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Abstract. We are interested in the rate of convergence in L1 of the approximate solution of a
conservation law generated by a monotone finite difference scheme. Kuznetsov has proved that this
rate is 1/2 [USSR Comput. Math. Math. Phys., 16 (1976), pp. 105–119 and Topics Numer. Anal.
III, in Proc. Roy. Irish Acad. Conf., Dublin, 1976, pp. 183–197], and recently Teng and Zhang have
proved this estimate to be sharp for a linear flux [SIAM J. Numer. Anal., 34 (1997), pp. 959–978]. We
prove, by constructing appropriate initial data for the Cauchy problem, that Kuznetsov’s estimates
are sharp for a nonlinear flux as well.
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1. Introduction. There are many ways of looking at the accuracy of numerical
methods for solving partial differential equations. One way is to take as a measure of
accuracy the order of the error term obtained by substituting the numerical solution in
the differential equation; this is usually called the order of the method [LeV]. In what
follows, we shall refer to it as the formal order of accuracy of the numerical method.
Another way is to measure the error of approximation ‖u−u∆x‖ of the exact solution
u by the numerical solution u∆x in a suitable norm. The parameter ∆x gives the
scale of approximation and converges to zero as the scale becomes finer. We shall call
the order of this error the convergence rate of the numerical solution generated by the
given numerical method, or simply the convergence rate of the method.

For linear partial differential equations with constant coefficients, the convergence
rate is the same as the formal order of accuracy, provided the solution is smooth
enough [BTW]. This justifies the use of either one as a measure of the accuracy of a
numerical method.

For conservation laws, this is no longer true. Formally, high-order methods have
low convergence rates. For many numerical methods, this is explained in part by
the relation between high-order convergence rates and high-order regularity of the
solution. If a numerical method has a high order of convergence, the solution will have
a high order of smoothness. But for conservation laws, due to the formation of shock
discontinuities, there are a priori limits on the smoothness of solutions. A discussion
of regularity spaces for conservation laws and of the implications for approximation
of solutions can be found in the papers of DeVore and Lucier [DeVLu1, DeVLu2].

Moreover, there are discrepancies between the expected accuracy, given by the
formal accuracy of a method, and the actual convergence rates in cases where the
smoothness of the solution is not an obstacle. The aim of this paper is to show that
this discrepancy is not due to our inability to find better error estimates.

In what follows, we restrict our attention to monotone finite difference schemes
for scalar conservation laws. The fundamental results on monotone schemes were
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obtained by Kuznetsov [Ku2], Kuznetsov and Volosin [KuVl], and Crandall and Majda
[CrMj]. Their papers contain proofs of convergence of monotone schemes to the
entropy solution and estimates of the convergence rate in L1.

Monotone difference schemes are quite natural, since the solution operator of
the conservation law is monotone. The problem with monotone schemes, as shown
by Harten, Hyman, and Lax [HHL], is that they are at most first-order accurate,
and as a consequence, their rate of convergence in L1 is restricted to O(∆x), where
∆x represents the meshsize of the uniform spatial grid on which the exact solution
is approximated. On the other hand, the general proofs for convergence rates of
Kruzkhov [Kr] and Kuznetsov [Ku1, Ku2] give only O(

√
∆x). Recently Nessyahu,

Tadmor, and Tassa [Td], [NsTd], [NTT] used a different method from the one em-
ployed by Kuznetsov to prove a convergence rate of O(∆x) in W−1,1. This higher
convergence rate in W−1,1 translates into the same O(

√
∆x) for the convergence rate

in L1. In some special cases, like Riemann problems, it was shown by Bakhvalov
[Bk] and Harabetian [Hb] that faster convergence rates, like O(∆x | log ∆x|), can be
obtained for a rarefaction wave; Teng and Zhang [TnZh] proved the optimal conver-
gence rate of O(∆x) for solutions corresponding to initial data that are piecewise
constant with a finite number of pieces. One common feature of these results is that
they make use of the nonlinearity of the flux, while it has been known (for example
[Lu1, Lu2]) that in the case of a linear flux (that is, for the linear advection equation)
and an upwind scheme, the rate of convergence for solutions of Riemann problems
(traveling waves) is precisely O(

√
∆x). Tang and Teng [TgTn] proved that the same

is true for all monotone finite difference schemes applied to a linear conservation
law.

All this raises the question: are better estimates possible for the case of a nonlinear
flux and general initial data? As we show in this paper, the answer is no; even for a
nonlinear flux, we can construct initial data for which the convergence rate in L1 of
the corresponding numerical solution to the exact solution is no better than O(

√
∆x).

Our construction consists of an initial condition that is piecewise constant with
infinitely many pieces. We obtain the error estimate by using linearized equations
associated with the conservation law and the error estimates already available for
linear equations.

2. Monotone finite difference schemes. In this section we review the basic
notations, definitions, and theorems concerning monotone finite difference schemes.

In order to construct an approximate solution to the conservation law

∂tu(x, t) + divxf(u(x, t)) = 0, u(x, 0) = u0(x) ,(CL)

we replace derivatives by finite differences and the solution u by a piecewise constant
function on a uniform grid. For simplicity of notation, we restrict ourselves to the
one-dimensional case.

Let Ij := [ j, j + 1) for any j ∈ Z, and let (δau)(x) := u(ax). The piecewise
constant numerical approximation to the solution is given by

un∆x := u∆x( · , n∆t) :=
∑
j∈Z

unj δ1/∆x χIj .(2.1)

Here, ∆x is the meshsize, ∆t is the time step, and n represents the number of steps
in time performed. For the initial condition u0

∆x we take the orthogonal projection of
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the initial datum u0 onto the space of piecewise constant functions on the given grid

u0
∆x := P∆x u0 :=

∑
j∈Z

u0
jδ1/∆xχIj , u0

j :=
1

∆x

∫ (j+1)∆x

j∆x
u0(x) dx .(2.2)

By an explicit numerical scheme, we mean a transformation (unj )j∈Z 7→ (un+1
j )j∈Z of

the form

un+1
j = unj −

∆t
∆x

[
h(f)(unj−p+1, . . . , u

n
j+q)− h(f)(unj−p, . . . , u

n
j+q−1)

]
.(2.3)

The quotient λ := ∆t/∆x is constant, meaning that the grids we consider are uniform
in space and time. The numerical flux h(f) is a function of p + q variables, and the
method is called a (p+ q + 1)-point scheme. We note that the numerical scheme can
be rewritten as

un+1
∆x = δ1/∆x S δ∆x u

n
∆x

= δ1/∆x S
n δ∆x u

0
∆x ,

(2.4)

where

(2.5) Su(x) := u(x)− λ [h(f) (u(x− p+ 1), . . . , u(x+ q))
−h(f) (u(x− p), . . . , u(x+ q − 1))] .

A three-point scheme can be written as

un+1
j = unj − λ

[
h(f)(unj , u

n
j+1)− h(f)(unj−1, u

n
j )
]
.(2.6)

In this particular case, the operator S becomes

Su(x) := u(x)− λ [h(f)(u(x), u(x+ 1))− h(f)(u(x− 1), u(x))] .(2.7)

Using the piecewise constant functions un∆x that approximate the exact solution at
n∆t, n = 0, 1, . . . , we can construct various approximations to u in the whole half-
space. For example, we can choose piecewise constant functions in time

u∆x( · , t) = u∆x( · , n∆t), n∆t ≤ t < (n+ 1)∆t ,(2.8)

or we can take piecewise linear functions in time

(2.9) u∆x( · , (1− α)n∆t+ α(n+ 1)∆t)
= (1− α)u∆x(·, n∆t) + αu∆x(·, (n+ 1)∆t), 0 ≤ α ≤ 1 .

We are interested in the convergence of the approximations u∆x to the entropy solution
of the conservation law. We say that u∆x → u in L∞([0, T ], L1(R)) when ∆x→ 0 if

sup
0≤t≤T

‖u∆x(·, t)− u(·, t)‖L1(R) −→ 0 for ∆x −→ 0 .(2.10)

We note that, since λ = ∆t/∆x is constant, ∆x→ 0 means ∆t→ 0 as well.
We say that the numerical flux h(f) is consistent with the differential flux f if

h(f)(c, . . . , c) = f(c).
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The numerical scheme (2.3) is said to be conservative since the operator S defined
by (2.5) preserves integrals, that is∫

R
Su(x) dx =

∫
R
u(x) dx ,(2.11)

whenever u, Su are integrable. Indeed, the integrals of the last two terms on the right
in (2.5) are equal, since each can be obtained from the other by a translation in the
variable x.

The numerical scheme (2.3) is called monotone if the operator S is monotone,
that is, if u ≥ v implies Su ≥ Sv.

By a theorem of Lax and Wendroff [LaW], it is known that if a consistent scheme
of the form (2.3) converges, in the sense that u∆x converges boundedly almost every-
where to a function u, then the limit u is a weak solution of (CL). The problem is that
it might not converge, or it is possible that it converges to the wrong solution [HHL].
However, if the operator S is monotone, the scheme converges, and it converges to
the entropy solution. Kuznetsov [Ku2] proved the following theorem.

THEOREM 2.1. The approximate solution generated by a monotone, conservative,
and consistent numerical scheme (2.3) with a Lipschitz continuous numerical flux
converges in L∞([0, T ], L1(R)) to the entropy solution of (CL) for any initial condition
in L1 ∩ L∞(R).

In addition, if the initial condition has bounded variation,

‖u∆x(·, t)− u(·, t)‖ ≤ CT
√

∆x(2.12)

for all 0 ≤ t ≤ T .
Next, we give some examples of monotone schemes.
(1) The modified Lax–Friedrichs scheme

un+1
j = unj −

λ

2
[
f(unj+1)− f(unj−1)

]
+
Q

2
(unj+1 − 2unj + unj−1),

hLF (f)(u, v) =
f(v) + f(u)

2
− Q

2λ
(v − u) ,(2.13)

where 0 < Q ≤ 1. Here, modified refers to the coefficient Q, which in the Lax–
Friedrichs scheme is equal to 1. If Q is chosen greater than 1, the scheme cannot
be monotone. Sufficient conditions for monotonicity are that Qλ ≤ 1 and Q ≥
λmax|f ′(u)|.

(2) The Engquist–Osher scheme

un+1
j = unj − λ

[
f+(unj )− f+(unj−1) + f−(unj+1)− f−(unj )

]
,

hEO(f)(u, v) = f−(v) + f+(u) ,(2.14)

where f+ =
∫
f ′ ∨ 0 and f− =

∫
f ′ ∧ 0. A sufficient condition for monotonicity in

this case is λmax|f ′(u)| ≤ 1.
(3) The Godunov scheme is defined as follows: let P∆x be the orthogonal projector

onto the space of piecewise constant functions as defined by (2.2) and let E(t) denote
the exact solution operator of (CL); then, we define

un+1
∆x := P∆xE(∆t)un∆x .(2.15)

Since both P∆x and E(∆t) are monotone operators, it follows that S, the numerical
evolution operator, is also monotone. In this case, S is given by the formula S =
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δ∆xP∆xE(∆t)δ1/∆x. Under the additional assumption λmax|f ′(u)| ≤ 1/2, Osher
[Os] showed that for a general, possibly nonconvex flux f , the Godunov scheme can
be written as

un+1
j = unj − λ

[
f(u∗(unj , u

n
j+1))− f(u∗(unj−1, u

n
j ))
]
,

hG(f)(u, v) = f(u∗(u, v)) ,

where

f(u∗(u, v)) =


min
w∈[u,v]

f(w) if u < v,

max
w∈[v,u]

f(w) if u ≥ v .(2.16)

The strengthened Courant–Friedrichs–Levy (CFL) condition λmax|f ′(u)| ≤ 1/2 is
equivalent to the requirement that the Riemann problems we solve at consecutive
gridpoints in Godunov’s scheme do not interact.

In our examples, the conditions we give as sufficient for monotonicity also enforce
the CFL condition.

We note that, for Burgers’s equation (f(u) = 1
2u

2) and positive initial data, or
a linear advection equation with positive transport velocity, (2) and (3) coincide and
become an upwind scheme:

un+1
j = unj − λ

[
f(unj )− f(unj−1)

]
.(2.17)

We now present sharp estimates for the L1 error of approximation, ‖u( · , N∆t)−
u∆x( · , N∆t)‖L1(R), in the case f(u) = cu, that is, when the equation is linear. De-
tailed proofs can be found in the lecture notes of Lucier [Lu2] and in the paper of
Tang and Teng [TgTn].

We apply a monotone finite difference scheme to the linear advection equation

∂tv(x, t) + c ∂xv(x, t) = 0, v(x, 0) = u0(x),(LCL)

where

u0(x) =
{
a if x < 0,
b if x ≥ 0,

(2.18)

and c > 0. The exact solution is

w(x, T ) =
{
a if x < cT,

b if x ≥ cT .
(2.19)

We assume that the monotone (p+ q + 1)-point scheme we chose has the form

vn+1
j =

q∑
s=−p

asv
n
j+s(2.20)

when applied to the linear advection equation. For such a scheme applied to the
Riemann problem (2.18), we have the following estimate of Tang and Teng [TgTn]:

‖v(·, T )− v∆x(·, T )‖L1(R) ≥ c(p, q)|b− a|
T

λ

∑
s6=s0

√
as N

−1/2

= c(p, q)|b− a|
√
T

λ

∑
s6=s0

√
as
√

∆x ,
(2.21)
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where T = N∆t, c(p, q) is a universal constant depending only on p and q, and s0 is
determined by as0 := max

s
as. We note that this estimate holds for both a < b and

for b < a.

3. Comparison of the linear and the nonlinear schemes. Our next goal is
to compare the numerical solutions provided by the same numerical scheme applied
to the nonlinear problem

∂tu(x, t) + ∂xf(u(x, t)) = 0, u(x, 0) = u0(x)(CL)

and to the linear transport equation

∂tv(x, t) + c ∂xv(x, t) = 0, v(x, 0) = u0(x)(LCL)

in the case of a Riemann problem. That is, given the nonlinear conservation law
(CL) and some numerical method for its solution, we shall apply the same numerical
method to a linear problem (LCL) and compare the solutions of the two. We shall
show that, if the variation of the initial datum u0 is small, the error of approximation
for (CL) is close to the error of approximation for (LCL). This is due to the fact that,
for small discontinuities, the nonlinear equation exhibits behavior very similar to that
of the linear equation.

For the remainder of this section, we take

u0(x) =
{
a if x < 0 ,
b if x ≥ 0 .

(3.1)

As before, our estimates hold for both a < b and b < a. We fix T > 0 and we allow N ,
the number of time steps performed, to vary. That means that we let ∆x = ∆t/λ =
T/λN . Thus, our parameter is N , and we want to express everything in terms of N ,
rather than ∆x or ∆t. For this purpose, we need to make a small modification in the
way we write the numerical scheme. Let d := T/λ and let lc(u) := cu; then, we claim,
for 0 ≤ n ≤ N ,

u∆x( · , n∆t) = δN S
n
1 u0 and v∆x( · , n∆t) = δN S

n
2 u0 ,(3.2)

where

S1u(x) := u(x)− T

d
[h(f)(u(x− (p− 1)d), . . . , u(x+ qd))

− h(f)(u(x− pd), . . . , u(x+ (q − 1)d))] ,

S2u(x) := u(x)− T

d
[h(lc)(u(x− (p− 1)d), . . . , u(x+ qd))

− h(lc)(u(x− pd), . . . , u(x+ (q − 1)d))] .

(3.3)

We remark that u0
∆x = u0 due to the particular form of u0. We have only rewritten

(2.4)–(2.5) since

u∆x( · , n∆t) = δ1/∆x S
n δ∆x u

0
∆x

= δN δ1/N∆x S
n δN∆x δ1/N u

0
∆x

= δN
(
δ1/N∆x S δN∆x

)n
δ1/N u

0
∆x

= δN S
n
1 u

0
∆x ,

(3.4)
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with the observation that S is the one given by (2.5) and the initial datum u0 is
dilation invariant. The same analysis gives S2.

Thus, u∆x( · , N∆t) and v∆x( · , N∆t) represent the numerical solutions for t = T
corresponding to the same numerical method applied to (CL) and (LCL), respectively.
We recall that h(f) is the numerical flux obtained by applying our numerical method
to (CL) and that h(lc) is the corresponding numerical flux for (LCL).

We now make some supplementary assumptions on the numerical method under
consideration. We shall need the following two conditions for f and the numerical
method:

(C1) h(lc) is a linear function, h(lc)(x1, . . . , xp+q) =
∑p+q
i=1 bixi for lc(u) = cu, and

(C2) supi|∂ih(f)(ξ) − bi| ≤ C(m,M, f)|b − a| uniformly for ξ ∈ [a, b]p+q (or
[b, a]p+q), m ≤ a, b ≤ M , and c = f ′(ζ) for some ζ ∈ [a, b] (or [b, a]); the
bi are determined by c through condition (C1).

To understand the nature of these conditions, suppose we have a numerical method
for solving a nonlinear conservation law (CL) with initial condition (3.1). We want
to show that the numerical behavior of this method is closely related to a numerical
scheme for the linear equation (LCL) with the same initial condition, provided we
choose c = f ′(ζ), with ζ between a and b and a, b close to each other.

Essentially, (C1) and (C2) express the fact that the nonlinearity of the numeri-
cal scheme for the nonlinear conservation law is due only to the nonlinearity of the
differential flux f , and not to the numerical method being based on nonlinear approx-
imation.

For example, it is easy to see that these conditions are satisfied by the modified
Lax–Friedrichs scheme, by the Engquist–Osher scheme, and by Godunov’s scheme in
the simple case when it reduces to an upwind scheme.

We want to estimate EN := ‖u∆x( · , T ) − v∆x( · , T )‖L1(R) = ‖u∆x( · , N∆t) −
v∆x( · , N∆t)‖L1(R). To do this, we use an idea of Harabetian [Hb], which is essentially
induction on N . Let ∆t′ := T/(N+1) and let ∆x′ be the corresponding x-grid scaling
parameter. Then

u∆x′( · , T )− v∆x′( · , T )
= u∆x′( · , (N + 1)∆t′)− v∆x′( · , (N + 1)∆t′)
= δN+1 S

N+1
1 u0 − δN+1 S

N+1
2 u0

= δ1+1/N δN S1 δ1/N δN S
N
1 u0 − δ1+1/N δN S1 δ1/N δN S

N
2 u0

+ δ1+1/N δN S1 δ1/N δN S
N
2 u0 − δ1+1/N δN S2 δ1/N δN S

N
2 u0 .(3.5)

Applying the triangle inequality to (3.5), we obtain

EN+1 ≤
∥∥δ1+1/N

[
(δNS1δ1/N )δNSN1 u0 − (δNS1δ1/N )δNSN2 u0

]∥∥
L1(R)

+
∥∥δ1+1/N

[
(δNS1δ1/N )δNSN2 u0 − (δNS2δ1/N )δNSN2 u0

]∥∥
L1(R)

≤ N

N + 1
EN +

N

N + 1

∥∥δN S1δ1/N g − δN S2 δ1/N g
∥∥
L1(R) ,

(3.6)

where g = δN S
N
2 u0. To estimate the first term, we also used the fact that δN S1 δ1/N

is a contraction in L1. This follows from the fact that the numerical method is
monotone and conservative and from the Crandall–Tartar lemma [CrTt]. Also, the
method is total variation diminishing and thus preserves monotone profiles, so g is
monotone and |g|BV = |b − a|. Now, we estimate the second term in the inequality.
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By using the mean value theorem, we have

δN S1 δ1/N g − δN S2 δ1/N g

=
1
d

[h(f)(g(x− (p− 1)d/N), . . . , g(x+ qd/N))

−h(f)(g(x− pd/N), . . . , g(x+ (q − 1)d/N))]

− 1
d

[h(lc)(g(x− (p− 1)d/N), . . . , g(x+ qd/N))

−h(lc)(g(x− pd/N), . . . , g(x+ (q − 1)d/N))]

=
1
d

(h(f)− h(lc)) (ξ1 − ξ2)

=
1
d
5 (h(f)− h(lc)) (ξ) · (ξ1 − ξ2) ,

(3.7)

where ξ is a point on the line segment determined by ξ1 = (g(x− (p− 1)d/N),
. . . , g(x+ qd/N)), and ξ2 = (g(x− pd/N), . . . , g(x+ (q − 1)d/N)). We also note that
ξ1, ξ2, ξ are all in [a, b]p+q, and using (C2) in (3.7), we have

‖δN S1 δ1/N g − δN S2 δ1/N g‖L1(R)

≤ 1
d
C(m,M, f)|b− a| d

N
‖ξ1 − ξ2‖L1(R)

≤ p+ q

d
C(m,M, f)|b− a| d

N
|g|BV = C

(b− a)2

N
,

(3.8)

where the constant C depends only on p, q, λ,m,M , and f . Hence, by using (3.8) in
(3.6), we have

EN+1 ≤
N

N + 1
EN +

C

N + 1
(b− a)2 .(3.9)

By repeatedly applying (3.9) for N − 1, N − 2, . . . , we conclude with the following
estimate for the error:

EN ≤ C(b− a)2 ,(3.10)

where the constant C depends only on p, q, λ,m,M , and f .
Next, we estimate how close the exact solutions of the two problems are. Let

u(x, t) be the exact solution of (CL) with initial datum (3.1). To keep the description
of the exact solution simple, we assume f to be strictly convex on [m,M ] and we
have, when a < b (the rarefaction case),

u(x, T ) =


a

(f ′)−1(x/T )
b

if x < f ′(a)T,
if f ′(a)T ≤ x ≤ f ′(b)T,
if f ′(b)T < x

(3.11)

for any m ≤ a < b ≤M . If a > b (the shock case), we have

u(x, T ) =
{
a if x < T (f(a)− f(b))/(a− b),
b if x > T (f(a)− f(b))/(a− b)

(3.12)

for any m ≤ b < a ≤M .
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Let v(x, t) be the exact solution of (LCL) with initial datum (3.1). Then

v(x, T ) =
{
a if x < cT,

b if x > cT.
(3.13)

Taking c = f ′(ζ) for some ζ in [a, b] (or [b, a]), we obtain

‖u( · , T )− v( · , T )‖L1(R) ≤ (b− a)2T sup
a≤ξ≤b

|f ′′(ξ)|

≤ C(m,M, f, T )(b− a)2 ,
(3.14)

uniformly for m ≤ a, b ≤M .
Returning to the general case of a nonlinear flux f , we estimate from below the

error for a single Riemann problem. Combining (3.10) and (3.14), we have

‖u( · , T )− u∆x( · , T )‖L1(R)

≥ ‖v( · , T )− v∆x( · , T )‖L1(R)

− ‖u( · , T )− v( · , T )‖L1(R) − ‖u∆x( · , T )− v∆x( · , T )‖L1(R)

≥ ‖v( · , T )− v∆x( · , T )‖L1(R) − C(b− a)2 .

(3.15)

The functions v and vN∆x are solutions of an auxiliary linear transport equation with
transport velocity c = f ′(ζ) for the same ζ. The point is that for small |b − a|, the
error is as in the linear case.

To summarize, we have proved the following theorem.
THEOREM 3.1. We assume that for a given monotone, conservative, consistent

finite difference method (2.4), (2.5), there exist m,M such that (C1), (C2) hold. Fur-
thermore, we assume f to be strictly convex on [m,M ]. Let u be the exact solution
of (CL) with initial condition (3.1), and let u∆x be the corresponding approximate
solution generated by the numerical method. Then,

(3.16) ‖u(·, T )− u∆x(·, T )‖L1(R)

≥ ‖v(·, T )− v∆x(·, T )‖L1(R) − C(m,M, f, T )(b− a)2 ,

where v is the exact solution of (LCL) with initial datum (3.1) and v∆x is the cor-
responding approximate solution generated by the numerical method. The estimate is
uniform with respect to the transport velocity in the linear problem, c = f ′(ζ) for ζ in
[a, b] (or [b, a]) and uniform with respect to a, b such that m ≤ a, b ≤M .

4. The main result. We return now to the error analysis for the nonlinear
conservation law

∂tu(x, t) + ∂xf(u(x, t)) = 0, u(x, 0) = u0(x) .(CL)

Throughout this section, we assume that we have fixed a monotone finite difference
method that, together with the flux f , satisfies the hypotheses of Theorem 3.1. We
define

u0(x) :=
∑
i≥0

∑
1≤j≤ki

ci χIij (x) ,(4.1)

where ci ≥ 0, c0 ≥ c1 ≥ c2 ≥ · · · , ki are nonnegative integers and the intervals Iij
are pairwise disjoint. In addition, the intervals Iij are situated on the real axis in a
sequence I01, . . . , I0k0 , . . . , I11, . . . , I1k1 , . . . .
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The CFL number is determined by ‖u0‖L∞(R) = c0 and f . For simplicity, we set
T = 1 and we take ∆t = 1/N and ∆x = 1/λN = d/N . For technical reasons, we will
assume N to be an integer power of 2. We carry the numerical computation for N
steps on the uniform grid, with ∆t and ∆x as defined above.

First, we choose the intervals Iij such that the following two conditions are sat-
isfied uniformly for N :

P∆xu0 = u0 (see (2.2)),(4.2)

‖u(·, 1)− u∆x(·, 1)‖L1(R) =
∑
i,j

‖uij(·, 1)− uij∆x(·, 1)‖L1(R) ,(4.3)

where uij and uij∆x are the exact solutions and the numerical approximations corre-
sponding to the initial data ci χIij (x). To obtain (4.2) and (4.3), we fix the endpoints
of each interval to be points from dZ. Then, we take the length of each interval to be
(p+ q+ 1)d, and we set the distance between any two adjacent intervals to be at least
(p+ q+ 1)d. This guarantees that after N steps in the computation, the disturbances
propagating from each interval endpoint will not interact with each other, neither in
the exact solution nor in the numerical solution.

Indeed, for the numerical solution we see that after one iteration, the value at one
gridpoint can influence at most q cells to the left and p cells to the right, for a total
of (p+ q+ 1) influenced cells at the next time level. Since we are iterating the scheme
N times, and the size of one cell is ∆x = d/N , we obtain a domain of influence of
length (p + q + 1)d. For the exact solution, the assertion is also true, since the CFL
condition says that the domain of numerical propagation should include the domain
of maximum propagation of the exact solution.

Now, we need to define the constants ci and ki. We want u0 ∈ L1 ∩L∞∩BV (R).
Calculating the L1-norm and the BV -norm of u0,

‖u0‖L1(R) =
∑
i≥0

kici(p+ q + 1)d = (p+ q + 1)d
∑
i≥0

kici,(4.4)

‖u0‖BV (R) =
∑
i≥0

ki 2 ci = 2
∑
i≥0

kici ,(4.5)

we conclude that u0 ∈ L1 ∩BV (R) if and only if
∑
i≥0 kici < +∞.

We recall that, under the assumption (C1), the numerical method applied to a
linear problem gives a linear numerical scheme

vn+1
j =

q∑
s=−p

asv
n
j+s .(4.6)

Returning to the error estimates, we combine (3.16) with (2.21) to obtain

‖uij − uij∆x‖L1(R) ≥ 2c(p, q) ci
∑
s6=s0

√
ais dN

−1/2 − 2C(0, c0, f, 1) c2i

= 2ci

d c(p, q) ∑
s6=s0

√
aisN

−1/2 − C(0, c0, f, T ) ci

 .

(4.7)

The coefficients ais are those determined by (4.6). The differential flux of the auxiliary
linear problem is lc(u) = cu with c = f ′(ζ) , 0 < ζ ≤ ci.
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We need a uniform estimate from below for
∑
s6=s0

√
ais. We shall make the

following assumption concerning the flux f and the numerical method we have chosen:
there exist M > 0 and β > 0, such that for all 0 < ζ < M ,∑

s6=s0

√
as ≥ β > 0(4.8)

uniformly, where as are the coefficients from (4.6) and lc(u) = cu with c = f ′(ζ).
Here are the coefficients as in two particular instances.

(1) For the modified Lax–Friedrichs scheme:

a−1 = (Q+ λc)/2 , a0 = 1−Q , a1 = (Q− λc)/2 .(4.9)

(2) For the upwind scheme (which in the linear case under consideration coincides
with both the Engquist–Osher and Godunov schemes):

a−1 = λc , a0 = 1− λc , if c > 0 , a0 = 1 + λc , a1 = −λc , if c < 0 .(4.10)

In the first case,
∑
s6=s0
√
as ≥ β > 0 is satisfied always. In the second case, if

f ′(0) = 0, it is no longer satisfied since λc → 0 when c = f ′(ζ) and ζ → 0. In case
f ′(0) 6= 0, there are no problems with the upwind scheme either.

Returning to the error estimate, we have under the assumption (4.8)

ki∑
j=1

‖uij(·, 1)− uij∆x(·, 1)‖L1(R) ≥ Akici(N−1/2 −Bci)(4.11)

for all i, with A,B > 0 independent of i and N . From (4.3) and (4.11) we get

‖u(·, 1)− u∆x(·, 1)‖L1(R) ≥
ki∑
j=1

‖uij(·, 1)− uij∆x(·, 1)‖L1(R)

≥ Akici(N−1/2 −Bci)

(4.12)

for all i and N . Now we fix α > 1, and we let ci = 2−i, ki = [2ii−α] + 1. With this
choice of ci and ki, we have∑

i≥0

kici =
∑
i≥0

2−i([2ii−α] + 1)

≤ 2 +
∑
i≥1

i−α < +∞ .
(4.13)

Thus, u0 ∈ L1 ∩ L∞ ∩ BV (R). Now, given N an integer power of 2, ∆t = 1/N ,
∆x = d/N , let i(N) = log2N . From (4.12) with i = i(N) we obtain

‖u(·, 1)− u∆x(·, 1)‖L1(R) ≥ Aki(N)ci(N)(N−1/2 −Bci(N))

= A([2i(N)i(N)−α] + 1)2−i(N)(N−1/2 −B2−i(N))

≥ AN(log2N)−αN−1(N−1/2 −BN−1)

= A(log2N)−αN−1/2(1−BN−1/2)

≥ C(log2N)−αN−1/2

(4.14)
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for N ≥ N0 such that 1−BN−1/2 > 1/2, which is the same as requiring that ∆x < ε0
for some ε0 > 0. In other words, we proved that

‖u(·, 1)− u∆x(·, 1)‖L1(R) ≥ C(α)| log2 ∆x|−α
√

∆x(4.15)

for a sequence ∆x = d/N < ε0 for any fixed α > 1.
Thus, we have proved the following theorem.
THEOREM 4.1. We assume that for a given monotone numerical method and a

given differential flux, the hypotheses of Theorem 3.1 are satisfied. Furthermore, we
assume that (4.8) holds. Then

(4.16) sup {s > 0 : for all T > 0 there exists CT > 0 such that
for all u0 ∈ L1 ∩ L∞ ∩BV (R), ‖u(·, T )− u∆x(·, T )‖L1(R) ≤ CT (∆x)s} = 1/2 ,

where u and u∆x are the exact and numerical solutions to (CL) for a uniform grid
with meshsize ∆x.

Remark. As we noted earlier, in the case of the modified Lax–Friedrichs scheme,
all the hypotheses of the theorem hold if f is strictly convex. However, in the case of
an upwind scheme (to which Godunov’s scheme would reduce if f ′ > 0), (4.8) might
fail to hold if f ′(0) = 0. Specifically, our example doesn’t work for Godunov’s method
applied to Burgers’s equation. In spite of this, if we drop the requirement u0 ∈
L1(R), we obtain an analogous result replacing u0 defined by (4.1) and the paragraph
following by ũ0 = K + u0, with K some positive constant. Then ũ0 ∈ L∞ ∩ BV (R)
and (4.16) becomes

(4.17) sup {s > 0 : for all T > 0 there exists CT > 0 such that
for all u0 ∈ L∞ ∩BV (R), ‖u(·, T )− u∆x( · , T )‖L1(R) ≤ CT (∆x)s} = 1/2 .
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ETH Zürich, Birkhäuser, Basel, 1992.

[Lu1] B.J. LUCIER, Error bounds for the methods of Glimm, Godunov, and LeVeque, SIAM
J. Numer. Anal., 22 (1985), pp. 1074–1081.

[Lu2] B.J. LUCIER, Lecture Notes, 1993.
[NsTd] H. NESSYAHU AND E. TADMOR, The convergence rate of approximate solutions for

nonlinear scalar conservation laws, SIAM J. Numer. Anal., 29 (1992), pp. 1505–
1519.

[NTT] H. NESSYAHU, E. TADMOR, AND T. TASSA, The convergence rate of Godunov type
schemes, SIAM J. Numer. Anal., 31 (1994), pp. 1–16.

[Os] S. OSHER, Riemann solvers, the entropy condition, and difference approximations,
SIAM J. Numer. Anal., 21 (1984), pp. 217–235.

[Td] E. TADMOR, Local error estimates for discontinuous solutions of nonlinear hyperbolic
equations, SIAM J. Numer. Anal., 28 (1991), pp. 891–906.

[TgTn] T. TANG AND Z.-H. TENG, The sharpness of Kuznetsov’s O(
√

∆x)L1-error estimate
for monotone difference schemes, Math. Comp., 64 (1995), pp. 581–589.

[Tn] Z.-H. TENG, Optimal Error Estimates for Viscosity Methods and Monotone Schemes
to a Riemann Problem, Peking University Research Report #39, Institute of
Mathematics and Department of Mathematics, Peking, China, 1993.

[TnZh] Z.-H. TENG AND P.-W. ZHANG, Optimal L1-rate of convergence for viscosity methods
and monotone schemes to piecewise constant solutions with shocks, SIAM J.
Numer. Anal., 34 (1997), pp. 959–978.

[TW] A. TVEITO AND R. WINTHER, An error estimate for a finite difference scheme ap-
proximating a hyperbolic system of conservation laws, SIAM J. Numer. Anal., 30
(1993), pp. 401–424.


