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Abstract. We discuss the reconstruction of piecewise smooth data from its
(pseudo-) spectral information. Spectral projections enjoy superior resolution pro-
vided the data is globally smooth, while the presence of jump discontinuities is
responsible for spuriousO(1) Gibbs oscillations in the neighborhood of edges and
an overall deterioration of the unacceptable first-order convergence in rate. The pur-
pose is to regain the superior accuracy in the piecewise smooth case, and this is
achieved by mollification.

Here we utilize a modified version of the two-parameter family of spectral molli-
fiers introduced by Gottlieb and Tadmor[GoTa85]. The ubiquitous one-parameter,
finite-order mollifiers are based ondilation. In contrast, our mollifiers achieve their
high resolution by an intricate process of high-ordercancellation. To this end, we
first implement a localization step using an edge detection procedure[GeTa00a, b].
The accurate recovery of piecewise smooth data is then carried out in the direction
of smoothness away from the edges, andadaptivityis responsible for the high res-
olution. The resulting adaptive mollifier greatly accelerates the convergence rate,
recovering piecewise analytic data within exponential accuracy while removing the
spurious oscillations that remained in[GoTa85]. Thus, these adaptive mollifiers of-
fer a robust, general-purpose “black box” procedure for accurate post-processing of
piecewise smooth data.
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1. Introduction

We study a new procedure for the high-resolution recovery of piecewise smooth
data from its (pseudo-) spectral information. The purpose is to overcome the low-
order accuracy and spurious oscillations associated with the Gibbs phenomena,
and to regain the superior accuracy encoded in the global spectral coefficients.

A standard approach for removing spurious oscillations is based on mollification
over a local region of smoothness. To this end, one employs a one-parameter
family of dilated unit mass mollifiers of the formϕθ = ϕ(x/θ)/θ . In general,
such compactly supported mollifiers are restricted to finite-order accuracy,|ϕθ ?
f (x)− f (x)| ≤ Cr θ

r , depending on the number,r , of vanishing momentsϕ has.
Convergence is guaranteed by letting thedilation parameterθ ↓ 0.

In [GoTa85] we introduced a two-parameter family of spectral mollifiers of the
form

ψp,θ (x) = 1

θ
ρ
(x

θ

)
Dp

(x

θ

)
.

Hereρ(·) is an arbitraryC∞0 (−π, π) function which localizes thep-degree Dirich-
let kernelDp(y) := (sin(p+ 1/2)y)/(2π sin(y/2)). The first parameter, the di-
lation parameterθ , need not be small in this case, in fact,θ = θ(x) is made as
large as possible while maintaining the smoothness ofρ(x− θ ·) f (·). Instead, it is
the second parameter, the degreep, which allows the high-accuracy recovery of
piecewise smooth data from its (pseudo-) spectral projection,PN f (x). The high-
accuracy recovery is achieved here by choosing largep’s, enforcing an intricate
process ofcancellationas an alternative to the usual finite-order accurate process
of localization.

In Section 2 we begin by revisiting the convergence analysis of[GoTa85].
Spectral accuracy is achieved by choosing an increasingp ∼ √N, so thatψp,θ has
essentiallyvanishing moments all orders,

∫
ysψp,θ (y)dy= δs0+Cs · N−s/2, ∀ s,

yielding the “infinite-order” accuracy bound in the sense of|ψp,θ ? PN f (x) −
f (x)| ≤ Cs · N−s/2, ∀ s.

Although the last estimate yields the desired spectral convergence rate sought in
[GoTa85], it suffers as an over-pessimistic restriction since its derivation ignores
the possible dependence ofp on the degree of local smoothness,s, and the support
of local smoothness,∼ θ = θ(x). In Section 3 we begin a detailed study of the
optimal choice of the(p, θ) parameters of the spectral mollifiersψp,θ :

• Lettingd(x) denote the distance to the nearest edge, we first setθ = θ(x) ∼
d(x) so thatψp,θ ? PN f (x) incorporates the largest smooth neighborhood
aroundx. To find the distance to the nearest discontinuity we utilize a general
edge detection procedure[GeTa99], [GeTa00a, b], where the locations (and
amplitudes) of all edges are found inone global sweep. Once the edges are
located, it is a straightforward matter to evaluate, at everyx, the appropriate
spectral parameterθ(x) = d(x)/π .
• Next, we turn to examining the degreep, which is responsible for the over-

all high accuracy by enforcing an intricate cancellation. A careful analysis
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carried out in Section 3.1 leads to an optimal choice of anadaptivedegree
of orderp = p(x) ∼ d(x)N. Indeed, numerical experiments reported in the
original [GoTa85], and additional tests carried out in Section 3.2 below and
which motivate the present study, clearly indicate a superior convergence up
to the immediate vicinity of the interior edges with anadaptivedegree of the
optimal orderp = p(x) ∼ d(x)N.

Given the spectral projection of a piecewise analytic function,SN f (·), our two-
parameter family of adaptive mollifiers, equipped with the optimal parametrization
outlined above yields, consult Theorem 3.1,

|ψp,θ ? SN f (x)− f (x)| ≤ Const· d(x)N · e−η
√

d(x)N .

The last error bound shows that the adaptive mollifier is exponentially accurate at
all x’s, except for the immediateO(1/N)-neighborhood of the jumps off (·)where
d(x) ∼ 1/N. We note in passing the rather remarkable dependence of this error
estimate on theC∞0 regularity ofρ(·). Specifically, the exponential convergence
rate of a fractional power is related to the Gevrey regularity of the localizerρ(·);
in this paper we use theG2-regular cut-offρc(x) = exp(cx2/(x2−π2))which led
to the fractional power 1/2.

Similar results hold in the discrete case. Indeed, in this case, one can bypass the
discrete Fourier coefficients: expressed in terms of the given equidistant discrete
values,{ f (yν)}, of piecewise analyticf , we have, consult Theorem 3.2,∣∣∣∣∣ πN

2N−1∑
ν=0

ψp,θ (x − yν) f (yν)− f (x)

∣∣∣∣∣ ≤ Const· (d(x)N)2 · e−η
√

d(x)N .

Thus, the discrete convolution
∑

ν ψp,θ (x − yν) f (yν) forms an exponentially ac-
curate nearby interpolant,1 which serves as an effective tool to reconstruct the
intermediate values of piecewise smooth data. These nearby “expolants” are rem-
inicient of quasi-interpolants, e.g.,[BL93] , with the emphasis given here to non-
linear adaptive recovery which is based onglobal regions of smoothness.

What happens in the immediateO(1/N)-neighborhood of the jumps? in Sec-
tion 4 we complete our study of the adaptive mollifiers by introducing a novel
procedure ofnormalization. Here we enforce the first few moments of the spectral
mollifier,ψp = ρDp, to vanish, so that we regainpolynomialaccuracy in the imme-
diate neighborhood of the jump. Taking advantage of the freedom in choosing the
localizer,ρ(·), we show how to modifyρ to regain the local accuracy by enforcing
finitely many vanishing moments ofψp = ρDp, while retaining the same overall
exponential outside the immediate vicinity of the jumps. By appropriate normal-
ization, the localized Dirichlet kernel we introduce maintains at least second-order
convergenceup tothe discontinuity. Increasingly higher orders of accuracy can be
worked out as we move further away from these jumps and, eventually, turning

1 Called expolant for short.
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into the exponentially accurate regime indicated earlier. In summary, the spectral
mollifier amounts to a variable-order recovery procedure adapted to thenumber
of cellsfrom the jump discontinuities, which is reminiscent of the variable order,
Essentially Non Oscillatory piecewise polynomial reconstruction in[HEOC85].
The currrent procedure is also reminicient of theh–p methods of Babuˇska and
his collabrators, with the emphasis given here to an increasing number ofglobal
moments (p) without the “h”-refinement. The numerical experiments reported in
Sections 3.2 and 4.3 confirm the superior high resolution of the spectral mollifier
ψp,θ equipped with the proposed optimal parametrization.

2. Spectral Mollifiers

2.1. The Two-Parameter Spectral Mollifierψp,θ

The Fourier projection of a 2π -periodic functionf (·):

SN f (x) :=
∑
|k|≤N

f̂keikx, f̂k := 1

2π

∫ π

−π
f (x)e−ikx dx, (2.1)

enjoys the well-known spectral convergence rate, that is, the convergence rate is
as rapid as theglobal smoothness off (·) permits in the sense that forany swe
have2

|SN f (x)− f (x)| ≤ Const· ‖ f ‖Cs · 1

Ns−1
, ∀ s. (2.2)

Equivalently, this can be expressed in terms of the usual Dirichlet kernel

DN(x) := 1

2π

N∑
k=−N

eikx ≡ sin(N + 1
2)x

2π sin(x/2)
, (2.3)

whereSN f ≡ DN ? f , and the spectral convergence statement in (2.2) recast in
the form

|DN ? f (x)− f (x)| ≤ Const· ‖ f ‖Cs · 1

Ns−1
, ∀ s. (2.4)

Furthermore, iff (·) is analytic with an analyticity strip of width 2η, thenSN f (x)
is characterized by an exponential convergence rate, e.g.,[Ch], [Ta94],

|SN f (x)− f (x)| ≤ Constη · Ne−Nη. (2.5)

If, on the other hand,f (·) experiences a simple jump discontinuity, say atx0,
thenSN f (x) suffers from the well-known Gibbs phenomena, where the uniform
convergence ofSN f (x) is lost in the neighborhood ofx0 and, moreover, theglobal

2 Here and below we denote the usual‖ f ‖Cs := ‖ f (s)‖L∞ .
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convergence rate ofSN f (x) deteriorates to first order. To accelerate the slow
convergence rate, we focus our attention on the classical process of mollification.
Standard mollifiers are based on a one-parameter family of dilated unit mass
functions of the form

ϕθ(x) := 1

θ
ϕ
(x

θ

)
(2.6)

which induce convergence by lettingθ tend to zero. In general,|ϕθ ? f (x)− f (x)| ≤
Cr θ

r describes the convergence rate offiniteorderr , whereϕ possessesr vanishing
moments ∫

ysϕ(y)dy= δs0, s= 0,1,2, . . . , r − 1. (2.7)

In the present context of recoveringspectralconvergence, however, we follow Got-
tlieb and Tadmor[GoTa85], using a two-parameter family of mollifiers,ψp,θ (x),
whereθ is a dilation parameter,ψp,θ (x) = ψp(x/θ)/θ , and p stipulates how
closelyψp,θ (x) possesses near vanishing moments. To formψp(x), we letρ(x)
be an arbitraryC∞0 function supported in(−π, π) and we consider the localized
Dirichlet kernel

ψp(x) := ρ(x)Dp(x). (2.8)

Our two-parameter mollifier is then given by the dilated family of such localized
Dirichlet kernels

ψp,θ (x) := 1

θ
ψp

(x

θ

)
≡ 1

θ
ρ
(x

θ

)
Dp

(x

θ

)
. (2.9)

According to (2.9),ψp,θ consists of two ingredients,ρ(x) and Dp(x), each
having an essentially separate role associated with the two independent parameters
θ and p. The role ofρ(x/θ), through itsθ -dependence,localizesthe support
of ψp,θ (x) to (−θπ, θπ). The Dirichlet kernelDp(x) is charged, by varyingp,
by controlling the increasing number of near-vanishing moments ofψp,θ , and
hence the overall superior accuracy of our mollifier. Indeed, by imposing the
normalization of

ρ(0) = 1, (2.10)

we find that an increasing number of moments ofψp,θ are of the vanishing order
O(p−(s−1)):∫ πθ

−πθ
ysψp,θ (y)dy =

∫ π

−π
(yθ)sρ(y)Dp(y)dy= Dp ? (yθ)

sρ(y)|y=0

= δs0+ Cs · p−(s−1), ∀ s, (2.11)

where, according to (2.4),Cs = Const· ‖(yθ)sρ(y)‖Cs. We will get into a detailed
convergence analysis in the discussion below.
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We conclude this section by highlighting the contrast between the standard,
polynomially accurate mollifier (2.7) and the spectral mollifiers (2.9). The former
depends on one dilation parameter,θ , which is in charge of inducing a fixed or-
der of accuracy by lettingθ ↓ 0. Thus, in this case, convergence is enforced by
localization, which is inherently limited to a fixed polynomial order. The spectral
mollifier, however, has the advantage of employing two free parameters: the dila-
tion parameterθ which need not be small, in fact,θ is made aslarge as possible
while maintainingρ(x− θy) f (y) free of discontinuities; the need for this desired
smoothness will be made more evident in the next section. It is the second param-
eter,p, which is in charge of enforcing the high accuracy by lettingp ↑ ∞. Here,
convergence is enforced by a delicate process ofcancellationwhich will enable
us to derive, in Section 3, exponential convergence.

2.2. Error Analysis for a Spectral Mollifier

We now turn to considering the error of our mollification procedure,E(N, p, θ; f
(x)), at an arbitrary fixed point,x ∈ [0,2π):

E(N, p, θ; f (x)) = E(N, p, θ) := ψp,θ ? SN f (x)− f (x), (2.12)

where we highlight the dependence on three free parameters at our disposal: the
degree of the projection,N, the support of our mollifier,θ , and the degree with
which we approximate an arbitrary number of vanishing moments,p. The depen-
dence on the degree of the piecewise smoothness off (·) will play a secondary
role in the choice of these parameters.

We begin by decomposing the error into three terms

E(N, p, θ) = ( f ? ψp,θ − f )+ (SN f − f ) ? (ψp,θ − SNψp,θ )

+ (SN f − f ) ? SNψp,θ . (2.13)

The last term,(SN f − f ) ? SNψp,θ , vanishes by orthogonality and, hence, we are
left with the first and second terms, which we refer to as the regularization and
truncation errors, respectively,

E(N, p, θ) ≡ ( f ? ψp,θ − f )+ (SN f − f ) ? (ψp,θ − SNψp,θ )

=: R(N, p, θ)+ T(N, p, θ). (2.14)

Sharp error bounds for the regularization and truncation errors were originally
derived in[GoTa85], and a short re-derivation now follows.

For the regularization error we consider the function

gx(y) := f (x − θy)ρ(y)− f (x), (2.15)

where f (x) is the fixed-point value to be recovered through mollification. Applying
(2.4) togx(·), while noting thatgx(0) = 0, then the regularization error does not
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exceed

|R(N, p, θ)| := | f ? ψp,θ − f | =
∣∣∣∣∫ π

−π
[ f (x − θy)ρ(y)− f (x)]Dp(y)dy

∣∣∣∣
= |Dp ? gx(y)|y=0| = |(Spgx(y)− gx(y))|y=0|

≤ Const· ‖gx(y)‖Cs · 1

ps−1
. (2.16)

Applying the Leibnitz rule togx(y):

|g(s)x (y)| ≤
s∑

k=0

(
s

k

)
θk| f (k)(x − θy)| · |ρ(s−k)(y)|

≤ ‖ρ‖Cs‖ f (s)‖L∞loc
(1+ θ)s, (2.17)

gives the desired upper bound

|R(N, p, θ)| ≤ Const· ‖ρ‖Cs‖ f (s)‖L∞loc
· p
(

2

p

)s

. (2.18)

Here and below Const represents (possibly different) generic constants; also,‖ ·
‖L∞loc

indicates theL∞-norm to be taken over thelocal support ofψp,θ . Note that
‖ f (s)‖L∞loc

< ∞, as long asθ is chosen so thatf (·) is free of discontinuities in
(x − θπ, x + θπ).

To upperbound the truncation error we use the Young inequality followed by
(2.4):

|T(N, p, θ)| ≤ ‖(SN f − f ) ? (ψp,θ − SNψp,θ )‖L∞

≤ ‖SN f − f ‖L1 · ‖ψp,θ − SNψp,θ‖L∞

≤ M‖SN f − f ‖L1 · ‖ψp,θ‖Cs
1

Ns−1
. (2.19)

The Leibnitz rule yields

|ψ(s)
p,θ | ≤ θ−(s+1)

s∑
k=0

(
s

k

)
|ρ(s−k)| · |D(k)

p | ≤ ‖ρ‖Cs

(
1+ p

θ

)s+1

, (2.20)

and, together with (2.19), we arrive at the upper bound

|T(N, p, θ; f )| ≤ Const· ‖SN f − f ‖L1 · ‖ρ‖Cs · (1+ p)N

θ

(
1+ p

Nθ

)s

. (2.21)

A slightly tighter estimate is obtained by replacing theL1 − L∞ bounds withL2

bounds forf ’s with bounded variation

|T(N, p, θ)| ≤ ‖SN f − f ‖L2 × ‖SNψp,θ − ψp,θ‖L2

≤ Const· ‖ f ‖BV · N−1/2× ‖ψ(s)
p,θ‖L2 · N−(s−1/2), (2.22)
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and (2.20) then yields

|T(N, p, θ)| ≤ Const· ‖ρ‖Cs · N
(

1+ p

Nθ

)s+1

. (2.23)

Using this, together with (2.18), we conclude with an error bound ofE(N, p, θ; f
(x)):

|ψp,θ ? SN f (x)− f (x)| ≤ Const· ‖ρ‖Cs

×
[

N

(
1+ p

Nθ

)s+1

+ p

(
2

p

)s

‖ f (s)‖L∞loc(x)

]
, ∀ s, (2.24)

where‖ f (s)‖L∞loc
= supy∈(x−θπ,x+θπ) | f (s)| measures the local regularity off . It

should be noted that one can use different orders of degrees of smoothness, say
anr order of smoothness for the truncation and ans order of smoothness for the
regularization, yielding

|E(N, p, θ; f (x))| ≤ Const

·
[
‖ρ‖Cr ·N

(
1+ p

Nθ

)r+1

+‖ρ‖Cs · p
(

2

p

)s

‖ f (s)‖L∞loc

]
,

∀ r, s. (2.25)

2.3. Fourier Interpolant. Error Analysis for a Pseudospectral Mollifier

The Fourier interpolant of a 2π -periodic function,f (·), is given by

IN f (y) :=
∑
|k|≤N

f̃keiky, f̃k := 1

2N

2N−1∑
ν=0

f (yν)e
−ikyν . (2.26)

We observe that the moments computed in the spectral projection (2.1) are replaced
here by the corresponding trapezoidal rule evaluated at the equidistant nodesyν =
(π/N)ν, ν = 0,1, . . . ,2N − 1. It should be noted that this approximation by
the trapezoidal rule converts the Fourier–Galerkin projection to a pseudospectral
Fourier collocation (interpolation) representation. It is well-known that the Fourier
interpolant also enjoys spectral convergence, i.e.,

|IN f (x)− f (x)| ≤ Const· ‖ f ‖Cs · 1

Ns−1
, ∀ s. (2.27)

Furthermore, iff (·) is analytic with an analyticity strip of width 2η, thenSN f (x)
is characterized by an exponential convergence rate[Ta94]:

|SN f (x)− f (x)| ≤ Constη · Ne−Nη. (2.28)
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If, however, f (·) experiences a simple jump discontinuity, then the Fourier inter-
polant suffers from the reduced convergence rate similar to the Fourier projection.
To accelerate the slowed convergence rate we again make use of ourtwo-parameter
mollifier (2.9). When convolvingIN f (x) by our two-parameter mollifier we ap-
proximate the convolution by the trapezoidal summation

ψp,θ ? IN f (x) ∼ π

N

2N−1∑
ν=0

f (yν)ψp,θ (x − yν). (2.29)

We note that the summation in (2.29) bypasses the need to compute the pseu-
dospectral coefficients̃fk. Thus, in contrast to the spectral mollifiers carried out
in the Fourier space[MMO78] , we are able to work directly in the physical space
through using the sampling off (·) at the equidistant pointsf (yν).

The resulting error of our discrete mollification at the fixed pointx is given by

E(N, p, θ) := π

N

2N−1∑
ν=0

f (yν)ψp,θ (x − yν)− f (x). (2.30)

As before, we decompose the error into two components

E(N, p, θ) =
(
π

N

2N−1∑
ν=0

f (yν)ψp,θ (x − yν)− f ? ψp,θ

)
+ ( f ? ψp,θ − f )

=: A(N, p, θ)+ R(N, p, θ), (2.31)

whereR(N, p, θ) is the familiar regularization error, andA(N, p, θ) is the so-
called aliasing error committed by approximating the convolution integral by a
trapezoidal sum. It can be shown that, for anym > 1

2, the aliasing error does not
exceed the truncation error, e.g., [Ta94, (2.2.16)],

‖A(N, p, θ)‖L∞ ≤ Mm‖T(N, p, θ; f (m))‖L∞ · N(1/2−m), m> 1
2. (2.32)

We choosem= 1: inserting this into (2.21) withf replaced byf
′
, and noting that

‖SN f
′ − f

′ ‖L1 ≤ Const· ‖ f ‖BV

√
N, we recover the same truncation error bound

we had in (2.21):

‖A(N, p, θ)‖L∞ ≤ Const· |T(N, p, θ; f
′
)| 1√

N

≤ Const· ‖ρ‖Cs · N2

(
1+ p

Nθ

)s+1

. (2.33)

Consequently, the error after discrete mollification of the Fourier interpolant sat-
isfies the same bound as the mollified Fourier projection

|E(N, p, θ; f (x))| ≤ Const· ‖ρ‖Cs

×
[

N2

(
1+ p

Nθ

)s+1

+ p

(
2

p

)s

‖ f (s)‖L∞loc

]
, ∀ s ≥ 1

2. (2.34)
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We close by noting that the spectral and pseudospectral error bounds, (2.24) and
(2.34), are of the exact same order. And, as before, one can use different orders of
degrees of smoothness for the regularization and aliasing errors.

2.4. On the Choice of the(θ, p) Parameters. Spectral Accuracy

We now turn to assessing the role of the parameters,θ and p, based on the spec-
tral and pseudospectral error bounds (2.24) and (2.34). We first address the lo-
calization parameterθ . According to the first term on the right of (2.24) and,
respectively, (2.34), the truncation and, respectively, aliasing error bounds de-
crease for increasingθ ’s. Thus we are motivated to chooseθ as large as pos-
sible. However, the silent dependence onθ of the regularization error term in
(2.24) and (2.34) appears through the requirement of localized regularity, i.e.,
‖ f (s)‖L∞loc

= supy∈(x−θπ,x+θπ) | f (s)(y)| <∞.
Hence, ifd(x) denotes the distance fromx to the nearest jump discontinuity

of f :

d(x) := dist(x, sing suppf ), (2.35)

we then set

θ := d(x)

π
≤ 1. (2.36)

This choice ofθ provides us with the largest admissible support of the mollifier
ψp,θ , so thatψp,θ ∗ f (x) incorporates only the (largest) smooth neighborhood
aroundx. This results in anadaptivemollifier which amounts to a symmetric
windowed filter of maximal width, 2d(x), to be carried out in the physical space.
We highlight the fact that this choice of anx-dependent,θ(x) = d(x)/π , results
in a spectral mollifier that isnot translation invariant. Consequently, utilizing such
an adaptive mollifier is quite natural in the physical space and, although possible,
it is not well suited for convolution in the frequency space.

How can we find the nearest discontinuity? We refer the reader to[GeTa99],
[GeTa00a, b], for a general procedure to detect the edges in piecewise smooth data
from its (pseudo-) spectral content. The procedure, carried in the physical space, is
based on an appropriate choice of concentration factors which lead to (generalized)
conjugate sums which tend to concentrate in the vicinity of edges and are vanishing
elsewhere. The locations (and amplitudes) of all the discontinuous jumps are found
in one global sweep. Equipped with these locations, it is a straightforward matter
to evaluate, at everyx, the appropriate spectral parameter,θ(x) = d(x)/π .

Next we address the all-important choice ofp which controls how closelyψp,θ

possesses near vanishing moments of increasing order (2.11). Before determining
an optimal choice ofp let us revisit the original approach taken by Gottlieb and
Tadmor[GoTa85]. To this end, we first fix an arbitrary degree of smoothnesss,
and focus our attention on the optimal dependence ofp solelyon N. With this
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in mind, the dominant terms of the error bounds, (2.24) and (2.34), are of order
(p/N)s andp−s, respectively. Equilibrating these competing terms givesp = √N,
which results in the spectral convergence rate sought in[GoTa85], namely, for an
arbitrarys,

|E(N, p, θ)|p=√N ≤ Consts,θ · N−s/2. (2.37)

Although this estimate yields the desired spectral convergence rate sought in
[GoTa85], it suffers as an over-pessimistic restriction since the possible depen-
dence ofp on s andθ were not fully exploited. In fact, while the above approach
to equilibration, withp depending solely onN yields p = N0.5, numerical experi-
ments reported back in the original[GoTa85]have shown that when treatingp as a
fixed power ofN, p = Nβ , superior results are obtained for 0.7< β < 0.9. Indeed,
the numerical experiments reported in Section 3.2, and which motivate the present
study, clearly indicate that the contributions of the truncation and regularization
terms are equilibrated whenp ∼ N. Moreover, the truncation and aliasing error
contributions to the error bounds (2.24) and (2.34) predict convergence only forx’s
which are bounded away from the jump discontinuities off , whereθ(x) > p/N.
Consequently, withθ(x) := d(x)/π and f (·) having a discontinuity, say atx0,
convergence cannot be guaranteed in the region(

x0− p

N
π, x0+ p

N
π
)
. (2.38)

Thus, a nonadaptive choice ofp, chosen as a fixedfractionalpower ofN indepen-
dent of θ(x), say p ∼ √N, can lead to a loss of convergence in a large zone of
sizeO(N−1/2) around the discontinuity. The loss of convergence was confirmed in
the numerical experiments reported in Section 3.2. This should be contrasted with
the adaptive mollifiers introduced in Section 3, which will enable us to achieve
exponential accuracy up to the immediate,O(1/N), vicinity of these discontinu-
ities. We now turn to determining an optimal choice ofp by incorporating both
the distance to the nearest discontinuity,d(x), and by exploiting the fact that the
error bounds (2.24) and (2.34) allow us to use a variable degree of smoothness,s.

3. Adaptive Mollifiers. Exponential Accuracy

Epilogue (Gevrey Regularity). The spectral decay estimates (2.2) and (2.27) tell
us that forC∞0 data, the (pseudo) spectral errors decay faster than any fixed poly-
nomial order. To quantify theactualerror decay, we need to classify the specific
order ofC∞0 regularity. The Gevrey class,Gα, α ≥ 1, consists ofρ’s with constants
η := ηρ andM := Mρ , such that the following estimate holds

sup
x∈<
|ρ(s)(x)| ≤ M

(s!)α

ηs
, s= 1,2, . . . . (3.1)

We have two prototypical examples in mind.
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Example 1. A bounded analytic functionρ belongs toG1 with Mρ = supx∈< |ρ
(x)| and 2ηρ equals the width of theρ’s analyticity strip.

Example 2. Consider aC∞0 (−π, π) cut-off function depending on an arbitrary
constantc > 0, which takes the form

ρc(x) =
{

e(cx2/(x2−π2)), |x| < π

0, |x| ≥ π

}
=: e(cx2/(x2−π2))1[−π,π ] . (3.2)

In this particular case there exists a constantλ = λc such that the higher derivatives
are upper bounded by3

|ρ(s)c (x)| ≤ M
s!

(λc|x2− π2|)s e(cx2/(x2−π2)), s= 1,2, . . . . (3.3)

The maximal value of the upper bound on the right-hand side of (3.3) is obtained
at x = xmax wherex2

max− π2 ∼ −π2c/s; consult.4 This implies that our cut-off
functionρc admitsG2 regularity, namely, there exists a constantηc := λcπ

2c such
that

sup
x∈<
|ρ(s)c (x)| ≤ Constc ·s!

(
s

ηc

)s

e−s ≤ Constc · (s!)2

ηs
c

, s= 1,2, . . . . (3.4)

We now turn to examining the actual decay rate of Fourier projections,|SNρ−ρ|,
for arbitraryGα-functions. According to (2.2), combined with the growth of‖ρ‖Cs

dictated by (3.1), theL∞-error in the spectral projection of aGα function,ρ, is
governed by

|SNρ(x)− ρ(x)| ≤ Const· N (s!)α

(ηN)s
, s= 1,2, . . . . (3.5)

The expression of the type encountered on the right-hand side of (3.5),(s!)α(ηN)−s,
attains its minimum atsmin = (ηN)1/α:

min
s

(s!)α

(ηN)s
∼ min

s

(
sα

ηeαN

)s

= e−α(ηN)1/α . (3.6)

Thus, minimizing the upper bound in (3.5) ats = smin = (ηN)1/α yields the
exponential accuracy offractionalorder

|SNρ(x)− ρ(x)| ≤ Const· Ne−α(ηN)1/α , ρ ∈ Gα. (3.7)

3 To this end, note thatρc(x) = e+(x)e−(x) with e±(x) := exp(cx/(x± π) for x ∈ (−π, π). The
functionse±(x) upper bounded by|e(s)± (x)| ≤ M±s!(λc|x ± π |)−se±(x), with appropriateλ = λc

[Jo, p. 73].
4 For large values ofs, the function|a(x)|−s ·exp(αa(x)+β/a(x))with fixedα andβ is maximized

at x = xmax such thata(xmax) ∼ −β/s. In our case,a(x) = x2 − π2 andβ ∼ cπ2.
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The caseα = 1 recovers the exponential decay for analyticρ’s, (2.5), whereas for
α > 1 we have exponential decay of fractional order. For example, ourG2 cut-off
functionρ = ρc in (3.2) satisfies (3.7), with(η, α) = (ηc,2), yielding

|Spρc(x)− ρc(x)| ≤ Const· p · e−2
√
ηc p. (3.8)

Equipped with these estimates we now revisit the error decay of spectral mollifiers
based on theGα cut-off functionsρ. Both contributions to the error in (2.14),
the regularizationR(N, p, θ) and the truncationT(N, p, θ) (as well as aliasing
A(N, p, θ) in (2.31)), are controlled by the decay rate of Fourier projections.

3.1. The(θ, p) Parameters Revisited. Exponential Accuracy

We assume thatf (·) is piecewise analytic. For each fixedx, our choice ofθ =
θ(x) = d(x)/π guarantees thatf (x − θy) is analytic in the range|y| ≤ π and
hence its product with theGα(−π, π) functionρ(y) yields theGα regularity of
gx(y) = f (x − θy)ρ(y) − f (x). According to (2.16), the regularization error,
R(N, p, θ), is controlled by the Fourier projection ofgx(·), and in view of itsGα

regularity, (3.7) yields

|R(N, p, θ)| = |(Spgx(y)− gx(y))|y=0| ≤ Constρ · p · e−α(ηp)1/α . (3.9)

For example, ifρ = ρc, we get

|Rρc(N, p, θ)| ≤ Constc · p · e−2
√
ηc p. (3.10)

Remark. It is here that we use the normalization,ρ(0) − 1 = gx(y = 0) = 0,
and (3.9) shows that one can slightly relax this normalization within the specified
error bound

|ρ(0)− 1| ≤ Const· e−α(ηp)1/α . (3.11)

Next we turn to the truncation error,T(N, p, θ). According to (2.19), its decay
is controlled by the Fourier projection of the localized Dirichlet kernelψp,θ (x) =
(1/θ)ψp(x/θ). Here we shall need the specific structure of the localizerρ(x) =
ρc(x) in (3.2). The Leibnitz rule and (3.3) yield

|ψ(s)
p (x)| ≤

s∑
k=0

(
s

k

)
|ρ(k)c (x)| · |D(s−k)

p (x)|

≤ Const· s!

(
s∑

k=0

ps−k

(s− k)!
(ηc|x2− π2|)−k

)
· e(cx2/(x2−π2))

≤ Const· s!

(λc|x2− π2|)s e(pλc|x2−π2|+cx2/(x2−π2))
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which, after dilation, satisfies

|ψ(s)
p,θ (x)| ≤ Const· s!

(
θ

λc|a(x)|
)s

· e(pλc|a(x)|/θ2+cx2/a(x)),

a(x) := x2− π2θ2(x). (3.12)

Following a similar manipulation we used earlier, the upper bound on the right-
hand side of the (3.12) is maximized atx = xmax with x2

max− π2θ2 ∼ −cπ2θ2/s,
which leads to theG2-regularity bound forψp,θ (where, as before,ηc := λcπ

2c):

sup
x∈<
|ψ(s)

p,θ (x)| ≤ Const· s!

(
s

ηcθe

)s

epηc/s ≤ Const· (s!)2

(ηcθ)s
epηc/s,

s= 1,2, . . . . (3.13)

With (3.13) we utilize (2.22) to obtain the following precise bound of the truncation
error

|T(N, p, θ)| ≤ Const· (s!)2

(ηcθN)s
epηc/s. (3.14)

To minimize the upper bound (3.14), we first seek the minimizer for the order of
smoothness,s = sp, and then optimize the free spectral parameterp ≤ N for
both the truncation and regularization errors. We begin by noting that a general
expression of the type encountered on the right-hand side of (3.14):

(s!)2

(ηcθN)s
epηc/s ∼

(
s2

ηcθe2N

)s

epηc/s =: M(s, p),

is minimized at thep-dependent indexsmin such that

∂s(log M(s, p))|s=smin = log

(
s2
min

ηcθN

)
− pηc

s2
min

= 0. (3.15)

Though we cannot find its explicit solution, (3.15) yields a rather precise bound
on smin which turns out to be essentially independent ofp. Indeed, for the first
expression on the right-hand side of (3.15) to be positive, we needsmin =

√
βηcθN

with someβ > 1. Plugging this expression,smin =
√
βηcθN, into (3.15), we find

that for p ≤ N we must have logβ = log(s2
min/ηcθN) = ηc p/s2

min ≤ 1/βθ . We
therefore sets∼ smin of the form

s=
√
βηcθN, 1< β < 1.764,

so that the freeβ parameter satisfies the above constraint5 β logβ ≤ 1≤ 1/θ . The
corresponding optimal parameterp is then given by

pmin = s2

ηc
·
(

log
s2

ηcθN

)
|s=smin

= κ · θN,

0< κ =: β logβ < 1

(
≤ 1

θ

)
. (3.16)

5 Recall thatθ = θ(x) := d(x)/π < 1.
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We conclude with an optimal choice ofp of orderO(θN), replacing the previous
choice, (2.37), of orderO(

√
N). The resulting exponentially small truncation error

bound, (3.14), now reads

|T(N, p, θ)| ≤ Const· (s!)2

(ηcθN)s
epηc/s|s=smin ∼

√
θN

(
β

e

)2
√
βηcθN

,

1< β ≤ 1.764. (3.17)

With this choice ofp = pmin in (3.16) we find, essentially, the same exponentially
small bound on the regularization error in (3.10):

|R(N, p, θ)| ≤ Const· θN

(
1

e

)2
√
β logβ·ηcθN

. (3.18)

Figures 3.1(f) and 3.2(f) confirm that the contributions of the truncation and reg-
ularization parts of the error are of the same exponentially small orderup to the
vicinity of the discontinuous jumps with this choice of optimalp ∼ Nd(x)/π , in
contrast to previous choices ofp = O(Nγ ), γ < 1, consult Figures 3.1(b)–(d)
and 3.2(b)–(d).

We summarize what we have shown in the following theorem.

Theorem 3.1. Given the Fourier projection, SN f (·) of a piecewise analytic f(·),
we consider the two-parameter family of spectral mollifiers

ψp,θ (x) := 1

θ
ρc

(x

θ

)
Dp

(x

θ

)
, ρc := e(cx2/(x2−π2))1[−π,π ], c > 0,

and we set

θ = θ(x) := d(x)

π
, d(x) = dist(x, sing suppf ), (3.19)

p = p(x) ∼ κ · θ(x)N, 0< κ = β logβ < 1. (3.20)

Then there exist constants, Constc andηc,depending solely on the analytic behavior
of f (·) in the neighborhood of x, such that we can recover the intermediate values
of f (x) with the following exponential accuracy

|ψp,θ ? SN f (x)− f (x)| ≤ Constc · θN

(
β

e

)2
√
κηcθ(x)N

,

1< β ≤ 1.764. (3.21)

Remark. Theorem 3.1 indicates an optimal choice for the spectral mollifier,
ψp,θ , based on anadaptivedegree of orderp = κθ(x)N, with an arbitrary free
parameter, 0< κ = β logβ < 1. We could further optimize the error bound (3.21)
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over all possible choices ofβ, by equilibrating the leading term in the truncation
and regularization error bounds so that

(
β

e

)2
√
β·ηcθ(x)N

∼
(

1

e

)2
√
β logβ·ηcθ(x)N

,

with the minimal value found at logβ∗ = (3−
√

5)/2, the correspondingκ∗ :=
β∗ logβ∗ = 0.5596 and 2

√
κ∗/π = 0.8445 leading to an error bound

|ψp,θ ? SN f (x)− f (x)| ≤ Constc · d(x)N
(

1

e

)0.845
√
ηcd(x)N

. (3.22)

Although the last estimate serves only as an upper bound for the error, it is still
remarkable that the (close to) optimal parametrization of the adaptive mollifier is
found to be essentially independent of the properties off (·).

Similar results hold in the pseudospectral case. In this case, we are given the
Fourier interpolant,IN f (x), and the corresponding discrete convolution is carried
out in the physical space with overall error,E(N, p, θ; f ) = ψp,θ ? IN f (x)− f (x),
which consists of aliasing and regularization errors, (2.31). According to (2.32), the
former is upper bounded by the truncation off ′, which retains the same analyticity
properties asf does. We conclude:

Theorem 3.2. Given the equidistant gridvalues, { f (xν)}0≤ν≤2N−1 of a piecewise
analytic f(·), we consider the two-parameter family of spectral mollifiers

ψp,θ (x) := 1

θ
ρc

(x

θ

)
Dp

(x

θ

)
, ρc := e

(
cx2

x2−π2

)
1[−π,π ], c > 0,

and we set

θ = θ(x) := d(x)

π
, d(x) = dist(x, sing suppf ), (3.23)

p = p(x) ∼ κ · θ(x)N, 0< κ = β logβ < 1. (3.24)

Then there exist constants, Constc andηc,depending solely on the analytic behavior
of f (·) in the neighborhood of x, such that we can recover the intermediate values
of f (x) with the following exponential accuracy∣∣∣∣∣ πN

2N−1∑
ν=0

ψp,θ (x − yν) f (yν)− f (x)

∣∣∣∣∣ ≤ Constc · (d(x)N)2
(
β

e

)2
√
βηcθ(x)N

,

1< β < 1.764. (3.25)
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3.2. Numerical Experiments

The first set of numerical experiments compares our results with those of Gottlieb
and Tadmor[GoTa85], involving the same choice off (·) = f1(·):

f1(x) =
{

sin(x/2), x ∈ [0, π),

−sin(x/2), x ∈ [π,2π).
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(3.26)

A second set of results is demonstrated with a second function,f2(x), given by

f2(x) =
{
(2e2x − 1− eπ )/(eπ − 1), x ∈ [0, π/2),

−sin(2x/3− π/3), x ∈ [π/2,2π).
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(3.27)
This is a considerable challenging test problem:f2 has a jump discontinuity at
x = π/2 and, due to the periodic extension of the Fourier series, two more dis-
continuities at the boundariesx = 0,2π . Moreover, a relatively large gradient is
formed forx ∼ π/2−, and the sharp peak on the left ofx = π/2 is met by a jump
discontinuity on the right.

For the computations below we utilize the same localizerρ = ρc as in (3.2),
with c = 10. In the first case,f1 has a simple discontinuity atx = π , so theθ
parameter was chosen according to (2.36),θ = θ(x) = min(|x|, |x − π |)/π . In
the second case off2(x), we set

θ(x) = [min(x, π/2− x)+ +min(x − π/2,2π − x)+]/π.

Since the error deteriorates in the immediate vicinity of the discontinuities where
θ(x)N ∼ 1, a window of minimum width ofθmin = min{θ(x),1/4N}was imposed
aroundx0 = {0, π/2, π,2π}. More about the treatment in the immediate vicinity
of the discontinuity is found in Section 4.1.

The different policies for choosing the parameterp are outlined below. In
particular, for the near optimal choice recommended in Theorems 3.1 and 3.2 we
use a mollifier of an adaptive degreep = κθ(x)N with κ = 1/

√
e= 0.6095∼ κ∗.

We begin with the results based on the spectral projectionsSN f1 andSN f2. For
comparison purposes, the exact convolution integral,ψp,θ ? SN f , was computed
with a composite Simpson method usingπ/8000 points, and the mollified results
are recorded at the left half-points,(π/150)ν, ν = 0, 1, . . . ,149. Figure 3.1 shows
the result of treating the spectral projection,ψp,θ ? SN f1 based onN = 128
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Table 3.1. Predicted location where spectral convergence is lost at|x − x0| ∼ pπ/N.

p\N 32 64 128

N0.8 1.6 1.8 2.0
N0.5 2.6 2.7 2.9
N0.2 2.9 3.0 3.1

modes, for different choices ofp’s. Figure 3.2 shows the same results forf2(x).
It is evident from these figures, Figures 3.1(e)–(f) and 3.2(e)–(f), that the best
results are obtained withp = θ(x)N/√e, in agreement with our analysis for the
optimal choice of the exponentially accurate mollifier in (3.22). We note that other
choices forp ∼ Nγ lead to large intervals where exponential accuracy is lost due
to the imbalance between the truncation and regularization errors, consult cases
(a)–(d) in Figures 3.1–3.2. As we noted earlier in (2.38), a nonadaptive choice ofp
independent ofθ(x) leads to deterioration of the accuracy in an increasing region of
size∼ pπ/N around the discontinuity, and the predicted locations of these values,
given in Table 3.1, could be observed in Figure 3.1(a)–(d) for the functionf1(x).
Figure 3.3 illustrates the spectral convergence asN doubles from 32 to 64, then to
1286. The exponential convergence of the near optimal adaptivep = θ(x)N/√e
can be seen in Figure 3.3(e)–(f), where the log-slopes are constants with respect
to d(x) (for fixed N) and with respect toN (for fixed x).

Next, the numerical experiments are repeated for the discrete case, using dis-
crete mollification of the Fourier interpolant. Given the grid values off1(xν)
and f2(xν) at the equidistant grid pointsxν = νπ/N, we recover the point
values at the intermediate grid pointsf (xν+1/2). A minimal window width of
θmin = min(θ(x),2π/N) was imposed in the immediate vicinity of the disconti-
nuities to maintain a minimum number of two sampling points to be used in the
discrete mollification.

Compared with the previous mollified results of the spectral projections, there
are two noticeable changes, both involving the nonoptimal choice ofp ∼ Nγ with
γ < 1:

(i) the location where spectral/exponential convergence is lost is noticeably
closer to the discontinuities compared with the mollified spectral projec-
tions, but, at the same time,

(ii) much larger oscillations are observed in the regions where spectral conver-
gence is lost.

Comparing Figures 3.1 versus 3.4, and 3.2 versus 3.5, gives a visual comparison
for both changes from spectral to pseudospectral. The deteriorations forp = N0.8

andN0.5 are very noticeable.

6 Machine truncation error is at−16.
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Fig. 3.1. Recovery off1(x) from its firstN = 128 Fourier modes, on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral mollifier
ψp,θ based on various choices ofp: (a)–(b)p = N0.5, (c)–(d)p = N0.8, and (e)–(f)p = Nd(x)/π

√
e.
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Fig. 3.2. Recovery off2(x) from its firstN = 128 Fourier modes, on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral mollifier
ψp,θ based on various choices ofp: (a)–(b)p = N0.5, (c)–(d)p = N0.8, and (e)–(f)p = Nd(x)/π
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Fig. 3.3. Log of the error withN = 32, 64, 128 modes forf1(x) on the left, and forf2(x) on the
right, using various choices ofp: (a)–(b) p = N0.5, (c)–(d) p = N0.8, and (e)–(f)p = Nd(x)/π

√
e.

4. Adaptive Mollifiers. Normalization

The essence of the two-parameter spectral mollifier discussed in Section 3,ψp,θ (x),
is adaptivity: it is based on a Dirichlet kernel of avariabledegree,p ∼ θ(x)N,
which is adapted by taking into account the location ofx relative to its nearest
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Fig. 3.4. Recovery off1(x) from itsN = 128 equidistant grid values on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral mollifierψp,θ

based on various choices ofp: (a)–(b) p = N0.5, (c)–(d) p = N0.8, and (e)–(f)p = Nd(x)/π
√

e.



Adaptive Mollifiers for Recovery of Piecewise Smooth Data 177

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(a) (b)

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(c) (d)

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(e) (f)

Fig. 3.5. Recovery off2(x) from itsN = 128 equidistant grid values on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral mollifierψp,θ

based on various choices ofp: (a)–(b) p = N0.5, (c)–(d) p = N0.8, and (e)–(f)p = Nd(x)/π
√
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singularity,θ(x) = d(x)/π . The resulting error estimate tells us that there exist
constants, Const, γ , andα > 1, such that one can recover a piecewise analytic
f (x) from its spectral or pseudospectral projections,PN f (·):

|ψp,θ ? PN f (x)− f (x)| ≤ Const· e−(γd(x))N)1/α .

The error bound on the right shows that the adaptive mollifier is exponentially
accurate for allx’s, except for what we refer to asthe immediate vicinityof the
jump discontinuities off , namely, thosex’s whered(x) ∼ 1/N. This should be
compared with previous, nonadaptive choices for choosing the degree ofψp,θ : for
example, withp ∼ √N we found a loss of exponential accuracy in a zone of size
∼ 1/
√

N around the discontinuities off . Put differently, there areO(
√

N) “cells”
which are not accurately recovered in this case. In contrast, our adaptive mollifier
is exponentially accurate at all butfinitely manycells near the jump discontinuities.
According to the error estimates (3.21), (3.22), and (3.25), convergence may fail
in these cells inside the immediate vicinity of sing suppf and, indeed, spurious
oscillations could be noticed in Figures 3.1 and 3.2. In this section we address the
question of convergenceup tothe jump discontinuities.

One possible approach is to retain a uniform exponential accuracy up to the
jump discontinuities. Such an approach, developed by Gottlieb, Shu, Gelb, and
their coworkers is surveyed in[GoSh95], [GoSh98]. It is based on Gegenbauer
expansions of degreeλ ∼ N. Exponential accuracy is retaineduniformlythrough-
out each interval of smoothness of the piecewise analyticf . The computation
of the high-order Gegenbauer coefficients, however, is numerically sensitive and
the parameters involved need to be properly tuned in order to avoid triggering of
instabilities[Ge97], [Ge00].

Here we proceed with another approach where we retain avariable order of
accuracy near the jump discontinuities, of orderO((d(x))r+1). Comparing this
polynomial error bound against the interior exponential error bounds,
say (3.22),

Const· d(x)N · e−0.845
√
ηcd(x)N ≥ (d(x))r+1,

we find that there are onlyfinitely manycells in which the error, dictated by the
smaller of the two, is dominated by polynomial accuracy

d(x) ≤ Const· r
2(logd(x))2

ηcN
∼ r 2

N
. (4.1)
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In this approach, the variable order of accuracy suggested by (4.1),r ∼ √d(x)N,
is increasing together with the increasing distance away from the jumps or, more
precisely, together with the number of cells away from the discontinuities, which
is consistent with theadaptivenature of our exponentially accurate mollifier
away from the immediate vicinity of these jumps. The current approach of a
variable order of accuracy, which adapted to the distance from the jump dis-
continuities, is reminiscent of the Essentially Non Oscillatory (ENO) piecewise
polynomial reconstruction employed in the context of nonlinear conservation
laws[HEOC85], [Sh97].

How do we enforce that our adaptive mollifiers are polynomially accurate in
the immediate vicinity of jump discontinuities? As we argued earlier in (2.11),
the adaptive mollifierψp,θ admits spectrally small moments of orderp−s ∼
(d(x)N)−s. More precisely, using (3.7), we find, forρ ∈ Gα:

∫ πθ

−πθ
ysψp,θ (y)dy =

∫ π

−π
(yθ)sρ(y)Dp(y)dy= Dp ? ((yθ)

sρ)(y)|y=0

= δs0+ Const· θs · e−α(ηp)1/α , p ∼ d(x)N.

Consequently,ψp,θ possesses exponentially small moments at allx’s except in
the immediate vicinity of the jumps wherep ∼ d(x)N ∼ 1, the sameO(1/N)
neighborhoods where the previous exponential error bounds fail. This is illustrated
in the numerical experiments exhibited in Section 3.2 which show the blurring in
symmetric intervals with a width∼ 1/N around each discontinuity. To remove
this blurring, we will impose a novelnormalizationso that finitely many moments
of (the projection of)ψp,θ preciselyvanish. As we shall see below, this will regain
a polynomial convergence rate of the corresponding finite orderr . We have seen
that the general adaptivity (4.1) requiresr ∼ √d(x)N; in practice, enforcing a
fixed number of vanishing moments,r ∼ 2,3, will suffice.

4.1. Spectral Normalization. Adaptive Mollifiers in the Vicinity of Jumps

Rather thanψp,θ possessing a fixed number of vanishing moments, as in standard
mollification (2.7), we require that its spectral projection,SNψp,θ , possess a unit
mass and, sayr vanishing moments,∫ π

−π
ys(SNψp,θ )(y)dy= δs0, s= 0,1, . . . , r. (4.2)

It then follows that adaptive mollification of the Fourier projection,ψp,θ ? SN f ,
recovers the point values off with the desired polynomial orderO(d(x))r .
Indeed, noting that for eachx, the function f (x − y) remains smooth in the
neighborhood|y| ≤ πθ = d(x) we find, utilizing the symmetry of the spectral
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projection,
∫
(SN f )g = ∫ f (SNg):

ψp,θ ? SN f (x)− f (x) =
∫ πθ

−πθ
[ f (x − y)− f (x)](SNψp,θ )(y)dy

=
r∑

s=1

(−1)s

s!
f (s)(x)

∫ π

−π
ys(SNψp,θ )(y)dy

+ (−1)r+1

(r + 1)!
f (r+1)(·)

∫ π

−π
yr+1(SNψp,θ )(y)dy

∼
∫ π

−π
(SN yr+1)ψp,θ (y)dy≤ Const·

(
d(x)+ 1

N

)r+1

.

The last step follows from an upper bound for the spectral projection of monomials
outlined at the end of this subsection.

To enforce the vanishing moments condition (4.2) on the adaptive mollifier,
ψp,θ (·) = (ρ(·)Dp(·/θ))/θ , we take advantage of the freedom we have in choosing
the localizerρ(·). We begin by normalizing

ψ̃p,θ (y) = ψp,θ (y)∫ π
−π ψp,θ (z)dz

so that̃ψp,θ has a unit mass, and hence (4.2) holds forr = 0, for
∫

SN(ψp,θ )(y)dy
= ∫ ψp,θ (y)dy = 1. We note that the resulting mollifier takes the same form as
before, namely,

ψ̃p,θ (y) := 1

θ
(ρ̃cDp)

( y

θ

)
, (4.3)

where the only difference is associated with the modified localizer

ρ̃c(y) = q0 · ρc(y), q0 = 1∫ π
−π ψp,θ (z)dz

. (4.4)

Observe that, in fact, 1/q0 =
∫
ψp,θ (z)dz≡ ∫ ψp(z)dz= (Dp ? ρc)(0) and that,

with our choice ofp = κ · θ(x)N, we have, in view of (3.7),

ρ̃c(0) = q0 = 1

(Dp ? ρc)(0)
= 1+O(ε),

ε ∼ d(x)N · e−2
√
ηc p, p = κ · θ(x)N,

which is admissible within the same exponentially small error bound we had before,
consult (3.11). In other words, we are able to modify the localizerρc(·)→ ρ̃c(·)
to satisfy the first-order normalization, (4.2), withr = 0, while the corresponding
mollifier, (ρx Dp)θ → (ρ̃cDp)θ , retains the same overall exponential accuracy.
Moreover, using evenρ’s implies thatψ(·) is an even function and hence its odd
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moments vanish. Consequently, (4.2) holds withr = 1, and we end up with the
following quadratic error bound in the vicinity ofx (compared with (3.22)):

|ψ̃p,θ (x) ? SN f (x)− f (x)| ≤ Const·
(

d(x)+ 1

N

)2

· e−0.845
√
ηcd(x)N .

In a similar manner, we can enforce higher vanishing moments by propernormal-
izationof the localizerρ(·). There is clearly more than one way to proceed—here
is one possibility. In order to satisfy (4.2) withr = 2 we use a prefactor of the form
ρ̃c(x) ∼ (1+ q2x2)ρc(x). Imposing a unit mass and a vanishing second moment
we may take

ψ̃p,θ (y) = 1

θ
(ρ̃cDp)

( y

θ

)
, ρ̃c(y) ∼ (1+ q2y2)ρc(y),

with the normalized localizer,̃ρc(y), given by

ρ̃c(y) = 1+ q2y2∫ π
−π (1+ q2(z/θ)2)ψp,θ (z)dz

ρc(y),

q2 =
− ∫ π−π (SNz2)ψp,θ (z)dz∫ π
−π (SNz2)(z/θ)2ψp,θ (z)dz

. (4.5)

As before, the resulting mollifier̃ψp,θ is admissible in the sense of satisfying
the normalization (3.11) within the exponentially small error term. Indeed, since∫

y2ψp,θ (y)dy= (Dp ? (y2ρc(y)))(0) = O(ε), we find

ρ̃c(0) = 1∫ π
−π (1+ q2(y/θ)2)ψp,θ (y)dy

= 1

1+ q2 · ε/θ2
= 1+ Const· (d(x)N)3 · e−2

√
ηc p, p = κ · θ(x)N.

A straightforward computation shows that the unit massψ̃p,θ has a second van-
ishing moment∫ π

−π
y2(SNψ̃p,θ )(y)dy =

∫ π

−π
(SN y2)

(
a0+ a2

( y

θ

)2
)
ψp,θ (y)dy

=
∫ π

−π
(SN y2)ψp,θ (y)dy

+ q2

∫ π

−π
(SN y2)

( y

θ

)2
ψp,θ (y)dy= 0. (4.6)

Sinceρ̃c(·) is even, so is the normalized mollifier̃ψ(·), and hence its third moment
vanishes yielding a fourth-order convergence rate in the immediate vicinity of the
jump discontinuities

|(ψ̃p,θ (x) ? SN f )(x)− f (x)| ≤ Const·
(

d(x)+ 1

N

)4

· e−0.845
√
ηcd(x)N .
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We close this section with the promised

Lemma 4.1[Tao]. The following pointwise estimate holds

|SN(y
r )| .

(
|y| + 1

N

)r

.

To prove this, we use a dyadic decomposition (similar to the Littlewood–Paley
construction) to split

yr =
∑
k≤0

2krψ(y/2k)

whereψ is a bump function adapted to the set{π/4< |y| < π}.
For 2k . 1/N, the usual upperbounds of the Dirichlet kernel tell us that

|SN(ψ(·/2k))(y)| . 2k N/(1+ N|y|).
Now suppose 2k & 1/N. In this case we can use the rapid decay of the Fourier
transform ofψ(·/2k), for frequenciesÀ N, to obtain the estimate

‖(1− SN)(ψ(·/2k))‖∞ . (2k N)−100.

In particular, since suppψ ∼ 1, we have|SN(ψ(·/2k))(x)| . 1 when|y| ∼ 2k, and
|SN(ψ(·/2k))(y)| . (2k N)−100 otherwise. The desired bound follows by adding
together all these estimates overk.

4.2. Pseudospectral Normalization. Adaptive Mollifiers in the Vicinity of Jumps

We now turn to the pseudospectral case which will only require evaluations of
discrete sums and, consequently, can be implemented with little increase in com-
putation time.

Let f ∗ g(x) := ∑ν f (x − yν)g(yν)h denote the (noncommutative) discrete
convolution based on 2N equidistant grid points,yν = νh, h = π/N. Noting that
for eachx, the functionf (y) remains smooth in the neighborhood|x− y| ≤ πθ =
d(x), we find

|ψp,θ ∗ IN f (x)− f (x)| =
∣∣∣∣∣∑
ν

ψp,θ (x − yν)[ f (yν)− f (x)]h

∣∣∣∣∣
=
∣∣∣∣∣ r∑

s=1

(−1)s

s!
f (s)(x)

∑
ν

(x − yν)
sψp,θ (x − yν)h

+ (−1)r+1

(r + 1)!
f (r+1)(·)

∑
ν

(x − yν)
r+1ψp,θ (x − yν)h

∣∣∣∣∣
≤ Const· (d(x))r+1, Const∼

‖ f ‖Cr+1
loc

(r + 1)!
,
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providedψp,θ has its firstr discretemoments vanish

2N−1∑
ν=0

(x − yν)
sψp,θ (x − yν)h = δs0, s= 0,1,2, . . . , r. (4.7)

Observe that, unlike the continuous case associated with spectral projections,
the discrete constraint (4.7) is not translation invariant and hence it requiresx-
dependent normalizations. The additional computational effort is minimal, how-
ever, due to the discrete summations which are localized in the immediate vicinity
of x. Indeed, as a first step, we note the validity of (4.7) forx’s which are away
from the immediate vicinity of the jumps off . To this end, we apply the main
exponential error estimate (3.25) forf (·) = (x − ·)s (for arbitrary fixedx), to
obtain

2N−1∑
ν=0

(x − yν)
sψp,θ (x − yν)h = (x − y)s|y=x +O(ε) = δs0+O(ε),

ε ∼ (d(x)N)2 · e−
√

Const·d(x)·N . (4.8)

Thus, (4.7) holds modulo exponentially small error for thosex’s which are away
from the jumps off , whered(x) À 1/N. The issue now is to enforce discrete
vanishing moments on the adaptive mollifierψp(x) = ρ(x)Dp(x) in the vicinity
of these jumps and, to this end, we take advantage of the freedom we have in
choosing the localizerρ(·). We begin by normalizing

ψ̃p,θ (y) = ψp,θ (y)∑2N−1
ν=0 ψp,θ (x − yν)h

,

so thatψ̃p,θ (x− ·) has a (discrete) unit mass, i.e., (4.7) holds withr = 0. We note
that the resulting mollifier takes the same form as before, namely,

ψ̃p,θ (y) := 1

θ
(ρ̃cDp)

( y

θ

)
, (4.9)

and that the only difference is associated with the modified localizer

ρ̃c(y) = q0 · ρc(y), q0 = 1∑2N−1
ν=0 ψp,θ (x − yν)h

. (4.10)

By (4.8), thex-dependent normalization factor,q0 = q0(x) is, in fact, an approxi-
mate identity

1/q0 =
2N−1∑
ν=0

ψp,θ (x − yν)h = 1+O(ε), ε ∼ (d(x)N)2 · e−
√

Const·d(x)·N,

which shows that the normalized localizer is admissible,|ρ̃(0) − 1| = |q0 −
1| ≤ O(ε), within the same exponentially small error bound we had before,
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consult (3.11) with our choice ofp ∼ d(x) · N. In other words, we are able
to modify the localizerρc(·) → ρ̃c(·) to satisfy the first-order normalization,
(4.7), with r = 0 required near jump discontinuities, while the corresponding
mollifier, (ρx Dp)θ → (ρ̃cDp)θ , retains the same overall exponential accuracy
required outside the immediate vicinity of these jumps.

Next, we turn to enforcing that the first discrete moment vanishes,
∑

ν(x −
yν)ψ̃p,θ (x − yν)h = 0 and, to this end, we seek a modified mollifier of the form

ψ̃p,θ (y) = q(y/θ)∑
ν q

(
x − yν
θ

)
ψp,θ (x − yν)h

ψp,θ (y), q(y) := 1+ q1y,

with q1 chosen so that the second constraint, (4.7) withr = 1, is satisfied7

q1 = −
∑

ν(x − yν)ψp,θ (x − yν)h∑
ν

(x − yν)2

θ
ψp,θ (x − yν)h

. (4.11)

Consequently, (4.7) holds withr = 1, and we end up with a quadratic error bound
corresponding to (3.22):

|ψ̃p,θ ∗ IN f (x)− f (x)| ≤ Const· (d(x))2 · e−
√

Const·d(x)N .

Moreover, (4.8) implies thatq1 = O(ε) and hence the new normalized localizer is
admissible,ρ̃c(0) = 1+O(ε). In a similar manner we can treat higher moments
usingnormalizedlocalizers,ρ̃c(y) ∼ q(y)ρc(y), of the form

ψ̃p,θ (y) = 1

θ
(ρ̃cDp)

( y

θ

)
,

ρ̃c(y) := 1+ q1y+ · · · + qr yr∑
ν q

(
x − yν
θ

)
ψp,θ (x − yν)h

ρc(y). (4.12)

Ther free coefficients ofq(y) = 1+q1y+ · · ·+qr yr are chosen so as to enforce
(4.7) so that the firstr discrete moments of̃ψ vanish. This leads to a simple
r × r Vandermonde system (outlined at the end of this section) involving ther
grid values,{ f (yν)}, in the vicinity of x, |yν − x| ≤ θ(x)π . With our choice of
a symmetric support of sizeθ(x) = d(x)/π , there are preciselyr = 2θπ/h =
2Nd(x)/π such grid points in the immediate vicinity ofx, which enable us to
recover the intermediate grid values,f (x), with an adaptiveorder, (d(x))r+1,

7 We note, in passing, that̃ρc(·) being even implies that̃ψp,θ (·) is an even function and hence its
odd moments vanish. It follows that the first discrete moment,

∑
ν
(x− yν)ψp,θ (x− yν)h, vanishes at

the grid pointsx = yµ, and thereforeq1 = 0 there. But otherwise, unlike the similar situation with the
spectral normalization,q1 6= 0. The discrete summation inq1, however, involves only finitely many
neighboring values in theθ -vicinity of x.
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r ∼ Nd(x). As before, this normalization does not affect the exponential accuracy
away from the jump discontinuities, noting thatρ̃(0)c = 1/q0 = 1 + O(ε) in
agreement with (3.11). We summarize by stating

Theorem 4.1. Given the equidistant gridvalues, { f (xν)}0≤ν≤2N−1 of a piecewise
analytic f(·), we want to recover the intermediate values f(x). To this end, we
use the two-parameter family of pseudospectral mollifiers

ψ̃p,θ (y) := 1

θ
ρ̃c

( y

θ

)
Dp

( y

θ

)
, p = 0.5596· θN, c > 0,

whereθ = θ(x) := d(x)/π is the (scaled) distance between x and its nearest
jump discontinuity. We setρ̃c(y) := q(y)e(cy2/(y2−π2))1[−π,π ] as the normalizing
factor, with

q(y) = 1+ q1y+ · · · + qr yr∑
ν q

(
x − yν
θ

)
ψp,θ (x − yν)h

so that the first r discrete moments ofψ̃p,θ (y) vanish, i.e., (4.7)holds with r ∼
Nd(x).

Then there exist constants, Constc andηc, depending solely on the analytic be-
havior of f(·) in the neighborhood of x, such that we can recover the intermediate
values of f(x) with the following exponential accuracy∣∣∣∣∣ πN

2N−1∑
ν=0

ψp,θ (x − yν) f (yν)− f (x)

∣∣∣∣∣
≤ Constc · (d(x))r+1

(
1

e

)0.845
√
ηcd(x)N

, r ∼ Nd(x). (4.13)

The error bound (4.13) confirms our statement in the introduction of Section 4,
namely, theadaptivityof the spectral mollifier, in the sense of recovering the grid
values in the vicinity of the jumps with an increasing order,Nd(x), is proportional
to their distance from sing suppf . We have seen that the general adaptivity (4.1)
requiresr ∼ √d(x)N so that, in practice, enforcing a fixed number of vanishing
moments,r ∼ 2,3, will suffice as a transition to the exponentially error decay in
the interior region of smoothness. We highlight the fact that the modified mollifier
ψ̃p,θ , normalized by having finitely many (∼ 2,3) vanishing moments, can be con-
structed with little increase in computation time and, as we will see in Section 4.3
below, it yields greatly improved results near the discontinuities.

We close this section with a brief outline of the construction of ther -order accu-
rate normalization factorq(·). To recoverf (x), we seek anr -degree polynomial,
q(y) := 1+ q1y + · · · + qr yr , so that (4.7) holds. We emphasize that theqr ’s
depend on the specific pointx in the following manner. Settingzν := x− yν , then
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satisfying (4.7) for thehighermoments of̃ψp,θ , requires∑
ν

zs
νψ̃p,θ (zν)h = 0, s= 1,2, . . . , r,

and withψ̃p,θ (·) ∼ q(·/θ)ψp,θ (·) we end up with∑
ν

zs
ν

[
q
(zν
θ

)
− 1

]
ψp,θ (zν)h = −

∑
ν

zs
νψp,θ (zν), s= 1,2, . . . , r.

Expressed in terms of the discrete moments ofψ :

aα(zν) :=
∑
ν

(zν
θ

)1+α
ψp,θ (zν), α = 1,2, . . . ,2r,

this amounts to ther × r Vandermonde-like system for{q1, . . . ,qr }:
a1(zν) a2(zν) · · · ar (zν)

· · · · · ·
· · · · · ·
· · · · · ·

ar+1(zν) ar+2(zν) · · · a2r (zν)




q1

·
·
·

qr

=−


∑
ν zνψp,θ (zν)

·
·
·∑

ν zr
νψp,θ (zν)

 . (4.14)

Finally, we scaleq(·) so that(4.7) holds withs= 0, which led us to the normalized
localizer in (4.12).

4.3. Numerical Experiments

Figure 3.1(d) shows the blurring oscillations near the edges when using the non-
normalized adaptive mollifier. To reduce this blurring we will use the normalized
ψ̃p,θ for x’s in the vicinity of the jumps whered(x) ≤ 6π/N. The convolution
is computed at the same locations as in Section 3.2, and a minimum window
width of θ(x) = min(d(x)/π,2π/N) was imposed. The trapezoidal rule (with
spacing ofπ/8000) was used for the numerical integration of(SN y2)ψp,θ (y) and
(SN y2)y2ψp,θ (y), required for the computation ofq0 andq2 in Figure 4.1. Fig-
ure 4.1(a)–(d) shows the clear improvement near the edges once we utilize the
normalizedψ̃p,θ , while retaining the exponential convergence away from these
edges is illustrated in Figure 4.1(e)–(f).

We conclude with the pseudospectral case. TheO(1) error remains in Fig-
ure 3.4(d) for the non-normalized mollifier. The normalization of the discrete
mollifier in Section 4.2 shows that by using̃ψp,θ given in (4.12), with a fourth-
degree normalization factorq(·), results in a minimum convergence rate ofd(x)4

in the vicinity of the jumps, and with exponentially increasing order as we move
away from the jumps. This modification of̃ψp,θ leads to a considerable improve-
ment in the resolution near the discontinuity, which can be seen in Figure 4.2.
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Fig. 4.1. Recovery of f1(x) on the left andf2(x) on the right from theirN = 128 modes spectral
projections, using the fourth-order normalized mollifier (4.3), (4.5) of degreep = d(x)N/π

√
e.

Regularization errors (dashed) and truncation errors (solid) are shown on (c)–(d), and Log errors based
on N = 32, 64, and 128 modes are shown in (e)–(f).
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Fig. 4.2. Recovery of (a)f1(x) and (b) f2(x) (b) from their N = 128 modes spectral projections,
using the normalized mollifier. Log error for recovery of (c)f1(x) and (d) f2(x) from their spectral
projections based onN = 32, 64, and 128 modes. Here we use the normalized mollifier,ψp,θ of
degreep = d(x)N/π

√
e.

Here normalization was implemented usingψ̃p,θ in the vicinity of the jumps, for
d(x) ≤ 4π/N, and the adaptive mollifierψp,θ was used forx’s “away” from the
jumpsd(x) ≥ 4π/N. A minimum window of widthθ(x) = min(d(x)/π,2π/N)
was imposed.

5. Summary

In their original work Gottlieb and Tadmor[GoTa85] showed how to regainfor-
malspectral convergence in recovering piecewise smooth functions using the two-
parameter family of mollifiersψp,θ . Our analysis shows that with a proper choice of
parameters, in particular, anadaptivechoice for the degreep ∼ d(x)N, hides the
overall strength in the method. By incorporating the distance to the discontinuities,
θ = d(x)/π , along with the optimal value ofp, we end up with an exponentially
accurate recovery procedure up to the immediate vicinity of the jump disconti-
nuities. Moreover, with a proper localnormalizationof the spectral mollifier, one
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can further reduce the error in the vicinity of these jumps. For the pseudospectral
case, the normalization adds little to the overall computation time. Overall, this
yields a high resolution yet very robust recovery procedure which enables one to
effectively manipulate pointwise values of piecewise smooth data.
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