized structure seen
around t�; in other words, the Fourier spectrum broadens away
from the Galerkin wave number. This may signal the onset of
the thermalization of the solution which, eventually, becomes
a Gaussian noise in the space variable with a flat spectrum.
Here a digression is in order. The ordinary untruncated Burgers
equation—with or without viscosity—has played a major role,
not only as a testing ground for numerical schemes, but also for
helping us to find mistakes in excessively naive ideas intended
for Navier-Stokes turbulence. The Galerkin-truncated Burgers
equation may take us a step further, being paradoxically closer
to Euler-Navier-Stokes: It is nonlocal (in a way consistent with
energy conservation) and its solutions display spatiotemporal
chaos, as documented, for example, in [13].

Of course, all this would be quite academic if we did not
already have good evidence that the key phenomena associated
to tygers are also present in the 2D incompressible Euler
equation, as discussed in Sec. II C. Our understanding of this,
so far, based on what we know about the analytic structure
of 2D flow, is far from complete. It seems important to
find out how the more systematic theory of the birth can be
carried over to 2D—and perhaps 3D—Euler. So far, it is clear

18Films of such partial summations are available at [33].
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that complex-space singularities approaching the real domain
within one Galerkin wavelength are the triggering factor, as in
the 1D Burgers case.

Now, a few remarks about tyger purging, which is definitely
not the central issue of the present investigation. We have seen
in Sec. II that tygers, being born far from shocks, do not
modify shock dynamics but do modify the flow elsewhere
because the tygers induce Reynolds stresses on scales much
larger than the Galerkin wavelength; hence, the weak limit of
the Galerkin-truncated solution as KG → ∞ is definitely not
the inviscid limit of the untruncated solution. Can we “purge
tygers away” and thereby obtain a subgrid-scale method which
describes the inviscid-limit solution right down to the Galerkin
wavelength?

How can this be done practically? Several ideas come
to mind. One is simply to apply some amount of viscosity.
If the viscosity is sufficiently large, the truncation becomes
irrelevant but the solution thus obtained will not coincide with
the inviscid limit down to the Galerkin wavelength or anywhere
close to it. A second idea is to look for embryonic tygers in
physical space and selectively abort them. This can perhaps be
done by a suitable wavelet or filtering technique but may be
tricky.19 A simpler idea is to purge the boundary layer near KG

at each time step. However, this amounts to applying a Galerkin
truncation with a slightly smaller KG and will produce more
tygers. A more subtle way worth exploring is to wait until
a low amplitude tyger has appeared that is concentrated in a
sufficiently narrow boundary layer near KG

20 and then to per-
form the purging, an operation which clearly should not take
place too often. Such ideas will, of course, have to be tested
carefully in future work. One may also wonder to what extent
such a purging technique can be carried over to 2D and 3D
incompressible flow. We have already checked that for the case
of 2D and 3D incompressible flow, the birth of the tyger takes
place in a narrow boundary layer near the Galerkin truncation.
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FIG. 18. (Color online) Plots of the solution v(x) of the Galerkin-
truncated Burgers equation, with KG = 85, using two different num-
bers of collocation points, namely, N = 16 384 (black continuous
line) and with red solid circles (black circles) for N = 256 for
the single-mode initial condition v0(x) = sin(x − π/2) shown at
time t = 1.10. This plot illustrates the stroboscopic effect, a purely
graphical interpolation artefact, caused by insufficient resolution for
a given KG.

APPENDIX A: NUMERICS AND GRAPHICAL
REPRESENTATION

With the exception of the inviscid-limit solutions of the
untruncated Burgers equation which were obtained by the fast
Legendre transform method [36], all the numerical simulations
presented in this paper used the pseudospectral method [9], in
combination with a fourth-order Runge-Kutta time marching
with a time step 10−4 for KG � 5000 and 10−5 for KG > 5000.
Up to 216 collocation points were used. In order to implement
Galerkin truncation it was essential to remove aliasing.
In principle, this can be done by the so-called two-thirds
rule, KG � (2/3)Kmax = N/3, where N is the number of
collocation points. This allows a calculation of the solution
at collocation points which suffers only from double-precision
rounding errors and temporal truncation.

However, when it comes to representing tygers graphically,
using the two-thirds rule can produce a stroboscopic graphical
artefact, illustrated in Fig. 18. Since in the presence of tygers
there is a strong excitation at and near the truncation wave
number KG, the velocity is very close to a sine wave with
Galerkin wavelength. Unless proper interpolation is used,
such a sine wave cannot be correctly represented using only
three points per wavelength. Otherwise the rapid oscillations
disappear in favor of an illusory triple valuedness. One easy
way to do the interpolation is to use a much higher number of
collocation points whenever graphical output is needed.

APPENDIX B: REAL AND COMPLEX SINGULARITIES
FOR THE BURGERS EQUATION

As is well known, the solutions of hydrodynamical equa-
tions such as the Burgers or Euler equations in any dimension
with space-periodic and analytic initial data, remain so for
at least a finite time (cf., e.g., Refs. [10,11] and references
therein). In the 1D Burgers case, a real singularity appears after
a finite time (finite-time blowup). For 2D Euler, analyticity is
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preserved for all times but complex-space singularities will
typically approach the real domain arbitrarily close at long
times. For 3D Euler it is not clear if there is or not finite-time
blowup. The signature of complex-space singularities—more
precisely of those closest to the real domain—is an exponential
falloff at high wave numbers k of the spatial Fourier transform
∝e−δ(t)k (within algebraic prefactors), where δ(t) is the width
of the analyticity strip, that is, the distance from the real
domain of the nearest complex-space singularity. As long as
δ(t)KG 	 1 the effect of Galerkin truncation is exponentially
small and can be ignored for all the purposes of the present
study. For convenience we define the threshold as the time tG

when δ(tG)KG = 1.
Let us here recall how δ(t) can be obtained explicitly

for the case of the untruncated Burgers equation with the
initial condition u0(x) = − sin x (for details, cf. Ref. [14]).
In Lagrangian coordinates, the motion of an inviscid Burgers
fluid particle is given by

a �→ x = a + tu0(a) = a − t sin a. (B1)

A singularity is obtained when the Jacobian ∂x/∂a of this map
vanishes. For t slightly less than t� = 1, the Lagrangian and
Eulerian locations of the singularity nearest to the real domain
is close to the origin and can be obtained by expanding sin a

to cubic order. We thus have, up to higher-order terms,

x = (t� − t)a + a3

6
; ∂x/∂a = t� − t + a2

2
. (B2)

The Jacobian is seen to vanish at a�(t) = ±i
√

2(t� − t). The
corresponding Eulerian singularities are at

x�(t) = ±2
√

2

3
i(t� − t)3/2. (B3)

Equating the modulus δ(t) of the imaginary part of x�(t) to
1/KG, we obtain

t� − tG =
(

3

2
√

2

)2/3

KG
−2/3 ≈ 1.04KG

−2/3. (B4)

For convenience we have replaced 1.04 by unity and thus used
in Sec. III

tG = t� − KG
−2/3. (B5)

APPENDIX C: THE BEATING INPUT

Our purpose is to find the large-KG asymptotic behavior of
the beating input (28), repeated here for convenience,

f̂k ≡ ik
∑

p+q=k

(
û<

�p û>

�q + 1

2
û>

�p û>

�q

)
, (C1)

in the range 1 � KG − k � KG. Although it is this input which
eventually permits the birth of the tyger, the beating input is
strongest at the preshock and it is best to place the origin
there. The function u�, whose high- and low-passed filtered
Fourier transforms appear in (C1), is odd and has a cubic
root singularity at the origin. Hence, its Fourier transform is
pure imaginary, odd, and given to leading order at large wave
numbers by

ûk = iCk−4/3, (C2)

where C is a real constant and it is understood that k−4/3 has
the same sign as k. Actually, (C2) is a very good representation
of the Fourier transform of ûk at all but a few low-lying wave
numbers. Observe that the right-hand side of (C1) has two
terms, the first has |p| � KG and |q| > KG while the second has
both |p| and |q| greater than KG. The latter is easily bounded
in modulus by D|k|KG

−5/3 where D is a positive constant and
thus will be seen to contribute negligibly to the asymptotics.
Hence, from (C1) and (C2), we have

f̂k � −C2ikgk, (C3)

gk ≡
∑

p+q=k, |p|�KG, |q|>KG

p−4/3q−4/3. (C4)

We introduce dimensionless variables,

p̃ ≡ − p

KG

, q̃ ≡ q

KG

, k̃ ≡ KG − k

KG

, (C5)

and rewrite (C4) as

gk = −KG
−8/3

∑
k̃<p̃�1

p̃−4/3(1 + p̃ − k̃)−4/3, (C6)

where the summation on p̃ is over integer multiples of 1/KG.
Now we set

y ≡ p̃ − k̃

k̃
(C7)

and approximate the summation by an integral to obtain, to
leading order,

gk � −1

3
KG

−4/3(KG − k)−1/3, (C8)

whence

f̂k � i
1

3
C2KG

−1/3(KG − k)
−1/3

, 1 � KG − k � KG. (C9)

There are also subleading corrections involving (KG − k)0,
(KG − k)

+1/3
, etc. [37]. Because the exponent gap is only 1/3,

it is difficult in simulations to see a clean leading order term.
Figure 19 shows the beating input in Fourier space and in
physical space.

APPENDIX D: THE ORR-SOMMERFELD PROBLEM FOR
GALERKIN TRUNCATION

Here we study the spectral properties of the
Orr-Sommerfeld operator governing weak perturbations near
the time t� = 1 of the first singularity of the untruncated
solution for the initial condition u0 = sin x, as introduced
in Sec. III. This operator involves the Fourier transform
û�, k of the solution of the untruncated Burgers equation at
time t�. Because this is an odd pure imaginary function
of k, we set û�, k = iǔk , where ǔk is a real odd function.
With this notation the operator becomes the following real
(2KG + 1) × (2KG + 1) matrix:

Akk′ ≡ k ǔk−k′ , − KG � k � KG, − KG � k′ � KG.

(D1)
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FIG. 19. (Color online) The beating input term, calculated at t�
and used together with the freezing approximation, evaluated for
the single mode initial condition v0(x) = u0(x) = − sin(x) (origin
at preshock) for KG = 700. (a) Imaginary part in Fourier space;
(b) physical space.

Indices are integers but not restricted to non-negative values,
unless otherwise stated. Henceforth, unless otherwise stated,
all summations are from −KG to KG.

We studied the spectral properties of A by standard
numerical techniques using MATLAB, but we also have some
analytical results of an algebraic nature. It is appropriate to
begin with the latter.

The matrix A is singular; that is, it has a vanishing
determinant. This is equivalent to stating that there exists a
nonvanishing vector (here called a zero mode) ψ such that∑

k′ Akk′ψk′ = 0 for all k. If we can find a ψ such that∑
k′

ǔk−k′ψk′ = 0 for all k, (D2)

then it follows from (D1) that ψ is also a zero mode of A.
The matrix ǔk−k′ is skew-symmetric and of odd dimension.
By an elementary theorem of Jacobi its determinant vanishes
and thus it has a zero mode. Since the entries ǔk−k′ are real,
the zero mode can also be taken real.

The nonvanishing (complex) eigenvalues come in opposite
pairs: the associated eigenvectors which are even or odd in k.
The eigenvalue/eigenvector equation for the Orr-Sommerfeld
operator A reads ∑

k′
k ǔk−k′ψk′ = λψk. (D3)

Observe that the operator A (D1) is neither Hermitian nor
anti-Hermitian and that, for nonvanishing λ, we have ψ0 = 0.
We now exploit the oddness of ǔk to look for even and odd
eigenvectors. First assume that ψk = ψ−k . In (D3), limiting
ourselves to k > 0 we separate the k′ contributions into positive
and negative ones and obtain, using the oddness of ǔk:

k′=KG∑
k′=1

k (ǔk−k′ + ǔk+k′) ψk′ = λψk, k > 0, k′ > 0. (D4)

Now we rescale our eigenvectors by a factor of 1/
√

k,21

φk ≡ ψk√
k
, (D5)

so as to rewrite the eigenvalue/eigenvector equation as

k′=KG∑
k′=1

√
kk′ (ǔk−k′ + ǔk+k′) φk′ = λφk, k > 0, k′ > 0.

(D6)
Proceeding similarly under the asumption of an odd eigenvec-
tor, we obtain instead of (D6)

k′=KG∑
k′=1

√
kk′ (ǔk−k′ − ǔk+k′) φk′ = λφk, k > 0, k′ > 0.

(D7)
We now observe that (D6) and (D7) are two eigen-
value/eigenvector equations involving two KG × KG “reduced”
matrices which are negative transposed of each other. Hence,
their eigenvalues are opposite.

If all eigenvalues of A and of the two reduced matrices are
distinct (something for which we have so far only numerical
evidence), then the even eigenvectors, the odd ones and the
zero mode exhaust the list of 2KG + 1 eigenvectors of A.

The other results on the spectral properties of the
Orr-Sommerfeld operator are obtained numerically (mostly
for the case KG = 700) and described now, with occasional
soft phenomenological interpretations of the findings.

The eigenvalues other than zero are all complex but very
close to being pure imaginary. Figure 20, for the case KG =
700, shows the imaginary parts of all 1401 eigenvalues: They
range almost exactly from −KG to KG. Probably, this is related
to the fact that the Orr-Sommerfeld operator (24) is a modified
advection operator with an advecting velocity that ranges from
−1 to +1 and that the k factor which stems from the space
derivative cannot exceed KG because of the truncation operator.

The second panel in Fig. 20 shows the ratio of the real
to the imaginary part, which is quite small, even for the
eigenvalues close to zero. Actually, the real parts can be
neglected altogether when used in (33). The explanation
may lie in the decomposition of the matrix (D6) into the
anti-Hermitian matrix

√
kk′ǔk−k′ and the Hermitian matrix

−√
kk′ǔk+k′ . Remember that in this reduced formulation both

k and k′ are positive. In the Hermitian part k, k′, and k + k′
must be less than or equal to KG. This prevents k and k′ from

21Observe that the 1/
√

k rescaling is the k-space analog of the trick
used on GHT’s page 96 (in x space) to prove stability for non-negative
velocities.
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FIG. 20. (Color online) (a) Imaginary part of the eigenvalues for
KG = 700; (b) ratio of imaginary to real part of the eigenvalues
for KG = 700; (c) rescaled imaginary parts of the eigenvalues for
KG = 100, 200, 300, . . . , 1000 showing collapse.

being simultaneously close to KG. However, we also found that
most of the eigenmodes are confined essentially in a relatively
narrow boundary layer near KG. Hence, the Hermitian part
cannot contribute much.22

The bottom panel in Fig. 20 shows that by simply rescaling
by factors ∝KG the horizontal and vertical axes of the
distributions of the imaginary parts of the eigenvalues, the
curves for different KG all nicely collapse on top of each
other, for large enough KG, suggesting that some limiting

22For the aliased case of GHT, it seems also that high-lying
eigenmodes are confined to such a boundary layer and this may
explain why some of their x-space figures are tygerlike.
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FIG. 21. (Color online) Eigenvectors of the Orr-Sommerfeld
operator in Fourier space (origin at the tyger) for KG = 700; real
parts are shown in red (black) and the imaginary parts in cyan (light
gray). (a) Modes corresponding to an imaginary part of the eigenvalue
which is zero (zero mode, which can be taken purely real), (b) halfway
between zero and threshold, (c) at threshold, (d) halfway between
threshold and the largest value, (e) close to the largest value, and
(f) largest value (the inset zooms on the largest wave numbers).

016301-20



RESONANCE PHENOMENON FOR THE GALERKIN- . . . PHYSICAL REVIEW E 84, 016301 (2011)

distribution exists as KG → ∞ This we interpret—in highly
speculative mode—as follows. Because of the confinement
near KG of most of the eigenmodes, we can approximate the
reduced matrix

√
kk′ǔk−k′ by KGǔk−k′ , which is −iKG times

the convolution with the Fourier transform of the velocity u�.
The eigenfunctions of this operator are Dirac measures and
the corresponding eigenvalues are −iKG times the values the
velocity takes at the supports of these Dirac measures.

We now turn to the eigenmodes (Fig. 21). It is seen that the
zero mode (top panel: eigenvalue zero) is nearly constant,
around 0.0265 with additional small-amplitude even-odd

oscillations and some edge effects near ±KG. This structure is
not surprising: If it was not for truncation effects, (D2) would
be the Fourier transform of the equation u�(x)ψ(x) = 0 whose
solution is an arbitrary linear combination of Dirac measures
at the two zeros of u�, one at the tyger (x = 0) and one at the
preshock (x = π ). By Fourier transformation, these go over
into a constant vector and a vector proportional to (−1)k . As
we move to higher eigenvalues, we find that the eigenmodes
are localized at higher and higher wave numbers. This is
unexplained but consistent with the almost purely imaginary
character of the eigenvalues, as given above.
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