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A software suite written in the Java programming language for the postprocessing of Chebyshev
approximations to discontinuous functions is presented. It is demonstrated how to use the package
to remove the effects of the Gibbs-Wilbraham phenomenon from Chebyshev approximations of dis-
continuous functions. Additionally, the package is used to postprocess Chebyshev collocation and
Chebyshev super spectral viscosity approximations of hyperbolic partial differential equations. The
postprocessing method is the Gegenbauer reconstruction procedure. The Spectral Signal Process-
ing Suite is the first publicly available package that implements the procedure. State-of-the-art
techniques are used to implement the algorithms with efficiency while reducing round-off error.

Categories and Subject Descriptors: G.1 [Numerical Analysis]; G.1.2 [Numerical Analysis]:
Approximation; G.1.8 [Numerical Analysis]: Partial Differential Equations—Spectral methods

General Terms: Algorithms

Additional Key Words and Phrases: Gegenbauer postprocessing, Gibbs-Wilbraham phenomenon,
Java, edge detection, chebyshev

1. INTRODUCTION

Spectral approximations based on Chebyshev polynomials are exponentially
accurate for analytic functions. However, for discontinuous but piecewise an-
alytic functions, the spectral partial sum approximates the function poorly
throughout the domain. Away from the discontinuities, only first-order accu-
racy is achieved. Near the discontinuity there are O(1) oscillations which do
not decrease with N , the number of terms retained in the spectral partial sum.
This is known as the Gibbs-Wilbraham phenomenon. The problem is reduced
to one of signal processing in order to recover spectral accuracy.

Several methods exist for postprocessing spectral approximations. One class
of postprocessing methods consists of variations of the spectral mollification
(SM) idea which was originally developed in Gottlieb and Tadmor [1985].
Spectral mollification involves applying a two-parameter family of filters. The
method can recover spectral accuracy up to within a neighborhood of each
discontinuity. The Gibbs phenomenon can be removed, but some smearing at
the discontinuity locations will occur. This idea is discussed in more detail in
Kaber and Mahmoud [1994] and examples of using the method to postprocess
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partial differential equation (PDE) solutions are contained in Kaber [1996].
The method of Gottlieb and Tadmor [1985] can be improved upon if the loca-
tions of the edges are known [Gelb 2000; Tadmor and Tanner 2002]. This allows
one of the two parameters to be optimized, which leads to increased accuracy
away from the discontinuities and less smearing at the discontinuities. Further
optimization of the method is considered in Tadmor and Tanner [2002]. While
spectral mollification may be applied with or without the knowledge of the loca-
tion of edges (discontinuities) in the function, better results are achieved when
the locations of the edges are known.

Another way to postprocess spectral approximations is the Padé-based al-
gorithm for removing the Gibbs phenomenon from Fourier approximations
[Driscoll and Fornberg 2001]. The algorithm is stated in the context of Fourier
approximations, but could possibly be extended to nonperiodic Chebyshev ap-
proximations.

The postprocessing method that is the focus of the current version of the
Spectral Signal Processing Suite (SSPS) is the Gegenbauer Reconstruction Pro-
cedure (GRP) [Gottlieb et al. 1992; Gottlieb and Shu 1995a, 1995b, 1996, 1997].
The GRP is capable of recovering spectral accuracy at every point, even at
the locations of the discontinuities. However, despite showing more potential
than spectral mollification, the GRP is not as robust as the SM postprocessing
methods due to two unoptimized parameters used by the method. The GRP
will need to know the location of edges in the function. The purpose of this
paper and software package is to describe and implement the state-of-the-art
Gegenbauer Reconstruction Procedure and edge detection algorithms. Prior to
release 1.0 of the Spectral Signal Processing Suite, publicly available software
that implemented the algorithms was not available.

The GRP may also be used to recover spectral accuracy from approximations
of PDE solutions arising from Chebyshev pseudospectral methods [Gottlieb
and Shu 1995b]. In the context of postprocessing PDE solutions, the term edges
refers to discontinuities and shocks. If the spectral approximation is to a non-
linear hyperbolic conservation law, spectral viscosity will need to be added to
the approximation in order to obtain a stable approximation which converges to
the exact entropy solution [Tadmor 1989]. While the spectral viscosity solution
is a highly accurate approximation to the collocation solution, only partial the-
oretical justification can be found for using the postprocessing method on the
spectral viscosity solution. Nevertheless, numerical results indicate that expo-
nential accuracy can be achieved by applying the Gegenbauer postprocessing
procedure to the spectral viscosity solution [Gelb and Tadmor 2000b]. The same
can be said about the edge detection method. The theoretical results are limited
to locating the jump discontinuities of a piecewise smooth function, but numer-
ical evidence advocates applying the edge detection procedure to the spectral
viscosity solution. In the examples, we have used the super spectral viscosity
method (SSV) of Ma [1998].

This paper is organized a follows. Section 2 reviews approximation by a
Chebyshev partial sum. Section 3 summarizes a method developed in Gelb
and Tadmor [2000a] to locate edges in a function. Section 4 summarizes the
GRP postprocessing method. Section 5 describes the software suite. Section 6
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presents examples of using the software suite to reconstruct piecewise analytic
functions and examples of using the methods to postprocess the numerical solu-
tion of PDEs by Chebyshev pseudospectral methods. The numerical examples
will emphasize both a local approach and a global approach for selecting the
reconstruction parameters. Section 7 contains concluding remarks.

2. CHEBYSHEV APPROXIMATIONS

By a Chebyshev approximation of a function, we mean the Chebyshev partial
sum

uN (x)=
N∑

n=0

anTn(x). (1)

The discrete Chebyshev coefficients, an, are defined by

an= 2
N

1
cn

N∑
n=0

u(x j )Tn(x j )
c j

, where c j =
{

2 when j = 0, N
1 otherwise. , (2)

The Chebyshev polynomials are known in closed form as

Tk (x) = cos(k arccos (x)). (3)

The Chebyshev pseudospectral method is based on assuming that an un-
known PDE solution, u, can be represented by a global, interpolating, Cheby-
shev partial sum of the form (1). More detailed information on pseudospectral
methods may be found in the standard references [Canuto et al. 1988; Fornberg
1996; Funaro 1992; Gottlieb and Orszag 1977; Gottlieb et al. 1984; Trefethen
2000].

If the PDE solution contains shocks, the Chebyshev pseudospectral method
will not converge to the correct entropy solution [Tadmor 1989]. In this case,
a spectrally small viscosity term must be added in order to stabilize the ap-
proximation and ensure convergence to the entropy solution. This can be done
without sacrificing spectral accuracy and can be accomplished in several dif-
ferent ways, with each way being labeled a particular type of spectral viscosity
method. In the examples, we have used the SSV method of Ma [1998]. The
reader is referred to Sarra [2003a] for details on the implementation of the
SSV method in regard to the example problems.

3. EDGE DETECTION

If the exact location of discontinuities, or edges, in a piecewise analytic function
are known, the Gegenbauer Reconstruction Procedure recovers spectral accu-
racy at all points, including the discontinuity points. If a PDE solution is being
postprocessed and the solution contains rarefaction waves, discontinuities in
the first derivative of the function will exist and will need to be located. The
method used to find the edges originated in Gelb and Tadmor [2000a] for peri-
odic and nonperiodic functions. The method is specialized to approximations of
functions by Chebyshev methods and is summarized below.

Denote the location of discontinuities as α j . Let

[ f ](x) := f (x+)− f (x−)
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denote a local jump in the function and define

ue(x)= π
√

1− x2

N

N∑
k=0

ak
d

d x
Tk(x), (4)

where
d

d x
Tk(x)= k sin(k arccos(x))√

1− x2
.

Essentially, we are looking at the derivative of the spectral projection of the
numerical approximation to determine the location of the discontinuities. The
series ue(x) has the convergence properties

ue(x)→
{

O( 1
N ) when x 6= α j ,

[ f ] (α j ) when x=α j .

The series converges to both the height and direction of the jump at the location
of a discontinuity. However, the GRP does not need the direction; it only needs
the magnitude and location of the jumps. While a graphical examination of the
series ue(x) verifies that the series does have the desired convergence proper-
ties, an additional step is needed to numerically pinpoint the location of the
discontinuities. For that purpose, make a nonlinear enhancement to the edge
series as

un(x)=N
Q
2 [ue(x)]Q .

The values, un(x), will serve to amplify the separation of scales which has taken
place in Equation (4). The series has the convergence properties

un(x)→
{

O(N
−Q

2 ) when x 6= α j ,
N

Q
2 [[ f ](α j )]Q when x=α j .

By choosing Q > 1 we enhance the separation between the O([ 1
N ]

Q
2 ) points of

smoothness and the O(N
Q
2 ) points of discontinuity. The parameter J , whose

value will be problem dependent, is a critical threshold value. Finally, redefine
ue(x) as

ue(x)=
{

ue(x) if un(x) > J ,
0 otherwise.

With Q large enough, one ends up with an edge detector ue(x)= 0 at all but O( 1
N )

neighborhoods of the discontinuities x=α j . Only those edges with amplitude
larger than J1/Q

√
1/N will be detected.

Often the series ue is slow to converge in the area of a discontinuity and
the nonlinear enhancement has difficulty pinpointing the exact location of the
edge. If an additional parameter, η, is added to the procedure, this problem can
be overcome in a simple manner. The parameter specifies that only one edge
may be located in the interval (x[i− η], x[i+ η]), i= 0, . . . , N , with appropriate
one-sided intervals being considered near boundaries. The correct edge will be
the maximum of ue in this subinterval. The value of η is problem dependent
and is best chosen after the edge detection procedure has been applied once.

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.



Spectral Signal Processing Suite • 199

The edge detection parameters J , Q , and η, are all problem dependent. Var-
ious combinations of the parameters may be used to successfully locate edges
represented by jumps of magnitude in a certain range.

As mentioned previously, if a PDE solution is being postprocessed and the
solution contains rarefaction waves, the first derivative of the solution will also
have discontinuities and the edge detection procedure will have to be used to ex-
amine the first derivative of the solution in each piecewise smooth subinterval.
After the shock locations are determined, the numerical solution can be differ-
entiated in each C0 smooth interval. Then, the locations of the discontinuities
in the function and its derivatives are arranged in increasing order.

In most situations, it is sufficient to consider a more naı̈ve approach which
is easier to implement. If the numerical solution is differentiated over the en-
tire computational domain, neighborhoods of noise will exist around the points
where the edges in the solution were found. However, if the rarefaction waves
are far enough away from the shock locations, edges in the derivative of the
function can be successfully located by searching only a subinterval of the com-
putational domain which is clear of any influence from the shocks.

4. GEGENBAUER RECONSTRUCTION PROCEDURE

The GRP works by expanding the function in another basis, the Gibbs com-
plementary basis, via knowledge of the known Chebyshev coefficients and the
location of discontinuities. The Chebyshev partial sums are projected onto a
space spanned by the Gegenbauer polynomials. The approximation converges
exponentially in the new basis even though it only converged very slowly in the
original basis due to the Gibbs-Wilbraham phenomenon. The choice of a Gibbs
complementary basis is the ultraspherical or Gegenbauer polynomials, Cλ

n. The
Gegenbauer polynomials are orthogonal polynomials of order n which satisfy∫ 1

−1
(1− x2)λ−1/2Cλ

k (x)Cλ
n(x) dx=

{
hλn k = n,
0 k 6= n,

where (for λ > 0)

hλn=π
1
2 Cλ

n(1)
0

(
λ+ 1

2

)
0(λ)(n+ λ)

with

Cλ
n(1)= 0(n+ 2λ)

n!0(2λ)
.

Methods to implement the Gegenbauer polynomials of degree (λ, m) are in the
class gegenbauerPolynomial of the SSPS.

The Gegenbauer expansion of a function u(x), x ∈ [−1, 1] is

u(x)=
∞∑

l=0

f̂ λl Cλ
l (x),

where the continuous Gegenbauer coefficients, f̂ λl , of u(x) are

f̂ λl =
1
hλl

∫ 1

−1
(1− x2)λ−1/2Cλ

l (x)u(x) dx. (5)
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Since we do not know the function u(x), implementing the GRP requires ob-
taining an exponentially accurate approximation, ĝλl , to the first m coefficients
f̂ λl in the Gegenbauer expansion from the first N + 1 Chebyshev coefficients of
u(x). The approximate Gegenbauer coefficients are defined as the integral

ĝλl =
1
hλl

∫ 1

−1
(1− x2)λ−1/2Cλ

l (x)uN (x) dx, (6)

where uN is the Chebyshev partial sum (1). The integral should be evaluated
by Gauss-Lobatto quadrature in order to insure sufficient accuracy. The coef-
ficients ĝλl are now used in the Gegenbauer partial sum to approximate the
original function as

u(x) ≈ uλm(x)=
m∑

l=0

ĝλl Cλ
l (x).

In practice, there will be discontinuities in the interval [−1, 1] and the recon-
struction must be done on each subinterval [a, b] in which the solution remains
smooth. To accomplish the reconstruction on each subinterval, define a local
variable for each subinterval as x(ξ )= εξ + δ, where ε= (b− a)/2, δ= (b+a)/2,
and ξ j = cos(π j/N ). The reconstruction in each subinterval is then accom-
plished by

uλ,ε
m (εξ + δ)=

m∑
l=0

ĝλε (l )Cλ
l (ξ ),

where

ĝλε (l )= 1
hλl

∫ −1

1
(1− ξ2)λ−1/2Cλ

l (ξ )uN (εξ + δ) dξ.

Notice that we have used collocation points on the entire interval [−1, 1] to
build the approximation in [a, b]. This is referred to as a global-local approach
[Gottlieb and Shu 1995b]. The global-local approach seems to be best when
postprocessing PDE solutions where uN is obtained from the time evolution
of the problem . The point values u(xi) may not be accurate, but the global
interpolating polynomial uN (x) is accurate.

In order to show that the GRP yields uniform exponential accuracy for the
approximation, it is necessary to select λ and m such that λ=m=βεN , where
β < 2e/(27(1+ 1/2p)), and p is the distance from [−1, 1] to the nearest sin-
gularity in the complex plane, in each subinterval where the function being
reconstructed is assumed to be analytic [Gottlieb and Shu 1997]. The choice
of λ=m is necessary to make the proof work for the exponential convergence
of the method, but in practice it is not necessary and usually not advisable to
choose λ=m. We are often more concerned with obtaining results for a fixed N ,
rather than maintaining an exponential convergence rate.

If the function to be postprocessed consists of homogeneous features, the re-
construction parameters can be successfully chosen as λ= kλεN and m= kmεN
for each subinterval where kλ and km are user chosen, globally applied pa-
rameters. We refer to this strategy as the global approach. However, in prob-
lems with solutions containing varying detail throughout the computational
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domain, the reconstruction parameters may need to be chosen independently
in each subinterval [Sarra 2002]. We refer to this strategy as the local ap-
proach. To date there is no known method to choose optimal values of the
reconstruction parameters m and λ. The parameters remain very problem
dependent.

4.1 Computational Expense

At first examination, the GRP seems to require a triple summation for each grid
point value of a function that is reconstructed. The method can be very com-
putationally expensive as N and m grow. However, the use of the Christoffel-
Darboux [Davis 1975] formula allows one of the sums to be eliminated [Gelb
2000]. The summation of the Chebyshev series can be done in an efficient man-
ner with Clenshaw’s [1962] recurrence formula. These two modifications result
in a much more efficient method and are implemented in the software.

4.2 Round-Off Error

The Gegenbauer polynomials grow very rapidly with λ and m, which leads to a
round-off error that may completely ruin the approximation. Round-off error is
especially problematic for functions with a lot of variation and that require large
values of m and/or λ. While the use of the Christoffel-Darboux formula reduces
the computational effort, it adds to the round-off error problem as now two
Gegenbauer polynomials are multiplied together. To lessen this problem, Gelb
[2000] has suggested that the computation be rearranged in a way such that
the two large and increasing Gegenbauer polynomial terms are first multiplied
by quantities that are small and decreasing with respect to m, λ, and N . This
rearrangement of the computation leads to a much more robust method and
has been implemented in the software.

4.3 A Hybrid Approach

Even with the computational savings made via the Christoffel-Darboux for-
mula, Gegenbauer Reconstruction may still be very computationally expensive
in higher dimensions for large values of N . A hybrid approach was suggested in
Gelb [2000] that uses an exponential filter, which may be applied very cheaply,
in smooth regions and the GRP in the neighborhood of discontinuities. The
exponential filter is

σ

(
k
N

)
= exp

(
−α| k

N
|β
)

, (7)

where α is the strength of the filter and β is the order of the filter. The exponen-
tial filter is an example of a spectral filter [Vandeven 1991] and can be used to
recover a high order of accuracy away from points of discontinuity. The filtered
partial sum takes the form

uN (x)=
N∑

n=0

σ
( n

N

)
anTn(x).
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Spectral filters do not completely remove the Gibbs-Wilbraham phenomenon,
as oscillations in the neighborhood of discontinuities will not be removed.

The hybrid Gegenbauer postprocessing method is implemented for one-
dimensional functions in the method hybrid.postProcess().

5. SOFTWARE

Source code for the Spectral Signal Processing suite, a demonstration Applet
containing all examples in this paper, and documentation of the graphical user
interface (GUI) may be found at www.scottsarra.org/signal/signal.html.

5.1 Supported Collocation Grids

The standard collocation points for a Chebyshev collocation method are usually
defined by

x j = − cos
(
π j
N

)
, j = 0, 1, . . . , N . (8)

These points are extrema of the kth order Chebyshev polynomial Tk(x)
(Equation (3)). The points are often labeled the Chebyshev-Gauss-Lobatto
(CGL) points, a name which alludes to the points role in certain quadrature
formulas. The CGL points cluster quadratically around the endpoints and are
less densely distributed in the interior of the domain. The CGL grid is denoted
as grid 0 in the software. In the practical application of Chebyshev collocation
methods for PDEs, a change of variable is often used to redistribute the colloca-
tion points. Three coordinate maps are supported by the software and are used
in the examples.

The first map (grid 1 in the software) is the Kosloff/Tal-Ezer map [Kosloff
and Tal-Ezer 1993]:

x= g (ξ, γ )= arcsin(γ ξ )
arcsin(γ )

, (9)

with γ ∈ (0, 1). As γ approaches one, the grid points become nearly evenly
spaced, and as γ approaches zero, the CGL grid is approached. The mapping also
relaxes the O(N−2) time-stepping restriction that is present when advancing
Chebyshev methods with explicit time-stepping algorithms using the CGL grid.

The second map (grid 2) [Basdevant et al. 1986] is

x= g (ξ, γ )= (1.0− γ )ξ3+ γ ξ, (10)

with γ ∈ (0, 1). Smaller values of γ cluster grid points around the center of the
computational interval while still maintaining a dense grid point distribution
near boundary points. As γ → 1 the grid approaches the CGL grid. The map
can be used to resolve regions of rapid variation in the center of a computational
domain.

The two-parameter tangent map (grid 3) [Bayliss and Turkel 1992] is

x= g (ξ, γ , µ)= x0+ tan(δξ +ω)
γ

, (11)

where κ = arctan(γ (1− µ)), γ = arctan(γ (1+µ)), δ= 0.5(κ + γ ), ω= 0.5(κ − γ ),
and x0= − 1+ 2(µ− a)/(b− a). The map can be used to resolve solutions with

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.



Spectral Signal Processing Suite • 203

either a region of rapid variation in the interior or at boundaries. The map
can be used to cluster grid points around the point µ in the interval [a, b]. The
parameter γ > 0 determines the degree to which the clustering takes place.

5.2 Summary of Signal Processing Classes

Two classes implement versions of the edge detection procedure. Both classes
have one public method, findEdges. The findEdges method in class edgeDetect
locates edges in a function on its entire domain. The method takes input: f,
an array of function values, and edge detection parameters, J , Q , and η. The
method outputs an array containing the edge series, ue, and nonlinear enhance-
ment, nle. The location of the edges are returned in the Vector d . The Vector of
edges can be used as input to the postprocessing methods.

edgeDetect.findEdges(double[] f, double J, int Q,
double[] ue, double[] nle, Vector d, int eta)

The findEdges method in class edgeDetectAB is used to find edges in the deriva-
tive of a function in the interval [A, B]. The method is identical to the findEdges
method in class edgeDetect except that it requires as additional input the end-
points of the interval searched as well as an array, xm, containing the grid on
which the function f is known.

edgeDetectAB.findEdges(double[] f, double J, int Q, double[] ue,
double[] nle, Vector d, int eta, double A, double B, double[] xm)

Two versions of the Gegenbauer reconstruction procedure are implemented.
Both classes implement one public method, postProcess. The postProcess
method in class gegenbauerReconstruction implements the procedure by us-
ing global reconstruction parameters LK and MK, which are input into the
method. The method also takes as inputs: an array of function values, f , and
a vector d , containing the location of the edges. As output, the method returns
an array, fG, containing the values of the postprocessed function. The method
also returns Vectors mv and Lv, which contain the value of the reconstruction
parameters, m and λ in each smooth subinterval. The vectors mv and Lv are
used as input to the postProcess method of class gegenbauerReconstructionB.

gegenbauerReconstruction.postProcess(double f[], double d[],
double LK, double MK, double fG[], Vector mv, Vector Lv)

The postProcess method of class gegenbauerReconstructionB implements the
local approach to specifying reconstruction parameters.

gegenbauerReconstructionB.postProcess(double f[], double d[],
double fG[], Vector mv, Vector Lv)

The methods takes as inputs: an array of function values, f , and a vector d ,
containing the location of the edges. Additionally, Vectors mv and Lv specifying
the reconstruction parameters, m and λ, in each smooth subinterval need to be
input. The method returns the array fG containing the postprocessed function
values.
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The classes hybrid and hybridB implement postProcess methods similar to
those of gegenbauerReconstruction and gegenbauerReconstructionB except that
an exponential filter may be used to postprocess the input function in neighbor-
hoods away from the edge locations. The methods in both classes take additional
inputs, alpha and gamma, which, respectively, determine the strength and or-
der of the exponential filter (7). The postProcess method of class hybrid also
takes as an input the parameter EPS, which specifies that the GRP is to be
applied in intervals (d [ j ]− EPS, d [ j ]+EPS) around each edge d [ j ].

hybrid.postProcess(double f[], double d[], double LK,
double MK, double fG[], Vector mv, Vector Lv, double alpha,
double gamma, double EPS)

The postProcess method of class hybridB allows different reconstruction pa-
rameters to be applied in each smooth subinterval through the input Vectors
mv and Lv, in the same way that gegenbauerReconstructionB.postProcess does.
Additionally, the value of EPS around each edge may be specified separately by
values input in the Vector ev.

hybridB.postProcess(double f[], double d[], double fG[],
Vector mv, Vector Lv, Vector ev, double alpha, double gamma)

6. EXAMPLES

The example functions are included as part of the software package and are
available from the examples menu in the graphical user interface (GUI). The
first four examples use the software suite to reconstruct functions approximated
by a Chebyshev partial sum (1). The examples use two parameters, Nex, which
sets the number of terms in the partial sum (1) to Nex+ 1, and M , which has
various meanings depending on the example. The two parameters may be set
through the GUI. The remaining examples demonstrate using the software as
a postprocessing method for the Chebyshev collocation method and Chebyshev
SSV method. All PDE example problems can be stated as a system conservation
laws with a source term as

ut + f (u)x =ψ(u). (12)

6.1 Step Function

The first example consists of the step function on [−1, 1] defined as f (x)= − 1
if x60 and f (x)= 1 if x > 0. The approximation of the step Function by a
Chebyshev series is shown in Figure 1.

With Nex= 60 and on the CGL grid (grid= 0), the edge at x= 0, which has a
jump of magnitude 2, can be located with J = 10, Q = 1, and η= 2. This choice
of edge detection parameters results in jumps of J1/Q

√
1/N ≈ 0.9 and larger

being located. In this case, we just need J1/Q
√

1/N > 0.85 to locate the correct
edge location.

The function has a homogeneous structure throughout its domain, which
indicates that the reconstruction parameters can be chosen globally. The re-
construction parameters can be specified by setting kλ= 0.1 and km= 0.025,
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Fig. 1. Step function approximation.

which results in m= 1 and L= 3 in each smooth subinterval. A slightly better
result (check the error from the options menu) can be obtained with kλ= 0.5
and km= 0.025, which results in m= 1 and L= 15 in each smooth subinterval.

6.2 Sine Wave

The function f (x)=Sin(Mπx) will test the resolution properties of the Gegen-
bauer expansion. This smooth function contains M complete wavelengths in
the interval [−1, 1]. It was shown in Gottlieb and Shu [1994] that the Gegen-
bauer expansions needs a minimum of π points per wavelength to completely
resolve a wave.

Choose Nex= 350, use the CGL grid (grid = 0), and set M = 20. The function
is smooth so there are no edges in the interval. If the global Gegenbauer param-
eters are set by specifying kλ= 0.003 and km= 0.25, (which results in m= 88
and L= 1.05), the function is well resolved.

6.3 Combination

The previous two examples demonstrate that if the function has homogeneous
structure throughout its domain, then the reconstruction parameters can be
chosen globally. However, if the function consists of subintervals of varying
detail, a local approach to choosing the reconstruction parameters may be nec-
essary. For example, consider function (13) below. Experimentally, we were un-
able to chose the reconstruction parameters globally and obtain good results.
Instead, a local approach seems necessary, where independent values of m and
λ are specified separately in each smooth subinterval.

For example, take Nex= 400, grid= 0, and M = 0.015 to specify the width
of the feature in the interval [0, 1]. The resulting Chebyshev approximation is
shown in Figure 2. The edges can be located with J = 20, Q = 1, and η= 2. In the
regions where the function is piecewise constant, reconstruction parameters of
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Fig. 2. Chebyshev approximation of function (13).

λ= 2 and m= 2 provide good results. In the region [−1,−0.68], the function is of
moderate detail, and reconstruction can be accomplished with moderate values
of m= 9 and λ= 9. In the interval [0, 1], which consists of a narrow exponential
spike, the function contains small-scale structures which will require a large
value of m, and small value of λ, similar to those in the sine wave example, for
example, λ= 0.1 and m= 70.

f (x)=


3 exp(−(x−0.5)2

4M 2 ) if 0 6 x 6 1,
3 if −0.4 6 x < 0,
0.5 if −0.68 6 x < −0.4,
1.5+ 1.5 exp(20(x − 0.68)) if −1 6 x < −0.64.

(13)

6.4 Center Step

Theoretical proofs [Gottlieb and Shu 1995b] exist showing exponential conver-
gence properties of the GRP for functions known on the CGL grid. Numeri-
cal evidence indicates that method may also be applied on grids arising from
mappings of the Chebyshev grid. The determining factor in the accuracy of
the reconstruction is how well the chosen grid can capture the function [Sarra
2002].

For example, consider the piecewise analytic function (14). Set Nex= 160,
M = 0.15, and form the grid with map (9) with γ = 0.9999. The grid is nearly
evenly spaced. The Chebyshev approximation of the function is shown in
Figure 3. The global Gegenbauer parameters can be set by specifying kλ= 0.2
and km= 0.025 to achieve a successful reconstruction of the function on the
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Fig. 3. Chebyshev approximation of function (14).

mapped grid.

f (x)=
{

0 if x 6 M − 1 or x > 1− M ,
1 otherwise. (14)

6.5 Hyperbolic Heat Transfer

Our first example of using the GRP as a postprocessing method for the Cheby-
shev collocation method for PDEs is to the equations of hyperbolic heat transfer.
The governing equations of hyperbolic heat transfer can be written in form (12),
with u= [T, Q]T , f (u)= [Q , T ]T , ψ = [S/2,−2Q]T . T (x, t) is the temperature,
Q(x, t) is the heat flux, and S(x, t) is the energy generation rate. Both examples
used the initial conditions T (x, 0)= 0 and Q(x, t)= 0 on [0, 1]. The problem is
linear and the Chebyshev collocation method is stable without the addition of
any spectral viscosity. The system was advanced in time with a fourth-order
explicit Runge-Kutta method. More detailed information about the spectral so-
lution of this problem may be found in Sarra [2003b].

For the first hyperbolic heat transfer example, system (12) is solved
with boundary conditions of Q(0, t)= 1, Q(1, t)= 0, Tt(0, t)= − Qx(0, t), and
Tx(1, t)= 0. The energy generation rate, S, is set to zero.

In the Figure 4, the temperature solution, T , is shown at time t= 0.5 with
N = 33 on the CGL grid (8). Strong oscillations are noticeable at the boundary
x= 0, due to the jump in the heat flux, Q ,which is felt by the temperature.

An edge is found to be at x= 0.476 with the parameters J = 200, Q = 4, and
η= 2. This choice of edge detection parameters results in jumps of 0.65 and
larger being located. The exact jump is 0.65 in magnitude. By specifying η= 2,
the oscillation near x= 0 is not falsely determined to be a jump in the function.
With only 33 grid points, the convergence of the edge series, Figure 5, is not
yet readily apparent. However, if the edge detection parameters are chosen
appropriately, the correct edge locations will be found.
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Fig. 4. Numerical (solid) versus exact.

Fig. 5. Edge series (solid) and enhancement.

After the edges have been located, the GRP is applied in each smooth subin-
terval by using global parameters chosen as kλ= 0.3 and km= 0.1, which results
in m= 2 and λ= 4.7 in subinterval (0, 0.476) and m= 2 and λ= 5.2 in subinter-
val (0.476, 1). For the homogeneous solution in this example, choosing global
reconstruction parameters results in a successful application of the GRP. The
postprocessed solution is shown in Figure 6.

For the second hyperbolic heat transfer example, system (12) is solved with
boundary conditions of Q(0, t)= 0, Q(1, t)= 0, Tx(0, t)= 0, and Tx(1, t)= 0. The
energy generation rate is specified as S(x, t)= 1

dn , if 0≤ x ≤dn, and zero other-
wise. The energy generation rate, S, represents a pulsed energy source released
instantaneously at time t= 0.
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Fig. 6. Postprocessed (solid) versus exact.

Fig. 7. Numerical (solid) and exact (dashed).

The temperature solution (Figure 7) with dn= 0.05 is shown at time t= 0.5
with N = 99 collocation points distributed with map (9) with γ = 0.96. By taking
the map parameter as γ = 0.96, the grid becomes closer to evenly being spaced
and better resolution is realized in the center of the domain.

Edges (Figure 8) are found to be at x= 0.447 and x= 0.541 with the param-
eters J = 5000, Q = 3, and NE= 1. With these choices of the edge detection
parameters, only jumps of magnitude greater than 1.72 are found. Other com-
binations of J and Q could work equally as well.

After the edges have been located, the GRP is applied in each smooth subin-
terval by using the global parameters kλ= 0.2 and km= 0.02. The results are
shown in Figure 9.
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Fig. 8. Enhancement (solid) and edge series.

Fig. 9. Postprocessed (solid) and exact.

6.6 Shallow Water Equations

Cast in form (12), the shallow water equations are u= [v, h]T , f (u)=
[v2h+ 0.5gh2, vh]T , and ψ(u)= 0. The variable h(x, t) is the height of the free
upper surface, v(x, t) is the depth averaged fluid velocity, and g is the acceler-
ation due to gravity.

Our example is the dam break problem consisting of an initial condition of
h(x, 0)=h0 if x < 0, h(x, 0)=h1 if x > 0, and v(x, 0)= 0. The solution consists
of a right moving-shock and a left-moving rarefaction. The Chebyshev SSV
solution (Figure 10) was calculated with N = 128 on a grid formed with map
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Fig. 10. SSV solution, h(x,t).

Fig. 11. Postprocessed, h(x,t).

(9) with γ = 0.99. The system was advanced in time with a fourth-order explicit
Runge-Kutta method.

The edge detection procedure finds edges in the first derivative of the height
solution in the interval [−1, 0] at x= − 0.475 and x= − 0.374 with J = 70,
Q = 2, and η= 1. A shock is found in the solution at x= 0.458 with J = 1, Q = 1,
and η= 1.

The homogeneous features of the solution allow the reconstruction parame-
ters to be chosen globally through the parameters kλ= 0.6 and km= 0.15. The
postprocessed solution is shown in Figure 11.

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.



212 • Sarra

An exact solution to the problem exists. However, for convenience, the refer-
ence solution in the software was computed with the second-order Nessayhu-
Tadmor scheme [Nessyahu and Tadmor 1990] on a very fine grid (N = 4000)
and interpolated with third-order accuracy to the spectral grid.

6.7 Fluidized Bed Equations

Fluidized beds are used in the chemical and fossil fuel processing industries
to mix particulate solids and fluids (gases or liquids). A typical fluidized bed
consists of a vertically oriented chamber, a bed of particulate solids, and a fluid
flow distributor at the bottom the chamber. The fluid flows upward through the
particles creating a force that counteracts gravity, at which time a state of min-
imum fluidization is reached. Stronger gas inflows (more than is necessary to
maintain minimum fluidization) lead to pockets of gas, or equivalently low par-
ticle concentrations, resembling bubbles in a liquid traveling upward through
the particles. Each rising bubble pushes a large amount of mass in front of it.
Particles move downward through and around the rising bubble until it reaches
the top of the bed. A settled bed is reestablished, and the cycle repeats. Each
set of upward moving particles is referred to as a slug.

A model that represents a one-dimensional simplification of two- and
three-dimensional fluidized bed models can be cast in the form on a non-
linear system of conservation laws in form (12) with u= [α, m]T and f (u)=
[m, m2/α+ F (α)]T . The variable α(x, t) denotes the concentration of particles
by volume, m(x, t)=αv represents the particle momentum, and v(x, t) the par-
ticle velocity.

A more detailed description of the model can be found in Christie et al. [1991]
and Christie and Palencia [1991]. If the source term is neglected, an exact
solution to the Riemann problem for the homogeneous system can be found.
The exact solution is developed in Christie and Palencia [1991]. A detailed
description of the Chebyshev SSV solution of the model may be found in Sarra
[2002, 2003a].

The appearance of the slugging behavior in the solution will create a solu-
tion with nonhomogeneous structure and detail throughout the domain of the
problem. A local approach to specifying the reconstruction parameters will be
needed.

6.7.1 Homogeneous System, Shock-Rarefaction. In our first example using
the fluidized bed equations, we considered the Riemann problem for the homo-
geneous system for which an exact solution exists. This example consisted of a
left-moving shock and a right-moving rarefaction wave. The initial conditions
consisted of α(x, 0)= 0.3 if x < 0 and α(x, 0)= 0.55 if x ≥ 0. The initial velocity
was v(x, 0)= 0 for all x. The computation was done on a domain of [−0.2, 0.2].
Figure 12 shows the SSV solution at t= 0.5. The grid consists of 64 points dis-
tributed by map (10) with γ = 0.25. The use of the coordinate map had the effect
of placing more points in the center of the domain. The system was advanced
in time with a fourth-order explicit Runge-Kutta method.

The rarefaction wave is characterized by the solution having a discontinu-
ous first derivative; thus edge detection must be applied to the first derivative
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Fig. 12. α(x, t= 0.5), SSV approximation (oscillatory) versus exact.

Table I. Local Reconstruction Parameters

Subinterval m λ

(−0.2,−0.033) 1 2
(−0.033,0.033) 1 3
(0.033,0.1374) 4 1
(0.1374,0.2) 1 2

of the solution in addition to the solution itself. The edge detection proce-
dure with Q = 1 and J = 1 located jumps of magnitude greater than 0.125.
With these settings, the edge detection procedure located edges in the func-
tion and the first derivative of the function at x=−0.0331, x= 0.0331, and x=
0.1374.

We were unable to get good postprocessed results by specifying the re-
construction parameters globally through the parameters kλ and km. Global
parameter specification failed due to the solution containing three intervals
of piecewise constant values and a fourth interval, (0.033, 0.1374), consist-
ing of a function requiring different reconstruction parameters. Good results
were obtained by specifying the GRP parameters locally in each smooth
subinterval, as listed in Table I. The postprocessed solution is shown in
Figure 13.

6.7.2 Slugging Problem. The initial conditions were taken as the state
of minimum fluidization, which is the state of the system at the minimum
gas flow necessary for the particle phase to be balanced by the upward force
of the gas flow. Details of the exact determination of minimum fluidization
for this problem may be found in Sarra [2003a]. The nonhomogeneous system
was advanced in time with Strang splitting Strang [1968] and a second-order
explicit Runge-Kutta method.
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Fig. 13. Postprocessed (solid) versus exact (dashed).

Fig. 14. SSV (solid) versus postprocessed, t= 0.5.

The SSV solution of the slugging problem was examined at t= 0.5, when
the slugging behavior was first becoming apparent. The collocation grid con-
sisted of 256 CGL (8) grid points. The edge detection procedure, Figure 15,
with J = 1, Q = 1, and η= 2 located shocks at x= 0.01778 and x= 0.19822. The
postprocessed solution, Figure 14, was obtained by locally specifying the recon-
struction parameters in each smooth subinterval, as listed in Table II.

An exact solution to the problem is not known. The reference solution in-
cluded in the software was computed by Roe’s method [Roe 1981] with N = 1024
and interpolated with third-order accuracy to the spectral grid. In Figure 16,
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Fig. 15. Edge series and enhancement(solid).

Table II. Local Reconstruction Parameters

Subinterval m λ

(0,0.01778) 15 2
(0.01778,0.19822) 14 4

(0.19822,0.25) 1 1

the Roe’s method solution is shown with the postprocessed spectral solution
from Figure 14. There is a good agreement between the two solutions. The
slight variation in the two solution is largely due to the fact that Roe’s method
is calculated on a uniform grid while the spectral method uses a nonuniform
grid, which led to the initial conditions being slightly different. The solution of
the system is very dependent on the initial conditions. The slightest variation
of the initial conditions results in a noticeably different concentration profile
at later times. A more detailed description of applying the GRP to this problem
can be found in Sarra [2002, 2003a].

7. CONCLUDING COMMENTS

In this paper, Version 1.0 of the Spectral Signal Processing Suite was described.
In the current version methods are available to locate edges in and to post-
process Chebyshev approximations of discontinuous functions. The algorithms
have been implemented using the most efficient known methods, as a straight-
forward implementation of the GRP algorithm is extremely costly. Addition-
ally, steps have been taken to reduce round-off errors which plague the GRP
algorithm.

Work is underway on version 2.0 of the SSPS. Version 2.0 will implement
edge detection, the GRP, spectral mollification, spectral filtering, and Padé-
based algorithms for both Chebyshev and Fourier approximations. SSPS 2.0
will contain a large number of the known methods that may be used to re-
move or reduce the Gibbs-Wilbraham phenomenon in spectral approximations
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Fig. 16. Postprocessed versus reference (dashed), t= 0.5.

of discontinuous functions. The package will allow the user to compare both the
results and the efficiency of the various methods.
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