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Abstract. We consider initial-boundary-value problems for systems of conservation laws and design entropy stable finite
difference schemes to approximate them. The schemes are shown to be entropy stable for a large class of systems that are
equipped with a symmetric splitting, derived from the entropy formulation. Numerical examples for the Euler equations of
gas dynamics are presented to illustrate the robust performance of the proposed method.
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1. Introduction

We consider systems of conservation laws in one space dimension:

u + f(u)y =0, xe€(0,1)

u(z,0) = u’(x), (1)
Lb(u) = (gl(t)agr(t))T
Here, u = (uy,...,u,)" is the vector of unknowns and the fluxes f = (fi, fa,...,fn)' are Lipschitz

continuous functions of u. The expression L; is an operator that enforces boundary conditions (weakly)
at © = 0,1 using data g; (¢). The precise action of this operator will be specified later.

A prototypical example for the system of conservation laws (1) is provided by the Euler equations of
gas dynamics:

ut+f(u)m:0
u=(p,m, E)"
fu) = (m pg® + P,(E+ P)g)* (2)

1
P=(y-1) (E—2pq2).
p,q, P and E are the density, velocity, pressure and total energy of a gas. The momentum is denoted as
m = pq and ~ the ratio of the specific heats.

Solutions to (1) generally have to be interpreted in a weak sense. A weak solution of the conservation
law (1) is defined below.

Definition. A locally integrable function w is defined as a weak solution to (1) if it satisfies the following
integral identity for all ¢ € C§°((0,1) x R4),
1 1
//u cor+ f(u) - ppdadt + /uo o(x,0)dz = 0. (3)

Ry 0 0

Published online: 08 May 2012
Y Birkhauser



M. Svérd and S. Mishra ZAMP

Weak solutions are not unique, and to single out the physically relevant solution, an extra, so-called
entropy condition, is necessary. We will use the following form of the entropy condition,

Definition. Let (E, F') be any pair of smooth functions such that E is strictly convex and F,, = E, f,.
Such a pair of functions is defined as an entropy-entropy fluz pair. Then, u € L ((0,1) x R) is an

entropy solution of (1) if for all entropy-entropy flux pairs, (E, F), and for all 0 < ¢ € C§°((0,1) x R),
the following inequality holds,

/ /E(u)got + F(u)pzydzdt > 0. 4)
Ry 0

Stability and convergence of numerical approximations to (systems of) conservation laws has been the
subject of intensive study for decades, but generally applicable results for systems remain elusive. From
the numerical perspective, stability (in a sufficiently strong sense) is the single most important aspect for
the reliability of numerical results. Stability is also the key to prove convergence of numerical solutions.

For Cauchy problems, there are several successful schemes that guarantee convergence of scalar con-
servation laws. They include the so-called E-schemes for scalar conservation laws (see for example [16]).
The stability of E-schemes for scalar conservation laws originates from a locally satisfied entropy inequal-
ity, valid for all possible entropy pairs. Scalar conservation laws are equipped with an infinite number
of entropy pairs which can be used to prove a sufficiently strong stability result such that convergence
follows. Systems, however, generally lack this richness of entropies, and the E-scheme requirement is less
natural. Nevertheless, there have been efforts to generalize E-schemes to systems of conservation laws, [1].

A less restrictive way to construct schemes, for scalar equations or systems, is to make them satisfy a
local entropy inequality for one particular entropy. Such schemes are termed entropy stable. (See [16].) For
the canonical example, the Euler equations of gas dynamics (2), entropy stability implies an L? bound
on the solution as long as the density p remains positive.

Most rigorous results on the stability and convergence of numerical schemes for conservation laws are
available for the Cauchy problem. For the initial-boundary-value problem corresponding to (1), stability
and convergence results for monotone (first-order) numerical schemes approximating scalar conserva-
tion laws in several space dimensions were obtained by Coquel et al. [3]. The authors heavily used the
monotonicity of the corresponding solution operator in their analysis. Our aim in this paper is to obtain
stability results for a system of conservation laws. As the solution operator is not necessarily mono-
tone, the arguments of [3] are no longer applicable. Before describing stable numerical schemes for the
initial-boundary-value problem for systems, we discuss some theoretical results below.

In DuBois and Le Floch [2], the continuous problem (1) was studied and, under sufficiently strong
stability assumptions, the following boundary entropy inequality was obtained.

F(uo) = F(g) = Eu(g)(f(uo) — f(g)) <0 (5)

where ¢ is the boundary data at x = 0 and ug the solution at the same point. Any numerical scheme
devised for the initial-boundary-value problem should converge to a solution satisfying this inequality.
However, this result sheds no light on how such a solution can be generated.

In Olsson and Oliger [11], the initial-boundary-value problem was analyzed. They used the so-called
canonical splitting (later termed entropy splitting) in order to obtain energy estimates (or global entropy
estimates), but at the expense of sacrificing the conservative form. To this end, they demand the flux
function to satisfy a so-called cone condition, which can be verified in certain important cases. For scalar
conservation laws, this technique resulted in standard L? estimates for the solution variable. For systems,
however, the estimate requires the assumption that the signal speeds of the in-going characteristics are
bounded by data. It is difficult to see that this assumption is valid in general. Another slight drawback
is that the entropies they adopt do not symmetrize the heat flux in the Navier—Stokes equations. In a
series of papers, Olsson and Gerritsen use this form, discretized with Summation-by-parts finite difference
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schemes and a boundary projection method for imposing boundary conditions. As a result, they obtain
stable schemes for the Euler equations including the boundaries, although not on conservative form. (See
[5,6,9,10].)

The entropy splitting used by the above authors introduces a non-conservative term that causes prob-
lem when discontinuous solutions are sought. In Hou and Le Floch [7], it was shown that a non-conser-
vative term generates a Borel measure source term at discontinuities. This source term produces an error
that grows linearly in time and causes the shock location to drift (independent of the grid resolution).

Our aim is to design a conservative scheme and prove a global entropy bound including the boundaries.
We will also require that local entropy inequalities are satisfied and that the converged limit solution sat-
isfies Du Bois and Le Floch’s boundary entropy inequality. To achieve this, we start with the results by
Olsson and Oliger since these are the only global stability results available for an initial-boundary-value
problem for systems of conservation laws. In Sect. 3, we will derive a suitable weak imposition of char-
acteristic-type boundary conditions and show that a bound on the entropy is achieved without the cone
condition or any assumption on the signal speed. The key to these proofs is to utilize the specific entropy
pair used in [6,11].

Our main result is the derivation of a conservative entropy stable scheme on a bounded domain. We
exploit the specific entropy pair from [6,11] and show that the diffusion needed for entropy stability in
the Cauchy case is sufficient to obtain a global bound. Furthermore, we prove that the numerical solution
satisfies local entropy inequalities and test numerically that Du Bois and Le Floch’s boundary entropy
inequality is satisfied.

To the best of our knowledge, these are the first stability results for a numerical scheme approximating
systems of conservation laws on a bounded domain.

2. The entropy pair

The key to obtain a global estimate, as observed in [11], is the use of a specific entropy pair, and in this
section, we will introduce this entropy and derive a few auxiliary relations.

Mock [8] showed that a conservation law can be symmetrized by its entropy pair. The conservation
law

us + f(u):v =0 (6)
turns into
upwy + G(w), =0 (7)

where w,, is symmetric positive definite and G, (w) is symmetric. We will use entropy (canonical) splitting
proposed in [11], which is based on a well-known one-thirds rule for Burgers’ equation.

We begin by stating standard results for entropy solutions. For the entropy pair (F, F), we have that
E; = Efu; and ET f,, = F, by definition. Furthermore, the entropy variables are defined as E,, = w and
f(u) = G(w) such that G,, is symmetric. Hence, we multiply (6), or equivalently (7), by EI = w™ such
that

By +w"G(w), = 0. (8)

Here, we use the idea put forward in [11]. G,, is symmetric and we can define

Gw) = [ G(w)do 9)
/

which satisfies
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which they term the “canonical splitting”. The symmetry of G’ implies symmetry of G’. Furthermore, for
any flux that satisfies G’ = G'T and

G'w=pG, peR (11)
the following relations hold
1 1
= 7G7 ! - 7G/. 12
g p+1 g p+1 (12)

Unfortunately, the above does not hold for the Euler equations (2) unless very specific entropy variables
are used. (See [4], and for completeness, we include their results in “Appendix I”.) In addition to the
above relations, this particular entropy pair also implies

Uy W = PU. (13)

2.1. Auxiliary relations

From now on, we will only consider entropy pairs that satisfy (11) and (13). In particular, we will assume
that p = 1 although this requirement is strictly not necessary.

Lemma 2.1. Let F(w) denote the entropy fluz and w the entropy variables that make the fluz function
G(w) homogeneous of order 1 (i.e., (11) with p = 1). Then,

F(b) - F(a) = %wTwam

Proof. By the definition of an entropy flux, F,, = wTG,, but wTG, = wT (Guw), + wTG,w,. Then,

b b
/Fz dr = /wT(gww)@- +w'Gyw, dx
1
F(b) - F(a) = wGywl} = swTGwl’

2
O

Lemma 2.2. Let F(w) denote the entropy flux, ¥(w) = (w, f) — F(w) the entropy potential and w the
entropy variables that make the fluz function G(w) homogeneous of order 1. Then,

U(w) = %wTGw(w)w,
F(w) = %wTGw(w)w
Proof.
U(a) = ¥(a) — (¥(b) — W(b))
= U(a) — (w" (0)Gu(b)w(b) — F(b) — ¥ (b))
= w'(a)Gy(a)w(a) = F(a) — (w" (0)Gu(b)w(b) — F(b) — ¥(b))
= ST (@)Gu(a)u(a) ~ 0T O)Cu Bl (b) + T()

In the last equality, we use Lemma 2.1. The final expressions are a sum of two functions. One only
depending on a, and the other only on b. Hence, we are forced to conclude that
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which proves the first relation in the lemma. The second part follows directly from the identity ¥ =
wlG —F. O

3. Stable boundary conditions

Equipped with the particular entropy pair described above, we will derive a formal global entropy esti-
mate for smooth solutions where the skew-symmetric splitting can be used. The purpose of this analysis
is to derive a stable form of boundary conditions for a nonlinear conservation law.

Since the solution is assumed to be smooth, we may use (10) in (8), which yields

1
/Etdl': —
0

1
- _/wT ((gww)iv + gwww) dx = _ngww% = lewaI(l) (14)
0

wt ((Gpw) s + Gyw, ) dz:

S—_

T2

To obtain a bound on the boundary terms, we must introduce the boundary conditions appropriately.
To this end, we introduce G, = A = RTAR, where A is the diagonal eigenvalue matrix, with \; € R
and RTR = I due to the symmetry of G,,. Furthermore, we denote At = RTATR where At con-
tains only the positive entries of A. We will also use the notation |A| = RT|A|R and the specific case
Gulg) = Ag = Ry AR,

For simplicity, we focus on the quarter-plane problem and ignore the right boundary by considering
the following modification of (1):

up + fr = 00p(2) AT (w)(w —w,) 0< 2 < oo (15)

where dp denotes the Dirac delta function with its mass at = 0, and w, = w(g) is the entropy variables
with respect to the boundary data g(t) at = 0.

We remark that the addition of a measure source term at the boundary is a way to weakly impose the
boundary condition in (1) at the left boundary. We also assume that the initial conditions have compact
support.

Theorem 3.1. If u is a continuously differentiable solution, then Eq. (15) satisfies a global entropy esti-
mate with o = —1. Moreover, the correct number of boundary conditions, as dictated by the linearized
equation, is enforced.

Proof. Changing variables to the entropy form, multiplying by w™, utilizing the canonical splitting and
o = —1, we arrive at

o0
1 -
/Etdx - inwa\o = —w" AT (w —wy)lo
0
Dropping the index since all boundary terms are at « = 0, we need to prove that

— 1
BT = inwa —wlAf (w — w,) (16)
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is bounded. We use the notation G, (w(0,t)) = Ag. Rewriting (16),
1

BT = inAow —wT A (w — w,)
1 1
= inAo w — inAarw +wT Afw,
1 1 1
= inAaw - i(w —wy)TAF (w — wy) + gw;Agwg (17)

In the last expression, the first two terms are negative and do not imply a growth of wgy. The requirement
for stability is that BT has an upper bound. Before treating the general case, we note that in 3 cases, a
bound on BT, and hence stability, follows immediately. 1) If Ag is bounded (as in the linear case), the
last term implies a finite growth (which is acceptable). 2) A bound is also readily obtained for a nonlinear
system, if wy, = 0. 3) In the scalar case, a direct calculation shows that
1 T g+ Lot

- i(w —wy) Af(w —wy) + 2 Wg Agwy < Constant (18)
for all |w| large enough.

Next, we prove the result in the general case of a system of conservation laws. We need to show that
there is a constant C' > 0 such that for all w with |w| > C, there exists a constant C' = C(C, wg) such
that

1 1 ~
BT (w,w,) = —§(w —wy)TAT (w —w,) + §ng+wg < C. (19)

Here, we have suppressed the subscript 0 for the matrices for notational convenience.

Recall that A = RAR? is an orthogonal eigendecomposition of the symmetric matrix A = G, (wp)
with A = diag (A1,...,A,) and R = [ry|---|r,] with A; and r; being the ith eigenvalue and eigenvector,
respectively.

Without loss of generality, let A; be the growing eigenvalue, that is,

A (w)] = 00 as  |w| — oco.

Furthermore, we assume that other eigenvalues are bounded. The argument below is easy to generalize
to the case where some or all the eigenvalues satisfy the above growth condition.
Denote

Al = diag()\l, 0, ey 0)

We decompose A as A = A+ Ay with A; = RA;RT and denote

1 1
BT, = —i(w —wy)TA (w —w,) + gw;FAfwg,

- 1 ~ 1 ~
BT = —i(w —wy)TA(w —wy) + ingwg.
From (19), we obtain that BT = BT} + BT.

From our assumptions, A is bounded as |w] — oo. Therefore, it is easy to check that there exists a
constant C' such that

BT < C, (20)

for all w such that |w| > C. The estimate (20) follows as the negative term in BT grows quadratically
where as the positive term is bounded.
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Next, we consider the term BT}. A direct calculation with the definitions of A; shows that
1 1 ¢

BT, = _§(w — wg)TAf(w —wy) + 5% Afwg,
1 1
= —i(w —wy)TRAL R (w — wy) + §w_:]FRA1Rng. (21)

Assuming that BT; grows unboundedly implies that the condition

|r1T(w)(w - wg)| < |r1ng| . (22)
must be satisfied. For otherwise, the first term of (21) will dominate the second and BT'1 will be bounded,
contrary to the assumption.

However, as the eigenvectors are normalized, r1(w) is bounded. Hence, the condition (22) is violated
when |w| grows such that [rTw| — oo as the left hand side in (22) grows linearly, whereas the right-hand
side is bounded. However, if [r{w]| is actually bounded, it means that BT} is bounded. A contradiction to
the assumption, and hence BT'1 is always bounded. A growth in any other direction than r; appears in
BT and is hence bounded by (20). (Under the assumption that the remaining eigenvalues are bounded.
If not, we isolate the growing eigenvalues and repeat the argument above.) In summary, we conclude that
(19) is satisfied.

Finally, we note that the boundary conditions for the in-going characteristics are enforced, which is
consistent with linear theory for well-posedness. O

Most existing codes for the Euler equations use the conservative variables as opposed to the entropy
variables. Hence, we will connect the two forms and state the scheme in the conservative form.

u + fo = 06(z)AT(u—g) 0<z<o00 (23)
where A is the Jacobian matrix for the conservative variables and A¥ its positive part determined from

the eigenvalues.

Theorem 3.2. Under the same conditions as in Theorem 3.1, (23) satisfies a global entropy bound (with
the correct number of boundary conditions).

Proof. First, a few auxiliary relations found in [16]. Denote u,, = H, f, = A and B = G,, such that
Gw =B = AH = f,u,. With our particular entropy pair, we have H 'u = w. Since B and H are
symmetric, it follows that

H™'PAH'Y? = H-'/*BH'/? (24)
is symmetric.
Furthermore, denote by A the kth eigenvalue of A and r its eigenvector, such that Ary = Agrg.
Clearly, the following holds

HY2AHY2(H Y 2) = \H 20y, (25)

such that after normalization (A, H~/?r)) becomes the eigensystem of H~'/2AHY/?,
Next, we turn to (23) and multiply by w™. Jumping a few steps similar to the previous proof, we must

bind
K = wrGpw — 20TAT (u — g)
= wlGpw — 20TATHH Y (u — g)
= w ' Gyw — 20T ATHY2HY?(w — H1g))

We introduce @ = H'?w and § = H~'/2g, and we recall that H~'/2 = H~/?(w,). Furthermore, u,w
and w represent solution values at x = 0. Further manipulations yield

K= wTHl/ZHfl/ZBHfl/QHl/Qw . 2wTH1/2H71/2A+H1/2(@ o g))
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Introduce Z = H~Y2AH'Y? and by (25), the eigenvalues of A and Z coincide (up to a normalization)
such that H—1/2AtHY2 = Z* follows. Hence,

K=a0"Zw— 20" Z% (v — §) (26)
The expression (26) has the same form as (16), and the rest of the proof is identical. O

4. The conservative scheme

Throughout this article, we assume that G(w) is homogeneous of order 1, that is, p =1 in (11), in order
not to clutter the article with excessive notation, but the theory is readily extended to flux functions
homogeneous of a different order.

Discretize the interval [0,1] with N + 1 equidistant points and h = 1/N. We will use the standard
second-order accurate Summation-by-parts (SBP) operator.

-2 2 0 ..
-1 0 1 0

1
D=— 27
o% (27)
-1 0 1
0o -2 2
with the property that
PD = Q, Q+ Q" = diag(—1,0,...,0,1) =B (28)
when P = h - diag(3,1,...,1,1). We will also use the row-vector p with components (p); = p; = [P];.
We arrange the unknowns as u® = (ug,u1,...,uy) and similarly for f. For notational convenience, we

will carry out the analysis for a scalar equation.

Denote G (w;) = a; and note that G; = G(w;) = a;w;. Furthermore, let A = diag(ag,...an).

Next, we will state the key result that will enable us to prove stability. We will need the undivided
difference operator.

0 0 0
1 1 0
D_=190 -1 1

Let F(w) denote the entropy flux, U(w) the entropy potential and f; = f(u;). Define the following
consistent numerical fluxes

fiv12= finth
2 (29)
Giv1/2 = fir172 = Diq jp(Wis1 — w;)
91 /2 is the entropy conservative flux that satisfies
(Wi1 — wi)giy1)o = (Vigr — W) =0 (30)
where ¥; = U(w;). Furthermore, Dy /2 is the diffusion coefficient specifically chosen such that (30)

holds. (It need not be positive.) Furthermore, the numerical entropy flux associated with the entropy
conservative flux is

j1/2 = §(wz’+1 + wi)gi+1/2 - 5(‘1’2‘+1 + ;). (31)



Entropy stable schemes

It was shown in [16] that for a three-point stencil, the entropy conservative flux can always be stated as
in (29). It should be noted, however, that obtaining analytical expressions for D L 1/2 May be difficult
and we use it here only as a theoretical tool. The main idea in the entropy stability framework is to
find analytically expressible diffusion coefficients greater than the entropy conservative choice. For the
Cauchy problem, we define a flux

gi+1/2 = fix172 — Dig1j2(wig1 — wy). (32)

If D12 > |D;+1/2|, then (32) is an entropy stable flux that satisfies,

1

5 (wit1 — wi)git12 — (Vip1 — ¥;)) < 0.
From this, it follows that the scheme satisfies a local entropy inequality,
Fiy1/2 = Fit12

h

where Fj /5 = %(wi_H +wi)giy1/2 — %(\I/Hl + ;). For an extensive explanation of the entropy stability
framework, we refer the reader to [16]. Furthermore, in [15], a thorough accuracy analysis of entropy
stable schemes is found.

(E'L)t + S 07

Lemma 4.1. Let w the entropy variables that make the fluz function G(w) homogeneous of order 1. Denote
by P~1Q the second-order central SBP operator defined in (27). Then,
1 1
wTszzinBf4—§wTDfAD_w (33)

where A = diag(0, D7 ,,, D%

F9o D3 gr e D

N+1 /2 ).
Proof. Consider
u +PQf =0 (34)

We begin by rephrasing (34) to flux form. For a grid with N + 1 points, we obtain

(Uo)t + w = 07

e
(Wﬁ+ﬁﬂﬁ%ﬁiﬁzo,¢=1“wN—1 (35)
fN - fN71/2 _
(un)e+ =5 =0

Next, we note that by (29), the following identity holds,
fiv172 = 9i11/2 + Diy1p(wit1 — wi). (36)
Then, consider the following scheme

gf/z - 9i1/2 _

(Uo)t + h/2 07
9iv1y2 = 9i-
(Wﬁ+4i%%7—i9:o,z—1 LN -1 (37)
97\74—1/2 - 97\/—1/2 -
(un)e + h2 =0,

which, by (36) is equivalent to
u +P1Qf =P 'DYAD _w (38)
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We will proceed and analyze (37). To this end, we will carry out the operations corresponding to multi-
plying (38) by w™ P on the component form (37). Recalling the py = py = h/2 and all other p; = h, we
multiply the second line by w;h.

* * 1 *
hME)t+ iy p — Flqp = 5 ((wi-H —wi)git172 — (Vip1 — qji))
1
5 (Wi = wi)gi 1y — (Wi = ¥i1)) = 0 (39)

(See [16] for details.) The right-hand side equals 0 due to the entropy conservative relation (30). Next,
we derive the corresponding expressions for the boundary scheme.

n QT/Q - 9i1/2

a0

(Uo)t

Here g7, = 9 (ug, u1) is defined as above, and we let 9% 15 = fo- Multiply the boundary scheme in (37)
by woh/2.

h * *
5 (Eo)e + wolgy/s — 9%1/2) = 0.

2
Then, the boundary scheme can be transformed into
h * * 1 *
§(Eo)t t = Flyp=35 ((wl —wo)gi/p — (U1 — \1’0)) ; (40)

with
F2y 5 = wofo — Yo.

The numerical entropy fluxes above are consistent. With our particular entropy pair and by Lemma 2.2,
we deduce that

N 1
F71/2 = iwofo. (41)

For the boundary at z, we obtain in a similar way

1

FXI+1/2 = §waN
, (42)
§(EN)t + Fyyi2 — Fy_12=0.
Summing (40), (42) and (39) over 7 results in
PE = FZ )y + Fiyyy ) =0 (43)
where E = (Ey, Ey, ..., Ex)T. Using (38), we can write (43) as
w' Puy+w Qf —w'DTAD w = —F*, , + Fy )y = %wTBf
and the Lemma follows. d
Next, we introduce g = (1,0,0,...,0)T and Sx = (0,0,...,0, N)T and consider the conservative

scheme
w +P'Qf = P'DTAD_w — P10 A (wo — go)
+P'SyA” (wN — gn) (44)
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or equivalently on component form

(uo)s + M = =Sy

h/2
(ui)ﬁwzo, i=1,...,N—1 (45)
(un)e + W =Sy
with
fi+1/2 = fi+12+ I - AH;/Q (wiy1 —w;). (46)
and

So = [P~ 'oA™ (wo — go),

Sy =[P 'INA™ (wy —gn)-
Aj+1/2 is the diffusion coefficient. As outlined above, for entropy stability of the Cauchy problem, we would
choose it greater than the entropy conservative choice, D;f +1/20 It turns out that this is the appropriate

choice for the initial-boundary value problem as well. This will be stated in the theorem below.
Associated with this scheme is the numerical entropy flux,

(47)

Fjt1/2 = %(wﬂrl +w;) fit1)2 — %(‘l/iJrl + W;)
F_1/0 = wofo— Vo — powoSo
Fyyi/2 =wnfyv — VYN — DNWNSN
Next, we will introduce the notion strong entropy stability.
Definition. The scheme is called strongly entropy stable, if it satisfies a local entropy inequality, along
with a global entropy estimate for non-homogeneous boundary data, that is, Zi\io Di(E;)¢ < Constant.

Now, we will state the main result of this paper.

Theorem 4.2. The scheme (44)—~(47) approzimating (23) satisfies a global entropy estimate if Xj11/9 >

|Dj+1/2|,i =0...N — 1. Furthermore, the scheme also satisfies the local entropy inequalities

Fiy12 —Fi1/2
bi

and hence the scheme is strongly entropy stable.

(Ey)i + <0, i=0...N, (48)

Proof. Multiply (44) by wT P. Using Lemma 4.1, we obtain
1
w Puy +wtQf — §wTBf =w DY (A+A)D_w
+oowg A (wo — go) + onwy Ay (wy — gn).

The quadratic diffusion is indefinite and can be bounded by choosing Ai 11/ > D}, /2|. The boundary
terms are bounded by the the RHS source terms, and the proof is the same as in (17) (extended to cover
both the left and right boundaries).

The condition A\j1/2 > | D} 1 /2| is coincides exactly with the condition for entropy stability as defined

in [16], which in turn implies that a local entropy estimate is satisfied. (This also follows from (40).) O
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As a remark, we stress that although the derivations are carried out for a scalar conservation law, it
is merely a matter of notation to generalize it to the case of a scheme. In fact, as the scheme is stated
in (45), v and f can be vectors and A;y;/o positive definite matrices, in which case it would approxi-
mate a system of conservation laws. Clearly, the proof is still valid, and the scheme is strongly entropy
stable.

Remark. The above scheme is conservative and is well adapted to computing solutions with shocks. For
smooth flows (like in subsonic flow situations with the Euler equations), we suggest a non-conservative
scheme of the form

1

where S is a source term that will contain the Simultaneous Approximation Terms (SAT) that enforce
the boundary conditions. Sy and Sy are defined above and S; = 0 for other i’s can be used. Analysis of
this scheme is carried out in “Appendix II”. This scheme is highly desirable for approximating smooth
flows as it can be easily extended to higher order of accuracy.

5. Computations

We will demonstrate the robustness of this scheme for a number of standard cases. In all test cases, we
will use the entropy-fixed Roe scheme for the internal diffusion. The diffusion will be localized with the
limiter derived in [12] where it was shown to not interfere with the proofs of entropy stability. In these
computations, however, we will also use the entropy stable boundary conditions implemented for the
standard Jacobian matrix on conservative form. Hence, the scheme is stated entirely with the conserva-
tive variables and the entropy variables are not explicitly used. We also use the standard fourth-order
Runge-Kutta scheme to march in time.

The governing equations in all the tests are the one-dimensional Euler equations for a polytropic
gas.

ug + f(u), =0
w=(p,m, B)T

f(u):qu+(07P7qP)T
P=(r-1)(B-500?).

p,q, P and E are the density, velocity, pressure and total energy. m = pq is the momentum and  the
ratio of the specific heats. The eigenvalues of the Jacobian matrix A(u) = % are, ¢ — ¢, q,q + ¢, where
¢ = \/vP/p is the speed of sound.

5.0.1. Shock/entropy wave interaction. The first example is the one-dimensional prototype for shock-
turbulence interaction proposed in [13]. It is an entropy wave interacting with a strong shock. The initial
conditions used in [13] on the domain —5 <z <5 are

(p,q, P) = (3.857143,2.629369,10.33333)  for z < —4,
(p,q,P) = (1 +esin(bz),0,1) for z > —4,
with e = 0.2.

The quality of the solution in the interior is as expected for a second-order scheme with localized
diffusion. (See [12].) The focusof these experiments is mainly to test the robustness of the boundary
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conditions. Initially, the waves will travel toward the left boundary, and a bad boundary implementation
can cause the solution to explode.

As an example, we tried to overwrite the solution with data at each time step (so-called injection),
which is a commonly used technique in practice. The solution is a Mach 3 shock wave, and hence all
characteristics are in-going and the procedure do not over-specify the boundary. Indeed, the numerical
solution explodes immediately. Possibly one could stabilize the solution with more diffusion, but needless
to say, any such effort would degrade the accuracy.

With our proposed technique, the solution stays bounded and the solution at 7" = 1.8,2.5,4.0 com-
puted with 200 grid points can be viewed in Fig. 1. The results are very similar to those reported in [12].
The initial disturbances hitting the left boundary do not cause any stability problems.

We also note that the shock is leaving the domain and the boundary appears to be quite transparent.
Furthermore, the boundary entropy inequality (5) was evaluated numerically, and the maximal and mini-
mal value of were found to be (3.7512e—05, —4.2864e—15) (for 200 points and (1.2260e—05, —3.2642¢—15)
for 400 points).

5.0.2. Shock tube. The next example found in [13] and originally in [14] is the Euler equations with
initial data

(PaCI»P) = (17071) r < 07
(p,a, P) = (0.125,0,0.1) z > 0,

on the domain —5 < x < 5. These initial data will develop a rarefaction wave, a shock and a contact
discontinuity.

In [13], 100 grid points were used and we will follow their example. The results at two different times
are shown in Fig. 2.

Again, we note that the discontinuities leave the domain smoothly. In this case, maximum and min-
imum of (5) were (9.8608e — 32, —0.0088384), respectively. (For 200 points the values are (1.9722e —
31, —0.0064286).)

5.1. Woodward-Colella

In this case, both boundaries are walls and shocks will impinge on them. A severe test of robustness. We
construct boundary data (g,——_5(t) and g,—5(t)) by taking the solution u({—5,5},¢) and setting ¢ = 0.
(Formally, the stability proof is not valid since g,—_55 is not bounded functions but depend on the
solution.)

The initial data are as follows for 0 < x < 0.1: (p,q, P) = (1,0,1000); for 0.1 < = < 0.9(p,q, P) =
(1,0,0.01); and for 0.9 < z < 1.0(p, ¢, P) = (1,0,0,100).

The solution was computed with 400 grid points, and the boundary entropy Fy — Fy — wg(fo — fg)
varied between —2.1849¢ — 14 and 6.2530e — 12. (For 200 points: (—2.9049 — 14,6.2539¢ — 12).) The
solution at 7' = 0.05 and 7" = 0.4 is shown in Fig. 3

6. Conclusions

In this article, we have addressed the problem of imposing boundary conditions on systems of conser-
vation laws. The most important tool in this endeavor was the specific entropy pair introduced in [11].
This allowed us to weakly impose characteristic-based boundary conditions and obtain a global entropy
estimate.



M. Svérd and S. Mishra ZAMP

45 +— (C) —

35 - —

25 - —

15— _

05 _

Fic. 1. Plots of p solution with 400 grid points. a7 =1.8. b T =2.5.¢ T = 4.0
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Fic. 2. The solution is computed with 100 grid points. The p solution with a rarefaction wave and two contact disconti-
nuities. a T =2.0. b T = 4.0

Our main result is an entropy stable conservative scheme on a bounded domain. Again, the key ana-
lytical tool was the specific entropy pair. Using this entropy pair, we showed that by augmenting the
scheme with a numerical diffusion that guarantees entropy stability in the Cauchy case, it will retain
a summation-by-parts property and we could use a weak enforcement of boundary conditions to derive
a global bound on the entropy. Furthermore, we have shown that the numerical solution satisfies local
entropy inequalities.

Finally, we demonstrated the robustness of the numerical scheme in a series of examples for the
Euler equations of gas dynamics. The first two used characteristic boundary conditions, which were
shown to be transparent to nonlinear waves and very robust. In the third case, the robustness of a
wall boundary condition was tested. Furthermore, we evaluated the boundary entropy inequality (5),
and in all cases, the maximal value was 0, if not to round-off errors, so to well within the numerical
accuracy, a strong indication that our proposed boundary scheme satisfies the boundary inequality as
well.
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Fic. 3. The solution is computed with 400 grid points. The momentum pq is depicted. a T'=0.05. b T' = 0.4
Appendix I: Homogeneity for the Euler equations

We will give a specific example from [4]. (In particular, this is the case with a =1 — 2y and §=1.)

If G(fw) = 0°g(w), then G,,w = Bw which is what we want. We will now list all the variables, fluxes
and entropies for the case 8 = 1. Beginning with the entropy:

E(u) = ph(S)
h(S) = K exp(kS) = K(pp™")"
1
FEITD,

where K is an arbitrary constant. Furthermore,

I 1/(1-7)
—K)7H () Pwy)

iS]
I
—
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In the particular case of air, with v = 7/5, the following relations appear

. —7/2
=)
P

»
o= )T )T

Returning to a general -y, the variables and fluxes are

p* —2y B
wl == (us + ——p, —us, u1>
p y—1
T
T_ D -2y .
U =—\w3, —w2, W1 — —P
p* v—1

Finally, we have

apu apu?® —p u(# — bp)
Gy = u(apu?® — 3p) f% + cpu? + “92“4 — pu? (50)
symm u(bc% + cpu? + 4pu?)
where
a=n/(1-2y)
b=7/(v=1)

c=(1=-2y)/(y-1)

Appendix II: A non-conservative scheme

In this section, we analyze the non-conservative scheme (49). We remark that this scheme is essentially
the same as in Gerritsen and Olsson [5]. It differs only in the way boundary conditions are enforced.

Like in the continuous case, we multiply (49) by the entropy variables scaled with the P matrix to
utilize the SBP property of the difference operators.

wT Puy + wTP(DA + AD) = w™PS (51)
and
pE; + % (wTQAw + wTAQw) = wTPS (52)
Using Q = B — QT and by the symmetry of A, we obtain
PE; + %wTABw =wtPS (53)

Definition. A numerical scheme for the initial-boundary-value problem (1) with inhomogeneous boundary
data is said to be globally entropy stable, if pF; < Constant.

To prove stability, we must choose S suitably by utilizing the boundary conditions derived in the
previous section. We must ensure
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1
- §wTABw +w™ PS < Constant, (54)

and hence we choose the vector S as

So = =[P oAT (wo — 90),
Sy = [P7'NA™ (wy — gn),

and all other S; = 0. The proof of stability is exactly the same as the proof of Theorem 3.1. We summarize
the results in the following proposition.

Proposition 6.1. For a flux function f and an entropy pair that makes G(w) homogeneous of order 1, the
approximation (49) of (23) with boundary conditions imposed by (47) is globally entropy stable.

Remark. Since the equation is nonlinear, Lax-Richtmyer’s equivalence theorem does not hold and solu-
tions of a stable and consistent scheme (like (49)) does not necessarily converge. Nevertheless, stability
will certainly be a necessary requirement in any convergence theory.

An important property of the scheme (49) is that it is trivially generalized to high-order accuracy, by
exchanging the SBP operator (27) with a high-order counterpart. It is straightforward to see that the
stability proof still holds (keeping in mind that the P matrix in (47) will also change). The important
property for the stability proof is (28).
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