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Abstract

A spectral vanishing viscosity technique (SVV) is presented for the simulation of 3D turbulent incompressible flows
within a rotor–stator cavity. One characteristic of this technique is that the SVV is active only for the short length scales,
a feature which is reminiscent of Large Eddy Simulation models. The Spectral Vanishing Viscosity, first introduced by
E. Tadmor for the inviscid Burgers equation [E. Tadmor, Convergence of spectral methods for nonlinear conservation
laws, SIAM J. Numer. Anal. 26 (1) (1989) 30], is incorporated into the cylindrical Navier–Stokes equations written in
velocity pressure formulation. The second-order operator involved in the SVV-method is implemented in a Chebyshev-col-
location Fourier–Galerkin pseudo-spectral code. The SVV is shown to lead to stable discretizations without sacrificing the
formal accuracy, i.e., exponential convergence, in the proposed discretization. LES results are presented here for rotational
Reynolds numbers ranging from Re ¼ 7� 104 to Re ¼ 7� 105. Turbulent quantities are shown to compare very favorably
with results of direct numerical simulation (DNS) and experimental measurements.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The simulation of turbulent flow in rotating cavities is a major issue in computational fluid dynamics for
engineering applications such as designing rotational machinery, e.g., turbines and compressors, electrical
machinery and generator rotors (see the review of Owen and Rogers [1]). The flow between a rotating disk
and a fixed parallel disk has received much attention because it serves as a model problem for rotor–stator
flow and because rotating disk flow is known to be one of the simplest cases where the turbulent boundary
layers are three-dimensional (3D). Thus, this flow is well suited to investigate the effects of mean flow
three-dimensionality on the turbulence and its structure [2–4]. Within an enclosed rotor–stator cavity a char-
acteristic feature is the coexistence of adjacent coupled flow regions that are radically different in terms of the
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flow properties and the thickness scales of the boundary layers (adjacent to the rotating and fixed disks) com-
pared with those of the geostrophic core region [5]. Moreover, the confinement, the flow curvature and the
rotation effects create a strongly inhomogeneous and anisotropic turbulence.

Consequently, these flows are very challenging for numerical modeling particularly in turbulent regimes rel-
evant to industrial conditions.

At present, computer performance only permits direct numerical simulation (DNS) of transitionally turbu-
lent cavity flows (Re ¼ Oð105Þ) [6–8]. Attempts to compute turbulent rotor–stator flows using statistical
approaches (Reynolds Averaged Navier–Stokes) has had only partial success. Indeed, the turbulence model
must be able to solve the low-Reynolds number regions not only near the disks but also in the core of the flow.
Moreover, the model has to predict precisely the location of the transition from the laminar to the turbulent
regime, even though it is bounded by instabilities, and so cannot be completely represented by a steady flow
model [9]. Second-order closures could be a more appropriate level of closure to predict such complex flows,
but even if they provide the correct distribution of laminar and turbulent regions, the Reynolds stress behav-
iour is not fully satisfactory, particularly near the rotating disk (see for example the work of Launder and Tse-
lepidakis [10]). Consequently, large eddy simulation (LES) may constitute a valuable way to compute such
flows.

There is now consensus that LES based on Subgrid-Scale (SGS)-models is subject to fundamental limita-
tions particularly in the case of complex flows. Indeed, traditional SGS-models which have been developed
and validated performing simulations of simple academic flows, must be adapted to fully capture the phys-
ical complexity. It has been shown for various flows that the shear stress and strain tensors involved in SGS-
models have different topological features. In particular, it was reported by Borue and Orzag [11] in the case
of numerical simulations of three-dimensional forced homogenous turbulence that the energy flux only
weakly correlates with the locally averaged energy dissipation rate, an assumption employed in most
eddy-viscosity models (see a review in Lesieur and Métais [12]). To this end, alternative LES formulations
have been investigated based on either the filtered or the original Navier–Stokes equations. A filtered
non-eddy viscosity approach is the scale-similarity model introduced first by Bardina et al. [13] which
assumes that the unknown subgrid-scale stress tensor can be approximated by a stress tensor calculated from
the resolved filter employing additional filtering with the filter width equal to or larger than the one used to
obtain the original resolved field. However, the low pass filter cuts out the higher frequencies, that will be
modelled within the stress tensor, and creates an increase in the energy of the last resolved frequencies
(known as the aliasing effect) that usually leads to divergence (see Stolz et al. for ADM filtering and stabil-
isation [14]). Mixed models that include a dissipative component for numerical stability have been found to
provide LES results better than those obtained with the classical Smagorinsky model with the additional
benefit of accounting for the backscatter [15]. However, the results do not dramatically improve, and the
dependence of the models on a filter introduces an additional complication. Moreover, such mixed models
are typically computationally more expensive. As a consequence, only two investigations of turbulent rotat-
ing disks flows have provided useful results, using LES based on filtered Navier–Stokes equations. Wu and
Squires [16] performed LES of the 3D turbulent boundary layer over a free rotating disk at Re ¼ 6:5� 105

and in an otherwise quiescent incompressible fluid using periodic boundary conditions both in the radial and
tangential directions. Lygren and Andersson [20] performed LES in a sector of a rotor–stator cavity assumed
homogeneous in the radial direction, for Reynolds numbers ranging from Re ¼ 4� 105 to Re ¼ 1:6� 106.
These authors used different dynamical models to model the subgrid-scale stress arising from the filtering
operation: the eddy-viscosity model of Germano et al. [17], the mixed model of Zang et al. [18] and the
mixed model of Vreman et al. [19]. Their results have offered new evidence to support the observations of
Little and Eaton [4] that the mean flow three-dimensionality affects the near-wall vortices and their ability
to generate shear-stresses.

Due to the difficulties encountered by the above procedures, there has been an effort for more than 10 years
to employ the original (unfiltered) Navier–Stokes equations, invoking nonlinear limiters that implicitly act as a
filtering mechanism for the small scales as in the MILES approach [23] or adding an assumption for stabil-
ization [17]. Then, LES modifies the Navier–Stokes equations in order to obtain a new system of equations
which is more amenable to approximate, while retaining all the most energetic features of the unperturbed
problem.
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A spectral vanishing viscosity (SVV) is proposed here as an efficient stabilization technique of our highly
accurate spectral method (Chebyshev–Chebyshev–Fourier) developed for DNS of the transitional regimes
[5,26]. High Reynolds number flows are difficult to compute when using spectrally accurate numerical
schemes. This results directly from the fact that spectral approximations are much less diffusive than low order
ones, leading to an accumulation of the energy on the high spatial frequencies which finally leads to the diver-
gence of the computations [24]. Contrary to many stabilization techniques that generally destroy the spectral
accuracy of the algorithm [22], SVV possesses the property of preserving the spectral accuracy. It consists in
introducing a viscous term acting only on the highest resolved frequencies. SVV was first introduced by Tad-
mor [27] to solve non-linear hyperbolic equations, typically the Bürgers equation, using standard Fourier spec-
tral methods. Tadmor [27] showed that this artificial dissipation is sufficiently large to suppress oscillations, yet
small enough to keep the accuracy. The non-periodic case was then considered in the framework of Legendre
discretization by Maday et al. [28], and in the framework of Chebyshev discretization by Andreassen et al. [29],
this last one using SVV for two-dimensional simulation of waves in a stratified atmosphere. A formulation of
the method for spectral/hp Galerkin element has been proposed by Karamanos and Kardianakis [30] and
more recently by Kirby and Sherwin [31] who showed the effectiveness of the SVV for the LES of incompress-
ible turbulent flows. A formulation of the method for spectral element approximations has also been proposed
by Pasquetti and Xu [32] and validated in the computation of the two-dimensional turbulent wake of a cyl-
inder. Further extensions have been proposed based on the introduction of a spectral hyperviscosity term
which presents additional interesting mathematical properties including the uniqueness of the solution (which
is still an open question for the SVV) [22]. Nevertheless, in practice the SVV, which involves a second-order
operator only, is more readily implemented in standard codes.

In the current work, we show the capabilities of the SVV to act as a LES when it is implemented in a
Navier–Stokes spectral code for investigating rotating turbulent flows with walls. In Section 2 mathematical
modelling and numerical approximation are presented. Then, the SVV is extended in Section 3 to an original
formulation for the Navier–Stokes equations in cylindrical geometry. Analytical results are shown in Section 4
concentrating on preserving spectral accuracy. In Section 5, the SVV is used to compute annular rotor–stator
flows, firstly at a relatively low-Reynolds number, Re ¼ 7� 104, in order to validate the results with DNS
(Section 5.1), and secondly at high rotation rates (Re ¼ 4� 105 and Re ¼ 7� 105) where turbulent quantities
are compared with experimental measurements (Section 5.2). Finally, some concluding remarks are given in
Section 6.

2. Mathematical modelling and numerical approximation

2.1. Mathematical modelling

We consider the flows contained between two disks enclosing an annular domain of radii a and b with b > a
and bounded by two co-axial cylinders of height 2h. One disk of the cavity is stationary (stator) and the other
(rotor) rotates at uniform angular velocity X ¼ Xez, ez being the unit vector on the axis (see Fig. 1).

The incompressible fluid motion is governed by the three-dimensional Navier–Stokes equations which are
written below in primitive variables.
oV

ot
¼ mDV� ðV � rVÞ � rp þ F in D ð1Þ

V ¼W on C ¼ oD ð2Þ
r � V ¼ 0 in D ¼ D t C ð3Þ
where t is the time, V is the velocity of components (u,v,w) in the radial, azimuthal, and axial directions
respectively, for cylindrical coordinates ðr; h; zÞ, p is the pressure and F represents a given body force. Eqs.
(1)–(3) are completed by specific initial conditions for the velocity:
V ¼ V0 with r � V0 ¼ 0 in D ð4Þ
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Fig. 1. Scheme of an annular rotor–stator cavity.
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$ is the vectorial Laplacian operator written for cylindrical coordinates:
ðDV Þr ¼ r2u� u
r2
� 2

r2

ov
oh

ð5Þ

ðDV Þh ¼ r2v� v
r2
þ 2

r2

ou
oh

ð6Þ

ðDV Þz ¼ r2w ð7Þ

with
r2 ¼ o
2

or2
þ 1

r
o

or
þ 1

r2

o
2

oh2
þ o

2

oz2
ð8Þ
Cylindrical coordinates induce coupling between first two components of the vectorial Laplacian. A variable
transformation is used to make it diagonal [39]:
uþ ¼ uþ iv; u� ¼ u� iv ði2 ¼ �1Þ ð9Þ

so that the vectorial Laplacian becomes diagonal with
ðDV Þþ ¼ r2 � 1

r2
þ 2i

r2

o

oh

� �
uþ ð10Þ

ðDV Þ� ¼ r2 � 1

r2
� 2i

r2

o

oh

� �
u� ð11Þ

ðDV Þz ¼ r2w ð12Þ
2.2. Projection scheme for time-discretization and space approximation

Eqs. (1)–(3) are solved for the new complex variables ðuþ; u�;wÞ defined in Eq. (9) and constitute a Stokes
problem coupling the velocity and the pressure.

The temporal discretization adopted in this work is a projection scheme, based on backwards differenc-
ing in time [25,26]. The projection scheme requires the solution of a pressure Poisson equation to (approx-
imately) maintain solenoidality of the velocity. The details of our algorithm lies in the computation at each
time step of a pressure predictor (through this pressure Poisson equation is augmented with a pressure
Neumann boundary condition obtained by projection of the momentum equation on the domain normal),
which allows the correct temporal evolution of the normal pressure gradient at the boundaries during the
time integration.
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Eqs. (1)–(3) are discretized in time using a second-order semi-implicit scheme which combines a implicit
treatment of the diffusive term and an explicit Adams–Bashforth extrapolation for the non-linear convective
terms. The unsteady term is approximated by a second-order backward Euler finite-difference scheme. Its
good stability properties for an advection–diffusion equation have been shown before by Vanel et al. [33].

In the non-homogeneous radial and axial directions (r,z) a collocation Chebyshev approximation is used,
associated with Gauss–Lobatto collocation points ðY i;ZjÞ; i ¼ 0; . . . ;N 1 and j ¼ 0; . . . ;N 3 defined in the
square ½�1; 1�. The natural strenghtening of these points near the boundaries is well adapted to the description
of the thin boundary layers which develop at the walls in the meridian plane. A standard Fourier–Galerkin
approximation is employed for the solution in the 2p-periodic tangential direction. Then, for each Fourier
mode, the solution ðV; pÞ is approximated by Chebyshev polynomials of degree at most equal to N 1 in the
radial direction and to N 3 in the axial direction. We note that N 2=2 is the cut off frequency of the Fourier
series.

Therefore, the approximate solution of W ¼ ðuþ; u�;w; pÞ is then expressed as:
WN1N2N3
ðY i; hq; Zj; tÞ ¼

XN2=2�1

k¼�N2=2

XN1

n¼0

XN3

m¼0

bWnkmðtÞT nðY iÞT mðZjÞeikhq ; ð13Þ
with �1 6 Y i; Zj 6 1; 0 6 h 6 2p; where bWnkm are the spectral coefficients and hq ¼ 2pq=N 2, with 0 6 q 6
N 2 � 1, 0 6 i 6 N 1, 0 6 j 6 N 3:

For the computation of the non-linear terms, a pseudo-spectral technique is used. Specifically, the deriva-
tives in each direction are calculated in the spectral space and the products are calculated in the physical space
as presented in the book of Peyret [24]. A FFT algorithm is used to connect the spectral and the physical
spaces. On the other hand, the implicit diffusive term is evaluated through spectral differentiation matrices [24].

Finally, for each Fourier mode, a full diagonalization technique is used for solving a set of 2D uncoupled
Helmholtz and Poisson problems (see a detailed analysis in Serre and Pulicani [25]).

3. SVV incorporation into the Navier–Stokes equations

The SVV-operator is incorporated into the projection scheme to discretize the incompressible Navier–
Stokes equations (Eqs. (1)–(3)). In the frame of collocation methods, an appropriate viscosity operator, only
active for high wave numbers of the numerical approximation, is incorporated in the Helmholtz equations of
the velocity prediction.

3.1. Definition of the SVV-operator

According to the pioneering work of Tadmor [27], the SVV-operator in the one-dimensional (1D) case
reads in discrete forms as:
fDN � eNoxðQNoxuN Þ; ð14Þ
with N for the discretization parameter and uN ðxÞ for the approximation of u.
In Eq. (14), eNð! 0Þ is a viscosity amplitude and QN, which is in general a function of x, is the spectral

viscosity operator only activated for high wavenumbers.
In Fourier space, this kind of spectral viscosity can be efficiently implemented as multiplication of Fourier

coefficients buN with the Fourier coefficients of the kernel bQN , i.e.:
eNoxðQNoxuN Þ ¼ �eN

X
kT6jkj6N

k2 bQkbuk eikx; ð15Þ
where k is the wavenumber, N is the number of Fourier modes, and kT the wavenumber above which the spec-
tral vanishing viscosity is active.
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This definition (Eq. 15) may be extended in Chebyshev space for any function U and its approximation UN ,
such that in the 1D non-periodic case:
Fig. 2
xT ¼ 5
UN ¼
XN

k¼0

bUkT k ð16Þ

QN ðUNÞ �
XN

k¼0

bQk
bUkT k ð17Þ
where fT kg is a set of Chebyshev polynomials.
There is not a direct way to extend the definition given by Eq. (14) to the 3D case as shown by the different

forms proposed in the literature [30,32]. According to these forms, the following definition was used here:
fDN � �ðeN QNðrVN ÞÞ; ð18Þ

where VN denotes the approximation of the velocity vector V, rVN is the Jacobian of the vectorial function
VN ¼ ðuN1N2N3

; vN1N2N3
;wN1N2N3

Þ. Moreover, eN QN � diagfei
N i

Qi
Ni
g with i ¼ 1; 2; 3 (corresponding to the r; h; z,

directions respectively), where ei
N i

is the maximum of viscosity and Qi
Ni

1D viscosity operator acting in direc-
tion i.

The viscosity amplitude ei
N i

is usually a Oð1=N iÞ coefficient, based on the work of Maday et al. [28] who used
for Legendre pseudo-spectral methods ei

N i
¼ 1=N i.

The 1D viscosity operator acting in direction i, Qi
Ni

, is defined in the spectral space (Fourier or Chebyshev)
by the smooth function [28]: bQi

Ni
ðxÞ ¼ 0; if 0 6 x 6 xT i and bQi

Ni
ðxÞ ¼ expð�ðx� xNiÞ

2
=ðx� xT iÞ

2Þ if
xT i < x 6 xNi , where xT i and xNi are the threshold frequencies after which the viscosity is applied and the
highest frequency calculated in the direction i, respectively. Modes are usually activated in the literature for
x P xT i ¼ Oð

ffiffiffiffiffi
Ni
p
Þ as for example in Maday et al. [28] where xT i ¼ 5

ffiffiffiffiffi
N i
p

.
A plot of the viscosity kernel normalized by its maximum value at x ¼ Ni is shown in Fig. 2 for different

values of the cutoff wave number xT i ¼ C
ffiffiffiffiffi
Ni
p

; C = 0, C = 1, C = 5. This range has been used in most of the
numerical experiments so far (see for example Refs. [28,30,32]) and it is consistent with the theoretical results
of Tadmor [27].

Fig. 2 shows that the SVV-operator affects at most the two-third of the spectrum at the highest frequencies
ðxT i ¼ 0Þ and consequently, DNS results are easily recovered for laminar flows, contrary to some classical
LES techniques such as, for example, with the well-known spectral eddy-viscosity model of Kraichnan [34]
used by Lesieur’s group [12].
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ω/ωN

Q
( ω

) /ε
Ν

. Normalized viscosity kernels for the spectral vanishing viscosity operator for three different threshold frequencies (crossesffiffiffiffi
N
p

, white triangles xT ¼
ffiffiffiffi
N
p

and white squares xT ¼ 0).



1240 E. Severac, E. Serre / Journal of Computational Physics 226 (2007) 1234–1255
As the spectral eddy-viscosity is generally used with spectral methods, it may be of interest to mention here
that the viscosity operator is identical in both approaches. The major difference lies in the scaling of the vis-
cosities and in the definition of the non-dimensional viscosity laws. Nevertheless, since Kraichnan’s eddy-vis-
cosity does not vanish in the low mode region, this approach destroys the spectral accuracy of the numerical
method (see a proof in the work of Guermond et al. [22]).

3.2. SVV implementation

The pressure predictor step is not modified by our SVV implementation and the pressure Poisson equation
remains the same as that used by Raspo et al. [26]. Thus,
r2p�;nþ1 ¼ r � ð�2ðV � rVÞn þ ðV � rVÞn�1 þ Fnþ1Þ in D ð19Þ

with pressure boundary condition
onp�;nþ1 ¼ n:

ð�3Wnþ1 þ 4Vn � Vn�1Þ=2dt

�2ðV � rVÞn þ ðV � rVÞn�1

þmð2r�r� Vn �r�r� Vn�1Þ þ Fnþ1

0B@
1CA on C ð20Þ
where n is the domain unit outward normal, and where the Laplacian, approximated using an Adams–Bash-
forth extrapolation, has been reduced to its irrotational part (the solenoidal one being zero) in order to satisfy
the compatibility condition.

The previous step is completed by the calculation of a predicted velocity field V� through the solution of a
Helmholtz (elliptic) equation where a viscous correction is applied:
mDSVVðV�Þ �
3

2dt
V� ¼

ð�4Vn þ Vn�1Þ=2dt þ 2ðV � rVÞn

�ðV � rVÞn�1 þrp�;nþ1 � Fnþ1

 !
in D ð21Þ
with appropriate velocity boundary conditions at time ðnþ 1Þt.
The new diffusion operator DSVV can be simply implemented by combining the classical diffusion and the

new SVV terms to obtain:
mDSVV � mDþr � ðeN QNrÞ ¼ mr � SNr ð22Þ

where m is the diffusive coefficient and where
SN ¼ diagfSi
Ni
g; Si

Ni
¼ 1þ

ei
N i

m
Qi

Ni
ð23Þ
with ei
N i

the maximum of viscosity and Qi
Ni

the 1D viscosity operator acting in direction i, and previously de-
fined in Section 3.1.

Notice that in Eq. (22) the SVV term is not scaled by the Reynolds number, since the kinematic viscosity
only scales the diffusion term. Consequently, for a fixed grid and given SVV parameters, the SVV term
becomes larger relatively to the classical diffusion term when increasing Reynolds number.

Denoting the partial derivative oi in the direction i, as
eoi � Si
Ni

oi; ð24Þ
in the cylindrical coordinate system ðr; h; zÞ; we obtain an expression of the scalar Laplacian in the basis
(u; v;wÞ:
r2
SVV ¼ or

eor þ
1

r
eor þ

1

r2
oh
eoh þ oz

eoz ð25Þ
In the Fourier spectral space, with k for azimuthal wave number and bS2
N2

for the corresponding coefficient of
the SVV-operator in the azimuthal direction, this yields:
k 2 ½1; . . . ;N 2�; r2
SVV;k ¼ or

eor þ
1

r
eor �

bS 2
N2

r2
k2 þ oz

eoz ð26Þ
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Using now the new set of complex variables ðuþ; u�;wÞ introduced above, we obtain for the azimuthal wave-
number k an expression of the modified vector Laplacian, k in ½1; . . . ;N 2�:
r2
SVV;k ¼ or

eor þ
1

r
eor þ oz

eoz

� �
I �

bS 2
N2

r2
diagfðk þ 1Þ2; ðk � 1Þ2; k2g ð27Þ
where I is the identity matrix. The last correction step remains unchanged compared with Raspo et al. [26].
The predicted velocity field V � is corrected by taking into account the pressure gradient at tnþ1 so that the final
velocity field satisfies the incompressibility constraint:
3

2dt
ðVnþ1 � V�Þ ¼ �rðpnþ1 � p�;nþ1Þ in D ð28Þ

r � Vnþ1 ¼ 0 in D ð29Þ
Vnþ1 � n ¼ V� � n on C ð30Þ
This correction is not performed by means of Eqs. (28)–(30) but by computing an intermediate variable
/ ¼ 2dtðpnþ1 � p�;nþ1Þ=3 from a Poisson problem obtained by taking the divergence of Eq. (28).

Thus, the discretization of the Navier–Stokes equations leads to different uncoupled Helmholtz and Poisson
problems like Eqs. (19)–(21) for the pressure and velocity which can be written in matrix form. An efficient
way to solve these problems is to use the diagonalization technique, especially for time-dependent problems,
when the solution must be computed at each time step in D.

The classical second-order derivatives of the Laplacian operators in cylindrical coordinates for the velocity
equation are modified by the implementation of the SVV-operator (unlike the pressure), and Eq. (21) leads to
the following matrix system obtained for each k in the Fourier space:
AWþWB ¼ S ð31Þ

where
A ¼ D1 I þ 1

m
e1

N1
P�1diag bQ1

N1

n o
l
P

� �
D1 þ

1

r
I þ 1

m
e1

N1
P�1diagf bQ1

N1
glP

� �
D1 � riI ; ð32Þ
for i ¼ 1; 2; 3, 0 6 l 6 N 1, with P the transformation matrix from the physical to the spectral space, and
r1 ¼
bS 2

N2
ðk þ 1Þ2

r2
þ 3

2mdt
; r2 ¼

bS 2
N2
ðk � 1Þ2

r2
þ 3

2mdt
;

r3 ¼
bS 2

N2
k2

r2
þ 3

2mdt

ð33Þ
and where
B ¼ D3 I þ 1

m
e1

N1
P�1diagf bQ3

N3
glP

� �
D3

� �T

ð34Þ
for 0 6 l 6 N 3; D1 and D3 denote the first-order derivative operators in the radial and axial directions, respec-
tively, with D1 ¼ ½drij�i;j2½1;...;N1� and D3 ¼ ½dzij�i;j2½1;...;N3�. The coefficients drij and dzij can be obtained by using
the orthogonality property of the Chebyshev polynomials and the usual trigonometric formulas (see in [40]).

Depending on the range of physical, geometrical and numerical parameters, operators A and B (Eqs. (32)
and (34) may no be longer diagonalisable in the real space. Our numerical results show that when the ratio
ðaþ bÞ=ðb� aÞ becomes smaller than about 2:5 (i.e. when the curvature increases) the second-order derivative
of the Laplacian operators in the radial direction for the pressure equation (and thus for the intermediate var-
iable /) may exhibit a large number of complex eigenvalues depending on the resolution. Consequently, this
occurrence of complex eigenvalues involves using complex FFT which brings an additional cost in terms of
time and memory of about 35% and 95%, respectively.
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4. Accuracy of the SVV-method on a 3D analytical solution

Guermond et al. [22] have mathematically shown using a standard Fourier–Galerkin-method that SVV
maintains spectral accuracy for nonlinear conservations laws. The purpose here is to demonstrate that the
addition of SVV as proposed does not destroy this expected convergence property of the pseudo-spectral
method that is being employed. The governing equations (Eqs. (1)–(3)) are made dimensionless using h, bX
and X�1 as characteristic scales for length, velocity, and time, respectively. As usual in the literature on
rotor–stator flow, the control parameter is the Reynolds number defined by Re ¼ Xb2=m where m is the kinetic
viscosity. Two geometrical parameters are defined: the aspect ratio L ¼ ðb� aÞ=2h and the curvature param-
eter Rm ¼ ðaþ bÞ=ðb� aÞ. The tests reported here were performed with L = 5, Rm = 5 and Re = 500. The
exact steady solution is defined on D ¼ ½�1;þ1� � ½0; 2p½�½�1;þ1� by:
Table
Effect

N

25

33

41

57

Analyt
does n
ua ¼
2

LðY þ RmÞ
z2 tanhð1� z3Þ sin h cos 2h

va ¼ 5� 10�2ð1þ 2 � lnðLðY þ RmÞÞÞz2 tanhð1� z3Þ

wa ¼ 2� 10�1 sin2ðLðY þ RmÞ2Þ
1þ sin h
2þ cos h

pa ¼ 10�1 tanhð1� L2ðY þ RmÞ2Þz2 sin zðsin hþ cos 2hÞ2

ð35Þ
The velocity field Va is actually divergence free. From this exact solution, we readily deduce the Dirichlet
boundary conditions of the variables and the forcing terms F.
1
of the SVV parameters on the accuracy of the numerical method

eN xT L1ðVÞ L2ðVÞ L1ðVÞ
0 0 2:58� 10�7 1:15� 10�7 8:67� 10�8

1=2N
ffiffiffiffi
N
p

5:20� 10�3 7:51� 10�4 3:29� 10�4

1=2N N=2 4:78� 10�3 6:33� 10�4 2:69� 10�4

1=2N 5
ffiffiffiffi
N
p

2:57� 10�7 1:15� 10�7 8:67� 10�8

1=N
ffiffiffiffi
N
p

5:03� 10�3 2:22� 10�3 1:61� 10�3

1=N N=2 3:10� 10�3 1:26� 10�3 8:77� 10�4

Q ¼ cste � 7:28� 10�3 1:80� 10�3 1:18� 10�3

0 0 1:33� 10�9 6:06� 10�10 4:67� 10�10

1=2N
ffiffiffiffi
N
p

2:36� 10�3 3:01� 10�4 1:21� 10�4

1=2N N=2 2:84� 10�4 3:83� 10�5 1:67� 10�5

1=2N 5
ffiffiffiffi
N
p

1:94� 10�6 3:50� 10�7 1:82� 10�7

1=N
ffiffiffiffi
N
p

2:21� 10�3 8:96� 10�4 5:87� 10�4

1=N N=2 1:83� 10�4 7:64� 10�5 5:37� 10�5

Q ¼ cste � 5:56� 10�3 1:39� 10�3 9:17� 10�4

0 0 1:16� 10�10 2:17� 10�11 1:27� 10�11

1=2N
ffiffiffiffi
N
p

6:07� 10�4 7:14� 10�5 2:72� 10�5

1=2N N=2 3:77� 10�6 5:13� 10�7 2:26� 10�7

1=2N 5
ffiffiffiffi
N
p

3:82� 10�9 6:81� 10�10 3:49� 10�10

1=N
ffiffiffiffi
N
p

5:79� 10�4 2:13� 10�4 1:31� 10�4

1=N N=2 2:44� 10�6 1:02� 10�6 7:20� 10�7

Q ¼ cste � 4:66� 10�3 1:13� 10�3 7:48� 10�4

0 0 1:17� 10�10 2:16� 10�11 1:27� 10�11

1=2N
ffiffiffiffi
N
p

8:84� 10�5 1:10� 10�5 4:34� 10�6

1=2N N=2 1:85� 10�8 2:65� 10�9 1:20� 10�9

1=2N 5
ffiffiffiffi
N
p

1:18� 10�10 2:17� 10�11 1:27� 10�11

1=N
ffiffiffiffi
N
p

8:51� 10�5 3:27� 10�5 2:09� 10�5

1=N N=2 1:22� 10�8 5:29� 10�9 3:80� 10�9

Q ¼ cste � 3:93� 10�3 9:50� 10�4 6:34� 10�4

ical solution (Eq. (35)) at Rm ¼ L ¼ 5 and Re ¼ 500: This solution demonstrates that the addition of spectral vanishing viscosity
ot affect the exponential converge of the pseudo-spectral discretization. cste ¼ 1=10N .
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The initial condition is the velocity field Va perturbed as follows:
V0 ¼ Va þ 0:05ðY þ RmÞ
sin h

cos h

sin h

0B@
1CA ð36Þ
The spatial accuracy of the algorithm was evaluated by computed the L1, L2, and L1 discrete errors at the in-
ner collocation points. In this case, the SVV-operator is chosen to be isotropic.

The influence of SVV parameters on the convergence properties of the pseudo-spectral method has been
investigated for different polynomial orders. The results are summarized in Table 1 where comparisons of
the error at Re = 500 with and without SVV are shown. Moreover, the L2-error versus number of modes is
plotted in Fig. 3 for different values of SVV parameters ðxT ; eN Þ ¼ ð0; 0Þ, (

ffiffiffiffi
N
p

; 1=2NÞ, ð5
ffiffiffiffi
N
p

; 1=2NÞ,
ð5

ffiffiffiffi
N
p

; 1=NÞ.
Table 1 clearly shows that even if SVV reduces the accuracy of the solution compared to the reference DNS

solution, it does preserve the expected exponential convergence of the approximation developed in DNS. The
convergence rate depends on the values of the SVV parameters (see Fig. 3). Of course, uniform viscosity
obtained by simply adding a constant OðN�1Þ viscous term on all wavenumbers only yields a first-order alge-
braic convergence.

The results show the accuracy is more sensitive to the threshold than to the amplitude of the viscous term.
Nevertheless, the best results are obtained for the largest value of xT (xT ¼ N=2 here) and the smallest value of
eN ðeN ¼ 1=NÞ.

5. Turbulent rotor–stator flows

Incompressible rotor–stator flows have been investigated in order to demonstrate the capabilities of the
SVV-method to capture physics over the range of Reynolds numbers ½7� 104; 7� 105�. SVV results are first
compared with DNS results obtained in a transitional turbulent regime at a moderate Reynolds number
ðRe ¼ 7� 104Þ in a cavity ðRm ¼ 5; L ¼ 5Þ. Then, SVV results are compared with available experimental results
of Poncet and Chauve (private communication) in a cavity ðRm ¼ 1:8; L ¼ 5Þ and for two large values of the
Reynolds number, Re ¼ 4� 105 and 7� 105. The experimental measurements were performed using a two
component laser Doppler anemometer (LDA). The LDA technique was used to measure the mean radial U



Fig. 4. Base flow of Batchelor type (DNS results). Velocity vector-field in the meridian plane ðr; z;p=4Þ at Re ¼ 104. Black arrows outside
the cavity indicate the locations where the flow properties are stored for temporal analyses. Rotor–stator cavity ðRm ¼ 5;L ¼ 5Þ.
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and tangential V velocities as well as the associated three Reynolds stress tensor components in a meridian
plane ðr; zÞ from above the stator. The averaged quantities are written using capital letters.

In the considered range of parameters ðRe; LÞ, the rotor–stator flow is characterized by the coexistence of
two shear layers next to the disks separated by an inviscid core rotating at constant angular velocity (see this
steady axisymmetric Batchelor flow on Fig. 4). The fluid near the rotating disk is driven away from the axis of
rotation ðu > 0Þ due to centrifugal acceleration and this radial outflow along the rotor is compensated by flow
directed towards the inner cylinder ðu < 0Þ at the stator side. By analogy with the single disk problem, the
boundary layer close to the rotating disk is called the Ekman layer whereas the boundary layer close to the
stationary disk is called the Bödewadt layer.

In real situations, the flow between the disks undergoes transition to turbulence when the local Reynolds
number Rer ¼ X2

r=m, based on the radial coordinate r, is sufficiently large. The transition process is governed
by two generic instabilities, Type I and Type II, arising in both the Bödewadt (stator) and Ekman (rotor) lay-
ers. Type I is a crossflow instability, also observed in flow over a swept wing. Type II instability is related to
the combined effects of Coriolis and viscous forces. There now exists an extensive literature on transition in
these boundary layers characterized by different types of vortex structures, such as rings or spiral arms (see
a review in Crespo del Arco et al. [36]). A characteristic of the rotor–stator flow is that the Bödewadt bound-
ary layer is found to be less stable than the rotating Ekman layer [37]. As a consequence, the stator layer
becomes turbulent at a lower Reynolds number than the rotor layer. In an experiment with non-merging
boundary layers ðR=H ¼ 12:5Þ, Itoh et al. [37] found that the rotor layer was laminar for Rer ¼ 1:6� 105, tur-
bulent for Rer ¼ 3:6� 105 and fully turbulent for Rer ¼ 4:6� 106. The boundary layer near the stator was
found to become turbulent at lower local Reynolds numbers (Rer ’ 2� 104). Thus, the structure of these flows
is highly complex involving laminar, transitional, and turbulent flow regions.In both cavities no-slip boundary
conditions are applied to all walls. Thus, u ¼ w ¼ 0; v = 0 on the stationary disk, and v ¼ ðRm þ Y Þ=ðRm þ 1Þ
on the rotating disk, with �1 6 Y 6 1. The inner and outer cylinders that enclose the annular domain may
rotate or be at rest, depending on the configuration. The singularity of the tangential velocity at the junction
of the stationary cylinders with the rotor (or at the junction between the rotating cylinder and the stator) is
regularized by employing a boundary layer function, v ¼ expð�ðz� 1Þ=lÞ, where l is an arbitrary shape
parameter independent of the grid size. Typically, l ¼ 0:006 has been shown to provide a reasonable repre-
sentation of experimental conditions (there is a thin gap between the edge of the rotating disk and the station-
ary sidewall), while retaining spectral accuracy [5]. The calculations are initiated from rest by impulsively
spinning up the rotating disk.

5.1. Transition and turbulence in a rotor–stator flow at Re ¼ 7 � 104

The flow regime is found to be transitional turbulent characterized by a turbulent stationary disk layer and an
unstable laminar rotating disk layer in agreement with former work of the literature (see a review in Serre et al.
[7]). At this moderate value of Reynolds number, SVV results fit very well with the DNS solution. The SVV com-
putation has been carried out on a relatively coarse grid ðN 1;N 2;N 3Þ ¼ ð49; 48; 49Þwith a time step dt ¼ 4� 10�3.
The SVV parameters have been chosen equal to xT ¼ ð5

ffiffiffiffiffiffi
N 1

p
;
ffiffiffiffiffiffi
N 2

p
; 5

ffiffiffiffiffiffi
N 3

p
Þ and eN ¼ ð1=2N 1; 12=N 2; 1=2N 3Þ.

This choice of parameters corresponds to a compromise between the accuracy of the SVV solution (analyzed
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in Section 4) and the stability of our numerical scheme. Although no extensive study was performed on this point,
we have observed that the numerical scheme becomes unstable for xT larger than 5

ffiffiffiffi
N
p

and
ffiffiffiffi
N
p

in the non-
homogenous and homogenous directions, respectively. This anisotropy of the SVV term takes into account both
the anisotropy of the flow and of the distribution of points in the different directions. Consequently, both the
amplitude and the number of activated modes by SVV are larger in the azimuthal direction than in the other
two directions, due to the small wavelength of the instability structures in this direction (see for example exper-
imental measurements of Schouveiler et al. [38]) compared to the homogeneous grid size.

In order to obtain well-resolved DNS results as our reference, the computations required a much finer grid
(11:5 times larger) than the SVV ones, ðN 1;N 2;N 3Þ ¼ ð101; 200; 65Þ. As a consequence, the time step adopted
is one-tenth as large as in the SVV computation with dt ¼ 5� 10�4.

SVV and DNS solutions are first compared in the spectral spaces by plotting the spectrum coefficients of the
kinetic energy in the three directions (see Fig. 5). The results show that the most energetic low frequencies are
well described by the SVV solution. More precisely, SVV solution slightly alters the low frequencies in ðr; zÞ
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Fig. 5. Spectra of instantaneous spectral coefficients of the kinetic energy corresponding to SVV (triangles and circles) and DNS (crosses)
solutions at Re ¼ 7� 104: (a) Chebyshev coefficients in ðr; zÞ directions and (b) Fourier coefficients in h-direction. Rotor–stator cavity
ðRm ¼ 5;L ¼ 5Þ. Log–log plot of a L2-discrete norm versus the polynomial order.



1246 E. Severac, E. Serre / Journal of Computational Physics 226 (2007) 1234–1255
directions (with an average difference of about 8% in the Chebyshev spectra) and modifies more significantly
those in the h-direction (with an average difference of about 25% in the Fourier spectra), as expected by the use
of a more active SVV viscous term. Notice that just between the threshold and the cutoff frequency, these dif-
ferences increase up to 30% in ðr; zÞ directions and 63% in the h-direction. Although the SVV is not directly
active on these low frequencies, this result is not surprising because SVV modifies the so-called nonlocal triadic
interactions. Indeed, the added dissipation alters the contributions from frequencies smaller than the cutoff,
and it vanishes those from the frequencies larger (backscatter).

In both SVV and DNS solutions, instabilities within the stationary disk boundary layer are characterized
by n = 4 pairs of propagating rolls in the mean flow direction. The radial wavelength ðkr ¼ ðb� aÞ=nÞ mea-
sured in both solutions match very well, decreasing with the radius in the range 12 6 kr=d 6 18;
d ¼ ðm=XÞ1=2. In the tangential direction, these rolls expand in spiral arms and annular structures (see
Fig. 6) as previously shown in experiments by Schouveiler et al. [38] in a rotor–stator cavity of aspect ratio
R=H ¼ 8:75; at Re = 20,000. These vortices have been characterized in both solutions using the Q-criterion
of Hunt et al. [42] which defines a vortex as a spatial region where the Euclidian norm of the vorticity tensor
dominates that of the rate of strain. The DNS solution (see Fig. 6a) shows a complex structure of the flow with
many spiral arms that rotate in the same direction as the mean flow driven by the rotor and break through
dislocation phenomena. The spiral wave front forms a positive angle with the geostrophic azimuthal flow,
decreasing with the radius over the range a 2 ½5�; 22��. Thus, the spiral arms turn into nearly annular flow next
to the inner cylinder. As would be expected, SVV solution (Fig. 6b) shows a more regular structure with spiral
Fig. 6. Structure of instabilities within the turbulent Bödewadt layer at Re ¼ 7� 104. Rotor–stator cavity (Rm ¼ 5; L ¼ 5Þ. Iso-surface
3� 10�2 of the Q-criterion within the stationary disk layer: (a) DNS result on the 101� 200� 65 mesh, (b) SVV result with parameters
xT ¼ ð5
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arms of much smaller angle ða ’ 4�Þ. That is easily explained by the coarse resolution in the azimuthal direc-
tion ðN 2 ¼ 48Þ that is inadequate to accurately capture the spiral pattern obtained by DNS. This result is sup-
ported by our filtered DNS, obtained by interpolating the DNS results on the coarse SVV mesh, which shows
a very similar flow structure (see Fig. 6c). The solution is weakly sensitive to a variation of the SVV parameters
as illustrated in Fig. 6d with xT ¼ ð
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ffiffiffiffiffiffi
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p
;
ffiffiffiffiffiffi
N 3

p
Þ and eN ¼ ð1=2N 1; 12=N 2; 1=2N 3Þ. More generally and as

expected, a decrease of the threshold frequency xT in the range Oð
ffiffiffiffi
N
p
Þ involves a slight decrease of the

Q-maxima (less than 5%).
The statistical data have been averaged both in time and in the homogeneous tangential direction. The sta-

tistical steady state is expected to be reached when the fluctuations of the averaged values in time are less than
1%. It is of Batchelor type, qualitatively similar to the one presented on Fig. 4.

In spite of the differences observed above in the instability structures developing in the azimuthal direction,
there is a close agreement of the mean flow. There is a very good agreement between the axial profiles of the
mean tangential and radial velocities across the gap at mid-radius (see Fig. 7). The uniform error of the dif-
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Fig. 7. Axial profiles at Re ¼ 7� 104 of the radial (a) and azimuthal (b) components of the mean velocity at mid-radius, showing a
Batchelor mean flow (normalized by the local velocity of the rotor Xr). Rotor–stator cavity ðRm ¼ 5; L ¼ 5Þ. The crosses correspond to the
DNS solution (101� 200� 65 mesh) and, the black circles correspond to the SVV solution (49� 48� 49 mesh).
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ference is equal to 3:36% and 0:91% for the radial and the azimuthal mean velocity, respectively. The difference
in the thickness and shape of the radial velocity profile near the two disks confirms that the stator layer is
already turbulent at mid-radius while the rotor layer remains laminar as expected at this rotation. That is
the primary reason that the core circumferential velocity is only about one third ð0:32XrÞ of that of the rotor
at the same radius which is very close to the value predicted by the similarity solution, 0:313Xr [41]. This result
is also supported by Fig. 8a and b where the distributions of turbulent kinetic energy are shown in the merid-
ian plane. Their values are close with the value for the SVV solution, about 8% smaller (7:51� 10�3 and
8:23� 10�3, for the SVV and DNS solutions, respectively). This shows that the additional dissipation intro-
duced though the SVV-operator only slightly affects the global level of turbulence within the cavity. Moreover,
the SVV solution provides the right location of the maximum, where the jet flow coming from the rotor
impacts the stator.

According to these results, the agreement on the flow characteristics obtained at Re ¼ 7� 104 between the
SVV solution and a reference DNS solution requiring a 11:5 times larger grid is very satisfying.

5.2. Turbulent rotor–stator flows at Re ¼ 4� 105 and Re ¼ 7 � 105

We demonstrate here the capability of SVV to simulate turbulent rotor–stator flow where the rotating disk
layer is now also turbulent over a large radius. The geometrical parameters of the cavity ðRm ¼ 1:8; L ¼ 5Þ
have been chosen to correspond to experimentals in order to satisfy both numerical constraints and experi-
mental conditions (Poncet and Chauve, private communication 2006). In order to consider the most unstable
Fig. 8. Isocontours of the turbulent kinetic energy in the meridian plane ðr; z; 0Þ showing the location of turbulent flow regions for different
cases: (a, b) Flow in the rotor–stator cavity (Rm ¼ 5; L ¼ 5) at Re ¼ 7� 104 showing a turbulent stator layer and a laminar rotor-layer. (a)
DNS result on the 101� 200� 65 mesh (maximum value, 8:23� 10�3). (b) SVV result (xT ¼ ð5
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configuration, the external cylinder is at rest while the inner cylinder is rotating with the rotor. The SVV com-
putation has been carried out on a grid ðN 1;N 2;N 3Þ ¼ ð121; 180; 65Þ with a time step dt ¼ 5� 10�5. For the
same reasons as in the previous case, the SVV parameters have been chosen equal to xT ¼
ð
ffiffiffiffiffiffi
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p
;
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N 2

p
; 5

ffiffiffiffiffiffi
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p
Þ and eN ¼ ð1=2N 1; 1=N 2; 1=2N 3Þ. As shown in Section 3.2, the SVV method retains the fast

time integration of our DNS scheme because it is condensed in pre-processing jobs. A reasonable extra com-
putational cost here comes from the occurrence of complex eigenvalues requiring the use of complex FFT. The
second-order derivative operators for the pressure calculations have 28 complex conjugate eigenvalues. On the
supercomputer Nec SX5, the cpu time per iteration is about 3:2 s while the memory required is 1:1 Giga octets.
For these computational parameters the performance of the code is high, about 4:5 Giga Flops, using more
than 50% of the peak performance of the vectorial processor.

5.2.1. Flow structures
At these high Reynolds numbers, the turbulent motion is now not just confined to the vicinity of the sta-

tionary disk but extends over a large part of the rotating disk as well as along the inner rotating cylinder at the
largest value of Reynolds number Re ¼ 7� 105. This is clearly shown by the distribution of turbulent kinetic
energy in the meridian plane ðr; zÞ in Fig. 8c and d. With increasing Reynolds number, the maximum turbulent
kinetic energy has moved from the stator side (see Fig. 8a at Re ¼ 7� 104) to the end of the rotor side, at the
junction between the rotating disk and the stationary outer cylinder, where the radial and tangential velocity
components are the largest.

The flow consists of rather tangled co-rotating vortices which originate near the shroud and move radially
inward on the stator (outward on the rotor) following the main flow direction. The growth of these vortices
strongly affects not only the structure of the two disk boundary layers (see Fig. 9) but also the geostrophic
core. This is revealed in Fig. 9a and b by plotting the isocontours of the fluctuations of axial velocity as well
as the Q-criterion in the meridian plane at Re ¼ 7� 105. Fig. 9 shows that in the vicinity of the inner and outer
cylinders there is now a strong mixing between both boundary layers, involving a large number of vortices of
different scales. This underlines the important effects that the inner and outer cylinders have on the character-
istics of the turbulence. Notice that the rotating inner cylinder has a strong destabilizing effect (contrary to the
configuration where the inner cylinder is stationary [43]), accelerating the flow and strengthening the vortices
coming from the Bödewadt layer to the Ekman layer of the rotating disk.

Coherent vortical structures in the near-wall regions are accurately described by the SVV solution at
Re ¼ 7� 105 (Fig. 10). In the stator layer, where the turbulence intensity is globally high, the Q-criterion
Fig. 9. Flow in the meridian plane ðr; z; 0Þ of the rotor–stator cavity ðRm ¼ 1:8; L ¼ 5Þ at Re ¼ 7� 105: SVV results
(xT ¼ ð
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Fig. 10. Coherent vortex in the rotor and the stator layers. Iso-surface Q ¼ 0:3 at Re ¼ 7� 105. SVV results (xT ¼ ð
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eN ¼ ð1=2N 1; 1=N 2; 1=2N 3ÞÞ on the 121� 180� 65 mesh: (a) Transitional turbulent rotor layer and (b) Turbulent stator layer.
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shows elongated structures nearly aligned in the tangential direction as already observed in experiments by
Little and Eaton [4] and in DNS by Lygren and Andersson [8] near the rotating disk. In the rotor layer, similar
structures are found within regions where the turbulence level is high (i.e. at large radius and at the impact of
the flow above the inner cylinder). In the middle, where the flow is transitional turbulent (

ffiffiffiffiffiffiffi
Rer

p
< 500), the Q-

criterion shows large spiral arms. The characteristic parameters of this structure are close to those found for
the Type I instability, which is thought to play a role in the transition process to turbulence: averaged values of
wavelength and angle with respect to the tangential velocity of are measured equal to kr=d ’ 11 and a ’ 8�,
respectively. This result is consistent with results found in linear stability analysis by Serre et al. [44].

5.2.2. Mean field and turbulence statistics

Numerical and experimental axial profiles of the mean radial and tangential velocities are given in Fig. 11 at
mid-radius. For both Reynolds numbers, the mean flow is broadly a Batchelor flow as in the laminar regime.
The mean axial velocity is not measurable from experiments, and the SVV solution shows it is very small com-
pared to the two other components.

At Re ¼ 4� 105, the agreement between the simulation and the experiment is very satisfying. The angular
frequency of the fluid is of about 0:36Xr in the core with a difference smaller than 2 between SVV solution
ð0:363XrÞ and experimental measurements ð0:356XrÞ. The shape of the radial velocity component profiles close
to the stator suggests a turbulent layer while on the rotor side the shape remains closer to the laminar solution,
suggesting a weakly turbulent flow at mid radius (i.e. Rer ¼ 1:7� 105 that is less than the value
Rercritical ¼ 3:6� 105 found experimentally by Itoh et al. [37] for a turbulent Ekman layer).

The stator layer thickness is well described by the SVV solution with the crossing U = 0 calculated at
z=H ¼ 0:84 in the SVV solution and measured at z=H ¼ 0:87 in experiment. The predicted mean radial veloc-
ity has a peak value of 0:086Xr located at z=H ¼ 0:02, compared to the peak location z=H ¼ 0:035 in the
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Fig. 11. Comparison of statistical data between experiments (white circles) and SVV-calculations at Re ¼ 4� 105 (a, b) and Re ¼ 7� 105

(c, d). Axial profiles of the radial (a, c) and azimuthal (b, d) components of mean velocity at mid-radius, normalized by the local velocity of
the rotor Xr.
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experiments. The maximum error in the mean radial velocity occurs near the location of the peak crossflow
with a magnitude less than 0:01Xr. The measurements on the rotor side are technically much more difficult
and consequently there are only few points. Nevertheless, the radial velocity values at the two points near
the rotating disk fit very well with the SVV solution that gives a good description of the Ekman layer
thickness.

Second-order statistics available from experimental measurements in the streamwise and spanwise direc-
tions have been computed. The square roots of two of the main Reynolds stresses (V 0rV

0
r and V 0hV 0h) have been

normalized by the local speed of the disk and are shown in Fig. 12. The third shear stress V 0hV 0r is of negligible
importance, with a magnitude two-order lower than the previous Reynolds stresses, as already obtained in
DNS by Lygren and Andersson [8]. The general trend is that the experimental and numerical data match quite
well for the two normal Reynolds stresses. Although the turbulence intensity is weak within the core, it is well-
predicted by SVV solution. As with the mean flow, the maximum error occurs in the prediction of the peak
values near the walls. On the stator side, there is a relatively large overprediction in the streamwise direction
with a magnitude of about 0:025Xr and a small underprediction in the radial direction with a magnitude less
than 0:006Xr. Near the rotor, the experimental values are lower than the simulated ones. Moreover, the pre-
dicted turbulence intensity is higher on the rotor than in the stator while in experiment the turbulence intensity
is almost the same near the two disks. This trend was previously observed in DNS by Lygren and Andersson
[8] in a cavity of infinite radial extension, particularly when the stresses are not normalized by the wall friction
velocity. Nevertheless, the reasoning invoked by these authors and related to the fact that the experimental
cavity of Itoh et al. [37] is closed, cannot be used here where the cavities are similar. Moreover, the difference
closures at the junction between the rotating and stationary parts (a small clearance is used in experiment ver-
sus a regularized profile imposed in the numerical approach) seem difficult to invoke here. The most likely
reason is related to the anisotropy of the grid computation, which is globally much coarser in the tangential
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direction than in two other directions: the grid spacing in the tangential direction at mid radius is 0:16H while
the averaged grid spacing (the grid is non-homogeneous and tighter close to the walls) in the radial and axial
directions is about 4:1� 10�2H and 1:5� 10�2H , respectively. This reasoning was already proposed by Scotti
et al. [45] to explain some discrepancies between LES calculations of wall-bounded flows and experiments.
This phenomenon could certainly be reduced with grid refinement in the streamwise direction.

As a consequence, the predicted Reynolds stress tensor is more anisotropic than the measured one, with a
maximum in streamwise direction about two times larger than in the radial direction.

At Re ¼ 7� 105 and keeping the same numerical resolution, there is still an overall agreement between cal-
culations and measurements although it is not as good as at Re ¼ 4� 105; as expected due to an increase
greater than 50% in the value of the Reynolds number. This is particularly true for the prediction of the tan-
gential mean velocity in the core Fig. 11d. The predicted angular frequency of the fluid remains about the same
in the core as at Re ¼ 4� 105 (about 0:36Xr), while in experiment the angular frequency has increased mea-
surably up to 0:39Xr.

Surprisingly, the turbulent stator layer thickness is still well described by the SVV solution. However, the
shape of the radial component profiles measured in experiments on the rotor side suggest now a turbulent layer,
while the estimated profile remains close to the laminar solution. This overall trend is supported by the second-
order statistics profiles. These results suggest as expected that the SVV calculation is no longer able to account
for the increase in turbulence intensity in the rotor layer induced by the increase in rotation. The SVV calculation
is now too dissipative, the magnitude of the SVV operator being too large compared to the magnitude of the
viscous operator, which has decreased with the increase in Reynolds number. An estimation of this can be given
by the mean value s, defined as the dissipated energy ratio of our model with respect to the total dissipation:
s ¼
kVNi � r � ðeNi QNi

ðrVNiÞÞk2

kVNi � DSVVðVNiÞk2

� �
ð37Þ
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where the brackets indicate a temporal averaging. Thus at Re ¼ 4� 105; s ¼ 0:4 while it almost doubles,
s ¼ 0:7; at Re ¼ 7� 105: Notice as a reference that for s = 1, the dissipation would be totally ensured by
the SVV term.
6. Concluding remarks

The highly accurate computation of turbulent rotating flows within cavity is of interest for both engineering
applications with turbomachinaries, and fundamental research, as one of the simplest cases where the turbu-
lent boundary layers are three-dimensional. Such flows are difficult to compute when using spectrally accurate
numerical schemes, that results directly from the fact that spectral approximations are much less diffusive than
low order ones.

We have proposed in this paper a spectral vanishing viscosity method that stabilizes the incompressible
three-dimensional Navier–Stokes equations in a cylindrical domain. Associated with spectral methods, this
method appears of interest for the investigation of turbulent rotating flows, by providing solutions that con-
verge to solutions of Navier–Stokes equations when the cuttoff goes to infinity, and by preserving the spec-
tral accuracy of smooth solutions. As formerly outlined in the literature, this method may be viewed as an
alternative LES approach (more precisely a no-model spectral LES approach, i.e. no modeling of the sub-
grid-scale tensor), in the sense of directly computing the large energetic scales while controlling the smaller
scales.

An algorithm has been proposed in the frame of 3D spectral Chebyshev–Fourier computations, well
adapted to the LES of turbulent rotating flows within interdisk cavities. It should be mentioned that this
method does not require additional computational time, the SVV operator being included in the viscous term
and that the problem of the commutation error between the differentiation and the filtering operators no
longer arises. Confined rotating flows are strongly inhomogeneous and anisotropic, due to the coupled effect
of rotation and confinement, and consequently the modeling of the subgrid-scale tensor, which results from
the spatial filtering of the Navier–Stokes equations, still remains a very challenging task. Besides, at our
knowledge, LES of such flows do not exist in the literature.

First, a study of the convergence properties of the algorithm has been provided using an analytical solution.
Different sets of SVV parameters have been considered, and in all cases it has been shown that the exponential
property of spectral method is preserved although if the convergence rate can worsen. Second, to demonstrate
the efficiency of the SVV to perform LES of turbulent rotating flows, rotor–stator flows have been considered
for Reynolds numbers ranging between 7� 104 to 7� 105. The structure of these flows is highly complex
involving laminar, transitional, and turbulent flow regions. Indeed, the stationary disk layer is much more
unstable than the rotor boundary layer, and both are separated by a very stable non-viscous rotating core.
Mean profiles have been provided at Re ¼ 7� 104 and match very well with a DNS which required a 11.5
times larger mesh. At high Reynolds numbers (Re ¼ 4� 105 and Re ¼ 7� 105Þ, where DNS results are
unreachable, mean profiles and two of normal Reynolds stresses ðV 0rV 0r and V 0hV 0h) have been shown to com-
pare favorably with experimental measurements obtained in the same cavity.

In this frame of SVV-pseudo-spectral method, all these results are very encouraging to perform now LES of
turbulent rotating flows within cavities, and thus provide additional contributions to their highly accurate
computations.
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