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Abstract

A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of con-

servation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which

corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution

which is free of oscillations caused by the Gibbs–Wilbraham phenomenon in the spectral viscosity solution. Conser-

vation is maintained by working with unphysical negative particle concentrations.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Chebyshev collocation; Super spectral viscosity; Pseudospectral; Gibbs–Wilbraham phenomenon; Edge detection;

Gegenbauer postprocessing

1. Introduction

Fluidized beds are used in the chemical and fossil fuel processing industries to mix particulate solids and
fluids (gases or liquids). A typical fluidized bed consists of a vertically oriented chamber, a bed of par-

ticulate solids, and a fluid flow distributor at the bottom the chamber. The fluid flows upward through the

particles creating a force that counteracts gravity at which time a state of minimum fluidization is reached.

Stronger gas inflows (more than is necessary to maintain minimum fluidization) lead to pockets of gas, or

equivalently low particle concentrations, resembling bubbles in a liquid traveling upward through the

particles. Each rising bubble pushes a large amount of mass in front of it. Particles move downward

through and around the rising bubble until it reaches the top of the bed. A settled bed is reestablished and

the cycle repeats. Each set of upward moving particles is referred to as a slug.
In this paper we consider only one-dimensional flow. Physically, this corresponds to flow in a narrow

diameter fluidized bed. The fluidized bed model was originally solved numerically in [6] by finite difference

methods. An exact solution to the homogeneous system with Riemann initial conditions has been devel-
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oped in [7]. The fluidized bed model can be put in the form of system of conservation laws with a source

term as

ut þ f ðuÞx ¼ bðuÞ: ð1Þ

Spectral viscosity methods have been successfully applied to homogeneous systems of conservation laws.

We use operator splitting to extend the methods to nonhomogeneous systems of conservation laws.

If discontinuities are present in the solutions, the spectral viscosity approximations will be contaminated

by the Gibbs–Wilbraham phenomenon, but the spectral viscosity solution may be postprocessed to obtain a
better approximation. While the spectral viscosity is applied to the solution at every time level, postpro-

cessing is only done at times for which a ‘‘clean’’ solution is desired. Several methods exist for postpro-

cessing spectral approximations. They include spectral mollification [12,25,26,36] methods which involve

using a two-parameter filter, the Gegenbauer Reconstruction Procedure (GRP), and a recently developed

Fourier–Pad�ee-based algorithm [9]. Spectral mollification is a fairly robust method which may be used with

or without the knowledge of edge locations. However, it will only recover spectral accuracy up to within a

neighborhood of discontinuity locations. The GRP is capable of recovering spectral accuracy at every

point, even at the locations of the discontinuities.
In this paper, all numerical examples have been postprocessed using the GRP. One of our goals was to

examine if the GRP, which has shown great promise on some simple examples, could be used to successfully

postprocess PDE solutions which were either more detailed than piecewise linear or if the method could be

used to postprocess solutions containing varying subintervals of detail. The solutions in the previous ap-

plications [15,32] consisted of homogeneous features throughout the computational domain which allowed

the parameters of the postprocessing method to be chosen globally. The fluidized bed solutions contain

features of varying detail throughout the computational domain and a different strategy must be used to

choose the postprocessing parameters. Additionally, we examine what remains to be done if the GRP is to
be used as a ‘‘black box’’ postprocessing method for spectral approximations.

This paper is organized as follows: In Section 2, the Chebyshev collocation method and super spectral

viscosity methods are reviewed. Section 3 summarizes a method to locate edges in the spectral viscosity

approximations. Edge locations will be necessary to apply the postprocessing procedure. Section 4 describes

the GRP for non-periodic functions. Section 5 describes the fluidized bed model. Numerical results are

presented in Section 6.

2. Chebyshev super spectral viscosity method

The standard collocation points for a Chebyshev collocation (pseudospectral) method are usually de-

fined by

xj ¼ � cos
pj
N

� �
; j ¼ 0; 1; . . . ;N : ð2Þ

These points are extrema of the N th order Chebyshev polynomial,

TkðxÞ ¼ cosðk arccosðxÞÞ: ð3Þ

The points are often labeled the Chebyshev–Gauss–Lobatto (CGL) points, a name which alludes to the

points role in certain quadrature formulas. The CGL points cluster quadratically around the endpoints and

are less densely distributed in the interior of the domain.

The Chebyshev collocation method is based on assuming that an unknown PDE solution, u, can be
represented by a global, interpolating, Chebyshev partial sum,
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uN ðxÞ ¼
XN
n¼0

anTnðxÞ: ð4Þ

The discrete Chebyshev coefficients, an, are defined by

an ¼
2

N
1

cn

XN
n¼0

uðxjÞTnðxjÞ
cj

; where cj ¼
2 when j ¼ 0;N ;
1 otherwise:

�
ð5Þ

Derivatives of u at the collocation points are approximated by the derivative of the interpolating

polynomial evaluated at the collocation points. The first derivative, for example, is defined by,

du
dx

¼
XN
n¼0

að1Þn TnðxÞ: ð6Þ

Since að1ÞNþ1 ¼ 0 and að1ÞN ¼ 0, the non-zero derivative coefficients can be computed in decreasing order by the

recurrence relation:

cnað1Þn ¼ að1Þnþ2 þ 2ðnþ 1Þanþ1; n ¼ N � 1; . . . ; 1; 0: ð7Þ

The transform pair given by Eqs. (4) or (6) and (5) can be efficiently computed by a fast cosine transform.

Equivalently, the interpolating polynomial and its derivatives can be computed in physical space using

matrix multiplication [4]. Special properties of the Chebyshev basis allow for differentiation via parity

matrix multiplication [3] (even–odd decomposition [33]), which can be performed by using slightly more

than half as many floating point operations as standard matrix multiplication. More detailed information
may be found in the standard references [4,10,11,18,19,37].

After the spectral evaluation of spatial derivatives, the system of ordinary differential equations

du

dt
¼ F ðu; tÞ

results, where u is the vector containing the unknown PDE solution at the collocation points. The system is

typically integrated by a second, third, or fourth-order explicit Runge–Kutta method to advance the so-
lution in time.

A coordinate transformation may be necessary either to map a computational interval to ½a; b� from the

interval ½�1; 1�, or to redistribute the collocation points within an interval for the purpose of giving high

resolution to regions of very rapid change. Popular maps used to redistribute the CGL points (2) are the

Kosloff/Tal-Ezer map [27]

x ¼ gðn; cÞ ¼ arcsinðcnÞ
arcsinðcÞ ; ð8Þ

the center map [1]

x ¼ gðn; cÞ ¼ ð1:0� cÞn3 þ cn; ð9Þ

and the two parameter tangent map [2]

x ¼ gðn; c; lÞ ¼ x0 þ
tanðdn þ xÞ

c
; ð10Þ

where j ¼ arctanðcð1� lÞÞ, c ¼ arctanðcð1þ lÞÞ, d ¼ 0:5ðj þ cÞ, x ¼ 0:5ðj � cÞ, and x0 ¼ �1þ
2ðl � aÞ=ðb� aÞ.
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If n denotes the original variable and x ¼ gðnÞ the new variable, then after a change of variable is

performed Eq. (1) becomes

ut þ
1

g0ðnÞ

� �
f ðuÞx ¼ bðuÞ: ð11Þ

If the PDE solution contains shocks, the spectral collocation method will not converge to the correct

entropy solution [35]. In this case, a spectrally small viscosity term must be added in order to stabilize the

approximation and ensure convergence to the entropy solution. This can be done without sacrificing

spectral accuracy and can be accomplished in several different ways, with each way being labeled a par-

ticular type of spectral viscosity method. We have used the super spectral viscosity (SSV) method of [28],

which for a conservation law in one space dimension, can be stated as

o

ot
uN þ o

ox
f ðuN Þ ¼ eð�1Þsþ1Q2suN ; ð12Þ

where the viscosity operator is given by

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p o

ox
: ð13Þ

It was shown in [28] that if e ¼ CN 1�2s, with the parameter C chosen large enough to ensure stability and
such that 06C6N 1=2, and with the parameter s chosen such that s6 lnðNÞ and allowing s to grow with N ,

that bounded solutions of (12) will converge to the correct entropy solution in the case bðuÞ ¼ 0. Except for

the ranges mentioned in order to ensure convergence to the entropy solution, the parameters s and C are

problem dependent, depending mainly on the strength of the shocks involved.

A direct implementation of (12) amounts to adding 2s spatial derivatives to the equation. This would

introduce additional stiffness which would severely limit the stable time step and increase the computational

work involved by requiring the computation of higher order derivatives. Hence, the practical implementation

of the SSVmethod is an important issue. The efficient implementation off the SSVmethod was first addressed
in [8], where the authors recognized that the SSVmethod could be implemented as a spectral filter. This fact is

based on the examination of the viscosity operator Q2 applied to the Chebyshev polynomial (3), TkðxÞ.

Q2TkðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p o

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p o

ox
TkðxÞ

� �
¼ �k2TkðxÞ: ð14Þ

As a result of applying the viscosity operator to the Chebyshev polynomials, it can be noticed that the

Chebyshev polynomials are the eigenfunctions of the operator Q2 with eigenvalues k2. Expanding the

viscosity term, which is the right-hand side of (12), we notice that

eð�1Þsþ1Q2suN ¼ �CN
XN
k¼0

k
N

� �2s

akðtÞTkðxÞ: ð15Þ

If we implement the SSV method via time splitting where in the first step we solve

o

ot
uN þ o

ox
f ðuN Þ ¼ 0 ð16Þ

and in the second step we solve

o

ot
uN ¼ eð�1Þsþ1Q2suN ; ð17Þ
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the second equation, (17), in the split step can be written as

o

ot

XN
k¼0

akðtÞTkðxÞ
" #

¼ �CN
XN
k¼0

k
N

� �2s

akðtÞTkðxÞ;

which can be solved analytically. Over one time step, the analytical solution modifies the Chebyshev co-

efficients as

akðt þ DtÞ ¼ akðtÞ expð�CNDtðk=NÞ2sÞ:

Thus, the exact solution of the SSV split step can be written as the filtered partial sum

uN ðxÞ ¼
XN
k¼0

r
k
N

� �
akðtÞTkðxÞ; ð18Þ

where

r
k
N

� �
¼ exp

�
� a

k
N





 



�
is an exponential filter of strength a and order b as described in [38]. The Chebyshev SSV method is seen to
be equivalent to applying the exponential filter with b ¼ 2s and a ¼ CNDt. The method can be implemented

with little additional cost. It should be stressed that while the SSV method is being implemented via the

exponential filtering framework, that it is not a bth order filter as it does not meet the requirements set forth

in [38]. The amount of damping of the high modes is significantly less with the SSV method than with the

application of a bth order exponential filter. An application of a bth order exponential filter typically takes

a ¼ � ln e where e is machine zero (on a 32-bit machine using double precision floating point operations,

e ¼ 2�52 and lnðeÞ ’ �36:0437). Fig. 1 compares two exponential filters of different orders with an appli-

cation of the filter with the parameters set as a ¼ 0:032 and b ¼ 4, which are possible settings that may be
used if the filtering framework is used to implement the SSV method.
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Fig. 1. Exp. filter (b ¼ 6, b ¼ 20, dashed) vs. SSV (solid).
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3. Edge detection

The GRP recovers spectral accuracy up to the discontinuity points in each smooth subinterval of a

piecewise analytic function. Thus, the GRP needs the exact location of discontinuities, or edges, in the

function. If a PDE solution is being postprocessed and the solution contains rarefaction waves, disconti-

nuities in the first derivative of the function will exist and need to be located as well. The method used to

find the edges originated in [14] for periodic and non-periodic functions. The method is specialized to

approximations of functions by Chebyshev methods and is summarized below.
Denote the location of discontinuities as aj. Let

½f �ðxÞ :¼ f ðxþÞ � f ðx�Þ

denote a local jump in the function and define

ueðxÞ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

N

XN
k¼0

ak
d

dx
TkðxÞ; ð19Þ

where

d

dx
TkðxÞ ¼

k sinðk arccosðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p :

Essentially, we are looking at the derivative of the spectral projection of the numerical solution to de-

termine the location of the discontinuities. The series ueðxÞ has the convergence properties

ueðxÞ ! Oð1=NÞ when x 6¼ aj;
½f �ðajÞ when x ¼ aj:

�
The series converges to both the height and direction of the jump at the location of a discontinuity.

However, for the GRP, we only need the locations and magnitudes of the jumps, not the directions. While a

graphical examination of the series ueðxÞ verifies that the series does have the desired convergence prop-

erties, an additional step is needed to numerically pinpoint the location of the discontinuities. For that

purpose, make a non-linear enhancement to the edge series as

unðxÞ ¼ NQ=2½ueðxÞ�Q


 

:

The values, unðxÞ, will serve to amplify the separation of scales which has taken place in (19). The series has

the convergence properties

unðxÞ ! OðN�Q=2Þ when x 6¼ aj;

NQ=2½½f �ðajÞ�Q when x ¼ aj:

�
By choosing Q > 1 we enhance the separation between the Oð½1=N �Q=2Þ points of smoothness and the

OðNQ=2Þ points of discontinuity. The parameter J , whose value will be problem dependent, is a critical

threshold value. Finally, redefine ueðxÞ as

ueðxÞ ¼ jueðxÞj if unðxÞ > J ;
0 otherwise:

�
With Q large enough, one ends up with an edge detector ueðxÞ ¼ 0 at all x except at the discontinuities

x ¼ aj. Only those edges with amplitude larger than J 1=Q
ffiffiffiffiffiffiffiffiffi
1=N

p
will be detected.
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Often the series ue is slow to converge in the area of a discontinuity and the nonlinear enhancement has

difficulty pinpointing the exact location of the edge. If an additional parameter, g, is added to the procedure

this problem can be overcome in a simple manner. The parameter specifies that only one edge may be

located in the interval ðx½i� g�; x½iþ g�Þ, i ¼ 0; . . . ;N , with appropriate one sided intervals being considered

near boundaries. The correct edge will be the maximum of ue in this subinterval. The value of g is problem-

dependent and is best chosen after the edge detection procedure has been applied once.

The edge detection parameters J , Q, and g, are all problem-dependent. Various combinations of the

parameters may be used to successfully locate edges represented by jumps of a magnitude in a certain
range.

4. Gegenbauer reconstruction

The truncation error decays exponentially as N increases when spectral methods are used to approximate

smooth functions. However, the situation changes when the function is discontinuous as the spectral ap-

proximation no longer converges in the maximum norm. This is known as the Gibbs–Wilbraham phe-
nomenon. Several methods exist for removing or reducing the effects of the Gibbs–Wilbraham phenomenon

from spectral approximations. Most however, such as spectral mollification [17,36], only recover spectral

accuracy up to within a neighborhood of each discontinuity. To date, the most powerful postprocessing

method seems to be the GRP which is capable of recovering spectral accuracy up to and including at the

location of discontinuities. Although the GRP has been shown to produce remarkable results on some

simple problem, the method lacks robustness due to the fact that two parameters, for which an optimal

choice for is currently not known, must be specified.

The GRP was developed in [20–24] for the purpose of recovering exponential accuracy at all points,
including at the discontinuities themselves, from the knowledge of a spectral partial sum of a discontinuous,

but piecewise analytic function. While the SSV solution serves as a highly accurate approximation to the

exact spectral partial sum, only partial theoretical justification can be found concerning using the GRP as a

postprocessing method for the SSV solution. However, numerical results indicate that spectral accuracy can

be achieved by applying the GRP to the SSV solution of homogeneous systems of conservation laws [12,15].

The same can be said about the edge detection method, as the theoretical results are limited to locating the

jump discontinuities of a piecewise smooth function uðxÞ. However, numerical evidence also advocates

applying the edge detection method to the SSV solution.
The GRP works by expanding the function in another basis, the Gibbs complementary basis, via

knowledge of the known Chebyshev coefficients and the location of discontinuities. The Chebyshev partial

sums are projected onto a space spanned by the Gegenbauer polynomials. The associated weight functions

increasingly emphasize information away from the discontinuities as the number of included modes grow.

The approximation converges exponentially in the new basis even though it only converged very slowly in

the original basis due to the Gibbs–Wilbraham phenomenon. The choice of a Gibbs complementary basis is

the Ultraspherical or Gegenbauer polynomials, Ck
n . The Gegenbauer polynomials are orthogonal polyno-

mials of order n which satisfyZ 1

�1

ð1� x2Þk�1=2Ck
k ðxÞCk

nðxÞdx ¼
hk
n; k ¼ n;

0; k 6¼ n;

�
where (for k P 0)

hk
n ¼ p1=2Ck

nð1Þ
Cðk þ ð1=2ÞÞ
CðkÞðnþ kÞ
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with

Ck
nð1Þ ¼

Cðnþ 2kÞ
n!Cð2kÞ :

Whether the Gegenbauer basis is the optimal choice as the Gibbs complementary basis for the Chebyshev

basis remains an open question. In other words, it may be possible to construct another basis in which the

slowing converging Chebyshev approximation could be expanded in to obtain an approximation with

better convergence properties than those of the Gegenbauer approximation. However, it is shown in [24]

that the Gegenbauer basis is a Gibbs complementary basis for the Chebyshev basis.

The Gegenbauer expansion of a function uðxÞ; x 2 ½�1; 1� is

uðxÞ ¼
X1
l¼0

bff k
l C

k
l ðxÞ;

where the continuous Gegenbauer coefficients, bff k
l , of uðxÞ are

bff k
l ¼ 1

hk
l

Z 1

�1

ð1� x2Þk�1=2Ck
l ðxÞuðxÞdx: ð20Þ

Since we do not know the function uðxÞ, implementing the GRP requires obtaining an exponentially

accurate approximation, bggk
l , to the first m coefficients bff k

l in the Gegenbauer expansion from the first N þ 1

Chebyshev coefficients of uðxÞ. The approximate Gegenbauer coefficients are defined as the integral

bggk
l ¼

1

hk
l

Z 1

�1

ð1� x2Þk�1=2Ck
l ðxÞuNðxÞdx; ð21Þ

where uN is the Chebyshev partial sum (4). The integral should be evaluated by Gauss–Lobatto quadrature

in order to insure sufficient accuracy. The coefficients bggk
l are now used in the partial Gegenbauer sum to

approximate the original function as

uðxÞ � uk
mðxÞ ¼

Xm
l¼0

bggk
l C

k
l ðxÞ:

In practice, there will be discontinuities in the interval ½�1; 1� and the reconstruction must be done on

each subinterval ½a; b� in which the solution remains smooth. To accomplish the reconstruction on each

subinterval, define a local variable for each subinterval as xðnÞ ¼ �n þ d where � ¼ ðb� aÞ=2, d ¼ ðbþ aÞ=2
and nj ¼ cosðpj=NÞ: The reconstruction in each subinterval is then accomplished by

uk;�
m ð�n þ dÞ ¼

Xm
l¼0

bggk
� ðlÞCk

l ðnÞ;

where

bggk
� ðlÞ ¼

1

hk
l

Z �1

1

ð1� n2Þk�1=2Ck
l ðnÞuNð�n þ dÞdn:

Notice that we have used collocation points on the entire interval ½�1; 1� to build the approximation in

½a; b�. This is referred to as a global–local approach [22]. The global–local approach seems to be best when

postprocessing PDE solutions where uN is obtained from the time evolution of the PDE solution. The point

values uðxiÞ may not be accurate, but the global interpolating polynomial uNðxÞ is accurate.
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In order to show that the GRP yields uniform exponential accuracy for the approximation, it is nec-

essary to select k and m such that k ¼ m ¼ b�N , where b < 2e=ð27ð1þ 1=2pÞÞ, and p is the distance from

½�1; 1� to the nearest singularity in the complex plane, in each subinterval where the function being re-

constructed is assumed to be analytic [24]. It is not necessary, and usually not advisable, to choose k ¼ m. In
practice, we are often more concerned with obtaining results for a fixed N , rather than achieving an ex-

ponential convergence rate.

If the function to be postprocessed consists homogeneous features, the reconstruction parameters can

be successfully chosen as k ¼ kk�N and m ¼ km�N for each subinterval where kk and km are user chosen,
globally applied parameters. We refer to this strategy as the global approach. In all previous applications

of the GRP in the literature, the method was applied to such functions and it was possible to chose the

parameters in this way [12,13]. However, in problems with solutions with varying detail throughout the

computational domain, the reconstruction parameters may need to be chosen independently in each

subinterval [30]. We refer to this strategy as the local approach. To date there is no known method to

choose optimal values of the reconstruction parameters m and k. The parameters remain very problem

dependent. Work is under way on choosing optimal parameters and results will be reported in a future

paper.

5. Fluidized bed equations

The variable x denotes the vertical height in the bed. Let aðx; tÞ denote the concentration of particles by

volume, vðx; tÞ the particle velocity, and mðx; tÞ ¼ aðx; tÞvðx; tÞ the particle momentum. The parameter a0 is

the concentration of particles at equilibrium (when v ¼ 0) and ap is the packing concentration which sets an

upper limit for a where a 2 ð0; 1Þ. The parameter a0u denotes the particle concentration corresponding to
the critical state dividing linearly stable and unstable states (the particle concentration at minimum flu-

idization). The constant s ¼ 3:5ð1� a0uÞ2:5ðap � a0uÞ is related to the linear stability of the equilibrium

solutions which correspond to states of uniform fluidization.

The model can be put in the form of a system of conservation laws with a source term as

at þ mx ¼ 0; ð22Þ

mt þ ðm2=a þ F ðaÞÞx ¼ bða;mÞ; ð23Þ

where

F ðaÞ ¼ s2a þ
s2a2

p

a � ap
þ 2s2ap lnðja � apjÞ:

The function bða;mÞ in the source term is given by

bða;mÞ ¼ �a þ aJ � m

ð1� aÞ3:5
;

where J ¼ ð1� a0Þ3:5 represents the total volumetric flux through the bed. Increasing J (or decreasing a0)

corresponds to turning up the inflowing gas. Values a0 < a0u correspond to large gas fluxes and have been

shown to produce unstable states corresponding to slug-like solutions. Values a0 > a0u give rise to stable

states. From a mathematical point of view, the non-homogeneous system of conservation laws coincides

with the Euler equations for an isentropic gas flow, subject to volumetric forces. The variables a, v, and
F ðaÞ play the role of density, velocity, and pressure respectively, in the Euler equations.
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5.1. Vacuums and unphysical particle concentrations

A vacuum is said to exist at a collocation point if the particle concentration is zero. Numerically, we

will assume that a vacuum exists at a grid point if the concentration is either zero or it is very small

(jaj < thres). The system becomes meaningless at vacuum points as m2=a is either undefined ða ¼ 0Þ or

produces unrealistic values ðjaj < thresÞ. At each vacuum point encountered in the numerical method, the

corresponding values of v, and therefore m, are set equal to zero at that collocation point rather than

using the spurious value ðjaj < thresÞ or NaN value ða ¼ 0Þ. Values of a such that jaj < thres are retained

and not set to zero. Stable approximations by the spectral method always produced a < ap. In the

spectral method, a must be allowed to take negative values even though a negative concentration in not
physically meaningful, as this information is used in the GRP to postprocess the result. When it was

attempted to artificially force the spectral method to work only with a > 0, the quality of the postpro-

cessed solution was adversely affected. More importantly, even though the spectral collocation method is

conservative, if for a < 0, a was redefined as a ¼ 0, the conservative properties of the method were

destroyed and the method started producing mass. If the values of a were allowed to be negative, the

method was conservative and mass was preserved to as many as six decimal places. In all reported re-

sults, the parameter thres was taken to be thres ¼ 0:001. After postprocessing the solution, all concen-

trations are such that a P 0.

6. Numerical results

All examples were postprocessed using the spectral signal processing [31] suite. In the reported results we

have used a0u ¼ 0:55 and ap ¼ 0:6.

6.1. Homogeneous system

The first two problems solve the homogeneous system with Riemann initial data so that the Chebyshev

SSV method with GRP postprocessing may be validated against an exact solution.

Our first example consists of a left-moving shock wave and a right moving rarefaction wave. The initial
conditions are vðx; 0Þ ¼ 0 for all x in a domain of ½�0:2; 0:2� and aðx; 0Þ ¼ 0:3 if x < 0 and aðx; 0Þ ¼ 0:55 if

xP 0.

Fig. 2 shows the solution advanced to time t ¼ 0:5 with a fourth-order Runge–Kutta method. The grid

consists of 64 points distributed by map (9) with c ¼ 0:25. The use of the coordinate map has the effect of

placing more points in the center of the domain. The SSV parameters used were C ¼ 1 and s ¼ 4 which

produced a viscosity parameter of e ¼ CN 1�2s ¼ 2:27E� 13 (or a ¼ CNDt ¼ 0:16 and b ¼ 8 in the expo-

nential filter).

The rarefaction wave is characterized by the solution having a discontinuous first derivative, thus edge
detection must be applied to the first derivative of the solution in addition to the solution itself. The edge

detection procedure with Q ¼ 1 and J ¼ 1 locates jumps of magnitude greater than 0.125. With these

settings, the edge detection procedure locates edges in the function and the first derivative of the function at

x ¼ �0:0331, x ¼ 0:0331, and x ¼ 0:1374.
We were unable to get good postprocessed results by specifying the reconstruction parameters globally

through the parameters kk and km. Global parameter specification failed due to the solution containing three

intervals of piecewise constant values and a fourth interval ð0:033; 0:1374Þ consisting of a function requiring

different reconstruction parameters. Good results were obtained by specifying the GRP parameters locally
in each smooth subinterval as listed in Table 1.

The postprocessed solution in Fig. 3.
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With such a small viscosity parameter e used, it is interesting to note that the numerical calculation is

stable up to time t ¼ 0:5 with e ¼ 0. The result is shown in Fig. 4. The solution is considerably more os-

cillatory than the solution with the small amount of viscosity added and more significantly, it was im-

Table 1

Shock-rarefaction, local reconstruction parameters

Subinterval m k

ð�0:2;�0:033Þ 1 2

ð�0:033; 0:033Þ 1 3

ð0:033; 0:1374Þ 4 1

ð0:1374; 0:2Þ 1 2
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Fig. 2. SSV approximation (oscillatory) vs. exact.
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Fig. 3. Postprocessed (solid) vs. exact (dashed).
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possible to obtain an accurate postprocessed solution from the approximation, indicating that the nu-

merical solution is not converging to the entropy solution without the spectral viscosity being added.

In our second example, the solution contains both left and right moving shocks. The initial conditions

used were vðx; 0Þ ¼ 0:1 if x < 0, vðx; 0Þ ¼ �0:3 if xP 0 and aðx; 0Þ ¼ 0:3 if x < 0, and aðx; 0Þ ¼ 0:4 if xP 0 in

a computational domain of ½�0:2; 0:2�.
Fig. 5 shows the computed solution at t ¼ 0:2 on a grid with 64 collocation points. The collocation

points were distributed with map (8) with c ¼ 0:999 which produces a near uniform grid. The shocks are

stronger than in shock/rarefaction problem, and a stronger spectral viscosity is required. The SSV pa-
rameters used were C ¼ 25 and s ¼ 2 which produced a viscosity parameter of e ¼ CN 1�2s ¼ 9:537E� 5 (or

a ¼ CNDt ¼ 0:8 and b ¼ 4 in the exponential filter).
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Fig. 4. Shock/rarefaction problem, without SSV.
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Fig. 5. SSV approximation vs. exact.
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The edge detection procedure with J ¼ 1, Q ¼ 1, and g ¼ 1 located edges at x ¼ �0:07711 and

x ¼ 0:04499 as shown in Fig. 6.

The homogeneous features of the solution throughout the computational domain allowed the recon-

struction parameters to be chosen globally. The parameters were specified by setting kk ¼ 0:3 and km ¼ 0:03.
The postprocessed solution is shown in Fig. 7.

The postprocessed spectral solution, in comparison with the second-order Godunov methods used in

[6,7], used less grid points to produce solutions which contained neither smears nor overshoots at shock

locations in both examples.
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Fig. 6. Edge series (dashed), enhancement (solid).

Fig. 7. Postprocessed (solid) vs. exact, shock/shock.
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6.2. Slugging problem

Now we consider the numerical solution of the fluidized bed model and produce numerical solutions

which replicate the slugging behavior observed in fluidized beds. A splitting technique is used to separate

the hyperbolic system into two parts, consisting of a homogeneous system of conservation laws and a

system of ordinary differential equations. The splitting is

ut ¼ bðuÞ; ð24Þ

ut þ f ðuÞx ¼ 0; ð25Þ

ut ¼ SSV ðs;C;NÞ; ð26Þ

ut ¼ bðuÞ: ð27Þ

For t > 0, the starting value for each equation (24)–(27) is provided by the solution of the previous

equation. Eq. (25) is solved with a time step Dt and advanced in time with an explicit second-order Runge–

Kutta method. Eq. (26) is evaluated exactly over a time step of size Dt according to (18). The fractional

steps involving the source terms, (24) and (27), may be evaluated exactly over time steps of size Dt=2 by

solving the linear ODE

dm
dt

¼ bða;mÞ ¼ �a þ aJ � m

ð1� aÞ3:5

in closed form. Thus, in the split steps involving the source term, m can be updated as

m ¼ exp
�Dt

2ð1� aÞ3:5

 !
½að1� aÞ3:5 � aJ þ m� � að1� aÞ3:5 þ aJ :

The described fractional steps amount to Strang splitting [34] and maintains second-order accuracy in time.

A typical implementation of Strang splitting would have evaluated (26) over a time step of size Dt=2 before

and after (25). However, the SSV term is just a filter at every time level and the exact location at which it is

applied in time is irrelevant to temporal accuracy. An unsplit formulation of the problem was also solved.

The full system was advanced in time with an explicit fourth-order Runge–Kutta method with no no-
ticeable differences in the solution being observed [30].

Boundary conditions are imposed on v which physically correspond to perforated plates preventing the

flow of particles. At both endpoints of the computational interval the value of the velocity is set to v ¼ 0.

All numerical simulations using (1) began from a state of uniform fluidization, in which a ¼ aðxÞ is found
by letting v ¼ 0 and a0 ¼ a0u in (1). This results in the ODE (28),

½F ðaÞ�x ¼ wða;mÞ ð28Þ

with an initial condition of að0Þ ¼ a0u, to determine a. The ODE (28) may be expressed in the form (29)

which is more suitable for numerical evaluation by an ODE solver.

ax ¼
ða � apÞ2

s2a
ð1� a0Þ3:5

ð1� aÞ3:5

"
� 1

#
: ð29Þ

A typical initial concentration is pictured in Fig. 8. After the initial condition for a is found, a0 is set equal

to 0.4 and a steady state no longer exists and instabilities in the form of slugs are expected in the solution.
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Fig. 9 shows the SSV solution at t ¼ 0:5, at which time the slugging behavior is becoming evident. We

have taken N ¼ 256 and the CGL grid (2) was used. The SSV parameters were C ¼ 5 and s ¼ 2 which
produced a viscosity parameter of e ¼ CN 1�2s ¼ 0:00000012 (or a ¼ CNDt ¼ 0:0128 and b ¼ 4 in the ex-

ponential filter). After postprocessing, the physically unrealistic concentrations, a < 0, have all been re-

placed by aP 0.

The edge detection procedure, Fig. 10, with J ¼ 1, Q ¼ 1, and g ¼ 2 located shocks at x ¼ 0:01778 and

x ¼ 0:19822. The postprocessed solution (Fig. 9) was obtained by locally specifying the reconstruction

parameters in each smooth subinterval as listed in Table 2.

In order to validate the method against a method with that has a much longer track record in solving

nonlinear conservation laws, the postprocessed solution is compared with a solution by Roe�s method [29].
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Fig. 8. Initial concentration a, slugging problem.
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Fig. 9. SSV (solid) vs. postprocessed, t ¼ 0:5.
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In Fig. 11, the Roe�s method solution with N ¼ 1024 is shown with the postprocessed spectral solution from

Fig. 9. There is a good agreement between the two solutions. The only slight variance is towards the top of
the bed where the area of zero concentration begins. This is largely due to the fact that the Godunov

method is calculated on a uniform grid while the spectral method uses a nonuniform grid, which led to the

height in the bed at which particles existed at t ¼ 0 being slightly different. The system of equations exhibits

a chaotic-like, sensitive dependence on initial conditions. The slightest variation of the initial condition

results in a noticeably different concentration profile at later times.

By time t ¼ 4:0, the slugging has become well developed throughout the bed. The solution is calculated

by the spectral method with N ¼ 256 on a grid formed with map (10) with c ¼ 1 and l ¼ 0. The map causes

the grid points to cluster densely around the gas inflow at x ¼ 0 while lessening the density of grid points
towards the other end of the interval where the particle concentration remains constant at zero. This grid

distribution allows the problem to be resolved on the larger interval ½0; 0:4� without increasing the number

of collocation points used. If the grid distribution (2) or (8) with c ¼ 0:995 are used, it is necessary to have

N ¼ 512 to get a well-resolved solution. The SSV solution is shown in Fig. 12. The SSV parameters used

were C ¼ 9 and s ¼ 2 which produced a viscosity parameter of e ¼ CN 1�2s ¼ 5:4E� 07 (or

a ¼ CNDt ¼ 0:0576 and b ¼ 4 in the exponential filter). The edge detection parameters J ¼ 2, Q ¼ 1, and

g ¼ 2; produces the edge information in Fig. 13 and located shocks at x ¼ 0:028, x ¼ 0:037, x ¼ 0:049,
x ¼ 0:081, x ¼ 0:122, x ¼ 0:169, and x ¼ 0:257.

The postprocessed solution in Fig. 14 was obtained by specifying the GRP parameters locally in each

smooth subinterval as listed in Table 3.

Chebyshev collocation methods are known to be conservative. It was recently shown in [5] that the

addition of a spectral vanishing viscosity term does not affect the conservative properties of Chebyshev
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Fig. 10. Edge series and enhancement (solid), t ¼ 0:5.

Table 2

t ¼ 0:5, local reconstruction parameters

Subinterval m k

ð0; 0:01778Þ 15 2

ð0:01778; 0:19822Þ 14 4

ð0:19822; 0:25Þ 1 1
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collocation methods. This fact was confirmed by our numerical experiments. Additionally, the postpro-

cessing method was observed to preserve the conservative properties of the approximation.

7. Selection of postprocessing parameters

Fig. 15 zooms in on the shock front in the neighborhood of x ¼ 0:198 of the approximation from Figs. 9

and 11. The GRP parameters were m ¼ 14 and k ¼ 4 in this region. The postprocessed spectral solution

(PP) is in good agreement with the Roe�s method reference solution (FD). The postprocessed spectral
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Fig. 11. Postprocessed vs. reference (dashed), t ¼ 0:5.
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Fig. 12. SSV solution, t ¼ 4.
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Fig. 13. Edge locations, t ¼ 4.
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Fig. 14. Postprocessed, t ¼ 4.

Table 3

t ¼ 4, local reconstruction parameters

Subinterval m k

ð0; 0:028Þ 18 1

ð0:028; 0:037Þ 10 2

ð0:037; 0:049Þ 7 1.5

ð0:049; 0:081Þ 6 4

ð0:081; 0:122Þ 6 1.7

ð0:122; 0:169Þ 6 2.2

ð0:169; 0:257Þ 6 3.25

ð0:257; 0:4Þ 1 1
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solution provides a sharper resolution of the shock front. The parameters which produced the good results

were chosen by trial and error. They were adjusted until there was a good agreement with the reference

solution.

The main drawback of the method is that there is no way to specify the parameters in advance. A

method to optimize the parameters has not been developed. So while we can always select GRP parameters

which result in the postprocessed solution comparing favorably with an exact or reference solution, the
GRP is not ready to be used as a ‘‘black box’’ postprocessing method until a way to choose the optimal

parameters in advance is available.

To illustrate the variations in the postprocessed solution that could result with a slightly different choice

of the GRP parameters, consider the same SSV approximation, but postprocessed using GRP parameters

m ¼ 25 and k ¼ 4. The result is pictured in Fig. 16. Compared to the postprocessed solution in Fig. 15, the
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Fig. 15. SSV, dashed; PP, solid; FD, dash-dotted.
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Fig. 16. SSV, dashed; PP, solid; FD, dash-dotted.
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shock front is smeared. However, if we were not comparing to a reference solution, our experience with the

systems of PDEs might lead us to take this as a good result.

A similar result is obtained by taking the GRP parameters as m ¼ 14 and k ¼ 2 Fig. 17. Again, similar

results to those displayed in Fig. 16 are obtained, but the agreement with the reference solution is not as

good.

Finally, the GRP results using m ¼ 18 and k ¼ 9 are shown in Fig. 18. The postprocessed results are

similar to the those in Figs. 15–17, but the overshoot at the shock front would cause us to disregard this

result.
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Fig. 17. SSV, dashed; PP, solid; FD, dash-dotted.
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Fig. 18. SSV, dashed; PP, solid; FD, dash-dotted.
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8. Conclusions

The Chebyshev super spectral viscosity method and GRP were shown to accurately resolve the solution

of a nonlinear system of conservation laws with a source term. The problem could be formulated in a split

manner in which the source was evaluated exactly in a separate step or in a more general unsplit way which

achieved higher accuracy in time. The results of the two formulations are practically identical. Not sur-

prisingly, the spectral method was able to resolve the numerical examples more accurately and with less grid

points than the second-order Godunov methods used in [6,7].
The solution to the slugging problem has its significant features located near the bottom of the bed

(x ¼ 0). The standard CGL collocation point distribution (2) worked satisfactorily due to its clustering of

grid points around x ¼ 0, but the clustering of grid points around the boundary at the top of the bed is

unnecessary. A more appropriate grid distribution can be achieved via the map (10) which clusters col-

location points around a specified point in the physical domain.

It is necessary to retain the unphysical, negative particle concentrations throughout the calculation.

Setting negative concentrations to zero results in the spectral scheme losing its conservative properties.

When the GRP is used to postprocess the final solution, all concentrations became positive.
In order to get results for the slugging problems with the GRP, it was necessary to take a local approach

to specifying the reconstruction parameters and to set different values of the parameters m and k in each

smooth subinterval depending on the nature of the solution. This is in contrast to previous applications of

the GRP to non-periodic problems in the literature where the parameters were able to be specified by a

global approach as m ¼ k1�N and k ¼ k2�N , where k1 and k2 are constants, and � is the length of the

subinterval. The previous applications of the GRP where the parameters were chosen in this way were to

problems with homogeneous features throughout the computational domain: Burgers Equation [15], and

the Shallow Water Equations with Riemann initial data [12]. The solution with the most varying detail in
which the GRP had been applied to previously was the Euler equations with a Mach 3 shock interacting

with an entropy wave. However, the authors did not state the values of the GRP parameters that were used

[16]. The need to specify different parameters for each subinterval for varying solutions could make the

reconstruction of solutions with varying subintervals of detail in two-dimensions very difficult. Addition-

ally, all previous applications of the GRP had been to functions known on the CGL grid. It was dem-

onstrated that the reconstruction procedure can also be applied to functions known on mapped grids which

are often necessary in applications.
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