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RELAXATION RUNGE--KUTTA METHODS: FULLY DISCRETE
EXPLICIT ENTROPY-STABLE SCHEMES FOR THE

COMPRESSIBLE EULER AND NAVIER--STOKES EQUATIONS\ast 

HENDRIK RANOCHA\dagger , MOHAMMED SAYYARI\ddagger , LISANDRO DALCIN\ddagger , MATTEO

PARSANI\ddagger , AND DAVID I. KETCHESON\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The framework of inner product norm preserving relaxation Runge--Kutta methods
[D. I. Ketcheson, SIAM J. Numer. Anal., 57 (2019), pp. 2850--2870] is extended to general con-
vex quantities. Conservation, dissipation, or other solution properties with respect to any convex
functional are enforced by the addition of a relaxation parameter that multiplies the Runge--Kutta
update at each step. Moreover, other desirable stability (such as strong stability preservation) and
efficiency (such as low storage requirements) properties are preserved. The technique can be applied
to both explicit and implicit Runge--Kutta methods and requires only a small modification to exist-
ing implementations. The computational cost at each step is the solution of one additional scalar
algebraic equation for which a good initial guess is available. The effectiveness of this approach
is proved analytically and demonstrated in several numerical examples, including applications to
high order entropy-conservative and entropy-stable semidiscretizations on unstructured grids for the
compressible Euler and Navier--Stokes equations.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Runge--Kutta methods, energy stability, entropy stability, monotonicity, strong
stability, invariant conservation, conservation laws, fully discrete entropy stability, compressible Euler
and Navier--Stokes equations
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1. Introduction. Consider a time-dependent ordinary differential equation
(ODE)

(1.1)
d
dtu(t) = f(t, u(t)), t \in (0, T ),

u(0) = u0,

in a real Hilbert space \scrH with inner product \langle \cdot , \cdot \rangle , inducing the norm \| \cdot \| . Let
\eta : \scrH \rightarrow \BbbR denote a smooth convex function whose correct evolution in time is impor-
tant in the solution of (1.1). In relevant applications \eta might represent, e.g., some
form of energy or momentum; in the present work we refer to \eta as entropy, with a view
to applications in a hyperbolic and incompletely parabolic system of partial differen-
tial equations (PDEs) such as the compressible Euler and Navier--Stokes equations.
The time evolution of \eta is given by d

dt \eta (u(t)) =
\bigl\langle 
\eta \prime (u(t)), f(t, u(t))

\bigr\rangle 
. Thus entropy

dissipative systems satisfy

(1.2) \forall u \in \scrH , t \in [0, T ] :
\bigl\langle 
\eta \prime (u), f(t, u)

\bigr\rangle 
\leq 0,
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RELAXATION RUNGE--KUTTA METHODS: ENTROPY STABILITY A613

while entropy conservative ones fulfill

(1.3) \forall u \in \scrH , t \in [0, T ] :
\bigl\langle 
\eta \prime (u), f(t, u)

\bigr\rangle 
= 0.

In many applications it is important to preserve this qualitative behavior, i.e., to
ensure that

\eta (un+1) \leq \eta (un)

for a dissipative problem or that

\eta (un+1) = \eta (u0)

for a conservative problem. Violation of these properties can lead to solutions that
are unphysical and qualitatively incorrect. Nevertheless, most numerical methods fail
to guarantee these discrete properties. In the present work, we present a modification
that makes any Runge--Kutta (RK) method preserve conservation or dissipativity
while also retaining other important and desirable properties of the unmodified RK
method.

In this work we focus on applications to entropy conservative or entropy dissipa-
tive semidiscretizations of hyperbolic conservation laws [49, 51] and the Navier--Stokes
equations (incompletely parabolic). Nevertheless, the methods presented here may
be useful in many other applications, including Hamiltonian systems, dispersive wave
equations, and other areas where geometric numerical integration is important.

Remark 1.1. It is possible to generalize this setting to Banach spaces instead of
Hilbert spaces. In that case, scalar products of the form

\bigl\langle 
\eta \prime , f

\bigr\rangle 
should be read as the

application of the bounded linear functional \eta \prime to f .

1.1. Related work. Recently, there has been some interest in nonlinear and en-
tropy stability of numerical methods for balance laws. Several major hurdles remain on
the path toward complete nonlinearity and entropy stability of numerical algorithms
because most of the research has been focused on semidiscrete schemes (see, for in-
stance, [48, 37, 12, 56, 38, 55, 17, 18]). Stability/dissipation results for fully discrete
schemes have mainly been limited to semidiscretizations including certain amounts
of dissipation [51, 24, 57, 40], linear equations [50, 42, 46, 47], or fully implicit time
integration schemes [51, 19, 31]. For explicit methods and general equations, there
are negative experimental and theoretical results concerning entropy stability [39, 32].

While applications to entropy conservative/dissipative schemes for hyperbolic and
parabolic balance laws are included in this article, the general technique is not limited
to this setting but can be applied to many ODEs and to both explicit and implicit RK
methods. Since the basic idea is to preserve properties given at the continuous level
discretely, these schemes are related to the topic of geometric numerical integration;
see [22] and references therein.

The basic idea behind the methods proposed here comes from Dekker and Verwer
[15, pp. 265--266] and has been developed for inner-product norms in [27]. The idea
(and notation) of Dekker and Verwer [15] was applied in [16] to a restricted class
of fourth order methods. This was extended in [7] by giving a general proof that
applying the technique to an RK method of order p results in a method of order at
least p  - 1. The idea was referred to therein as the incremental direction technique
(IDT) and viewed as an RK projection method where the search direction is the same
as the direction of the next time step update. Nevertheless, the main focus in [7]
is on a different type of projection in which the search direction is chosen based on
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A614 RANOCHA ET AL.

an embedded method. Grimm and Quispel [21] extended the standard orthogonal
projection method [22, section IV.4] to dissipative systems possessing a Lyapunov
function and the same approach was used in [8, 30] with the choice of search directions
advocated in [7]. Kojima [29] reviewed some related methods and proposed another
kind of projection scheme for conservative systems.

Like standard RK methods, and in contrast to orthogonal projection methods,
the schemes based on the approach of Dekker and Verwer [15] or Calvo et al. [7] pre-
serve linear invariants---a feature that is absolutely essential in the numerical solution
of hyperbolic conservation laws. It is also interesting to study different projection
methods since the behavior of these schemes can depend crucially on the choice of
conserved quantities [22, section IV.4] and the type of projection or search direction
[8, 9, 29, 34].

The goal of this article is to extend the theory developed in [27] to a much
broader class of problems. The resulting schemes are shown to possess desirable prop-
erties, both theoretically and in numerical experiments. In particular, applications
include fully discrete entropy stable numerical methods of any order for the three-
dimensional compressible Euler and Navier--Stokes equations on unstructured grids
based on summation-by-parts (SBP) operators [10, 35]. Analytical and numerical
comparisons with other types of projection schemes are left for future work.

1.2. Runge--Kutta methods. A general (explicit or implicit) RK method with
s stages can be represented by its Butcher tableau [6, 23]

(1.4)
c A

bT
,

where A \in \BbbR s\times s and b, c \in \BbbR s. For (1.1), a step from un \approx u(tn) to u
n+1 \approx u(tn+1),

where tn+1 = tn +\Delta t is given by

yi = un +\Delta t

s\sum 
j=1

aij f(tn + cj\Delta t, yj), i \in \{ 1, . . . , s\} ,(1.5a)

un+1 = un +\Delta t

s\sum 
i=1

bi f(tn + ci\Delta t, yi).(1.5b)

Here, yi are the stage values of the RK method. We will make use of the shorthand

fi := f(tn + ci\Delta t, yi), f0 := f(tn, u
n).(1.6)

As is common in the literature, we assume that A1 = c with 1 = (1, . . . , 1)T \in \BbbR s.
An RK method is (entropy) dissipation preserving if \eta (un+1) \leq \eta (un) whenever

the right-hand side fulfills (1.2). Similarly, it is (entropy) conservative if \eta (un+1) =
\eta (un) whenever the system satisfies (1.3). Depending on the context, such schemes
are also called monotone or strongly stable [24, 39].

2. Relaxation Runge--Kutta methods. Following [15, pp. 265--266] and [27],
the basic idea to make a given RK method entropy stable is to scale the weights bi
by a parameter \gamma n \in \BbbR , i.e., to use

(2.1) un+1
\gamma := un + \gamma n\Delta t

s\sum 
i=1

bifi
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RELAXATION RUNGE--KUTTA METHODS: ENTROPY STABILITY A615

instead of un+1 in (1.5b) as the new value after one time step. If the entropy is just

the energy \eta (u) = 1
2\| u\| 

2
, the choice of \gamma n proposed in [27] is such that

(2.2)
1

2

\bigm\| \bigm\| \bigm\| un+1
\gamma 

\bigm\| \bigm\| \bigm\| 2  - 1

2
\| un\| 2 = \gamma n\Delta t

s\sum 
i=1

bi \langle yi, fi\rangle .

The new generalization to entropy stability proposed in this article is to enforce the
condition

(2.3) \eta (un+1
\gamma ) - \eta (un) = \gamma n\Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (yi), fi

\bigr\rangle 
by finding a root \gamma n of

(2.4) r(\gamma ) = \eta 

\biggl( 
un + \gamma \Delta t

s\sum 
i=1

bifi

\biggr) 
 - \eta (un) - \gamma \Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (yi), fi

\bigr\rangle 
.

Note that the direction

(2.5) dn :=

s\sum 
i=1

bifi

and the estimate of the entropy change

(2.6) e := \Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (yi), fi

\bigr\rangle 
can be computed on the fly during the computation of the RK method and are not
influenced by \gamma n. Hence, existing low-storage implementations can be used. In the
end, finding a root of r(\gamma ) = \eta (un + \gamma d)  - \eta (un)  - \gamma e is just a scalar root finding
problem for the convex function r.

Remark 2.1. If f is a semidiscretization of a (hyperbolic) PDE with entropy S
and entropy variables w(u) = S\prime (u) in the domain \Omega , (2.4) corresponds to a discrete
version of

(2.7) r(\gamma ) =

\int 
\Omega 

S(un + \gamma \Delta t dn) d\Omega  - 
\int 
\Omega 

S(un) d\Omega  - \gamma \Delta t

s\sum 
i=1

bi

\int 
\Omega 

wi \cdot fi d\Omega ,

since the total entropy is \eta (u) =
\int 
\Omega 
S(u) d\Omega .

If f is a semidiscretization of a PDE and \eta the global entropy, r(\gamma = 1) can
be interpreted as global entropy production of the unmodified RK method. Indeed,
\eta (un+1) - \eta (un) is the global entropy change and e is the entropy change, which has
the same sign as the true entropy time derivative if the weights bi \geq 0. Hence, r will
sometimes be called temporal entropy production. Thus, finding a root of r yields a
scheme that is entropy conservative for conservative problems and entropy dissipative
for dissipative problems. This can be viewed as an extension of [27, Theorem 2.1],
which dealt only with inner-product norms.
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A616 RANOCHA ET AL.

Theorem 2.2. The method defined by (1.5a) and (2.1), where \gamma n is a root of
(2.4), is conservative. If the weights bi are nonnegative and \gamma n \geq 0, then the method
is dissipation preserving.

The new numerical solution un+1
\gamma can be interpreted as an approximation to either

u(tn+\Delta t) (with scaled weights \gamma nbi) or to u(tn+\gamma n\Delta t) (with scaled time step \gamma n\Delta t).
As mentioned in [27], the given RK method determines the direction d and \gamma n can be
interpreted as a relaxation parameter determined by the requirement of preserving the
evolution of \eta . Hence, the method defined by (1.5a) and (2.1) with the interpretation
un+1
\gamma \approx u(tn + \gamma n\Delta t) is called a relaxation RK (RRK) method. The scheme using
un+1
\gamma \approx u(tn +\Delta t) will be referred to as an IDT method [7].

Remark 2.3. Some well-known RK schemes do not satisfy the sufficient condition
bi \geq 0, i \in \{ 1, . . . , s\} . For example, the classical fifth/fourth order pairs of Fehlberg
and Dormand and Prince have negative coefficients b5 < 0.

2.1. Existence of a solution. RRK methods have been developed in [27] for
the preservation of inner product norms; in that setting r(\gamma ) is quadratic and its roots
can be explicitly computed. Here we deal instead with arbitrary functionals; as we
will see, new techniques are required.

Obviously, r(0) = 0 and r is convex since the entropy \eta is convex. There is a
positive root of r if and only if r(\gamma ) is negative for small \gamma > 0 and positive for large
enough \gamma > 0.

Lemma 2.4. Let an RK method be given with coefficients such that
\sum s

i=1 biaij > 0
and let r(\gamma ) be defined by (2.4). If \eta \prime \prime (un)(f0, f0) > 0, then r\prime (0) < 0 for sufficiently
small \Delta t > 0.

Proof. By the definition of r (2.4),

(2.8)

r\prime (0) = \Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (un), fi

\bigr\rangle 
 - \Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (yi), fi

\bigr\rangle 
=  - \Delta t

s\sum 
i=1

bi

\int 1

0

\eta \prime \prime 
\biggl( 
un + v\Delta t

s\sum 
k=1

aikfk

\biggr) \biggl( 
fi,\Delta t

s\sum 
j=1

aijfj

\biggr) 
dv.

Using Taylor expansions of fi, fj = f0 +\scrO (\Delta t),

(2.9) r\prime (0) =  - \Delta t2
s\sum 

i,j=1

biaij

\int 1

0

\eta \prime \prime 
\biggl( 
un + v\Delta t

s\sum 
k=1

aikfk

\biggr) 
(f0, f0) dv +\scrO (\Delta t)3.

Using the given assumptions, r\prime (0) < 0 for sufficiently small \Delta t > 0.

Remark 2.5. The assumption
\sum s

i=1 biaij > 0 is satisfied for all (at least) second
order accurate RK methods since

\sum s
i=1 biaij = 1/2 is a condition for second order

accuracy.

Lemma 2.6. Let an RK method be given with coefficients satisfying\sum s
i,j=1 bi(aij  - bj) < 0. If \eta \prime \prime (un)(f0, f0) > 0, then r\prime (1) > 0 for sufficiently small

\Delta t > 0.
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Proof. By definition of r (2.4),
(2.10)

r\prime (1) = \Delta t

s\sum 
i=1

bi

\Bigl\langle 
\eta \prime (un+1), fi

\Bigr\rangle 
 - \Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (yi), fi

\bigr\rangle 
=  - \Delta t

s\sum 
i=1

bi

\int 1

0

\eta \prime \prime 
\biggl( 
un+1 + v\Delta t

s\sum 
k=1

(aik  - bk)fk

\biggr) \biggl( 
fi,\Delta t

s\sum 
j=1

(aij  - bj)fj

\biggr) 
dv.

Using Taylor expansions of fi, fj = f0 +\scrO (\Delta t),
(2.11)

r\prime (1) =  - \Delta t2
s\sum 

i,j=1

bi(aij - bj)
\int 1

0

\eta \prime \prime 
\biggl( 
un+1+v\Delta t

s\sum 
k=1

(aik - bk)fk
\biggr) 
(f0, f0) dv+\scrO (\Delta t)3.

Using the given assumptions, r\prime (1) > 0 for sufficiently small \Delta t > 0.

Remark 2.7. The assumption
\sum s

i,j=1 bi(aij  - bj) < 0 is satisfied for all (at least)

second order accurate RK methods since
\sum s

i,j=1 bi(aij  - bj) = 1
2  - 1 =  - 1

2 in that
case.

Together, these results establish the existence of a positive root of r.

Theorem 2.8. Assume that the RK method satisfies
\sum s

i=1 biaij > 0 and\sum s
i,j=1 bi(aij  - bj) < 0, which is true for all (at least) second order accurate schemes.

If \eta \prime \prime (un)(f0, f0) > 0, r (2.4) has a positive root for sufficiently small \Delta t > 0.

Proof. Since r(0) = 0 and r\prime (0) < 0, r(\gamma ) < 0 for small \gamma > 0. Because r\prime (1) > 0
and r is convex, r\prime is monotone. Hence, there must be a positive root of r.

Remark 2.9. The value \eta \prime \prime (un)(f0, f0) of the quadratic form \eta \prime \prime (un) is positive for
a strictly convex entropy \eta if f0 \not = 0. If f0 = 0 and the system is autonomous, every
explicit RK method will yield a stationary solution. The results of Lemmas 2.4 and
2.6 and hence of Theorem 2.8 still hold if we instead assume only that \eta \prime \prime (fi, fi) > 0
for some intermediate stage i, since the Taylor series can be expanded around that
value.

Remark 2.10. The proof of Theorem 2.8 reveals another property of r: the tem-
poral entropy dissipation. Since r is convex, there are exactly two distinct roots of
r, namely, zero, and the desired positive root \gamma n (if the assumptions of Theorem 2.8
are satisfied). Additionally, r(\gamma ) \rightarrow \infty for \gamma \rightarrow \pm \infty . Therefore, choosing a value of
\gamma > 0 smaller than the positive root of r results in some additional temporal entropy
dissipation, because r(\gamma ) < 0 in that case.

2.2. Accuracy. At first glance, the method described above seems to be not
even consistent, since \gamma n

\sum 
j bj = \gamma n \not = 1 in general. Nevertheless, an RRK scheme is

of at least the same order of accuracy as the RK scheme it is based on. In order to
prove this, we obtain several results, which will be combined and are also interesting
on their own. Readers who are interested only in the statement of the main accuracy
result can skip these parts and continue with Theorem 2.15 and Remark 2.16.

The following result has been obtained in [27, Theorem 2.4].

Theorem 2.11. Let the given RK method be of order p. Consider the IDT/RRK
method defined by (1.5a) and (2.1) and suppose that \gamma n = 1 +\scrO (\Delta tp - 1).

1. The IDT method interpreting un+1
\gamma \approx u(tn +\Delta t) has order p - 1.

2. The relaxation method interpreting un+1
\gamma \approx u(tn + \gamma n\Delta t) has order p.
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Using un as the initial value for u at tn, an RK method with order of accuracy p
yields

(2.12)

\eta (un+1) - \eta (un) = \eta (u(tn +\Delta t)) - \eta (un) +\scrO (\Delta tp+1)

=

\int tn+\Delta t

tn

\bigl\langle 
\eta \prime (u(t)), f(t, u(t))

\bigr\rangle 
dt+\scrO (\Delta tp+1)

= \Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (u(tn + ci\Delta t)), f(tn + ci\Delta t, u(tn + ci\Delta t))

\bigr\rangle 
+\scrO (\Delta tp+1)

because of the required accuracy as a quadrature rule. Although the stage values yi
are not necessarily high order approximations of u(tn+ci\Delta t), the RK order conditions
guarantee

(2.13)

s\sum 
i=1

bif(tn + ci\Delta t, yi) =

s\sum 
i=1

bif(tn + ci\Delta t, u(tn + ci\Delta t)) +\scrO (\Delta tp).

Hence, it is interesting to know whether f can be replaced by any smooth function in
this equation.

Theorem 2.12. Let W be a Banach space, \psi : [0, T ]\times \scrH \rightarrow W a smooth function,
and bi, ci coefficients of an RK method of order p. Then

(2.14)

s\sum 
i=1

bi\psi (tn + ci\Delta t, yi) =

s\sum 
i=1

bi\psi (tn + ci\Delta t, u(tn + ci\Delta t)) +\scrO (\Delta tp).

Corollary 2.13. If \eta is smooth and the given RK method is pth order accurate,
r(\gamma = 1) = \scrO (\Delta tp+1).

Proof of Corollary 2.13. Apply Theorem 2.12 to \psi (t, u) =
\bigl\langle 
\eta \prime (u), f(t, u)

\bigr\rangle 
and use

(2.12), resulting in

(2.15) \eta (un+1) - \eta (un) = \Delta t

s\sum 
i=1

bi
\bigl\langle 
\eta \prime (yi), f(tn + ci\Delta t, yi)

\bigr\rangle 
+\scrO (\Delta tp+1).

Proof of Theorem 2.12. Consider \phi (t) =
\int t

tn
\psi (\tau , u(\tau )) d\tau . Applying the RKmethod

to the extended ODE (with a slight abuse of notation)

(2.16)
d

dt

\biggl( 
\phi (t)
u(t)

\biggr) 
\underbrace{}  \underbrace{}  
=x(t)

=

\biggl( 
\psi (t, u(t))
f(t, u(t))

\biggr) 
, t \in (tn, T ),

\biggl( 
\phi (tn)
u(tn)

\biggr) 
=

\biggl( 
0
un

\biggr) 
,

yields the same stage values yi for the second component u of x. Since the method is
pth order accurate,

(2.17) \Delta t

s\sum 
i=1

bi\psi (tn + ci\Delta t, yi) = \phi n+1 = \phi (tn +\Delta t) +\scrO (\Delta tp+1).

D
ow

nl
oa

de
d 

03
/2

6/
22

 to
 1

73
.6

6.
19

9.
67

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RELAXATION RUNGE--KUTTA METHODS: ENTROPY STABILITY A619

Additionally,
(2.18)

\phi (tn +\Delta t) =

\int tn+\Delta t

tn

\psi (t, u(t)) dt = \Delta t

s\sum 
i=1

bi\psi (tn + ci\Delta t, u(tn + ci\Delta t)) +\scrO (\Delta tp+1).

Combining (2.17) and (2.18) yields the desired result.

Remark 2.14. Theorem 2.12 can be seen as a superconvergence result for integrals
evaluated using the quadrature rule associated with an RK method. It extends a
related result of [27, Lemma 4] in two ways. First, general functionals instead of the
energy are considered. Second, the proof is simplified and does not rely on extensive
computations involving the theory of Butcher series.

Theorem 2.15. Assume that the conditions of Theorem 2.8 are satisfied. Hence,
there exists a unique positive root \gamma n of r (2.4). Consider the IDT/RRK method de-
fined by (1.5a) and (2.1) and suppose that the given RK method is pth order accurate.

1. The IDT method interpreting un+1
\gamma \approx u(tn +\Delta t) has order p - 1.

2. The relaxation method interpreting un+1
\gamma \approx u(tn + \gamma n\Delta t) has order p.

Proof. Because of Corollary 2.13, r(1) = \scrO (\Delta tp+1). As can be seen in the proof
of Lemma 2.6, r\prime (1) = c\Delta t2 + \scrO (\Delta t3), where c > 0. Hence, there is a root \gamma n =
1+\scrO (\Delta tp - 1) of r (2.4). Applying Theorem 2.11 yields the desired accuracy result.

Remark 2.16. As an extension of Remark 2.10, the behavior of the temporal
entropy dissipation r (2.4) can be described as follows for sufficiently small \Delta t if the
assumptions of Theorem 2.8 are satisfied: First, r(0) = 0, r(1) = \scrO (\Delta tp+1) \approx 0,
and there is a unique 0 < \gamma n = 1 + \scrO (\Delta tp - 1) such that r(\gamma n) = 0. Between zero
and this root of r, the values of r are negative, i.e., additional entropy dissipation is
introduced in that region. Outside of the bounded interval given by zero and \gamma n, r is
positive and the time integration scheme produces entropy. Additionally, r(\gamma ) \rightarrow \infty 
for \gamma \rightarrow \pm \infty . Finally, r is convex and looks approximately similar to a parabola with
the same roots for sufficiently small \Delta t > 0. See Figure 1(a) for a typical plot of r(\gamma ).

Remark 2.17. Theorem 2.15 gives a guaranteed minimal order of accuracy. For
some specific problems and schemes, the resulting order of accuracy can be even
greater. For example, applying the classical third order, three stage method of Heun
to the harmonic oscillator

(2.19) u\prime 1(t) =  - u2(t), u\prime 2(t) = u1(t),

with entropy (energy) \eta (u) = \| u\| 2 /2, it can be shown that with relaxation the rate
of convergence is fourth order. The same result holds true for a nonlinear oscillator
given by

(2.20) u\prime 1(t) =  - \| u\| 2 u2(t), u\prime 2(t) =\| u\| 2 u1(t),

and the same entropy \eta .

2.3. Additional properties and generalizations. As described in [27], re-
laxation RK methods still conserve linear invariants, although \gamma n is determined in a
nonlinear way. Such linear invariants are, e.g., the total mass for a semidiscretization
of a hyperbolic conservation law in a periodic domain.
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Another desirable stability property of numerical time integration schemes is the
preservation of convex stability properties that hold for the explicit Euler method.
Such schemes are called strong stability preserving (SSP), as described in the mono-
graph [20] and references cited therein. It has been shown in [27, section 3] that the
relaxation modification of many SSP methods retains the same SSP property of the
original method as long as \gamma n deviates not too much from unity.

If there are several convex quantities \eta i which do not necessarily have to be
conserved but might also be dissipated, one could compute a relaxation factor \gamma n,i for
every \eta i and choose \gamma n = mini \gamma n,i. The resulting scheme will dissipate every entropy
(if bi \geq 0) because of the general shape of the temporal entropy dissipation r (cf.
Remark 2.16).

If concave quantities (which shall typically increase) are of interest, they can be
treated in the same framework using a sign change of \eta . If general functions \eta without
any convexity/concavity assumptions are of interest, relaxation and IDT methods can
still be applied.

Proposition 2.18. Suppose that the given RK method is pth order accurate with
p \geq 2. If

\bigl\langle 
\eta \prime (un+1), dn/\| dn\| 

\bigr\rangle 
= B(un)\Delta t+\scrO (\Delta t2) with B(un) \not = 0, then r (2.4) has

a positive root \gamma n = 1 + \scrO (\Delta tp - 1). If this root is used to define IDT/RRK methods
by (1.5a) and (2.1), then the following hold:

1. The IDT method interpreting un+1
\gamma \approx u(tn +\Delta t) has order p - 1.

2. The relaxation method interpreting un+1
\gamma \approx u(tn + \gamma n\Delta t) has order p.

Proof. The proof of [8, Theorem 2] using the implicit function theorem can be
adapted to this setting; the normalized search direction considered there is w =
dn/\| dn\| and the projected value is un+1

\gamma = un+1 + (1  - \gamma n)\Delta t d
n = un+1 + \lambda nw,

i.e., the step parameters are related via \gamma n = 1 + \lambda n/\| \Delta t dn\| . Since there is a
solution \lambda n = \scrO (\Delta tp) and \Delta t dn = \Delta t

\sum s
i=1 bifi scales as \Delta t, there is a solution

\gamma n = 1 +\scrO (\Delta tp - 1). Applying Theorem 2.11 yields the desired results.

Remark 2.19. While Proposition 2.18 can be applied to general functions \eta , the
detailed existence and accuracy results developed in the previous sections reveal more
properties in the convex case and provide additional insights. These additional prop-
erties (such as the general shape of r, possible entropy dissipation by smaller values
of \gamma n) are useful for applications and root finding procedures.

2.4. Implementation. For a given RK method with coefficients aij , bi, the
relaxation method defined by (1.5a) and (2.1) requires additionally only the solution
of a scalar equation, which can be done effectively using standard methods. The
derivative of r is

(2.21) r\prime (\gamma ) =
\bigl\langle 
\eta \prime (un + \gamma \Delta t dn), \Delta t dn

\bigr\rangle 
 - e,

where the direction \Delta t dn and the estimate e are defined as in (2.4) and (2.6), respec-
tively.

For most of the numerical experiments presented below, scipy.optimize.brentq
(using Brent's method [5, Chapters 3--4]) or scipy.optimize.root with method='lm'

(using a modification of the Levenberg--Marquardt algorithm as implemented in
MINPACK [33]) from SciPy [25] have been used. In most cases, Brent's method
is more efficient. For the first step, \gamma = 1 is a good initial guess; cf. section 2.2. In
subsequent steps the previous value of \gamma is chosen as the initial guess, since \gamma changes
only slightly from step to step. Implementations used for the numerical examples up
to section 3.4 are provided in [41].
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In particular for any convex entropy \eta , standard results of numerical analysis
guarantee that Newton's method converges if the conditions of the existence and
accuracy theorems are satisfied [45, Theorem 1.9]. Optimized implementations that
are robust and efficient for both small (ODE) and large (PDE) problems are left for
future research.

3. Numerical examples. The following RK methods with weights bi \geq 0 will
be used in the numerical experiments. The value of \Delta t is fixed in each test and
embedded error estimators are not used.

\bullet SSPRK(2,2): Two stage, second order SSP method of [43].
\bullet SSPRK(3,3): Three stage, third order SSP method of [43].
\bullet SSPRK(10,4): Ten stage, fourth order SSP method of [26].
\bullet RK(4,4): Classical four stage, fourth order method.
\bullet BSRK(8,5): Eight stage, fifth order method of [4].
\bullet VRK(9,6): Nine stage, sixth order method of the family developed in [54].1

\bullet VRK(13,8): Thirteen stage, eight order method of the family developed in
[54].2

3.1. Conserved exponential entropy. Consider the system

(3.1)
d

dt

\biggl( 
u1(t)
u2(t)

\biggr) 
=

\biggl( 
 - exp(u2(t))
exp(u1(t))

\biggr) 
, u0 =

\biggl( 
1
0.5

\biggr) 
,

with exponential entropy

(3.2) \eta (u) = exp(u1) + exp(u2), \eta \prime (u) =

\biggl( 
exp(u1)
exp(u2)

\biggr) 
,

which is conserved for the analytical solution

(3.3) u(t) =

\biggl( 
log

\biggl( 
e(

\surd 
e+e)t(

\surd 
e + e)\surd 

e + e(
\surd 
e+e)t

\biggr) 
, log

\Bigl( 
e + e3/2

\Bigr) 
 - log

\Bigl( \surd 
e + e(

\surd 
e+e)t

\Bigr) \biggr) T

.

The shape of r(\gamma ) for the first time step using SSPRK(3,3) is shown in Figure 1(a).
In accordance with the description given in Remark 2.16, r(0) = 0, r(1) \approx 0, r is
negative between its roots and positive outside of this interval. The order of accuracy
r(1) = \scrO (\Delta tp+1) guaranteed by Corollary 2.13 is obtained for the methods shown in
Figure 1(b).

Results of a convergence study in this setup are shown in Figure 1(a). The
unmodified and relaxation schemes (un+1

\gamma \approx u(tn + \gamma n\Delta t)) converge with the ex-
pected order of accuracy p, in accordance with Theorem 2.15. The IDT methods
(un+1

\gamma \approx u(tn+\Delta t)) yield a reduced order of convergence according to Theorem 2.15.
Moreover, they are far more sensitive to variations of the nonlinear solvers (algo-
rithms, tolerances, and other related parameters) and show serious convergence issues
for small time steps in this case, as can be seen in Figure 2(c). Hence, the relaxation
schemes are far superior in this case.

1The coefficients are taken from http://people.math.sfu.ca/\sim jverner/RKV65.IIIXb.Robust.
00010102836.081204.CoeffsOnlyFLOAT at 2019-04-27.

2The coefficients are taken from http://people.math.sfu.ca/\sim jverner/RKV87.IIa.Robust.
00000754677.081208.CoeffsOnlyFLOAT at 2019-04-27.
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(a) r(\gamma ) for SSPRK(3,3).
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(b) r(\gamma = 1) for some RK methods.

Fig. 1. Numerical results for the temporal entropy production r (2.4) at the first time step for
the entropy conservative ODE (3.1).
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(a) Unmodified methods.
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(b) Relaxation methods.
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(c) IDT methods.

Fig. 2. Convergence study for the entropy conservative ODE (3.1) with unmodified methods,
RRK schemes (un+1

\gamma \approx u(tn + \gamma n\Delta t)), and IDT methods (un+1
\gamma \approx u(tn +\Delta t)).

3.2. Dissipated exponential entropy. Consider the ODE

(3.4)
d

dt
u(t) =  - exp(u(t)), u0 = 0.5,
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(a) Unmodified methods.
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(b) Relaxation methods.
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(c) IDT methods.

Fig. 3. Convergence study for the entropy dissipative ODE (3.4) with unmodified methods,
RRK schemes (un+1

\gamma \approx u(tn + \gamma n\Delta t)), and IDT methods (un+1
\gamma \approx u(tn +\Delta t)).

with exponential entropy \eta (u) = exp(u), which is dissipated for the analytical solution

(3.5) u(t) =  - log
\Bigl( 
e - 1/2 + t

\Bigr) 
.

The shape of r and the convergence behavior of r(1) \rightarrow 0 as \Delta t \rightarrow 0 are very
similar to the ones of section 3.1 and are therefore not shown in detail. However,
the dissipative system (3.4) results in a better convergence behavior of the modified
schemes: They depend less on the nonlinear solvers and there are fewer problems for
small \Delta t, cf. Figure 3. Nevertheless, the order of convergence using the RRK schemes
is still better than for the IDT methods, as explained by Theorem 2.15.

3.3. Nonlinear pendulum. Consider the system

(3.6)
d

dt

\biggl( 
u1(t)
u2(t)

\biggr) 
=

\biggl( 
 - sin(u2(t))

u1(t)

\biggr) 
, u0 =

\biggl( 
1.5
1

\biggr) 
,

with nonquadratic energy

(3.7) \eta (u) =
1

2
u21  - cos(u2), \eta \prime (u) =

\biggl( 
u1

sin(u2)

\biggr) 
,

which is conserved for all u. Further, this entropy is convex for all u1 and | u2| < \pi 
2 .

Note that the border of the convex region is crossed for this initial condition, since
| u2| becomes larger than \pi 

2 .
The energy of numerical solutions of (3.6) with \Delta t = 0.9 is shown in Figure 4. As

can be seen there, the energy deviates significantly for all unmodified schemes while
it is conserved to machine accuracy for the RRK and IDT methods, as expected.
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(a) Unmodified methods.
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(b) Relaxation methods.
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(c) IDT methods.

Fig. 4. Evolution of the nonquadratic energy (3.7) of numerical solutions for the nonlinear
pendulum (3.6).
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(a) Energy over time.
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(b) Phase space.

Fig. 5. Numerical solutions for the nonlinear pendulum (3.6) using the unmodified and relax-
ation versions of SSPRK (3, 3) and RK (4, 4) with \Delta t = 0.9.

Typical results for this problem are shown in Figure 5. Explicit methods tend to
either create energy and drift away from the origin such as SSPRK(3,3) or to dissipate
energy and drift toward the origin such as RK(4,4). In contrast, the corresponding
relaxation schemes stay on the solution manifold with constant energy and show
qualitatively correct long time behavior.

3.4. Other equations. Other systems such as the Lotka--Volterra equations
with convex Lyapunov function, the harmonic oscillator with quartic entropy \eta (u) =

\| u\| 4, and Burgers' equation with a logarithmic entropy have also been tested. The
results are qualitatively similar to those presented above and can be found in the
accompanying repository [41].
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4. The compressible Euler and Navier--Stokes equations. In this sec-
tion, we apply the relaxation time integration schemes to the compressible Euler and
Navier--Stokes equations, which can be written as

(4.1)

\partial \bfscrQ 
\partial t

+

3\sum 
m=1

\partial \bfscrF (I)
xm

\partial xm
=

3\sum 
m=1

\partial \bfscrF (V )
xm

\partial xm
\forall (x1, x2, x3) \in \Omega , t \geq 0,

\bfscrQ (x1, x2, x3, t) = \bfscrG (B) (x1, x2, x3, t) \forall (x1, x2, x3) \in \Gamma , t \geq 0,

\bfscrQ (x1, x2, x3, 0) = \bfscrG (0) (x1, x2, x3, 0) \forall (x1, x2, x3) \in \Omega .

The vectors \bfscrQ , \bfscrF (I)
xm

, and \bfscrF (V )
xm

, respectively, denote the conserved variables, the

inviscid (I) fluxes, and the viscous (V ) fluxes. The boundary data, \bfscrG (B), and the

initial condition, \bfscrG (0), are assumed to be in L2(\Omega ), with the further assumption that

\bfscrG (B) will be set to coincide with linear well-posed boundary conditions and such that
entropy conservation or stability is achieved. The compressible Euler equations can
be obtained from (4.1) by setting \bfscrF (V )

xm
= 0.

It is well known that the compressible Navier--Stokes equations (4.1) possess a
convex extension that, when integrated over the physical domain \Omega , only depends on
the boundary data on \Gamma . Such an extension yields the entropy function

(4.2) S =  - \rho s,

where \rho and s are the density and the thermodynamic entropy, respectively. The
entropy function, S, is convex with S\prime \prime > 0 if the thermodynamic variables are positive
and is a useful tool for proving stability in the L2 norm [13, 52].

Following the analysis described in [10, 37, 12, 17], we multiply the PDE (4.1) by
the (local) entropy variables \bfscrW = \partial S/\partial \bfscrQ and arrive at the the integral form of the
(scalar) entropy equation

d

dt

\int 
\Omega 

Sd\Omega =
d

dt
\eta \leq 

3\sum 
m=1

\int 
\Gamma 

\Bigl( 
\bfscrW \top \bfscrF (V )

xm
 - \scrF xm

\Bigr) 
nxm

d\Gamma  - DT,(4.3)

where nxm
is the mth component of the outward facing unit normal to \Gamma and

(4.4) DT =

3\sum 
m,j=1

\int 
\Omega 

\biggl( 
\partial \bfscrW 
\partial xm

\biggr) \top 
\sansC m,j

\partial \bfscrW 
\partial xj

d\Omega .

We remark that viscous dissipation always introduces a negative rate of change in
entropy, since the  - DT term in (4.3) is negative semidefinite. An increase in entropy
within the domain can only result from data that convects or diffuses through the
boundary \Gamma . For smooth flows, we note that the inequality sign in (4.3) becomes an
equality. Finally, we highlight that the integral form of the entropy equation for the
compressible Euler equations can be obtained from (4.3) by removing all the viscous
terms.

Since our focus in the present work is on new time discretizations, we give only
a brief explanation of the spatial discretization. We partition the physical domain
\Omega with boundary \Gamma into nonoverlapping hexahedral elements and we discretize the
spatial terms using a multidimensional SBP simultaneous-approximation-terms (SBP-
SAT) operator as described in [10, 37, 17, 18], where the interested reader can find
the details of the spatial discretization.
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Using an SBP operator and its equivalent telescoping form and following closely
the entropy stability analysis presented in [10, 37, 12], the total entropy of the spatial
discretization satisfies

(4.5)
d

dt
1\top \widehat \sansP \bfitS =

d

dt
\eta = BT - DT+\Upsilon .

This equation mimics at the semidiscrete level each term in (4.3). Here BT is the
discrete boundary term (i.e., the discrete version of the first integral term on the right-
hand side of (4.3)), DT is the discrete dissipation term (i.e., the discrete version of
the second term on the right-hand side of (4.3)), and \Upsilon enforces interface coupling

and boundary conditions [10, 37, 12]. For completeness, we note that the matrix \widehat \sansP 
may be thought of as the mass matrix in the context of the discontinuous Galerkin
finite element method.

In the next part of this section, six test cases will be considered. The first one
is the propagation of an isentropic vortex for the compressible Euler equations. This
test case is used to (i) perform a convergence study of the combined space and time
discretizations for the compressible Euler equations and (ii) verify the entropy conser-
vative properties of the full discretization. The second test case is the propagation of
a viscous shock and is used to assess the accuracy properties of the complete entropy
stable discretization for the compressible Navier--Stokes equations. The third and
fourth test cases are the Sod's shock tube and the sine-shock interaction of Titarev
and Toro [53], which is the extension of the Shu--Osher problem with much more severe
oscillations. These two test cases are used to show the robustness of the fully discrete
entropy stable algorithm for nonsmooth solutions [10, 35]. The fifth test case is the
laminar flow in a lid-driven cavity where a nonzero heat entropy flux is imposed on
one of the vertical faces of the cavity. This test case is used to show the capabilities of
the full discretization to capture correctly the time evolution of the entropy when, for
instance, nonhomogeneous boundary conditions are imposed. Finally, the supersonic
turbulent flow past a rod of square section [37] is used to demonstrate algorithmic
robustness for the compressible Navier--Stokes equations.

The error is computed using the following norms:

(4.6)

Discrete L1 : \| \bfitq \| L1 = \Omega  - 1
c

Nel\sum 
j=1

1\top \sansP j\sansJ jabs
\bigl( 
\bfitq j
\bigr) 
,

Discrete L2 : \| \bfitq \| 2L2 = \Omega  - 1
c

Nel\sum 
j=1

\bfitq \top 
j \sansP j\sansJ j\bfitq j ,

Discrete L\infty : \| \bfitq \| L\infty = max
j=1...Nel

abs
\bigl( 
\bfitq j
\bigr) 
.

Here \sansJ j is the metric Jacobian of the curvilinear transformation from physical space
to computational space of the jth hexahedral element and Nel is the total number
of hexahedral elements in the mesh. Furthermore, \Omega c indicates the volume of \Omega 
computed as \Omega c \equiv \sum K

\kappa =1 1
\top 
\kappa \sansP 

\kappa 
\sansJ j1\kappa , where 1\kappa is a vector of ones of the size of the

number of nodes on the \kappa th element.
The unstructured grid solver used herein has been developed at the Extreme

Computing Research Center (ECRC) at KAUST on top of the Portable and Ex-
tensible Toolkit for Scientific computing (PETSc) [2], its mesh topology abstraction
(DMPLEX) [28], and scalable ODE/differential algebraic equations solver library [1].
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The parameter \gamma n of the RRK schemes is computed from (2.4) to machine preci-
sion using the bisection method which, for efficiency, is implemented directly in the
unstructured grid solver.

4.1. Propagation of an isentropic vortex in three dimensions. In this
section, we investigate the accuracy and the entropy conservation property of the full
discretization obtained by combining SBP-SAT entropy conservative operators and
relaxation time integration schemes. To do so, we simulate the propagation of an
isentropic vortex by solving the three-dimensional compressible Euler equations. The
analytical solution of this problem is

\scrG = 1 - 
\biggl\{ \Bigl[ \bigl( 

x1  - x1,0
\bigr) 
 - U\infty cos (\alpha ) t

\Bigr] 2
+
\Bigl[ \bigl( 
x2  - x2,0

\bigr) 
 - U\infty sin (\alpha ) t

\Bigr] 2\biggr\} 
,

\rho = T
1

\gamma  - 1 , T =

\biggl[ 
1 - \epsilon 2\nu M

2
\infty 
\gamma  - 1

8\pi 2
exp (\scrG )

\biggr] 
,

\scrU 1 = U\infty cos(\alpha ) - \epsilon \nu 

\bigl( 
x2  - x2,0

\bigr) 
 - U\infty sin (\alpha ) t

2\pi 
exp

\biggl( \scrG 
2

\biggr) 
,

\scrU 2 = U\infty sin(\alpha ) - \epsilon \nu 

\bigl( 
x1  - x1,0

\bigr) 
 - U\infty cos (\alpha ) t

2\pi 
exp

\biggl( \scrG 
2

\biggr) 
, \scrU 3 = 0,

(4.7)

where U\infty is the modulus of the free-stream velocity, M\infty is the free-stream Mach
number, c\infty is the free-stream speed of sound, and

\bigl( 
x1,0, x2,0, x3,0

\bigr) 
is the vortex center.

The following values are used: U\infty = M\infty c\infty , \epsilon \nu = 5, M\infty = 0.5, \gamma = 1.4, \alpha = 45
\circ 
,

and
\bigl( 
x1,0, x2,0, x3,0

\bigr) 
= (0, 0, 0). The computational domain is

x1 \in [ - 5, 5], x2 \in [ - 5, 5], x3 \in [ - 5, 5], t \in [0, 10].

The initial condition is given by (4.7) with t = 0. Periodic boundary conditions
are used on all six faces of the computational domain. First, we run a convergence
study for the complete entropy-stable discretization by simultaneously refining the
grid spacing and the time step and keeping the ratio U\infty \Delta t/\Delta x constant and equal
to 0.05. The errors and convergence rates in the L1, L2, and L\infty norms for fourth,
fifth, and sixth order accurate algorithms are reported in Table 1. We observe that
the computed order of convergence in both L1 and L2 norms matches the design order
of the scheme.

Next, we validate the full entropy-conservative property by simulating the prop-
agation of the isentropic vortex using a grid with ten hexahedra in each coordinate
direction and nonconforming interfaces (see Figure 6). The grid is generated by setting
the solution polynomial degree in each element to a random integer chosen uniformly
from the set \{ 2, 3, 4, 5\} [17].3 All the dissipation terms used for the interface coupling
[36, 17] are turned off, including upwind and interior-penalty SATs. To highlight that
the space and time discretizations and their coupling are truly entropy conservative,
we compute in quadruple precision.

In addition to the RK methods mentioned at the beginning of section 3, we use
the following methods, which also have weights bi \geq 0. Again, the value of \Delta t is fixed
in each test, and embedded error estimators are not used.

\bullet LSCKRK(5,4): Five stage, fourth order method of [11].
\bullet BSRK(3,3): Three stage, third order method of [3].

3This corresponds to SBP-SAT operators which are formally third to sixth order accurate.
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Table 1
Convergence study for the isentropic vortex using entropy conservative SBP-SAT schemes with

different solution polynomial degrees p and RRK methods (U\infty \Delta t/\Delta x = 0.05, error in the density).

p RK method L1 error L1 rate L2 error L2 rate L\infty error L\infty rate

3 RK(4,4) 2.66E-03 --- 1.36E-04 --- 2.46E-02 ---
2.15E-04 3.63 1.20E-05 3.50 3.18E-03 2.95
1.29E-05 4.06 8.50E-07 3.82 3.49E-04 3.19
6.60E-07 4.29 5.21E-08 4.03 2.66E-05 3.71
3.84E-08 4.10 2.82E-09 4.21 2.04E-06 3.70

4 BSRK(8,5) 3.34E-04 --- 4.57E-05 --- 8.50E-03 ---
3.08E-05 4.76 2.05E-06 4.48 9.06E-04 3.23
7.33E-07 5.39 5.62E-08 5.19 5.80E-05 3.97
2.05E-08 5.16 1.71E-09 5.04 1.33E-06 5.45
5.70E-10 5.17 4.76E-11 5.17 3.38E-08 5.30

5 VRK(9,6) 2.23E-04 --- 1.31E-05 --- 3.39E-03 --
3.55E-06 5.98 2.31E-07 5.82 8.69E-05 5.29
6.74E-08 5.72 4.87E-09 5.57 3.25E-06 4.74
1.10E-09 5.93 6.81E-11 6.16 7.48E-08 5.44
1.70E-11 6.02 9.57E-13 6.15 1.64E-09 5.51

Fig. 6. Isentropic vortex: mesh cut and polynomial degree distribution with nonconforming
interfaces; p = 2 to p = 7.

\bullet BSRK(7,5): Seven stage, fifth order method of [4].
\bullet VRK(10,7): Ten stage, seventh order method of the family developed in [54].4

We show the entropy variation with and without relaxation in Figure 7. The
entropy is conserved up to machine (quadruple) precision using relaxation, whereas,
without relaxation, all solutions show significant changes in total entropy.

4.2. Three-dimensional propagation of a viscous shock. Next we study
the propagation of a viscous shock using the compressible Navier--Stokes equations.
We assume a planar shock propagating along the x1 coordinate direction with a
Prandtl number of Pr = 3/4. The exact solution of this problem is known; the

4The coefficients are taken from http://people.math.sfu.ca/\sim jverner/RKV76.IIa.Robust.
000027015646.081206.CoeffsOnlyFLOAT at 2019-05-02.
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BSRK(3,3)

BSRK(7,5)

BSRK(8,5)

RK(4,4)

LSCKRK(5,4)

VRK(9,6)

VRK(10,7)

VRK(13,8)

SSPRK(2,2)

SSPRK(3,3)

SSPRK(10,4)

0.0 2.5 5.0 7.5 10.0
t

−10−5
−10−10
−10−15
−10−20
−10−25

10−20
10−15
10−10
10−5

η

(a) Without relaxation.

0 2 4 6 8 10
t

−8

−6

−4

−2

0

2

η

×10−31

(b) With relaxation.

Fig. 7. Isentropic vortex: time evolution of total entropy, using the spatial discretization shown
in Figure 6.

momentum \scrV (x1) satisfies the ODE

\alpha \scrV \partial \scrV 
\partial x1

 - (\scrV  - 1)(\scrV  - \scrV f ) = 0,  - \infty \leq x1 \leq +\infty ,(4.8)

whose solution can be written implicitly as5

(4.9) x1  - 
1

2
\alpha 

\left(  log
\bigm| \bigm| (\scrV (x1) - 1)(\scrV (x1) - \scrV f )

\bigm| \bigm| + 1 + \scrV f

1 - \scrV f
log

\bigm| \bigm| \bigm| \bigm| \bigm| \scrV (x1) - 1

\scrV (x1) - \scrV f

\bigm| \bigm| \bigm| \bigm| \bigm| 
\right)  = 0,

where

(4.10) \scrV f \equiv \scrU L

\scrU R
, \alpha \equiv 2\gamma 

\gamma + 1

\mu 

Pr \.\scrM 
.

Here \scrU L/R are known velocities to the left and right of the shock at  - \infty and +\infty ,

respectively, \.\scrM is the constant mass flow across the shock, Pr is the Prandtl number,
and \mu is the dynamic viscosity. The mass and total enthalpy are constant across the
shock. Moreover, the momentum and energy equations become redundant.

For our tests, \scrV is computed from (4.9) to machine precision using bisection. The
moving shock solution is obtained by applying a uniform translation to the above
solution. The shock is located at the center of the domain at t = 0 and the following
values are used: M\infty = 2.5, Re\infty = 10, and \gamma = 1.4. The domain is given by

x1 \in [ - 0.5, 0.5], x2 \in [ - 0.5, 0.5], x3 \in [ - 0.5, 0.5], t \in [0, 0.5].

The boundary conditions are prescribed by penalizing the numerical solution against
the exact solution. The analytical solution is also used to furnish data for the initial
conditions.

5The integration constant is taken equal to zero because the center of the viscous shock is assumed
to be at x1 = 0.
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Table 2
Convergence study for the viscous shock using entropy stable SBP-SAT schemes with different

solution polynomial degrees p and RRK methods (U\infty \Delta t/\Delta x2 = 0.05, error in the density).

p RK method L1 error L1 rate L2 error L2 rate L\infty error L\infty rate

3 RK(4,4) 2.59E-02 --- 3.78E-02 --- 1.11E-01 ---
1.88E-03 3.79 2.81E-03 3.75 9.77E-03 3.51
1.03E-04 4.19 1.99E-04 3.82 9.89E-04 3.30
5.90E-06 4.13 9.97E-06 4.32 6.12E-05 4.02
3.30E-07 4.16 5.47E-07 4.19 3.92E-06 3.97

4 BSRK(8,5) 6.80E-03 --- 9.01E-03 --- 2.00E-02 ---
5.74E-04 3.57 9.11E-04 3.31 4.02E-03 2.32
2.78E-05 4.37 5.25E-05 4.12 3.32E-04 3.60
6.30E-07 5.46 1.33E-06 5.30 1.06E-05 4.97
1.70E-08 5.21 3.30E-08 5.33 3.59E-07 4.88

5 VRK(9,6) 3.67E-03 --- 6.17E-03 --- 2.53E-02 ---
1.61E-04 4.51 2.57E-04 4.59 1.24E-03 4.35
1.34E-06 6.90 2.93E-06 6.45 2.07E-05 5.91
1.62E-08 6.37 3.90E-08 6.23 3.94E-07 5.71

We run a convergence study for the complete entropy stable discretization by
simultaneously refining the grid spacing and the time step and keeping the ratio
U\infty \Delta t/\Delta x2 constant and equal to 0.05. The errors and convergence rates in the
L1, L2 and L\infty norms for fourth, fifth, sixth order accurate algorithms are reported
in Table 2. As for the compressible Euler equations, we observe that the order of
convergence in both L1 and L2 norms is the expected one.

4.3. Sod's shock tube. Sod's shock tube problem is a classical Riemann prob-
lem that evaluates the behavior of a numerical method when a shock, expansion, and
contact discontinuity are present. Of particular interest is smearing in the shock and
contact, or oscillations at any of the discontinuities. The governing equations are the
time-dependent one-dimensional compressible Euler equations which are solved in the
domain given by

x1 \in [0, 1], t \in [0, 0.2].

The problem is initialized with

\rho =

\biggl\{ 
1 x1 < 0.5,
1/8 x1 \geq 0.5,

p =

\Biggl\{ 
1 x1 < 0.5,

1/10 x1 \geq 0.5,
\scrU 1 = 0,

where \rho and p are the density and pressure, respectively. All simulations used a ratio
of specific heats equal to 7/5.

The entropy stable spatial discretization uses polynomials of degree p = 3 and a
grid with 128 elements. The problem is integrated in time using the classical fourth
order accurate RK method RK(4,4).

Results of the density with and without relaxation are visually indistinguishable,
as shown in Figure 8. The relaxation approach does not increase the quality of the
solution and small overshoots near nonsmooth parts of the numerical approximation
are visible. This behavior is expected for a spatial discretization which uses high order
polynomials and no explicit shock capturing mechanism.
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0.0 0.2 0.4 0.6 0.8 1.0
x1

0.2

0.4

0.6

0.8

1.0

ρ

(a) Without relaxation.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.2

0.4

0.6

0.8

1.0

ρ

(b) With relaxation.

Fig. 8. Density profile of Sod's shock tube problem (exact solution shown with circles).
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(a) Sod's shock tube.

0 1 2 3 4 5
t

−4

−3

−2

−1

0

1

γ

×10−4 + 1

(b) Sine-shock interaction.

Fig. 9. Variation of the relaxation parameter, \gamma , for the shock problems.

Nevertheless, the relaxation approach does also not decrease the quality of the
solution while guaranteeing the correct sign of the entropy evolution. In particular,
this guarantee does not result in excessive artificial viscosity for shocks and the relax-
ation scheme does not smear the shock solution for a high order accurate SBP spatial
scheme.

For this experiment, \gamma deviates from unity by less than 5 \times 10 - 4, as shown in
Figure 9(a). After a short initial period, the value of \gamma seems to oscillate following a
regular pattern with amplitude \lesssim 10 - 4.

4.4. Sine-shock interaction. The solution of this benchmark problem contains
both strong discontinuities and smooth structures and is well suited for testing high
order shock-capturing schemes. The governing equations are the time-dependent one-
dimensional compressible Euler equations which are solved in the domain given by

x1 \in [ - 5,+5], t \in [0, 5].
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−4 −2 0 2 4
x1

1.0

1.2

1.4

1.6

ρ

(a) Without relaxation.

−4 −2 0 2 4
x1

1.0

1.2

1.4

1.6

ρ

(b) With relaxation.

Fig. 10. Density profile of the sine-shock interaction problem.

The problem is initialized with [53]

(\rho ,\scrU 1, p) =

\Biggl\{ 
(1.515695, 0523346, 1.805) if  - 5 \leq x <  - 4.5,\bigl( 
1 + 0.1 sin(20\pi x), 0, 1

\bigr) 
if  - 4.5 \leq x \leq 5.

The exact solution to this problem is not available. The entropy stable semidis-
cretization uses polynomials of degree p = 3 on a grid with 256 elements. The other
parameters are the same as for Sod's shock tube problem in section 4.3.

Again, results with and without relaxation are visually indistinguishable, as shown
for the density in Figure 10, supporting the conclusions of section 4.3. For this
experiment, \gamma deviates from one less than 5\times 10 - 4, as shown in Figure 9(b).

4.5. Lid-driven cavity flow. Next, we validate the algorithm simulating a
three-dimensional lid-driven cavity flow. The domain is a cube with sides of length
l discretized using a Cartesian grid composed of eight elements in each direction. A
velocity field is imposed on one of the walls, corresponding to a rigid body rotation
about the center of the wall at an angular speed \omega (see Figure 11(b)). We choose the
rotation velocity and the size of the cavity such that this example is characterized by
a Reynolds number Re = l2\omega /\nu = 100 and a Mach number M = l\omega /c = 0.05. All
the dissipation terms used for the interface coupling [36] and the imposition of the
boundary conditions [14] are turned off, including upwind and interior-penalty SAT
terms.

First, we show the performance of some RRK schemes for the case where entropy
conservative adiabatic wall boundary conditions [14] are used on all of the six faces of
the cavity (see Figure 12(b)). Figure 12(a) shows the time evolution of the discrete

total entropy \eta = 1\top \widehat \sansP \bfitS .
Two highly resolved numerical solutions computed with an eighth order accurate

scheme (p = 7), the BSRK(8,5), and the VRK(9,6) time integration scheme using a
time adaptive algorithm with a tolerance of 10 - 8 are shown in Figure 12(a). They
are indistinguishable at the resolution of the plot and can be regarded as a reference
solution. Because the solutions with and without relaxation are very close to each
other, only the results obtained with the RRK schemes are shown. After a very short
transient phase associated with the impulsive startup of the rotating plate, \eta decreases
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(a) Time evolution of the entropy function.
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(b) Sketch of the test case.

Fig. 11. Driven cavity with rigid body rotation \omega and nonzero heat entropy flux, \ttg (t).
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(a) Time evolution of the entropy.

ω

x
z

y

(b) Sketch of the test case.

Fig. 12. Driven cavity with rigid body rotation \omega and zero heat entropy flux.

linearly. The reason is simple: the imposed no-slip wall boundary conditions on the
six faces of the cavity are entropy conservative and the only term in (4.5) which is
nonzero is  - DT. This contribution is strictly negative semidefinite and constant
because the flow at this Reynolds number is laminar and steady, and therefore the
gradient of the entropy variables in (4.4) does not change in time.

The results of three additional simulations with second, third, and fourth order
accurate solvers (again with \Delta t = 10 - 4) are also plotted in Figure 12(a). For these
methods, a fixed step size \Delta t = 10 - 4 was used. We find again that the entropy
evolution with and without relaxation is indistinguishable. This demonstrates that
the relaxation approach gives a stability guarantee and, unlike most numerical stabi-
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lization techniques, does not (in this case) add any significant dissipation. It can be
clearly seen that the rate of entropy decay is different for different entropy-conservative
algorithms because of their accuracy. However, higher order discretizations give an
entropy evolution that is closer to that of the the reference solution.

Next we present in Figure 11(a) the results for the same set of RRK schemes
when a nonzero heat entropy flux, g(t) =  - 10 - 4 sin(4\pi t), is imposed on one of the
faces adjacent to the rotating face (see Figure 11(b)). Because of the added heat,
the exact time evolution of the entropy is not monotonic. This can be seen in the
reference solutions provided again by using an eighth order accurate spatial scheme
(p = 7) with the BSRK(8,5) and the VRK(9,6) time integration schemes using a
time-adaptive algorithm with a tolerance of 10 - 8. We observe that the accuracy of
the entropy evolution in time depends as expected on the order of the temporal and
spatial discretizations. Again, the entropy evolution with and without relaxation is
indistinguishable, indicating that the RRK methods do not add significant dissipa-
tion.

4.6. Supersonic turbulent flow past a rod. We finally provide further evi-
dence of the robustness of the algorithm in the context of supersonic flow around a
square cylinder with Re\infty = 104 and M\infty = 1.5, which features shocks, expansion
regions, and three-dimensional vortical structures [37]. The three-dimensional mesh
used in the study consists of 87,872 hexahedral elements. The boundary conditions
imposed are adiabatic solid wall on the square cylinder surfaces [14], periodic bound-
ary conditions in the x3 direction, and far field at the remaining boundaries. The
problem is solved using a fourth order accurate (p = 3) spatial discretization and
RK(4,4) with relaxation.

Figure 13 shows the results for the supersonic square cylinder at t = 130 and the
time evolution of the relaxation factor, \gamma . At t = 130, the flow is fully unsteady and the
shock in front of the cylinder has reached its final position. The flow is characterized
by the shock in front of the square cylinder and those in the near wake region. There
is also an unsteady wake populated by three-dimensional vortices shedding from the
body. The time evolution of the relaxation factor shows that the value of \gamma oscillates
around one with a maximum deviation from it of 2.5\times 10 - 7.

We finally remark that the small oscillations near the shock region are caused by
discontinuities in the solution and are expected for this scheme. In fact, we are not
using any shock capturing method or reducing the order of scheme at the discontinuity.
Nevertheless, the simulation remains stable at all times, and the oscillations are always
confined to small regions near the discontinuities. This is a feat unattainable with
several alternative approaches based on linear analysis, which for this test problem
lead to numerical instabilities and an almost immediate crash of the solver [37].

5. Conclusions. In this paper we have proposed, analyzed, and demonstrated
a general approach which allows any RK method to preserve the correct time evo-
lution of an arbitrary functional, without sacrificing linear covariance, accuracy, or
stability properties of the original method. In the case of convex functionals, there
are additional insights such as the possibility to add entropy dissipation by the time
integration scheme. This and procedures for adaptive time step controller will be
studied more deeply in the future. We are also studying the impact of relaxation on
the stable time step size.

The new approach, combined with an appropriate entropy-conservative/entropy-
stable semidiscretization on unstructured grids, yields the first discretization for com-
putational fluid dynamics that is
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Fig. 13. Density, thermodynamic entropy, local Mach number contours and snapshot of the
time evolution of the relaxation parameter, \gamma , for the supersonic flow around a square cylinder with
Re\infty = 104 and M\infty = 1.5 at t = 130.

\bullet primary conservative,
\bullet entropy-conservative/entropy-stable in the fully discrete sense with \Delta t =

\scrO (\Delta x),
\bullet explicit, except for the solution of a scalar algebraic equation at each time
step,

\bullet arbitrarily high order accurate in space and time.
Furthermore, the added computational cost of this modification is insignificant in
the context of typical computational fluid dynamics calculations. It is anticipated
that this type of entropy stable formulation will begin to bear fruit for industrial
simulations in the near future [44]. Finally, relaxation schemes provide an entropy
guarantee without degrading solution accuracy or adding unnecessary dissipation.

Further desirable properties of fully discrete numerical methods for the compress-
ible Euler and Navier--Stokes equations not studied in this article concern additional
elements of robustness, e.g., preserving the positivity of two thermodynamic variables
(e.g., density and pressure). To use the framework of [58], the interplay of limiters
and relaxation schemes has to be studied.

Moreover, having a local entropy (in-)equality instead of the global one estab-
lished in this article might be advantageous. However, this seems to be currently
out of reach using the relaxation schemes proposed here. While fully discrete local
entropy inequalities can be achieved by the addition of sufficient artificial viscosity,
the advantage of relaxation schemes is that they do not impose excessive dissipa-
tion; if the baseline scheme is dissipative, they can even remove some of this dissipa-
tion.
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