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Chebyshev Super Spectral Viscosity Solution of a
Two-Dimensional Fluidized Bed Model
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SUMMARY

The numerical solution of a model describing a two-dimensional fluidized bed by a Chebyshev super
spectral viscosity (SSV) method is considered. The model is in the form of a hyperbolic system of
conservation laws with a source term, coupled with an elliptic equation for determining a stream
function. The coupled elliptic equation is solved by a finite difference method. The mixed SSV/finite
difference method produces physically shaped bubbles, on a very coarse grid. Fine scale details, which
were not present in previous finite difference solutions, are present in the solution.
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1. Introduction

Fluidized beds are used in the chemical and fossil fuel processing industries to mix particulate
solids and fluids (gases or liquids). A typical fluidized bed consists of a vertically oriented
chamber, a bed of particulate solids, and a fluid flow distributor at the bottom the chamber.
The fluid flows upward through the particles creating a force that counteracts gravity at
which time a state of minimum fluidization is reached. Stronger gas inflows (more than is
necessary to maintain minimum fluidization) lead to pockets of gas, or equivalently low particle
concentrations, resembling bubbles in a liquid travelling upward through the particles. Each
rising bubble pushes a large amount of mass in front of it. Particles move downward through
and around the rising bubble until it reaches the top of the bed. A settled bed is reestablished,
and the cycle repeats. Each set of upward moving particles is referred to as a slug.

In this paper, a two-dimensional fluidized bed model in the form of a hyperbolic system of
conservation laws with a source term (1), coupled with an elliptic equation (2) for determining
a stream function, is solved numerically.

wt + f(w)x + g(w)z = b(w,ψx, ψz) (1)

−(ψxx + ψzz) + p(x, z)ψx + q(x, z)ψz = r(x, z) (2)
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The origins of the model can be found in [6] where a general set of equations modelling
dispersed two-phase flow is derived. In [9] a stream function is introduced into the model
which corresponds to the total volumetric flux. In the paper [4], the authors state the model
for the case of heavy particles dispersed in a gas and with the gas inertia being neglected.
It is in this form that we consider the model. A distinguishing feature of the model is that
it neglects particle viscosity. Mathematical models of fluidized beds may or may not include
a particle viscosity term in an attempt to model the property of the fluidized particles that
resists the force tending to cause them to flow. It has been speculated by some authors [17] that
particle viscosity, no matter how small, is essential for the behavior corresponding to slugging
to occur. However, it has been demonstrated numerically for a one-dimensional model [3, 5, 19]
and for the considered two-dimensional model [4, 18], that a model without particle viscosity
is capable of reproducing oscillatory slugging behavior.

Much of the early numerical work with fluidized bed models produced results, particularly
bubble shape, which did not agree with experimental observations (see [22] and references
within). Often, the models which were used included particle viscosity. Recently, the particle
viscosity free model, was solved numerically by a second order Godunov method which
produced a numerical solution which included the physically observed kidney-shaped bubble
[4].

Our interest in using the Chebyshev super spectral viscosity method is to see if a realistic
bubble shape can be realized while using coarser grids than second order finite difference
methods required. Also, it is of interest to see if the spectral method can reveal any small
scale structures in the flow that the finite difference methods could not. Since the formation
of a bubble in fluidized beds has been shown to correspond mathematically to the formation
of a shock [12], the standard Chebyshev Collocation method will not converge to the entropy
solution [23]. Thus, the addition of spectral viscosity will be necessary. This work focuses on
extending the Chebyshev Super Spectral Viscosity (SSV) method that was successfully used
on a one-dimensional fluidized bed model [19] to a two-dimensional fluidized bed model.

This paper is organized as follows: In Section 2, the Chebyshev collocation method and
Chebyshev super spectral viscosity methods are reviewed. Section 3 describes the fluidized
bed model and numerical results are presented in section 4.

2. Chebyshev Super Spectral Viscosity Method

The standard collocation points for a Chebyshev Collocation (Pseudospectral) method are
usually defined by

xj = −cos(
πj

N
), j = 0, 1, ..., N. (3)

These points are extrema of the N th order Chebyshev polynomial,

Tk (x) = cos(k arccos (x)). (4)

The points are often labelled the Chebyshev-Gauss-Lobatto (CGL) points, a name which
alludes to the role of the points in certain quadrature formulas. The CGL points cluster
quadratically around the endpoints and are less densely distributed in the interior of the
domain.
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FLUIDIZED BED SPECTRAL VISCOSITY 3

The Chebyshev Collocation method is based on assuming that an unknown PDE solution,
u, can be represented by a global, interpolating, Chebyshev partial sum,

uN (x) =

N
∑

n=0

anTn(x). (5)

The discrete Chebyshev coefficients, an, are defined by

an =
2

N

1

cn

N
∑

n=0

u(xj)Tn(xj)

cj
where cj =

{

2 when j = 0, N
1 otherwise.

(6)

Derivatives of u at the collocation points are approximated by the derivative of the
interpolating polynomial evaluated at the collocation points. The first derivative, for example,
is defined by,

du

dx
=

N
∑

n=0

a(1)
n Tn(x). (7)

Since a
(1)
N+1 = 0 and a

(1)
N = 0, the non-zero derivative coefficients can be computed in decreasing

order by the recurrence relation:

cna
(1)
n = a

(1)
n+2 + 2(n+ 1)an+1, n = N − 1, ..., 1, 0. (8)

The transform pair given by equations (5) or (7) and (6) can be efficiently computed by
a fast cosine transform. Equivalently, the interpolating polynomial and its derivatives can be
computed in physical space using matrix multiplication [2]. Special properties of the Chebyshev
basis allow for differentiation via parity matrix multiplication [1] (even-odd decomposition
[20]), which can be performed by using slightly more than half as many floating point operations
as standard matrix multiplication. More detailed information may be found in the standard
references [2, 7, 8, 14, 13, 24].

After the spectral evaluation of spatial derivatives, the system of ordinary differential
equations

du

dt
= F (u, t)

results, where u is the vector containing the unknown PDE solution at the collocation points.
The system is typically integrated by a second, third, or fourth order explicit Runge-Kutta
method to advance the solution in time.

A coordinate transformation may be necessary either to map a computational interval to
[a, b] from the interval [−1, 1], or to redistribute the collocation points within an interval for
the purpose of giving high resolution to regions of very rapid change. Perhaps the most popular
map used to redistribute the CGL points (3) is the Kosloff/Tal-Ezer map [15]

x = g(ξ, γ) =
arcsin(γξ)

arcsin(γ)
. (9)

If the PDE solution contains shocks, the spectral collocation method will not converge to the
correct entropy solution [23]. In this case, a spectrally small viscosity term, as defined in [23],
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must be added in order to stabilize the approximation and ensure convergence to the entropy
solution. This can be done without sacrificing spectral accuracy and can be accomplished in
several different ways, with each way being labelled a particular type of spectral viscosity
method. We have used the Super Spectral Viscosity method of [16], which for a conservation
law in one space dimension, can be stated as

∂

∂t
uN +

∂

∂x
f (uN ) = ε (−1)

s+1
Q2suN = SSV (s, C,N) (10)

where the viscosity operator is given by

Q =
√

1 − x2
∂

∂x
. (11)

and ε = CN1−2s. The notation SSV (s, C,N) is used to indicate that the strength of viscosity
term depends on the parameters s, C, and N . It was shown in [16] that if the parameter C is
chosen large enough to ensure stability and such that 0 ≤ C ≤ N 1/2, and if s is chosen such
that s ≤ ln(N), that the bounded solutions of (10) will converge to the correct entropy solution.
Except for the ranges mentioned in order to ensure convergence to the entropy solution, the
parameters s and C are problem dependent, depending mainly on the strength of the shocks
involved.

A direct implementation of (10) amounts to adding 2s spatial derivatives to the equation.
This would introduce additional stiffness which would severely limit the stable time step
and increase the computational work involved by requiring the computation of higher order
derivatives. Hence, the practical implementation of the SSV method is an important issue. In
order to derive an efficient implementation of the SSV method, it is necessary to first examine
the viscosity operator Q2 applied to the Chebyshev polynomial (4), Tk(x).

Q2Tk (x) =
√

1 − x2
∂

∂x

[

√

1 − x2
∂

∂x
Tk (x)

]

= −k2Tk (x) . (12)

As a result of applying the viscosity operator to the Chebyshev polynomials, it can be noticed
that the Chebyshev polynomials are the eigenfunctions of the operator Q2 with eigenvalues
k2. Expanding the viscosity term, which is the right side of (10), we notice that

ε(−1)s+1Q2suN = −CN
N
∑

k=0

(
k

N
)2sak(t)Tk(x). (13)

The SSV method can be solved by time splitting. We describe the implementation for a simple
splitting which is first order accurate in time. However, the implementation extends in an
obvious way to higher order split schemes, such as Strang [21] splitting, which we use in the
numerical examples. The first order time splitting based on equations

∂

∂t
uN +

∂

∂x
f(uN ) = 0 (14)

and
∂

∂t
uN = ε(−1)s+1Q2suN . (15)
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FLUIDIZED BED SPECTRAL VISCOSITY 5

The second equation, (15), in the split step can be written as

∂

∂t

[

N
∑

k=0

ak(t)Tk(x)

]

= −CN
N
∑

k=0

(
k

N
)2sak(t)Tk(x).

which can be solved analytically. Over one time step, the analytical solution modifies the
Chebyshev coefficients as

ak(t+ ∆t) = ak(t) exp(−CN∆t(k/N)2s).

Thus, the exact solution of the SSV split step can be written as the filtered partial sum

uN (x) =

N
∑

k=0

σ

(

k

N

)

ak(t)Tk(x) (16)

where

σ

(

k

N

)

= exp

(

−α

∣

∣

∣

∣

k

N

∣

∣

∣

∣

β
)

(17)

is an exponential filter of strength α and order β as described in [25]. The Chebyshev SSV
method is equivalent to applying the exponential filter with β = 2s and α = CN∆t. The
method and can be implemented with little additional cost. It should be stressed that while
the SSV method is being implemented via the exponential filtering framework, that it is not a
βth order filter as it does not meet the requirements set forth in [25]. The amount of damping
of the high modes is significantly less with the SSV method than with the application of a
βth order exponential filter. An application of a βth order exponential filter typically takes
α = − ln ε where ε is machine zero (on a 32-bit machine using double precision floating point
operations, ε = 2−52 and ln (ε) ' −36.0437). Figure 1 compares two exponential filters of
different orders with an application of the filter with the parameters set as α = 0.032 and
β = 4, which are possible settings that may be used if the filtering framework is used to
implement the SSV method.

To extend the Chebyshev SSV method to two-dimensions we have used Strang’s second-
order splitting [21] to reduce the two-dimensional problem (1) to a sequence of one-dimensional
problems. We have also used Strang splitting to separate the contribution of the source term.
The splitting is as follows:

wt = b(w,ψx, ψz) (18)

wt + g(w)z = 0 (19)

wt = SSV (s, C,N)z (20)

wt + f(w)x = 0 (21)

wt = SSV (s, C,N)x (22)

wt + g(w)z = 0 (23)

wt = SSV (s, C,N)z (24)

wt = b(w,ψx, ψz) (25)
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6 S. A. SARRA

Equation (21) and (22) are solved over a full time step while the other 6 equations are evaluated
over a time step of size ∆t/2. The fractional steps involving the source terms, (18) and (25),
may possibly be evaluated in closed form. Otherwise, they may be advanced in time with
an ODE integrator. The SSV split steps (20), (22), and (24) can be evaluated exactly as in
(16). The remaining equations are advanced in time with a second-order ODE integrator. We
have used an explicit second order Runge-Kutta method in the numerical examples. In this
formulation of the problem, g(w)z is evaluated 4 times, f(w)x 2 times, the source term 2 times,
SSVx is applied once, and SSVz is applied twice, per time step.

From our experience, the spectral viscosity method can also be implemented successfully
in an unsplit, fully two-dimensional formulation, without source term splitting. For a suitably
chosen time step, the results of the different problem formulations did not noticeably vary
in the numerical examples. However, slightly less spectral viscosity was necessary to obtain
a stable approximation with the split formulation than with the unsplit formulation. It is
speculated that the incremental way in which the spectral viscosity is applied in the split
formulation makes this possible.

3. Fluidized Bed Model

Let α(x, z, t) denote the particle concentration, m(x, z, t) = αu the horizontal momentum,
n(x, z, t) = αv the vertical momentum, u(x, z, t) the horizontal velocity, and v(x, z, t) the
vertical velocity. The variable x describes the variation along the distributor plate at the
bottom of the bed and the variable z describes the vertical direction from the bottom to the
top of the bed. The two-dimensional fluidized bed can be described by a system of conservation
laws with a source term of the form of the form (1) as

αt +mx + nz = 0 (26)

mt + (mu+ F (α))x + (nu)z = (1 − α)−3.5(αψz −m) (27)

nt + (mv)x + (nv + F (α))z = −(1 − α)−3.5(αψx + n) − α (28)

where F (α) is specified as

F (α) = s2α+
s2α2

p

α− αp
+ 2s2αp ln(|α− αp|). (29)

These equations have been non-dimensionalized using vt, the terminal velocity of an isolated
particle as the velocity scale, and v2

t /g and vt/g as the length and time scales, respectively,
where g is the acceleration due to gravity [4].

The parameter α0 is the concentration of particles at equilibrium and αp is the packing
concentration which sets an upper limit for α where 0 < α < 1. The parameter α0u

denotes the particle concentration corresponding the the critical state dividing linearly stable
and unstable states (the particle concentration at minimum fluidization). The constant
s = 3.5(1 − α0u)2.5(αp − α0u) is related to the linear stability of the equilibrium solutions
which correspond to states of uniform fluidization. The stream function ψ(x, z, t) is defined by
the elliptic equation of the form (2) with the functions p(x, z), q(x, z), and r(x, z) specified as
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FLUIDIZED BED SPECTRAL VISCOSITY 7

p(x, z) = −
αx

α
(1 +

3.5α

1 − α
)

q(x, z) = −
αz

α
(1 +

3.5α

1 − α
)

r(x, z) =
1

α
(nx −mz +

3.5

1 − α
[αxn− αzm])

The scale for the stream function is v3
t /g.

The computational domain is taken as (x, z) ∈ [−xR, xR]×[−zR, zR]. Zero particle momenta
in the directions normal to physical boundaries for particles colliding with a wall are applied
giving u = 0 at x = −xR and xR and v = 0 at z = −zR. The boundaries for the elliptic
equation at x = ±xR are streamlines with constant ψ. At the top of the bed, a somewhat
artificial boundary is assumed to exist, where the total volumetric flux is taken to be evenly
dispersed. At the bottom of the bed (see figure 2), a jet of gas of width 2xb is centrally
located at the point (x = 0, z = −zR) with the background fluidizing gas entering outside
of the jet being jM = (1 − α0u)3.5. The flux of gas entering through the jet is j > jM
which is specified through the variable α0 as j = (1 − α0)

3.5. The described boundary
conditions on ψ can be written as ψ(−xR, z, t) = 0, ψ(xR, z, t) = −2xRjM + 2xb(jM − j),
ψ(x, zR, t) = (−jM + xb(jM − j)/xR)(x+ xR) and

ψ(x,−zR, t) =







−jM (x+ xR) − xR ≤ x ≤ −xb

−j(x+ xb) − jM (xR − xb) − xb < x < xb

−jM (x+ xR) + 2xb(jM − j) xb ≤ x ≤ xR.

4. Numerical Results

The problem is solved in the split formulation described in section 2. The fractional steps
involving the source term may be evaluated in closed form. By evaluating (18) and (25) exactly,
m and n can be updated as

m = αψz(1 − E) +mE (30)

and

n = α(1 − α)
3.5

[1 + (1 − α)
3.5

ψx](E − 1) +En (31)

where

E = exp

[

−∆t

2(1 − α)3.5

]

. (32)

Since the solution of the equation for the stream may be needed thousands of times during
a numerical run, we have not implemented a spectral solution of the elliptic equation. For
efficiency we have used a finite difference method. The solution of the elliptic equation for the
stream function is based on fitting a parabola to the data at points, xi−1, xi, and xi+1 and
then computing the first and second derivatives at xi. On a uniform grid, the approximation
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8 S. A. SARRA

reduces to the standard second order central differences approximation. The resulting system
of algebraic equations is solved by Gauss-Seidel iteration. The streamfunction ψ appears in
terms of its first partial derivatives only in equations (18) and (25). Therefore, equation (2) is
solved initially and then immediately before and after solving equation (25) at each time step.
The derivatives of ψ required in equations (18) and (25) are found by fitting a parabola to
the data at the points xi−1, xi, and xi+1, and then computing the first derivative at xi. The
approximation is second order accurate on any grid.

A fluidized bed of height and width 3 (zR = xR = 1.5) units is considered. The initial
concentration of particles is taken as α = α0u = 0.57 and the initial velocities are u = v = 0.
At time t > 0, a centered jet of gas with a total width of 0.2 units (xb = 0.1), enters from the
bottom of the bed.

4.1. Choice of Collocation Grid

In the first numerical experiment, the gas inflow is specified by setting α0 = 0.35. A 64 by 64
grid is used and the distribution of collocation points is specified three different ways. Three
different solutions are obtained, each with a different computational grid. The contours (α = 0
to α = 0.6) and center line (x = 0) plots are compared at time t = 3.0. The goal is to determine
which grid best resolves the solution.

The first run uses the CGL grid (3) which clusters points densely around the boundaries
and provides poor interior resolution. In order to obtain stable results with the explicit time
stepping, it was necessary to take ∆t = 0.000025 and take the SSV parameters as C = 6 and
s = 2. The small time step is typical due to the O(N−2) stable time step restriction imposed
by the CGL grid. The lack of resolution towards the interior of the domain is apparent from
the wide spread contour lines and the center line plot (figure 3, top row).

To relax the O(N−2) time stepping restriction, a mapped grid specified by the map (9) can
be used. By taking the map parameter to be γ = 0.86 in both the x and z directions we end
up with a grid with less clustering around the boundaries and with better interior resolution.
This setting of the map parameter is theoretically the upper limit of the parameter range
that can be used with N = 64 in order to maintain a spectral convergence rate [15]. Taking
∆t = 0.0001, and C = 3 and s = 2, as the SSV parameters, produces stable results. A marked
improvement in results can be observed (figure 3, middle row) when compared with the CGL
grid results. Increasing the mapping parameter closer to one produces even better results.

The third run again uses map (9) to specify the grid. The map parameter was chosen as
γ = 0.9999 in both the x and z directions. Choosing the map parameter so close to one results
in a near uniform grid. Taking ∆t = 0.0005, and C = 3 and s = 2 as the SSV parameters
produces stable results. Even though taking γ so large could introduce a mapping error and
theoretically sacrifice the spectral convergence rate of the method, this is not an issue in this
case as we are implementing a mixed spectral/finite difference method in which the the overall
accuracy of the solution will not be spectral. The increased resolution in the interior provided
by the near uniform grid is evident (figure 3, bottom row) in the tightly grouped contour lines.
It is concluded that this is the grid that best resolves the problem. The grid allows for the
largest stable explicit time step and values of the SSV parameters which result in the smallest
amount of spectral viscosity being applied. Compared with the CGL grid results from the first
run, the third run used a time step 20 times larger and a spectral viscosity that was only half
as strong.
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FLUIDIZED BED SPECTRAL VISCOSITY 9

4.2. Grid Size

The map (9) is used to form the grid with αm = 0.9999 in both the x and z directions. The
map produces a near uniform grid and allows for good resolution in the center of the domain
as well as permitting a relatively large stable time step to be taken. The parameter α0 is set
to α0 = 0.2 which corresponds to a strong gas inflow. The flow is stronger than that which
is required to maintain a state of minimum fluidization and slugging in the bed is expected.
In the left column of figure 4, contour plots show α ranging from 0.05 to 0.4 in 0.05 unit
increments from time t = 2.0 to t = 4.0 in one unit increments. The setup for this problem
is similar to experiments run in [4] where the numerical solution was by Roe’s method which
required a 100 by 100 grid to resolve the flow. The spectral method resolves the flow well on
this very coarse grid and a physically correct bubble shape is obtained. The simulation exhibits
features observed in fluidized beds, such as coalescence, when a smaller bubble catches up to
and is absorbed by the main bubble. The SSV parameters in both the x and z directions were
s = 2 and C = 1, which applies only a very weak high pass filter to the spectral solution.

The fact that the flow is well resolved on the 32 by 32 grid indicates that the second order
finite difference approximation of the stream function is adequate. It seems as if the accuracy
in which the flux derivatives are evaluated in the system of conservation laws is the most
important factor in obtaining a resolved solution. The 32 by 32 spectral solution produced
solutions of similar quality as the finite difference solutions in [4], but at a fraction of the
computational effort, and used significantly less storage space. In figure 5, counter-rotating
convective rolls behind the main bubble are very evident in the velocity field of the coarse grid
SSV solution.

The same experiment that was run on the 32 by 32 grid is repeated on a 64 by 64 grid. The
results (the right column of figure 4) on the finer grid are similar to the results obtained on the
coarse grid, but some small scale details in the flow were revealed that were not present in the
coarse grid spectral solution or in the finite difference solutions in [4]. The SSV parameters in
both the x and z directions were s = 2 and C = 3. In the simulation, a small disturbance below
the main bubble appears and eventually coalesces with the main bubble. At time t = 3.0 (figure
4, center right), the formation of two small satellite bubbles is noticeable. By time t = 4.0
(figure 4, bottom right) the main bubble has shed the two satellite bubbles. Figure 6 shows
the t = 4.0, α = 0.4 contour from figure 4 with the streamlines corresponding to the total
volumetric flux superimposed.

The next result shows that we are approaching a grid independent solution on a 64 by
64 grid. When going from a resolution of 32 by 32 to a resolution of 64 by 64 there is a
difference in both the shape and location of the bubble. Runs with grid densities greater than
64 by 64 produced bubbles with nearly the identical shape and location as the 64 by 64 runs.
Additionally, no new fine scale details, such as satellite bubbles appeared at finer resolutions.
Figure 7 compares the center line (x = 0) plots of the 32 by 32 (dotted) and 64 by 64 (dashed)
concentration solutions from figure 4 at time t = 3.0. The solid line in figure 7 is from a 96 by
96 grid calculation which used a grid mapping parameter of αm = 0.9999 and SSV parameters
of s = 2 and C = 5. Except for the chaotic region near the jet at the bottom of the bed, the
64 by 64 and 96 by 96 runs agree very well.
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5. Conclusions

A mixed Chebyshev SSV/finite difference method has been implemented for the fluidized
bed model. The flux derivatives in the conservation laws are evaluated by a Chebyshev
Pseudospectral method while the elliptic equation for the stream function is solved by a second
order finite difference method. The approximation is second order accurate in time. The SSV
method has been shown to produce quality numerical solutions of a complicated multiphase
flow problem. The method was able to use fewer degrees of freedom and still resolve fine scale
features in the solution better than in previous reported results in [4] using Roe’s method with
a Superbee flux limiter. A grid which was nearly uniform best resolved the problem, allowed
the smallest amount of spectral viscosity to be applied, and allowed the largest stable time
step to be used.

Although the development of bubbles in fluidized beds has been shown to mathematically
correspond to the development of shocks, spurious oscillations are not visibly evident in the
numerical solution. This is in contrast to the Chebyshev SSV solution of a one-dimensional
fluidized bed model in [19] where a postprocessing method was used to remove the effects of
the Gibbs phenomenon from the approximation. The shocks seem much weaker in the two-
dimensional model and the mild filtering of the SSV methods seems to keep any spurious
oscillations under control. If an oscillatory solution was obtained, methods for postprocessing
two-dimensional functions [10, 11] are available. However, theoretically, the results of their
application to the two-dimensional fluidized bed solution would be less certain due to the
second order finite difference solution of the equation for the stream.

Our future work will consider axisymmetric geometry, and multiple, interacting bubbles.
Additionally, higher order methods for the solution of the stream equation will be explored
with the goal of obtaining a solution that has overall spectral accuracy in space.
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Figure 1. exp. filter (β = 6, β = 20, dashed) vs. SSV (solid)

Figure 2. 2d fluidized bed
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Figure 3. t=3.0, top: CGL grid, middle: γ = 0.86, bottom: γ = 0.9999
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Figure 4. 32 by 32 (left), 64 by 64 (right); t = 2.0 (top), t = 3.0, t = 4.0
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Figure 5. 32 by 32 grid velocity field, t = 4.0
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Figure 6. α = 0.4 bubble contour with streamlines
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Figure 7. t = 3.0, N = 96 solid, N = 64 dashed, N = 32 dotted
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