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Abstract. We consider a simple model of the motions of a viscoelastic solid. The model consists
of a two-by-two system of conservation laws including a strong relaxation term. We establish the
existence of a BV-solution of this system for any positive value of the relaxation parameter. We
also show that this solution is stable with respect to the perturbations of the initial data in L1. By
deriving the uniform bounds, with respect to the relaxation parameter, on the total variation of the
solution, we obtain the convergence of the solutions of the relaxation system towards the solutions
of a scalar conservation law as the relaxation parameter δ goes to zero. Due to the Lip+ bound on
the solutions of the relaxation system, an estimate on the rate of convergence towards equilibrium is
derived. In particular, an O(

√
δ) bound on the L1-error is established.
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1. Introduction. In this paper we study the following system of conservation
laws:

ut + σx = 0,(1.1)

(σ − f(u))t +
1

δ
(σ − µf(u)) = 0,

where the parameters µ and δ satisfy 0 < µ < 1 and 0 < δ � 1. Here µ is a
fixed parameter, while we are, in particular, interested in the limit as the relaxation
parameter δ tends to zero.

If δ → 0, we formally obtain the equilibrium relation

σ̄ = µf(ū),

and hence the equilibrium model

ūt + µf(ū)x = 0.(1.2)

The purpose of this paper is to study the limit process rigorously. We will prove
that under proper conditions on the initial data, the solutions of the nonequilibrium
model converge to the solutions of the equilibrium model in L1, uniformly in δ at a
rate of O(

√
δ).

The system (1.1) arises in the modeling of motions of a viscoelastic solid, where the
relaxation phenomenon presents the strength of memory. The Riemann problem for
the system with δ = 1 is studied by Greenberg and Hsiao [4]. The zero relaxation limit
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of this viscoelasticity model with vanishing memory is analyzed in the fundamental
paper of Chen and Liu [1], where nonlinear stability in the zero relaxation limit is
established for the model. This is achieved by first deriving energy estimates from
proper construction of entropy pairs, and then applying the theory of compensated
compactness. More recent results can be found in the paper by Chen, Levermore,
and Liu [2]. In this paper, we will establish similar results, but in the BV-framework.
For any positive values of the relaxation parameter, we will prove the existence of
a BV-solution of the system. The bound on the total variation of the solution, and
a proper stability estimate with respect to perturbations of the initial data in L1,
are both independent of the relaxation parameter. Furthermore, a uniform Lip+

bound, similar to Oleinik’s entropy condition (cf. [12]), is obtained. By following
the framework of Tadmor, Nessyahu, and Kurganov [15, 11, 6], this bound is used
to establish an O(

√
δ) estimate for the L1 difference between the solution of the

relaxation system (1.1) and the solution of the equilibrium model (1.2).
Hyperbolic conservation laws with relaxation terms arise in modeling of many

physical phenomena, such as chromatography, traffic modeling, water waves, and
viscoelasticity (see, e.g., the book of Whitham [17]). General relaxation effect was
analyzed by Liu [8], and the convergence was studied by Natalini [10]. For a system
modeling chromatography, convergence and rate of convergence towards equilibrium
are proved (cf., [13, 16] for the 1D case and [14] for the 2D case). Sharper estimates
on the rate of convergence for this model have been recently derived by Kurganov and
Tadmor [6]. The approach here resembles the techniques used in [6, 13, 16]. The same
model problem is also studied independently by Yong [18] and Luo and Natalini [9].
However, these papers do not derive a rate for the convergence to equilibrium.

The structure of the paper is as follows. In section 2, we give the preliminaries
for the model, and we also state the main results of the paper. Then the prop-
erties of the finite difference solutions are studied in section 3, where we establish
the uniform bound, the TV bound, and the bound on the deviation from the equi-
librium state. In section 4, we prove that the limit of the finite difference solu-
tion is the entropy solution of the system, and the stability in L1 is then proved by
Kruzkov-type arguments. Finally, the proof of the convergence of the solution of the
nonequilibrium model towards the solution of the equilibrium model is given in sec-
tion 5.

2. Preliminaries and statement of the main results. In this section, we
will give the preliminaries of the paper and state the main result. Throughout this
paper we will assume that the flux function f = f(u) is a smooth function with the
following properties:

f(0) = 0, f ′(u) > 0, f ′′(u) ≥ 0 for all u ≥ 0.

We introduce the variable v = f(u) − σ such that u = g(σ + v), where the
function g = f−1. Under the assumption that u ≥ 0, we obtain a reformulation of
the system (1.1):

g(σ + v)t + σx = 0,(2.1)

vt =
1

δ
R(σ, v),

where R(σ, v) = ((1− µ)σ − µv). The associated equilibrium model is

g

(
σ̄

µ

)
t

+ σ̄x = 0.(2.2)
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We observe that the “reaction function” R has the monotonicity property

R(σ, v)(sgn(σ)− sgn(v)) ≥ 0.(2.3)

We seek solutions of (2.1) in the state space

S = {(σ, v) : 0 ≤ σ ≤ µ , 0 ≤ v ≤ 1− µ}(2.4)

and solutions of (2.2) in [0, µ]. For a scalar function u(x), let TV (u) denote the total
variation defined as

TV (u) := sup
h6=0

∫
R

|u(x+ h)− u(x)|
h

dx,

and the L1 norm is defined as

‖u‖L1 :=

∫
R
|u(x)| dx.

Furthermore, we define

Lip+(u) := max

(
0, ess sup

x6=y

u(x)− u(y)

x− y

)
.

Let p = R(σ, v) denote the residual. We assume the initial data (σ0, v0) satisfies
the following requirements:

i) (σ0(x), v0(x)) ∈ S, ∀x ∈ R,
ii) TV (σ0) + TV (v0) ≤M,

iii)
∥∥p0
∥∥
L1 ≤Mδ,(2.5)

iv) σ0(±∞) = v0(±∞) = 0,

v) Lip+(σ0) ≤M, Lip+(v0) ≤M.

Here, and throughout this paper, M denotes a generic positive finite constant
independent of δ and the grid parameters (∆x,∆t). Let G = G(σ, v, k, q) be defined
as

G(σ, v, k, q) =
g(σ + v)− g(k + q)

(σ + v)− (k + q)
,

and for any T > 0, let D+(T ) be the set of all nonnegative C∞-functions with compact
support in R× [0, T ]. Then the entropy solutions of (2.1) are defined as follows.

Definition 2.1. Let (σ0, v0) be the initial data of (2.1) which satisfies the as-
sumptions in (2.5). Then a pair of functions (σ, v) is called the entropy solution
of (2.1) with initial data (σ0, v0) if the following requirements are satisfied:

i) (σ, v) ∈ S, ∀(x, t) ∈ R× R+
0 ,

ii) TV (σ(·, t)) + TV (v(·, t)) ≤M, ∀t ≥ 0,
iii) ‖σ(·, t)− σ(·, τ)‖L1 + ‖v(·, t)− v(·, τ)‖L1 ≤M |t− τ |, ∀t, τ ≥ 0,
iv) Lip+(σ(·, t)) ≤M, Lip+(v(·, t)) ≤M, ∀t ≥ 0,
v) for any (k, q) ∈ S and any φ ∈ D+(T ), the following inequality is valid for

all T > 0:
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0

∫
R
[G(σ, v, k, q)(|σ − k|+ |v − q|)φt + |σ − k|φx] dx dt(2.6)

+

∫
R
G(σ0, v0, k, q)(

∣∣σ0 − k∣∣+
∣∣v0 − q∣∣)φ(x, 0) dx

−
∫
R
G(σ(x, T ), v(x, T ), k, q)(|σ(x, T )− k|+ |v(x, T )− q|) φ(x, T ) dx

+ M

∫ T

0

∫
R

[|v − q| − (v − q)sgn(σ − k)]φ dx dt

≥ 1

δ

∫ T

0

∫
R
G(σ, v, k, q)R(σ, v)[sgn(σ − k)− sgn(v − q)]φ dx dt.

Note that the entropy inequality in (2.6) is the weak formulation of an inequality
of the form

Et + Fx ≤ −1

δ
G +MH,

where

E = [G(σ, v, k, q)
(|σ − k|+ |v − q|)],

F = |σ − k|,
G = G(σ, v, k, q)R(σ, v)[sgn(σ − k)− sgn(v − q)],
H = |v − q| − (v − q)sgn(σ − k).

Remarks. In order to motivate the weak entropy formulation above, let us assume
that (σ, v) and (σ̄, v̄) are two smooth solutions of the system (2.1). The errors, σ− σ̄
and v − v̄, will then be governed by the system

[G
(
(σ − σ̄) + (v − v̄)

)
]t + (σ − σ̄)x = 0,

(v − v̄)t =
1

δ
R,

where G = G(σ, v, σ̄, v̄) and R = R(σ− σ̄, v− v̄). The system can also be rewritten as

Gt (σ − σ̄) +G (σ − σ̄)t + (σ − σ̄)x = −Gt (v − v̄)− 1

δ
GR,

G(v − v̄)t +Gt (v − v̄) = Gt (v − v̄) +
1

δ
GR.

By multiplying the first equation above by sgn(σ − σ̄) and the second one by
sgn(v − v̄), and summing, we obtain

[G(|σ − σ̄|+ |v − v̄|)]t + (|σ − σ̄|)x(2.7)

= Gt[|v − v̄| − (v − v̄)sgn(σ − σ̄)]− 1

δ
GR(sgn(σ − σ̄)− sgn(v − v̄)).

If the function G = G(x, t) satisfies a one-sided Lipschitz condition of the form

Gt(x, t) ≤M,(2.8)
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then clearly (2.7) implies that

[G(|σ − σ̄|+ |v − v̄|)]t + (|σ − σ̄|)x(2.9)

≤M [|v − v̄| − (v − v̄)sgn(σ − σ̄)]− 1

δ
GR(sgn (σ − σ̄)− sgn(v − v̄)).

The weak entropy formulation above is motivated from this differential inequality.
We also note that since G ≥ 0, it follows from (2.3) and (2.9) that

[G(|σ − σ̄|+ |v − v̄|)]t + (|σ − σ̄|)x ≤ 2M |v − v̄|.

This formal inequality indicates the continuous dependence result which will be
established rigorously in this paper.

The motivation for the entropy formulation above relies on the one-sided bound (2.8).
Since

G(σ, v, σ̄, v̄) =

∫ 1

0

g′(θ(σ + v) + (1− θ)(σ̄ + v̄)) dθ,

and

(g′(σ + v))t = −g
′′(σ + v)

g′(σ + v)
σx ≤Mσx,

the bound (2.8) will follow from an estimate of the form

Lip+(σ(·, t)),Lip+(σ̄(·, t)) ≤M.

As we shall see below, this property for solutions of the system (2.1) will essentially
follow from the corresponding assumption (2.5v) on the initial data. This ends our
discussion on the motivation for the weak entropy formulation.

For the scalar equilibrium equation, the entropy solutions are defined in the sense
of Kruzkov [5]. For a given T > 0, the entropy solutions satisfy the following inequality
for any k ∈ S and any φ ∈ D+(T ),∫ T

0

∫
R

(∣∣∣∣g( σ̄µ
)
− g

(
k

µ

)∣∣∣∣φt + |σ − k|φx
)
dx dt

+

∫
R

[∣∣∣∣g( σ̄0

µ

)
− g

(
k

µ

)∣∣∣∣φ(x, 0)−
∣∣∣∣g( σ̄(x, T )

µ

)
− g

(
k

µ

)∣∣∣∣φ(x, T )

]
dx ≥ 0.

Our main tool in analyzing the system will be a finite difference scheme derived
from the formulation (2.1). Let ∆t and ∆x denote the steplengths in the t and x
directions, respectively. We consider a semi-implicit difference scheme of the form

g
(
σn+1
j + vn+1

j

)− g (σnj + vnj
)

∆t
+
σnj − σnj−1

∆x
= 0,(2.10)

vn+1
j − vnj

∆t
=

1

δ
R
(
σn+1
j , vn+1

j

)
.

Here σnj and vnj denote approximations of σ(x, t) and v(x, t) over the gridblocks

Bnj = [xj−1/2, xj+1/2)× [tn, tn+1),
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where xj = j∆x and tn = n∆t. Let um = g(1) > 0, and let

Mf = max
u∈[0,um]

f ′(u) =

(
min
θ∈[0,1]

g′(θ)
)−1

.

Throughout the paper we shall assume that the CFL-condition

λMf ≤ 1(2.11)

is satisfied, where λ ≡ ∆t/∆x is the mesh ratio which we assume to be a constant.
The discrete initial data is taken to be the cell averages

σ0
i :=

1

∆x

∫ xi+1/2

xi−1/2

σ0(x) dx, v0
i :=

1

∆x

∫ xi+1/2

xi−1/2

v0(x) dx.

The total variation of a grid function ui is defined as

TV (u) :=
∑
i

|ui − ui−1|,

and the discrete L1-norm is

‖u‖L1 := ∆x
∑
i

|ui|.

We assume that the following requirements are satisfied:

i) (σ0
i , v

0
i ) ∈ S, ∀j,

ii) TV (σ0) + TV (v0) ≤M,

iii)
∥∥p0
∥∥
L1 ≤Mδ,(2.12)

iv) σ0
±∞ = v0

±∞ = 0,

v) sup
j

(σ0
j − σ0

j−1) ≤M∆t, sup
j

(v0
j − v0

j−1) ≤M∆t, ∀j.

Note that the requirement (v) follows directly from the assumption in (2.5v).
The existence of an entropy solution of the Cauchy problem can be obtained based

on the properties of the finite different solutions of the scheme (2.10). Furthermore,
the well-posedness of the initial value problem, independent of δ, is also proved.

Theorem 2.2. Let (σ0, v0) be the initial data of (2.1) satisfying the condi-
tions (2.5), and let (σ0

i , v
0
i ) be the discrete initial data for scheme (2.10). Let (σ∆, v∆)

be the piecewise constant representation of the grid data (σni , v
n
i ) generated by scheme

(2.10). Then the family {(σ∆, v∆)} of approximate solutions converge in (L1
loc(R ×

R+
0 ))2 towards a pair of functions (σ, v) as the grid parameters (∆x,∆t) tend to zero.

The limit is the unique entropy solution which satisfies the requirements in Defini-
tion 2.1, and the following bounds are valid:

‖p(·, t)‖L1 ≤Mδ,

Lip+(σ(·, t)) ≤M, Lip+(v(·, t)) ≤M.

Moreover, the solution is stable with respect to perturbations in initial data in
the following sense: Let (σ̄, v̄) be another entropy solution of (2.1) with initial data
(σ̄0, v̄0). Then the following bound holds for all t > 0:

‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1 ≤ M̄eMt
[∥∥σ0 − σ̄0

∥∥
L1 +

∥∥v0 − v̄0
∥∥
L1

]
,



ZERO RELAXATION LIMIT FOR VISCOELASTICITY MODEL 1121

where M̄ and M are finite constants independent of δ.
This theorem eventually leads to the main result of this paper, i.e., the con-

vergence of the solutions of the nonequilibrium system towards the solutions of the
equilibrium equation as δ tends to zero, and an estimate of the rate of convergence.
The error estimates are derived by following the framework of Tadmor, Nessyahu, and
Kurganov [15, 11, 6]. Hence, we estimate the Lip′-norm of the error. For any function
φ ∈ L1 with

∫
φ = 0, we define

‖φ‖Lip′ := sup
ψ

∫
R φψdx

‖ψ‖W 1,∞
.

Here the supremum is taken over all smooth functions ψ with compact support and

‖ψ‖W 1,∞ := max (‖ψ‖L∞ , ||ψ||Lip) .

The following convergence result will be proved in section 5.
Theorem 2.3. Let (σ0, v0) and σ̄0 be the initial data for (2.1) and (2.2), respec-

tively. We assume that the initial data (σ0, v0) for the nonequilibrium system satisfies
the requirements in (2.5) and that σ̄0 = σ0. Let (σδ, vδ) be the entropy solution of (2.1)
with initial data (σ0, v0) and σ̄ the corresponding entropy solution of (2.2). For each
T > 0 there is a constant M , independent of δ, such that

‖uδ(·, t)− ū(·, t)‖Lip′ ≤Mδ, 0 ≤ t ≤ T,

where uδ = g(σδ + vδ) and ū = g( σ̄µ ).

We note that the variables (uδ, σδ) and (ū, σ̄) in the theorem above correspond
to the solutions of the original models (1.1) and (1.2). The following corollary is a
consequence of Theorem 2.3.

Corollary 2.4. Let (uδ, σδ) and (ū, σ̄) be as stated in Theorem 2.3. For each
T > 0 there is a constant M , independent of δ, such that for any p ∈ [1,∞)

‖uδ(·, t)− ū(·, t)‖Lp ≤Mδ
1
2p , 0 ≤ t ≤ T.

Furthermore,

‖σδ(·, t)− σ̄(·, t)‖L1 ≤M
√
δ, 0 ≤ t ≤ T.

3. Existence of a weak solution. The purpose of this section is to use the
finite difference scheme (2.10) to establish the existence of weak solutions of Cauchy
problem for (2.1) (or (1.1)). We first show that the finite difference solution is well
defined.

Lemma 3.1. Assume that {σ0
j } and {v0

j } for j ∈ Z are given. Then the solutions
{σnj } and {vnj } are uniquely determined by (2.10) for all j ∈ Z and n ≥ 0.

Proof. Assume that {σnj } and {vnj } are computed. Let

rnj = g
(
σnj + vnj

)− λ (σnj − σnj−1

)
.

The solutions {σn+1
j } and {vn+1

j } then satisfy the linear system

A

(
σn+1
j

vn+1
j

)
=

(
f
(
rnj
)

vnj

)
,
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where the 2× 2 matrix A is given by

A =

(
1 1

−(1− µ)∆t
δ 1 + µ∆t

δ

)
.

Since det(A) = 1 + ∆t
δ > 0, the results follows by induction.

The following results show that the state space S defined in (2.4), is an invariant
region for the scheme (2.10).

Lemma 3.2. Assume (σ0
j , v

0
j ) ∈ S for all j ∈ Z. Then (σnj , v

n
j ) ∈ S for all j ∈ Z

and n ≥ 0.
Proof. For given σ̄, σL and v̄, let (σ, v) be the unique solution of the system

g(σ + v) = g(σ̄ + v̄)− λ (σ̄ − σL) ,(3.1) (
1 +

∆t

δ
µ

)
v − ∆t

δ
(1− µ)σ = v̄.

This system defines functions σ = σ(σ̄, σL, v̄) and v = v(σ̄, σL, v̄). Furthermore,
σn+1
j = σ(σnj , σ

n
j−1, v

n
j ) and vn+1

j = v(σnj , σ
n
j−1, v

n
j ). Hence, the lemma can be estab-

lished by studying the functions σ and v.
Assume that (σ̄, v̄) ∈ S and σL ∈ [0, µ]. By differentiating the system (3.1) with

respect to σ̄ and by using the CFL-condition (2.11), we obtain

g′(σ + v)

(
∂σ

∂σ̄
+
∂v

∂σ̄

)
= g′(σ̄ + v̄)− λ > 0,(

1 +
∆tµ

δ

)
∂v

∂σ̄
=

∆t

δ
(1− µ)

∂σ

∂σ̄
.

From this we easily conclude that ∂σ
∂σ̄ ,

∂v
∂σ̄ > 0, and by a similar calculation we

also obtain ∂σ
∂σL

, ∂v
∂σL

> 0.
Assume now that σL = σ̄. Then we obtain from (3.1) that

σ + v = σ̄ + v̄,

and hence

∂σ

∂v̄
+
∂v

∂v̄
= 1.

Furthermore, from the second equation of (3.1) we have

∆t

δ
µ
∂v

∂v̄
=

(
1 +

∆t

δ
(1− µ)

)
∂σ

∂v̄
,

and hence we can conclude that

∂σ

∂v̄
(σ̄, σ̄, v̄) > 0,

∂v

∂v̄
(σ̄, σ̄, v̄) > 0.

From the monotonicity properties derived above we now have for (σ̄, v̄) ∈ S and
σL ∈ [0, µ]

σ(σ̄, σL, v̄) ≥ σ(0, 0, v̄) ≥ σ(0, 0, 0) = 0
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and

σ(σ̄, σL, v̄) ≤ σ(µ, µ, v̄) ≤ σ(µ, µ, 1− µ) = µ.

Similarly, we obtain

0 ≤ v(σ̄, σL, v̄) ≤ 1− µ,

and the invariance of S follows by induction.
We let pnj denote the residual, i.e., pnj = (1− µ)σnj − µvnj .
Lemma 3.3. Assume that ‖p0‖1 , TV (σ0) and TV (v0) are finite. Then

TV (σn) + TV (vn) ≤ TV (σ0) + TV (v0) .(3.2)

Furthermore, there is a constant M1, depending only on µ, g, TV (σ0), and
TV (v0) such that

‖pn‖1
δ
≤ max

(
M1,
‖p0‖1
δ

)
.

Proof. We first establish the total variation estimate. Let

anj =

(
σn+1
j + vn+1

j

)− (σnj + vnj
)

g
(
σn+1
j + vn+1

j

)− g (σnj + vnj
) .

It follows from the monotonicity of g and the CFL-condition (2.11) that

0 ≤ λanj ≤ 1.

Furthermore, the difference scheme (2.10) can be written in the form

σn+1
j = σnj − λanj

(
σnj − σnj−1

)− ∆t

δ
R
(
σn+1
j , vn+1

j

)
,(3.3)

vn+1
j = vnj +

∆t

δ
R
(
σn+1
j , vn+1

j

)
.

Hence, if we let

αnj = σnj+1 − σnj , βnj = vnj+1 − vnj ,

we obtain

αn+1
j = αnj − λanj+1α

n
j + λanj α

n
j−1 −

∆t

δ
R
(
αn+1
j , βn+1

j

)
,(3.4)

βn+1
j = βnj +

∆t

δ
R
(
αn+1
j , βn+1

j

)
.

By multiplying the first equation in (3.4) by sgn (αn+1
j ), the second equation by

sgn (βn+1
j ), using the monotonicity property (2.3), and by summation with respect

to j, we obtain ∑
j

(∣∣αn+1
j

∣∣+
∣∣βn+1
j

∣∣) ≤∑
j

(∣∣αnj ∣∣+
∣∣βnj ∣∣) ,



1124 WEN SHEN, ASLAK TVEITO, AND RAGNAR WINTHER

and this is exactly the total variation bound.
From (3.3) it also follows that

pn+1
j = pnj − (1− µ)λanj

(
σnj − σnj−1

)− ∆t

δ
pn+1
j .

Therefore, it follows from the total variation estimate above that

‖pn+1‖1 ≤ ‖pn‖1 +M1∆t− ∆t

δ
‖pn+1‖1,

and this implies that

‖pn+1‖1
δ

≤ max

(
M1,
‖pn‖1
δ

)
.

This completes the proof of Lemma 3.3.
We recall that the initial data satisfies

‖p0‖1 ≤Mδ,

where M is independent of δ and the grid parameters ∆t and ∆x. Hence, by induction,
we have

‖pn‖1 ≤Mδ for all n ≥ 0.(3.5)

From the total variation estimate (3.2) and (3.5), we now obtain

‖σn+1 − σn‖1 + ‖vn+1 − vn‖1 ≤M∆t,

and hence we obtain L1-Lipschitz continuity with respect to time, i.e.,

‖σn − σm‖1 + ‖vn − vm‖1 ≤M |n−m|∆t,
where M is independent of δ and the grid parameters.

4. Entropy solutions and stability in L1. The purpose of this section is
to derive bounds for Lip+(σ) and Lip+(v), which can be used to obtain stability
results with respect to perturbations of the initial data which are independent of the
relaxation parameter δ. The extra regularity results will technically be derived for
the finite difference solutions (σnj , v

n
j ).

Define coefficients bnj by

bnj =
anj+1 − anj

αn+1
j + βn+1

j + αnj + βnj
,

where as above αnj = σnj+1 − σnj and βnj = vnj+1 − vnj . Observe that if we let unj =
g(σnj + vnj ), then

anj =

∫ 1

0

f ′
(
unj + θ

(
un+1
j − unj

))
dθ.

Hence, it follows from the monotonicity of f ′ and f that there is a positive constant
Mb such that

0 < bnj ≤Mb.
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We claim that for sufficiently small ∆t and δ, the initial data (σ0
j , v

0
j ) of (2.10)

satisfies the following one-side bound:

sup
j

{
(1− µ)α0

j , µβ
0
j

}
≤ (1− µ)µ2 ∆t

2δ + µ∆t
.(4.1)

Indeed, since α0
j ≤ µ and β0

j ≤ 1−µ for all j, then by (2.12v), there exists a finite
constant M∗ and a sufficiently small ∆t∗ satisfying the relation M∗ · ∆t∗ ≤ 1 such
that

sup
j

{
α0
j

} ≤M∗∆tµ, sup
j

{
β0
j

} ≤M∗∆t(1− µ),

for all ∆t ≤ ∆t∗. Then it follows that

sup
j

{
(1− µ)α0

j , µβ
0
j

} ≤ (1− µ)µM∗∆t,

for all ∆t ≤ ∆t∗. By choosing δ sufficiently small, i.e.,

δ ≤ µ(1−M∗∆t)
2M∗

,

the relation (4.1) follows.
In order to derive the proper results for the solution of the finite difference scheme,

we will need a strengthened CFL-condition. We will assume throughout this section
that

λ (Mf + (2 + µ)Mb) ≤ 1.(4.2)

Lemma 4.1. Assume that the initial data (σ0
j , v

0
j ) of (2.10) satisfies (4.1) for

sufficiently small δ and ∆t. Then

sup
j

{
(1− µ)αnj , µβ

n
j , 0
}
≤ sup

j

{
(1− µ)α0

j , µβ
0
j , 0
}
.

Proof. Define function α = α(ᾱ, β̄, αL) and β = β(ᾱ, β̄, αL) implicitly by

α = ᾱ− λa (ᾱ− αL)− λb (α+ β + ᾱ+ β̄
)
ᾱ− ∆t

δ
((1− µ)α− µβ),(4.3)

β = β̄ +
∆t

δ
((1− µ)α− µβ).

Here a and b are positive constants, bounded by Mf and Mb, respectively.
Recall that it follows from (3.4) that if a = anj and b = bnj , then αn+1

j =

α(αnj , β
n
j , α

n
j−1) and βn+1

j = β(αnj , β
n
j , αnj−1). Recall also that Lemma 3.2 implies

that |αnj | ≤ µ and |βnj | ≤ 1− µ.

We will first show that, under the assumptions that |ᾱ|, |αL| ≤ µ, |β̄| ≤ 1−µ and

ᾱ ≤ µ2 ∆t

2δ + µ∆t
,(4.4)

the functions α and β are monotonically increasing in all three arguments. Observe
that the second equation of (4.3) implies that

β =
δ

δ + µ∆t
β̄ +

(1− µ)∆t

δ + µ∆t
α.(4.5)
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Hence we can eliminate β from the first equation. We obtain the equation

cα = r,(4.6)

where

c = c(ᾱ) = 1 + λb
δ + ∆t

δ + µ∆t
ᾱ+

(1− µ)∆t

δ + µ∆t
= (1 + λbᾱ)

δ + ∆t

δ + ∆tµ

and

r = r(ᾱ , β̄ , αL) = (1− λa)ᾱ+ λaαL − λbᾱ2 − λb2δ + µ∆t

δ + µ∆t
ᾱβ̄ +

µ∆t

δ + µ∆t
β̄.

Note that since ᾱ ≥ −µ, it follows that

c ≥ c(−µ) ≥ δ + ∆t

δ + µ∆t
(1− µλMb) ,

and hence (4.2) implies that c > 0. Observe that

∂r

∂αL
= λa > 0,

which implies that ∂α
∂αL

> 0.
Similarly, by (4.2) and (4.4), we get

∂r

∂β̄
=
µ∆t− λb(2δ + µ∆t)ᾱ

δ + µ∆t
≥ µ∆t

δ + µ∆t
(1− λbµ) ≥ 0,

which implies that

∂α

∂β̄
≥ 0.

Finally, we observe that

c
∂α

∂ᾱ
=
∂r

∂ᾱ
− α dc

dᾱ

= (1− λa)− 2λbᾱ− λb2δ + µ∆t

δ + µ∆t
β̄ − λb δ + ∆t

δ + µ∆t
α

≥ (1− λa)− 2λbµ− λb2δ + µ∆t

δ + µ∆t
(1− µ)− λb δ + ∆t

δ + µ∆t
µ.

This implies that

c
∂α

∂ᾱ
≥ 1− λ(a+ b(2 + µ)).

Hence, it follows from (4.2) that

∂α

∂ᾱ
≥ 0.

We have therefore established that the function α is an increasing function in
all three of its arguments. Furthermore, from (4.5) we easily derive that β has the
corresponding property. We now use induction to complete the proof. Assume that

zn ≡ sup
j

{
(1− µ)αnj , µβ

n
j , 0

}
≤ z0.
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In particular, this implies that (cf. (4.4))

αnj ≤ µ2 ∆t

2δ + µ∆t
.

Hence, the monotonicity property of α implies that

αn+1
j ≤ α

(
zn

1− µ,
zn

µ
,
zn

1− µ
)
.

Furthermore, since zn ≥ 0,

c

(
zn

1− µ
)
≥ δ + ∆t

δ + µ∆t

and

r

(
zn

1− µ ,
zn

µ
,
zn

1− µ
)
≤ zn

1− µ +
∆t zn

δ + µ∆t
=

zn

1− µ
(
δ + ∆t

δ + µ∆t

)
.

We therefore obtain from (4.6) that

αn+1
j =

r
(
zn

1−µ ,
zn

µ ,
zn

1−µ
)

c
(
zn

1−µ
) ≤ zn

1− µ.

Finally, from (4.5), we derive

βn+1
j ≤ β

(
zn

1− µ,
zn

µ
,
zn

1− µ
)
≤ δ

δ + µ∆t

zn

µ
+

(1− µ)∆t

δ + µ∆t

zn

1− µ =
zn

µ
.

Hence, we conclude that zn+1 ≤ zn .
Next we will show that the finite difference solution satisfies a “discrete entropy

inequality.” Recall that the initial data (σ0, v0) satisfies a one-sided bound of the
form (cf. (2.12v))

sup
j

{
σ0
j − σ0

j−1, v
0
j − v0

j−1

}
≤M∆t,(4.7)

where M > 0 is a finite constant independent of δ and the mesh parameters. For
(σ, v), (k, q) ∈ S, we define

G(σ, v, k, q) =
g(σ + v)− g(k + q)

(σ + v)− (k + q)
.

Hence,

G(σ, v, k, q) ≥M−1
f > 0.

For a fixed (k, q) ∈ S, let

Gnj = G
(
σnj , v

n
j , k, q

)
,
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where {(σnj , vnj )} denotes the solution of the difference scheme (2.10). Observe that
it follows from (2.10) that

Gn+1
j −Gnj = −λ Gn+1

j −Gnj(
σn+1
j + vn+1

j

)− (σnj + vnj
) · f (un+1

j

)− f (unj )
un+1
j − unj

(
σnj − σnj−1

)
.

Therefore, since f is increasing and g is concave (because g′′ = −f ′′/(f ′)3 ≤ 0),
it follows that there is a positive constant M , depending only on f (or g), such that

Gn+1
j −Gnj ≤M max

(
0, σnj − σnj−1

)
.(4.8)

Hence, we obtain from (4.8), (4.7), and Lemma 4.1 that

Gn+1
j −Gnj ≤M∆t,(4.9)

where M > 0 is independent of δ and the mesh parameters.
Lemma 4.2. There is a positive constant M , independent of δ and the mesh

parameters such that for any (k, q) ∈ S the solution of (2.10) satisfies

Gn+1
j

(∣∣σn+1
j − k∣∣+

∣∣vn+1
j − q∣∣)

≤ Gnj
(∣∣σnj − k∣∣+

∣∣vnj − q∣∣)− λ (∣∣σnj − k∣∣− ∣∣σnj−1 − k
∣∣)

−∆t

δ
GnjR

(
σn+1
j , vn+1

j

) [
sgn

(
σn+1
j − k)− sgn

(
vn+1
j − q)]

+M∆t
[∣∣vn+1

j − q∣∣− (vn+1
j − q) sgn (σn+1

j − q)] ,
where, as above, Gnj = G(σnj , v

n
j , k, q).

Proof. Let (k, q) ∈ S. From the first equation in (2.10) we directly obtain

Gn+1
j

(
σn+1
j − k) = Gnj

(
σnj − k

)− λ (σnj − σnj−1

)
− (Gn+1

j −Gnj
) (
vn+1
j − q)−Gnj (vn+1

j − vnj
)
.

Hence, by using the second equation of (2.10), this can be written in the form

Gn+1
j

(
σn+1
j − k) = Gnj

(
σnj − k

)− λ [(σnj − k)− (σnj−1 − k
)]

(4.10)

− (Gn+1
j −Gnj

) (
vn+1
j − q)− ∆t

δ
GnjR

n+1
j ,

where Rn+1
j = R(σn+1

j , vn+1
j ).

The next step in the derivation is to multiply (4.10) by sgn (σn+1
j − k). Observe

that since 0 < λ ≤M−1
f ≤ Gnj , the inequality{

Gnj
(
σnj − k

)− λ [(σnj − k)− (σnj−1 − k
)]}

sgn
(
σn+1
j − k)

≤ Gnj
∣∣σnj − k∣∣− λ (∣∣σnj − k∣∣− ∣∣σnj−1 − k

∣∣)
holds. Hence, from (4.10), we obtain

Gn+1
j

∣∣σn+1
j − k∣∣ ≤ Gnj ∣∣σnj − k∣∣− λ (∣∣σnj − k∣∣− ∣∣σnj−1 − k

∣∣)(4.11)

−
[(
Gn+1
j −Gnj

) (
vn+1
j − q)+

∆t

δ
GnjR

n+1
j

]
sgn

(
σn+1
j − k) .
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Next, write the second equation of (2.10) in the form

Gn+1
j

(
vn+1
j − q) = Gnj

(
vnj − q

)
+
(
Gn+1
j −Gnj

) (
vn+1
j − q)

+
∆t

δ
GnjR

n+1
j .

Hence, if we multiply this equation by sgn (vn+1
j − q) and add the result to (4.11)

we obtain the inequality

Gn+1
j

(∣∣σn+1
j − k∣∣+

∣∣vn+1
j − q∣∣) ≤ Gnj (∣∣σnj − k∣∣+

∣∣vnj − q∣∣)
− λ

(∣∣σnj − k∣∣− ∣∣σnj−1 − k
∣∣)(4.12)

− ∆t

δ
GnjR

n+1
j

[
sgn

(
σn+1
j − k)− sgn

(
vn+1
j − q)]

+
(
Gn+1
j −Gnj

) (
vn+1
j − q) [sgn

(
vn+1
j − q)− sgn

(
σn+1
j − k)] .

However, note that

0 ≤ (vn+1
j − q) [sgn

(
vn+1
j − q)− sgn

(
σn+1
j − k)] ;

therefore, it follows from the one-sided bound (4.9) that(
Gn+1
j −Gnj

) (
vn+1
j − q) [sgn

(
vn+1
j − q)− sgn

(
σn+1
j − k)]

≤M∆t
[∣∣vn+1

j − q∣∣− (vn+1
j − q) sgn (σn+1

j − q)] ,
and hence the desired inequality follows from (4.12).

Consider a real valued function E : S 7→ R of the form

E(σ, v) = L(g(σ + v)) +

∫
S
P (k, q)G(σ, v, k, q)(|σ − k|+ |v − q|) dk dq.

Here, L is a linear function and P : S 7→ R is a smooth, nonnegative function.
Define, correspondingly,

F(σ) = L(σ) +

∫
S
P (k, q)|σ − k| dk dq,

G(σ̄, v̄, σ, v) =

∫
S
P (k, q)G(σ̄, v̄, k, q)R(σ, v)[ sgn (σ − k)− sgn (v − q)] dk dq,

H(v) =

∫
S
P (k, q) [|v − q| − (v − q) sgn (σ − k)] dk dq.

It follows from (2.10) and by integrating the inequality of Lemma 4.2 that the
solution of (2.10) satisfies the discrete entropy inequality

E (σn+1
j , vn+1

j

) ≤ E (σnj , vnj )− λ [F (σnj )−F (σnj−1

)]
(4.13)

− ∆t

δ
G (σnj , vnj , σn+1

j , vn+1
j

)
+M∆tH (vn+1

j

)
.

The properties of the entropy solutions of the system (2.1) will be derived from the
corresponding properties of the finite difference solutions generated by the scheme (2.10).
The convergence of the finite difference solutions is first established by a proper ap-
plication of Helly’s theorem, cf., e.g., [16].
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Lemma 4.3. Suppose (σ0, v0) is the initial data which satisfies all the assump-
tions in (2.12) and let (σN , vN )∆ be the piecewise constant representation of the data
generated by the scheme (2.10). Then, as the mesh parameters ∆x and ∆t tend
to zero, there is a subsequence of (σN , vN )∆, which converges in (L1

loc(R × R))2

to a pair of functions (σ, v). Furthermore, σ(·, t), v(·, t) ∈ BV , for all t ≥ 0, and
(σ(x, y), v(x, t)) ∈ S for (x, t) ∈ R× R+

0 , and the following estimates hold:

1. (σ(x, t), v(x, t)) ∈ S, ∀(x, t) ∈ R× R+
0 ,

2. TV (σ(·, t)) + TV (v(·, t)) ≤ TV (σ0) + TV (v0),
3. ‖p(·, t)‖1 ≤Mδ,
4. ‖σ(·, t)− σ(·, τ)‖1 + ‖v(·, t)− v(·, τ)‖1 ≤M |t− τ |,
5. Lip+(σ(·, t)) ≤MLip+(σ0), Lip+(v(·, t)) ≤MLip+(v0), ∀t ≥ 0.

Here, M is a constant independent of t and δ.
From the entropy inequality in (4.13), we derived that the limit solution is the

entropy solution of (2.1).
Lemma 4.4. The limit solution (σ, v) constructed in Lemma 4.3 is the entropy

solution of the system (2.1), which satisfies the following Kruzkov-type inequality:

∫ T

0

∫
R
[G(σ, v, k, q)(|σ − k|+ |v − q|)φt + |σ − k|φx] dx dt(4.14)

+

∫
R
G
(
σ0, v0, k, q

) (∣∣σ0 − k∣∣+
∣∣v0 − q∣∣)φ(x, 0) dx

−
∫
R
G(σ(x, T ), v(x, T ), k, q)(|σ(x, T )− k|+ |v(x, T )− q|)φ(x, T ) dx

+ M

∫ T

0

∫
R

[|v − q| − (v − q)sgn (σ − k)]φ dx dt

≥ 1

δ

∫ T

0

∫
R
G(σ, v, k, q)R(σ, v)[sgn (σ − k)− sgn (v − q)]φ dx dt.

Here, (k, q) ∈ S and φ ∈ D+(T ) is any test function with compact support. We
recall that the function G = G(σ, v, k, q) is defined as

G(σ, v, k, q) =
g(σ + v)− g(k + q)

(σ + v)− (k + q)
.

Proof. Let φ ∈ D+(T ) be a test function with compact support. We multiply the
inequality in (4.13) by φ(xj , tn), then sum over 0 ≤ n ≤ N − 1 and j ∈ Z, and apply
summation by parts with respect to n and j, and we obtain the following:

∆t
N−1∑
n=0

∆x
∑
j∈Z

[
E (σn+1

j , vn+1
j

) φ (xj , tn+1)− φ (xj , tn)

∆t

+ F (σnj ) φ (xj+1, tn)− φ (xj , tn)

∆x

]
+ ∆x

∑
j∈Z
E (σ0

j , v
0
j

)
φ
(
xj , t

0
)−∆x

∑
j∈Z
E (σNj , vNj )φ (xj , tN)
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+ ∆t

N−1∑
n=0

∆x
∑
j∈Z

MH (vn+1
j

)
φ (xj , tn)

≥ 1

δ
∆t

N−1∑
n=0

∆x
∑
j∈Z
G (σnj , vnj , σn+1

j , vn+1
j

)
φ (xj , tn) .

Now, by letting ∆x,∆t→ 0 in the previous inequality, we get∫ T

0

∫
R
[E(σ, v)φt + F(σ)φx +MH(v)φ] dx dt

+

∫
R
[E(σ0, v0)φ(x, 0)− E(σ(x, T ), v(x, T ))φ(x, T )] dx

≥ 1

δ

∫ T

0

∫
R
G(σ, v, σ, v)φdx dt.

Hence, by choosing a sequence of smooth function pairs (Eθ,Fθ,Gθ,Hθ) such that,
as θ → 0,

Eθ → G(σ, v, k, q)(|σ − k|+ |v − q|),
Fθ → |σ − k|,
Gθ → G(σ, v, k, q)R(σ, v)[ sgn (σ − k)− sgn (v − q)],
Hθ → |v − q| − (v − q) sgn (σ − k),

uniformly, and we get the inequality (4.14) in Lemma 4.4 by the dominated conver-
gence theorem.

The uniqueness and continuous dependence with respect to the initial data in L1

is then obtained by the Kruzkov-type argument.
Lemma 4.5. Let (σ, v) and (σ̄, v̄) be two entropy solutions of the system (2.1)

with initial data (σ0, v0) and (σ̄0, v̄0), respectively. Then,

‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1 ≤ M̄eMt
[∥∥σ0 − σ̄0

∥∥
L1 +

∥∥v0 − v̄0
∥∥
L1

]
.

Proof. The uniqueness of the entropy solutions is proved by generalizing the
arguments by Kruzkov [5] for scalar conservation laws. In this paper, only the sketch
of the proof is given, and we refer to [14, 16] for the details in the proof.

For any θ ∈ (0, 1], we introduce the mollifier function ωθ on R as

ωθ(x) =
1

θ
Ω
(x
θ

)
,

where Ω : R → R is a nonnegative, symmetric C∞-function with support in [−1, 1]
and satisfying ∫

R
Ω(x) dx = 1.

Let T > 0. In (4.14), we choose (k, q) = (σ̄(y, τ), v̄(y, τ)) and φ(x, t) = ωθ(x −
y)ωθ(t− τ) for solution (σ, v), and integrate over R× [0, T ] with respect to y and τ ,
and we get an inequality. For the solution (σ̄, v̄), we perform a similar operation, but
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where we reverse the role of the variable (x, t) and (y, τ), we get another inequality.
Now, adding these two inequalities, we get

L(θ) +
1

δ
l(θ) ≤ R(θ) + 2Mr(θ),

where

L(θ) =

∫ T

0

∫
R

∫
R
G(σ(x, T ), v(x, T ), σ̄, v̄)(|σ(x, T )− σ̄|+ |v(x, T )− v̄|)

ωθ(x− y)ωθ(T − τ) dx dy dτ

+

∫ T

0

∫
R

∫
R
G(σ̄(y, T ), v̄(y, T ), σ, v)(|σ̄(y, T )− σ|+ |v̄(y, T )− v|)

ωθ(x− y)ωθ(T − τ) dx dy dτ

and

R(θ) =

∫ T

0

∫
R

∫
R
G(σ(x, 0), v(x, 0), σ̄, v̄)(|σ(x, 0)− σ̄|+ |v(x, 0)− v̄|)

ωθ(x− y)ωθ(τ) dx dy dτ

+

∫ T

0

∫
R

∫
R
G(σ̄(y, 0), v̄(y, 0), σ, v)(|σ̄(y, 0)− σ|+ |v̄(y, 0)− v|)

ωθ(x− y)ωθ(τ) dx dy dτ

l(θ) =

∫ T

0

∫
R

∫ T

0

∫
R
G(σ, v, σ̄, v̄)[ sgn (σ − σ̄)− sgn (v − v̄)]

[R(σ, v)−R(σ̄, v̄)]ωθ(x− y)ωθ(t− τ) dx dt dy dτ

and

r(θ) = 2

∫ T

0

∫
R

∫ T

0

∫
R
|v − v̄|ωθ(x− y)ωθ(t− τ) dx dt dy dτ.

First we note that l(θ) is non-negative. In order to estimate the turns L(θ) and
R(θ), we introduce the function N (t) as

N (t) =

∫
R
G(σ(x, t), v(x, t), σ̄(x, t), v̄(x, t))(|σ(x, t)− σ̄(x, t)|+ |v(x, t)− v̄(x, t)|) dx.

Note that the function N (t) is equivalent to

A(t) := ‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1

in the sense that there exist two positive constants, M1,M2, such that

M1A(t) ≤ N (t) ≤M2A(t).(4.15)

Then, as θ → 0, we get(cf., e.g., [16])

L(θ)→ N (T ), R(θ)→ N (0),
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and

r(θ)→ 2M

∫ T

0

‖v(·, t)− v̄(·, t)‖L1 dt.

Combining these estimates we conclude, in the limit case as θ → 0, that

N (T ) ≤ N (0) +M

∫ T

0

N (t) dt,

where M is a finite constant independent of δ. Thus, it follows that

N (T ) ≤ N (0)eMT ,

and again, using (4.15), we get

‖σ(·, t)− σ̄(·, t)‖L1 + ‖v(·, t)− v̄(·, t)‖L1 ≤ M̄eMt
[∥∥σ0 − σ̄0

∥∥
L1 +

∥∥v0 − v̄0
∥∥
L1

]
,

where M̄ and M are finite constants independent of δ. This completes the proof of
Theorem 2.2.

5. Rate of convergence towards equilibrium: Proof of Theorem 2.3
and Corollary 2.4. We recall that Lemma 4.3 establishes bounds, uniformly with
respect to δ, on the solutions (σδ, vδ) of the non-equilibrium model (1.1) or (2.1).
By combining these estimates with standard compactness arguments we could have
concluded, more or less directly, that these solutions converge to a solution of the
equilibrium model (1.2) or (2.2) as the relaxation parameter δ tends to zero. However,
we are not only interested in convergence, but also in a rate of convergence. Hence, in
order to prove the error estimates in Theorem 2.3 and Corollary 2.4, we shall follow
the work of Tadmor [15] and Kurganov and Tadmor [6]. First we observe that the
entropy solutions of (1.1) are weak solutions of a scalar equation with an “error term.”

Lemma 5.1. Let (u, σ) (resp., (σ, v)) be the entropy solutions of (1.1) (resp., (2.1)).
Then the solutions u are weak solutions of the following “error equation”

ut + µf(u)x = −R(σ, v)x

in the sense that the following integral equation holds for all test functions φ ∈ D+(T ):∫ T

0

∫
R

(uφt + µf(u)xφx) dx dt+

∫
R
[u(x, 0)φ(x, 0)− u(x, T )φ(x, T )] dx

= −
∫ T

0

∫
R
R(σ, v)φx dx dt.

In addition, u satisfies the Lip+ bound

Lip+(u(·, t)) ≤M, ∀t ≥ 0.

Proof. Let (σ, v) be the entropy solutions of (2.1). Then they satisfy the Kruzkov-
type inequality given in (2.6). Choosing (k = σm, q = vm), where σm = min(σ) and
vm = min(v), (one can use, e.g., k = q = 0), the last terms on the left-hand side and
the right-hand side are 0. Using the definition of G, the relation u = g(σ + v), and
the fact that (k, q) are constants, we get∫ T

0

∫
R

[uφt + σφx] dx dt+

∫
R

(u(x, 0)φ(x, 0)− u(x, T )φ(x, T )) ≥ 0.
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Similarly, by choosing (k = σM , q = vM ), where σM = max(σ) and vM = max(v)
(e.g., k = µ, q = 1− µ), we get∫ T

0

∫
R

[uφt + σφx] dx dt+

∫
R

(u(x, 0)φ(x, 0)− u(x, T )φ(x, T )) ≤ 0.

These two inequalities lead to∫ T

0

∫
R

[uφt + σφx] dx dt+

∫
R

[u(x, 0)φ(x, 0)− u(x, T )φ(x, T )] = 0.

Furthermore, using the relation

σ − µf(u) = σ − µ(σ + v) = (1− µ)σ − µv = R(σ, v),

we get the weak formulation in Lemma 5.1, and thus u is a weak solution of the
error equation. Finally, the Lip+ bound follows from the monotonicity of the
function g.

Let T > 0 be given and define E = −Rx = −px. Hence, u = uδ is a weak solution
of the inhomogeneous equation

ut + µf(u)x = E,

and ū is a solution of the corresponding homogeneous equation (1.2). Furthermore,
these solutions satisfy an Oleinik condition of the form

Lip+(u(·, t)), Lip+(ū(·, t) ≤M, ∀t ≥ 0.

Since the flux function f is convex, we can therefore conclude from the arguments in
Kurganov and Tadmor [6] that the following stability estimate holds:

‖u(·, t)− ū(·, t)‖Lip′ ≤M sup
0≤τ≤t

‖E(·, τ)‖Lip′ , 0 ≤ t ≤ T.

From Lemma 4.3 we obtain that

‖E(·, t)‖Lip′ ≤ ‖p(·, t)‖L1 ≤Mδ.

This completes the proof of Theorem 2.3.

The Lp estimate in Corollary 2.4 can be proved by interpolation between the
Lip′-error estimate in Theorem 2.3 and the BV-boundness of the error, exactly in the
same way as is done in Nessyahu and Tadmor [11]. We therefore omit the details.

The L1 estimate for σ − σ̄ follows from the L1 estimate for u− ū. To be precise,
since σ̄ = µf(ū), we have

‖σ − σ̄‖L1 = ‖σ − µf(u) + µf(u)− σ̄‖L1 ≤ ‖σ − µf(u)‖L1 + ‖µ(f(u)− f(ū))‖L1

≤ ‖p‖L1 +M‖u(·, t)− ū(·, t)‖L1

≤M
√
δ,

which gives the second estimate in Corollary 2.4.
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