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Abstract. We discuss the reconstruction of piecewise smooth data from its
(pseudo-) spectral information. Spectral projections enjoy superior resolution pro-
vided the data is globally smooth, while the presence of jump discontinuities is
responsible for spuriou®(1) Gibbs oscillations in the neighborhood of edges and
an overall deterioration of the unacceptable first-order convergence in rate. The pur-
pose is to regain the superior accuracy in the piecewise smooth case, and this is
achieved by mollification.

Here we utilize a modified version of the two-parameter family of spectral molli-
fiers introduced by Gottlieb and Tadmj@oTa85]. The ubiquitous one-parameter,
finite-order mollifiers are based dfilation. In contrast, our mollifiers achieve their
high resolution by an intricate process of high-ordancellation To this end, we
firstimplement a localization step using an edge detection proc§@ef@00a, b]

The accurate recovery of piecewise smooth data is then carried out in the direction
of smoothness away from the edges, addptivityis responsible for the high res-
olution. The resulting adaptive mollifier greatly accelerates the convergence rate,
recovering piecewise analytic data within exponential accuracy while removing the
spurious oscillations that remained[®oTa85]. Thus, these adaptive mollifiers of-

fer a robust, general-purpose “black box” procedure for accurate post-processing of
piecewise smooth data.
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1. Introduction

We study a new procedure for the high-resolution recovery of piecewise smooth
data from its (pseudo-) spectral information. The purpose is to overcome the low-
order accuracy and spurious oscillations associated with the Gibbs phenomena,
and to regain the superior accuracy encoded in the global spectral coefficients.
A standard approach for removing spurious oscillations is based on mollification
over alocal region of smoothness. To this end, one employs a one-parameter
family of dilated unit mass mollifiers of the formp, = ¢(x/6)/6. In general,
such compactly supported mollifiers are restricted to finite-order accutacy,
f(x) — f(X)] < C,6", depending on the number,of vanishing momentg has.
Convergence is guaranteed by letting tlilation parameted | 0.
In [GoTa85] we introduced a two-parameter family of spectral mollifiers of the

form
1 /x X

¥0009 = 50 (5) s (5)-
Herep () isan arbitranC§° (-, ) function which localizes the-degree Dirich-
let kernelDy(y) = (sin(p + 1/2)y)/(2x sin(y/2)). The first parameter, the di-
lation parameteé, need not be small in this case, in fagt= 0(x) is made as
large as possible while maintaining the smoothnegg®f6-) f (-). Instead, itis
the second parameter, the degmeavhich allows the high-accuracy recovery of
piecewise smooth data from its (pseudo-) spectral projeckqr,(x). The high-
accuracy recovery is achieved here by choosing largeenforcing an intricate
process otancellationas an alternative to the usual finite-order accurate process
of localization.

In Section 2 we begin by revisiting the convergence analysigGofTa85].
Spectral accuracy is achieved by choosing an incregsing/N, so that/rp o has
essentiallyanishing moments all orderg,ySyrp o (y) dy = 850+ Cs - N~5/2, Vs,
yielding the “infinite-order” accuracy bound in the sensgf s x Py f(X) —

f(x)] <Cs-N~%2 Vs,

Although the last estimate yields the desired spectral convergence rate soughtin
[GoTa85], it suffers as an over-pessimistic restriction since its derivation ignores
the possible dependencebn the degree of local smoothnessand the support
of local smoothnessy 6 = 6(x). In Section 3 we begin a detailed study of the
optimal choice of thép, 0) parameters of the spectral mollifigps -

e Lettingd(x) denote the distance to the nearest edge, we first sef (x) ~
d(x) so thatyp ¢ » Py f(X) incorporates the largest smooth neighborhood
aroundx. To find the distance to the nearest discontinuity we utilize a general
edge detection procedui@eTa99], [GeTa00a, b] where the locations (and
amplitudes) of all edges are foundane global sweepOnce the edges are
located, it is a straightforward matter to evaluate, at exetie appropriate
spectral parameténx) = d(x) /.

e Next, we turn to examining the degr@ewhich is responsible for the over-
all high accuracy by enforcing an intricate cancellation. A careful analysis
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carried out in Section 3.1 leads to an optimal choice ochdaptivedegree

of orderp = p(x) ~ d(x)N. Indeed, numerical experiments reported in the
original [GoTa85], and additional tests carried out in Section 3.2 below and
which motivate the present study, clearly indicate a superior convergence up
to the immediate vicinity of the interior edges with atkaptivedegree of the
optimal orderp = p(x) ~ d(x)N.

Given the spectral projection of a piecewise analytic funct&nf (-), our two-
parameter family of adaptive mollifiers, equipped with the optimal parametrization
outlined above yields, consult Theorem 3.1,

[¥po * Sy T (X) — f(X)| < Const d(x)N - e VN,

The last error bound shows that the adaptive mollifier is exponentially accurate at
all x’s, except for theimmediat®(1/N)-neighborhood of the jumps df(-) where
d(x) ~ 1/N. We note in passing the rather remarkable dependence of this error
estimate on th€g° regularity of p(-). Specifically, the exponential convergence
rate of a fractional power is related to the Gevrey regularity of the locatizer
in this paper we use th8,-regular cut-offoc(x) = exp(cX?/(x2 — w2)) which led
to the fractional power 2.

Similar results hold in the discrete case. Indeed, in this case, one can bypass the
discrete Fourier coefficients: expressed in terms of the given equidistant discrete
values,{ f (y,)}, of piecewise analytid, we have, consult Theorem 3.2,

2N-1
Y Yps(x =) F(W) — (0] < Const (d(x)N)? - eV IWN,

v=0

b

N
Thus, the discrete convolution, ¥ ¢ (X — y,) f (y,) forms an exponentially ac-
curate nearby interpolahtwhich serves as an effective tool to reconstruct the
intermediate values of piecewise smooth data. These nearby “expolants” are rem-
inicient of quasi-interpolants, e.dBL93], with the emphasis given here to non-
linear adaptive recovery which is basedgiabal regions of smoothness.

What happens in the immediad®(1/N)-neighborhood of the jumps? in Sec-
tion 4 we complete our study of the adaptive mollifiers by introducing a novel
procedure ohormalization Here we enforce the first few moments of the spectral
mollifier, ¥, = p Dp, to vanish, so that we reggdolynomialaccuracy in the imme-
diate neighborhood of the jump. Taking advantage of the freedom in choosing the
localizer,p(-), we show how to modify to regain the local accuracy by enforcing
finitely many vanishing moments gf, = p Dy, while retaining the same overall
exponential outside the immediate vicinity of the jumps. By appropriate normal-
ization, the localized Dirichlet kernel we introduce maintains at least second-order
convergencep tothe discontinuity. Increasingly higher orders of accuracy can be
worked out as we move further away from these jumps and, eventually, turning

1 Called expolant for short.
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into the exponentially accurate regime indicated earlier. In summary, the spectral
mollifier amounts to a variable-order recovery procedure adapted tautinder

of cellsfrom the jump discontinuities, which is reminiscent of the variable order,
Essentially Non Oscillatory piecewise polynomial reconstructiofHIEOC85].

The currrent procedure is also reminicient of tihep methods of Babska and

his collabrators, with the emphasis given here to an increasing numigoh
moments p) without the ‘h”-refinement. The numerical experiments reported in
Sections 3.2 and 4.3 confirm the superior high resolution of the spectral mollifier
Vp.0 €quipped with the proposed optimal parametrization.

2. Spectral Mollifiers
2.1. The Two-Parameter Spectral Mollifigi, o

The Fourier projection of as2-periodic functionf (-):

. R 1 [~ .
S\ f(x) = Z fr e, f = — f (x)e " dx, (2.1
27 J_,
k<N
enjoys the well-known spectral convergence rate, that is, the convergence rate is
as rapid as thglobal smoothness of (-) permits in the sense that fany swe

have

1Sv f(X) — f(X)| < Const || f||cs - Vs. (2.2)

Ns-1’
Equivalently, this can be expressed in terms of the usual Dirichlet kernel

1L sin(N 4 2)x

whereSy f = Dy « f, and the spectral convergence statement in (2.2) recast in
the form

[IDn * T(X) — f(X)| < Const || flcs - Vs. (2.4)

Ns-1’

Furthermore, iff (-) is analytic with an analyticity strip of widths2 thenSy f (x)
is characterized by an exponential convergence rate [€lg,,[Ta94],

|Su f(x) — f(x)| < Cons}, - Ne” V7. (2.5

If, on the other handf (-) experiences a simple jump discontinuity, sayxat
thenSy f (x) suffers from the well-known Gibbs phenomena, where the uniform
convergence oy f (x) is lost in the neighborhood of, and, moreover, thglobal

2 Here and below we denote the usiidl]cs := || f ® || L.
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convergence rate dby f (x) deteriorates to first order. To accelerate the slow
convergence rate, we focus our attention on the classical process of mollification.
Standard mollifiers are based on a one-parameter family of dilated unit mass
functions of the form

Yo(X) = %w (g) (2.6)

whichinduce convergence by lettiigend to zero. Ingenerdlpy« f (x) — f (x)| <
C; 0" describes the convergence ratéimteorder , wherep possessesvanishing
moments

/ Yo (y) dy = 89, s=0,12,...,r — 1 2.7

Inthe present context of recoveriagectralconvergence, however, we follow Got-
tlieb and TadmofGoTa85], using a two-parameter family of mollifierg, ¢ (x),
where6 is a dilation parametery, o(X) = ¥p(x/6)/6, and p stipulates how
closelyyrp o (X) possesses near vanishing moments. To fgyx), we let p(x)
be an arbitraryC5° function supported ii—, ) and we consider the localized
Dirichlet kernel

Yp(X) == p(X) Dp(x). (2.8)

Our two-parameter mollifier is then given by the dilated family of such localized
Dirichlet kernels

=)= bDo ) e

According to (2.9),/p¢ consists of two ingredientg;(x) and Dy(x), each
having an essentially separate role associated with the two independent parameters
6 and p. The role of p(x/6), through itsf-dependencelpcalizesthe support
of ¥p0(X) to (—6m, Or). The Dirichlet kernelD(x) is charged, by varying,
by controlling the increasing number of near-vanishing momentggf, and
hence the overall superior accuracy of our mollifier. Indeed, by imposing the
normalization of

p(0) =1, (2.10

we find that an increasing number of momentsg/gf are of the vanishing order
O(p~Y):

70 T
) YoUpo()dy = [ (¥9)°p(y)Dp(y) dy= Dp* (¥6)°p(Y),_,

—TT

= 80+Cs-p &P, Vs, (2.11)

where, according to (2.48s = Const || (y9)3p(y)|lcs. We will getinto a detailed
convergence analysis in the discussion below.
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We conclude this section by highlighting the contrast between the standard,
polynomially accurate mollifier (2.7) and the spectral mollifiers (2.9). The former
depends on one dilation parametgrwhich is in charge of inducing a fixed or-
der of accuracy by letting | 0. Thus, in this case, convergence is enforced by
localization which is inherently limited to a fixed polynomial order. The spectral
mollifier, however, has the advantage of employing two free parameters: the dila-
tion paramete® which need not be small, in fad,is made asarge as possible
while maintainingo (x — 0y) f (y) free of discontinuities; the need for this desired
smoothness will be made more evident in the next section. It is the second param-
eter, p, which is in charge of enforcing the high accuracy by letiing cc. Here,
convergence is enforced by a delicate processaotellationwhich will enable
us to derive, in Section 3, exponential convergence.

2.2. Error Analysis for a Spectral Mollifier

We now turn to considering the error of our mollification proced&é\, p, 0; f
(X)), at an arbitrary fixed poink € [0, 27):

E(Ns pv 67 f(X)) = E(Ns pv 0) = I//D,(') * S\lf(x) - f(X), (212)

where we highlight the dependence on three free parameters at our disposal: the
degree of the projection\l, the support of our mollified, and the degree with
which we approximate an arbitrary number of vanishing momentshe depen-
dence on the degree of the piecewise smoothnedg-pfwill play a secondary
role in the choice of these parameters.

We begin by decomposing the error into three terms

E(N,p.0) = (fxvppo— H) + (S F = F)x (Ypo — SN¥p0)
+ (& f = ) *xSvpe. (2.13)

The lastterm(Sy f — f) » Sy¥p,0, vanishes by orthogonality and, hence, we are
left with the first and second terms, which we refer to as the regularization and
truncation errors, respectively,

ENN,p,0) = (Fxvpg— O+ (ST — ) x (Ypo — SNV¥po)
= R(N, p,0) + T(N, p,6). (2.14)

Sharp error bounds for the regularization and truncation errors were originally
derived in[GoTa85], and a short re-derivation now follows.
For the regularization error we consider the function

g (y) = f(x=0y)p(y) — f(x), (2.15

wheref (x) is the fixed-point value to be recovered through mollification. Applying
(2.4) togx(+), while noting thatgy (0) = 0, then the regularization error does not
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exceed
IR(N, p,O)] == [f*ypp— | = ‘/ [f(x—0y)p(y) — f()]Dp(y) dy

= |Dp * gx(Y)Iy:O| = |(Spgx(y) - gx(y))ly:0|

< Const- [[g«(Y)llcs - (2.16)

pS*l :

Applying the Leibnitz rule tay (y):

° (s
57l < Z( )ek|f<k>(x—ey>| A

A

k=0 k

A

lolesll £ ®llz (14 6)%, (2.17)

gives the desired upper bound

S
IR(N, p,6)| < Const: [|pllcs|| @L< - p (%) : (219
Here and below Const represents (possibly different) generic constants|| also,
L indicates theL>°-norm to be taken over tHecal support ofy, 4. Note that
I f(s)”Lﬁfc < 00, as long a® is chosen so thaf (-) is free of discontinuities in
X—=0m, X+ 0m).
To upperbound the truncation error we use the Young inequality followed by
(2.4):

ITIN, p, ) < IS F — )« (Wpo — SNVpo)llLe
SISV = flle - 1¥pe — SN¥polls
1
= MISf = fll- IWrpsllce oz (2.19)

The Leibnitz rule yields

B S S . 1+ p s+1
Wppl <67 (k) 091 1IDF] < llpllcs (T) . (20
k=0

and, together with (2.19), we arrive at the upper bound

1+pN/14+p
0 N6

S
IT(N, p, 6; £)] <Const [Syf — flla-llollcs- ) - (221

A slightly tighter estimate is obtained by replacing the— L> bounds withL?
bounds forf's with bounded variation

ISvf — fliez x 1Sv¥pe — ¥pallLz
Const: | fllev - N2 x [glliz - N"C 2, (2.22)

IT(N, p,6)]

IA

IA
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and (2.20) then yields

1+ s+1
T(N, p.6)] < Const [lpllcs - N <N—9p) . (223

Using this, together with (2.18), we conclude with an error bourd@, p, 0; f
(x)):

[Ypox SN (X)) — F(X)| < Const: ||pllcs

1+ p s+1 2 S
X |:N <N—9) + P(E) Qe |- Vs, (2.24)

where|| f®||Lx = SURc_gxxtom | T | measures the local regularity df It

should be noted that one can use different orders of degrees of smoothness, say
anr order of smoothness for the truncation andsawder of smoothness for the
regularization, yielding

[E(N, p, 8; f(x))| < Const

1+p\' 2\°
‘|:||,0||cr'N<N—0p> +||p||cs-p<5> N |

vr,s. (2.25)

2.3. Fourier Interpolant Error Analysis for a Pseudospectral Mollifier

The Fourier interpolant of ar2periodic function,f (-), is given by

o 5 1 2N-1 )
INf(y) =) fie®, fioi= o= > fy e (2.26)
k|<N 2N v=0

We observe that the moments computed in the spectral projection (2.1) are replaced
here by the corresponding trapezoidal rule evaluated at the equidistantypcdes
(@/N)v,v = 0,1,...,2N — 1. It should be noted that this approximation by
the trapezoidal rule converts the Fourier—Galerkin projection to a pseudospectral
Fourier collocation (interpolation) representation. Itis well-known that the Fourier
interpolant also enjoys spectral convergence, i.e.,

lIn f(X) — F(X)| < Const || f[|cs - Vs. (2.27)

Ns-1’

Furthermore, iff (-) is analytic with an analyticity strip of widthi2 thenSy f (x)
is characterized by an exponential convergence[fa@4]:

ISy f(x) — f(x)| < Const - Ne N7, (2.28)
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If, however, f (-) experiences a simple jump discontinuity, then the Fourier inter-
polant suffers from the reduced convergence rate similar to the Fourier projection.
To accelerate the slowed convergence rate we again make usewbeparameter
mollifier (2.9). When convolvindy f (X) by our two-parameter mollifier we ap-
proximate the convolution by the trapezoidal summation
T 2N-1
Ypox INFOO~ T2 D FOIVpa (X = Y. (2.29
v=0
We note that the summation in (2.29) bypasses the need to compute the pseu-
dospectral coefficient$,. Thus, in contrast to the spectral mollifiers carried out
in the Fourier spacfMMO78] , we are able to work directly in the physical space
through using the sampling df(-) at the equidistant pointg(y,).
The resulting error of our discrete mollification at the fixed paitg given by
2N-1

E(N.P.6) == 1 ) F()¥pox = y) = F00. (2.30)
v=0

As before, we decompose the error into two components

2N-1

E(N.p.6) = (% 3 W) Vpox — y) — f *x/fp,9> +(fxYpo— )
v=0

=: A(N, p,0) + R(N, p, 0), (2.31)

where R(N, p, 9) is the familiar regularization error, an8l(N, p, ) is the so-
called aliasing error committed by approximating the convolution integral by a
trapezoidal sum. It can be shown that, for amy- % the aliasing error does not
exceed the truncation error, e.glap4, (2.2.16)],

AN, p,®)llLe < MulT(N, p,8; f™)[~ - N¥Z™ m> 1 (232

We choosen = 1: inserting this into (2.21) witt replaced byf', and noting that
ISvf — f'll.2 < Const | f levv/N, we recover the same truncation error bound
we had in (2.21):

1
A(N, p,9)|lL~ < Const- |T(N, p,0; f)|—
AN, p, O)IIL IT(N, p )I\/N

1+p s+1
)

Consequently, the error after discrete mollification of the Fourier interpolant sat-
isfies the same bound as the mollified Fourier projection

IA

Const: ||p|lcs - N2 ( (2.33)

|[E(N, p,6; f(x)| = Const- [Ipllcs

1+ s+1 2 S
R e
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We close by noting that the spectral and pseudospectral error bounds, (2.24) and
(2.34), are of the exact same order. And, as before, one can use different orders of
degrees of smoothness for the regularization and aliasing errors.

2.4. On the Choice of th&, p) ParametersSpectral Accuracy

We now turn to assessing the role of the parameteas\d p, based on the spec-
tral and pseudospectral error bounds (2.24) and (2.34). We first address the lo-
calization parametef. According to the first term on the right of (2.24) and,
respectively, (2.34), the truncation and, respectively, aliasing error bounds de-
crease for increasing’s. Thus we are motivated to choo8eas large as pos-
sible. However, the silent dependence iof the regularization error term in
(2.24) and (2.34) appears through the requirement of localized regularity, i.e.,
IOl = SURprnsom | F O] < o0

Hence, ifd(x) denotes the distance fromto the nearest jump discontinuity
of f:

d(x) := dist(x, sing suppf), (2.35)
we then set
0= M <1 (2.36)
T

This choice of9 provides us with the largest admissible support of the mollifier
Yp.0, SO thatyp o * f(x) incorporates only the (largest) smooth neighborhood
aroundx. This results in aradaptivemollifier which amounts to a symmetric
windowed filter of maximal width, &(x), to be carried out in the physical space.
We highlight the fact that this choice of andependentd (x) = d(x)/x, results

in a spectral mollifier that inottranslation invariant. Consequently, utilizing such

an adaptive mollifier is quite natural in the physical space and, although possible,
it is not well suited for convolution in the frequency space.

How can we find the nearest discontinuity? We refer the readgs¢da99],
[GeTa00a, b] for a general procedure to detect the edges in piecewise smooth data
from its (pseudo-) spectral content. The procedure, carried in the physical space, is
based on an appropriate choice of concentration factors which lead to (generalized)
conjugate sums which tend to concentrate in the vicinity of edges and are vanishing
elsewhere. The locations (and amplitudes) of all the discontinuous jumps are found
in one global sweeEquipped with these locations, it is a straightforward matter
to evaluate, at every, the appropriate spectral parametdg) = d(x) /.

Next we address the all-important choicepoivhich controls how closelyp ¢
possesses near vanishing moments of increasing order (2.11). Before determining
an optimal choice op let us revisit the original approach taken by Gottlieb and
Tadmor[GoTa85]. To this end, we first fix an arbitrary degree of smoothregss
and focus our attention on the optimal dependence sblelyon N. With this
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in mind, the dominant terms of the error bounds, (2.24) and (2.34), are of order
(p/N)sandp~s, respectively. Equilibrating these competing terms gives v/'N,
which results in the spectral convergence rate soudi@aTa85], namely, for an
arbitrarys,

|E(N, p, 6)],_y < Consty - N~ (2.37)

Although this estimate yields the desired spectral convergence rate sought in
[GoTa85], it suffers as an over-pessimistic restriction since the possible depen-
dence ofp ons andd were not fully exploited. In fact, while the above approach

to equilibration, withp depending solely ol yields p = N%°, numerical experi-
ments reported back in the origif@oTa85] have shown that when treatiqas a

fixed power ofN, p = N#, superior results are obtained forO< 8 < 0.9. Indeed,

the numerical experiments reported in Section 3.2, and which motivate the present
study, clearly indicate that the contributions of the truncation and regularization
terms are equilibrated whem ~ N. Moreover, the truncation and aliasing error
contributions to the error bounds (2.24) and (2.34) predict convergence omlg for
which are bounded away from the jump discontinuities pfvhered (x) > p/N.
Consequently, withd (x) := d(x)/z7 and f (-) having a discontinuity, say a,
convergence canot be guaranteed in the region

(xo — %n, Xo + %n) . (2.38)
Thus, a nonadaptive choice pfchosen as a fixefdactional power ofN indepen-

dent of6(x), sayp ~ +/N, can lead to a loss of convergence in a large zone of
sizeO(N~/2) around the discontinuity. The loss of convergence was confirmed in
the numerical experiments reported in Section 3.2. This should be contrasted with
the adaptive mollifiers introduced in Section 3, which will enable us to achieve
exponential accuracy up to the immediat¥;1/N), vicinity of these discontinu-

ities. We now turn to determining an optimal choiceby incorporating both

the distance to the nearest discontinuitgx), and by exploiting the fact that the
error bounds (2.24) and (2.34) allow us to use a variable degree of smoothness,

3. Adaptive Mollifiers. Exponential Accuracy

Epilogue (Gevrey Regularity). The spectral decay estimates (2.2) and (2.27) tell
us that forCg° data, the (pseudo) spectral errors decay faster than any fixed poly-
nomial order. To quantify thactual error decay, we need to classify the specific
order ofCg° regularity. The Gevrey clas§,,, o > 1, consists op’s with constants

n =n, andM := M,, such that the following estimate holds

(sh”

ns '

suplp® ()| < M

xef

s=12,.... 3.1

We have two prototypical examples in mind.
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Example 1. A bounded analytic functiop belongs taG; with M, = supy; |0
(x)| and 2, equals the width of the's analyticity strip.

Example 2. Consider &C3°(—m, m) cut-off function depending on an arbitrary
constant > 0, which takes the form

200 e/ =), x| < 7
¢ 0, Xl = 7

} = e(cxz/(X27n2))1[fﬂ,n]- (32)

In this particular case there exists a constaat A such that the higher derivatives
are upper bounded By

O (x)| < s! (©R/(x?~1%)) _
PP M e . s=12... 3.3)
X2 =

The maximal value of the upper bound on the right-hand side of (3.3) is obtained
atX = Xmax Wherex2,, — n2 ~ —mc/s; consult! This implies that our cut-off
function p. admitsG, regularity, namely, there exists a constant= Acw2c such

that

© s\° . (sh)?
sup|pt®(x)| < Consg-s! | — | e™° < Const- , s=1,2,.... (349

s
xen Nc c

We now turn to examining the actual decay rate of Fourier projectj&g, — po|,
for arbitraryG,-functions. According to (2.2), combined with the growth|of| cs
dictated by (3.1), the&.>°-error in the spectral projection of@, function, p, is
governed by

(sh
(N)s’

The expression of the type encountered on the right-hand side of(@)3)nN) 3,
attains its minimum agnin = (yN)¥*:

_(sh _ s \® .
min SN min( —— ) = e @@ (3.6)
s (MN)® s \ne*N

Thus, minimizing the upper bound in (3.5) sit= Snin = (nN)Y* yields the
exponential accuracy dfactional order

[Sve(X) — p(X)] < Const: N s=12,.... (3.5)

|Sup(X) — p(X)| < Const: Ne*(N™ 0 € Gg. 3.7

3 To this end, note thaic(x) = e, (x)e_ (x) with ex (x) := exp(cx/(x & 7) for x € (—x, 7). The
functionsey (x) upper bounded bwf)(x)| < Mgsl(A¢|X £ 7|)~SeL(x), with appropriate, = A¢
[Jo, p. 73].

4 For large values df, the functiona(x)| ~S-exp(aa(x) + 8/a(x)) with fixeda andg is maximized

atX = Xmax Such tha(xmax) ~ —B/s. In our casea(x) = x2 — w2 andg ~ cr2.
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The casex = 1 recovers the exponential decay for analytk;, (2.5), whereas for
a > 1 we have exponential decay of fractional order. For exampleGgwut-off
functionp = p¢ in (3.2) satisfies (3.7), witly, o) = (1, 2), yielding

1Sp0e(X) — pe(X)| < Const: p - e3P, (3.8)

Equipped with these estimates we now revisit the error decay of spectral mollifiers
based on thé&s,, cut-off functionsp. Both contributions to the error in (2.14),
the regularizatiorR(N, p, ) and the truncatio (N, p, ) (as well as aliasing
A(N, p, 9) in (2.31)), are controlled by the decay rate of Fourier projections.

3.1. The(0, p) Parameters RevisitedExponential Accuracy

We assume thaf () is piecewise analytic. For each fixed our choice o9 =
0(x) = d(x)/m guarantees that (x — 0y) is analytic in the range¢y| < = and
hence its product with th&,(—x, ) function p(y) yields theG,, regularity of
ox(y) = f(X —0y)p(y) — f(x). According to (2.16), the regularization error,
R(N, p, ), is controlled by the Fourier projection gf(-), and in view of itsG,,
regularity, (3.7) yields

IR(N, P, )] = [(Ss9x(Y) — Gx(¥))y=0l < Cons} - p-e @™ (39)
For example, ifo = p¢, we get

IR, (N, p,0)| < Const - p-e 2P, (3.10)

Remark. Itis here that we use the normalizatign0) — 1 = g«(y = 0) = 0,
and (3.9) shows that one can slightly relax this normalization within the specified
error bound

|p(0) — 1] < Const- e > (3.11)

Next we turn to the truncation errdf(N, p, 6). According to (2.19), its decay
is controlled by the Fourier projection of the localized Dirichlet kemgh (x) =
(1/6)yp(x/6). Here we shall need the specific structure of the locajiden =
oc(X) in (3.2). The Leibnitz rule and (3.3) yield

S (s
II/fEf)(X)I =< Z (k) 1 (%)] - IDE)S"‘>(x)|

k=0

A

S

IA

Const- s!
<ko (s —k)!

psK 2 2y —k (cX2/(x2—12))
(MelX® —77)) -€ i

|
Const ;e(mc\xz—n2|+cx2/<x2—n2)>
()‘-C|X2 - 71'2|)S

IA
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which, after dilation, satisfies

S

(s (pAcla(x)|/6%4-c/a(x))
[Yys(¥)| < Const s!( > . @ ,

P PERS]

ax) = x% — 7120%(x). (3.12)

Following a similar manipulation we used earlier, the upper bound on the right-
hand side of the (3.12) is maximizedxats Xmax With X2, — 7202 ~ —cm26?/s,
which leads to thé&,-regularity bound forj, ¢ (where, as beforey. := Aem2c):

© S\ puess SH? e
suply,(X)| < Const: s! ePe/S < Const. —— gPre/s,
xedt neoe (nch)s

s=1,2.... (3.13)

With (3.13) we utilize (2.22) to obtain the following precise bound of the truncation
error

IT(N, p,6)| < Const: L)Zepnc/s (3.14)

T (ncHN)3 ' '

To minimize the upper bound (3.14), we first seek the minimizer for the order of
smoothnesss = s,, and then optimize the free spectral parametex N for
both the truncation and regularization errors. We begin by noting that a general
expression of the type encountered on the right-hand side of (3.14):

1)2 2 °
D" s (57) ePe/s = M(s, p),

(ncHN)S ncfe’N
is minimized at thep-dependent indegq, such that
Shin P7c
ds(log M (s, s = — ——=0. 3.1
s(log M (S, P))s=smn og(nc9N> 2. (3.15

Though we cannot find its explicit solution, (3.15) yields a rather precise bound
0n Smin Which turns out to be essentially independentpofindeed, for the first
expression on the right-hand side of (3.15) to be positive, wesigee: /Bn0 N

with someg > 1. Plugging this expressiogmin = /B0 N, into (3.15), we find
that for p < N we must have log = log(s%,,/ncON) = nep/S2, < 1/86. We
therefore se$ ~ syin of the form

sS=.BnHN, 1<pB <1764

so that the freg@ parameter satisfies the above constPaiiibg 8 < 1 < 1/0. The
corresponding optimal parametgiis then given by

s? s?
= —-.llo =K-0 N,
pmm Nc < g ncg N ) |S=Smin

0<K=:ﬂlogﬂ<l<§ %) (3.16)

5Recall tha® = 0(x) :=d(x)/7 < 1.
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We conclude with an optimal choice pfof orderO (9 N), replacing the previous
choice, (2.37), of ordeP (+/N). The resulting exponentially small truncation error
bound, (3.14), now reads

)

CI LA
|T(Ns p79)| S ConSt ()’]CQN)Se |S=Smin GN E

1<p <1764 (3.17)

With this choice ofp = pmin in (3.16) we find, essentially, the same exponentially
small bound on the regularization error in (3.10):

1)2 Blogp-ncON

|R(N, p, )| < Const N (E (3.18

Figures 3.1(f) and 3.2(f) confirm that the contributions of the truncation and reg-
ularization parts of the error are of the same exponentially small angéothe
vicinity of the discontinuous jumps with this choice of optinpah Nd(x) /7, in
contrast to previous choices pf= O(N?), y < 1, consult Figures 3.1(b)—(d)
and 3.2(b)—(d).

We summarize what we have shown in the following theorem.

Theorem 3.1. Given the Fourier projectioySy f (-) of a piecewise analytic (f),
we consider the two-parameter family of spectral mollifiers

1 X X 2 /(X2 — 2
Vpo () = Zpc (5) Dp (5) pe =€/ Ly, e>0,
and we set
0 = 0(x) = M d(x) = dist(x, sing supg ), (3.19)
b
p = p(xX) ~k-60(X)N, O<k=plogB <1 (3.20)

Thenthere exist constan@onst andn., depending solely on the analytic behavior
of () in the neighborhood of )such that we can recover the intermediate values
of f(x) with the following exponential accuracy

’

[_3 24/ kncf(X)N
[¥po* Svf(x)— f(x)| < Const-ON (E)

1<pB <1764 (3.22)
Remark. Theorem 3.1 indicates an optimal choice for the spectral mollifier,

¥p.0, based on amdaptivedegree of ordep = «6(x)N, with an arbitrary free
parameter, G< x = BlogB < 1. We could further optimize the error bound (3.21)
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over all possible choices ¢f, by equilibrating the leading term in the truncation
and regularization error bounds so that

(IB)Z\/ﬂ-ncG(X)N (1)2\//“09/5‘7109()0’\‘

)

e e
with the minimal value found at log, = (3 — +/5)/2, the corresponding, :=
B« log B, = 0.5596 and 2/k,/m = 0.8445 leading to an error bound

1>o.845 /ned(ON

[¥po* Sy f(X) — f(X)| < Const-d(x)N <E (3.22)

Although the last estimate serves only as an upper bound for the error, it is still
remarkable that the (close to) optimal parametrization of the adaptive mollifier is
found to be essentially independent of the properties(©f.

Similar results hold in the pseudospectral case. In this case, we are given the
Fourier interpolant] y f (x), and the corresponding discrete convolution is carried
outin the physical space with overall errBrN, p, 0; f) = yrpgxIn F(X)—F(X),
which consists of aliasing and regularization errors, (2.31). According to (2.32), the
former is upper bounded by the truncationféfwhich retains the same analyticity
properties ad does. We conclude:

Theorem 3.2. Given the equidistant gridvalugsf (x,)}o<,<2n—1 Of @ piecewise
analytic f(-), we consider the two-parameter family of spectral mollifiers

1 X X o
Voo i= 20 (3)0p (5).  pe=elF L cx0
and we set
0 = 0(X) = M d(x) = dist(x, sing supg), (3.23)
T
p = p(X) ~«k-60(X)N, O<k=glogs <1 (3.24)

Thenthere exist constan@onst andn., depending solely on the analytic behavior
of f(-) inthe neighborhood of ysuch that we can recover the intermediate values
of f(x) with the following exponential accuracy

o 2 /B GON
% Z Ypo(X — ) f(y,) — F(X)| < Const - (d(x)N)? (é) 7
v=0

1<B <1764 (3.25)
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3.2. Numerical Experiments

The first set of numerical experiments compares our results with those of Gottlieb
and TadmofGoTa85], involving the same choice df(-) = f1(-):

f1(x) =

{sin(x/Z), x € [0, ), (3.26)

—sin(x/2), X € [m,2r).

A second set of results is demonstrated with a second fundtigx), given by

b — (26 —1—€")/(e" — 1), xe[0,7/2),
2(%) = —sin(2x/3 — 7/3), X € [7/2, 2n).

(3.27)

This is a considerable challenging test problefnhas a jump discontinuity at
X = /2 and, due to the periodic extension of the Fourier series, two more dis-
continuities at the boundaries= 0, 2z. Moreover, a relatively large gradient is
formed forx ~ 7 /2—, and the sharp peak on the lefbot= 7 /2 is met by a jump
discontinuity on the right.

For the computations below we utilize the same localjzet p. as in (3.2),
with ¢ = 10. In the first casef; has a simple discontinuity at = =, so thed
parameter was chosen according to (2.86% 6(x) = min(|X|, |[X — w])/7. In
the second case df(x), we set

0(x) = [min(X, 7/2 — X)+ + min(x — /2, 2w — X)4]/7.

Since the error deteriorates in the immediate vicinity of the discontinuities where
0(X)N ~ 1, awindow of minimum width of,i, = min{6(x), 1/4N}was imposed
aroundxy = {0, /2, , 2t }. More about the treatment in the immediate vicinity
of the discontinuity is found in Section 4.1.

The different policies for choosing the parameferre outlined below. In
particular, for the near optimal choice recommended in Theorems 3.1 and 3.2 we
use a mollifier of an adaptive degrpe= «6(x) N with x = 1/./€ = 0.6095~ ..

We begin with the results based on the spectral projeciqrfs andSy f,. For
comparison purposes, the exact convolution integrgh » Sy f, was computed
with a composite Simpson method using8000 points, and the mollified results
are recorded at the left half-points;/150v,v = 0, 1, ..., 149. Figure 3.1 shows
the result of treating the spectral projectiafy ¢ » Sy f1 based onN = 128
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Table 3.1. Predicted location where spectral convergence is lost atxg| ~ pz/N.

PN 32 64 128

NO8 1.6 1.8 2.0
NO-5 2.6 2.7 2.9
N©-2 2.9 3.0 3.1

modes, for different choices qf's. Figure 3.2 shows the same results fe(x).
It is evident from these figures, Figures 3.1(e)—(f) and 3.2(e)—(f), that the best
results are obtained with = 8(x)N/./e, in agreement with our analysis for the
optimal choice of the exponentially accurate mollifier in (3.22). We note that other
choices forp ~ N” lead to large intervals where exponential accuracy is lost due
to the imbalance between the truncation and regularization errors, consult cases
(a)—(d) in Figures 3.1-3.2. As we noted earlier in (2.38), a nonadaptive chajice of
independent of (x) leads to deterioration of the accuracy in an increasing region of
size~ pzr/N around the discontinuity, and the predicted locations of these values,
given in Table 3.1, could be observed in Figure 3.1(a)—(d) for the fundticx).
Figure 3.3 illustrates the spectral convergencll aubles from 32 to 64, then to
12&. The exponential convergence of the near optimal adajptived (x)N//e
can be seen in Figure 3.3(e)—(f), where the log-slopes are constants with respect
to d(x) (for fixed N) and with respect tN (for fixed x).

Next, the numerical experiments are repeated for the discrete case, using dis-
crete mollification of the Fourier interpolant. Given the grid valuesfgi,)
and fy(x,) at the equidistant grid points, = vz/N, we recover the point
values at the intermediate grid poinfgx,+1/2). A minimal window width of
Omin = MIN(6(x), 2r/N) was imposed in the immediate vicinity of the disconti-
nuities to maintain a minimum number of two sampling points to be used in the
discrete mollification.

Compared with the previous mollified results of the spectral projections, there
are two noticeable changes, both involving the nonoptimal choipe-ofN” with
y <1:

() the location where spectral/exponential convergence is lost is noticeably
closer to the discontinuities compared with the mollified spectral projec-
tions, but, at the same time,

(ii) much larger oscillations are observed in the regions where spectral conver-
gence is lost.

Comparing Figures 3.1 versus 3.4, and 3.2 versus 3.5, gives a visual comparison
for both changes from spectral to pseudospectral. The deterioratiopsfdx %8
andN©®® are very noticeable.

8 Machine truncation error is at16.
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Fig. 3.1. Recovery off;(x) fromits firstN = 128 Fourier modes, on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral mollifier
¥p,o based on various choices pf(a)—(b)p = N°5, (c)—(d)p = N°&, and (e)—(f)p = Nd(x) /7 /&.
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Fig. 3.2. Recovery offa(x) fromits firstN = 128 Fourier modes, on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral mollifier
¥p,0 based on various choices pf (a)-(b)p = N5, (c)—(d)p = N°8, and (e)—~(fp = Nd(x)/7 V/&.
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Fig. 3.3. Log of the error withN = 32, 64, 128 modes fof1(x) on the left, and forf,(x) on the
right, using various choices qf: (a)—(b) p = N%, (c)-(d) p = N°8, and (e)—(f)p = Nd(x)/7 /€.

4. Adaptive Mollifiers. Normalization

The essence of the two-parameter spectral mollifier discussed in Sealign(3),
is adaptivity: it is based on a Dirichlet kernel ofvariable degree,p ~ 9(x)N,
which is adapted by taking into account the locatiorkaklative to its nearest
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(e) (f)

Fig.3.4. Recovery off1(x) fromitsN = 128 equidistant grid values on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral njgllifier
based on various choices pf (a)—(b) p = N%5, (c)-(d) p = N%8, and (e)—(H)p = Nd(x) /7 \/e.
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(e) ()

Fig.3.5. Recovery offa(x) fromitsN = 128 equidistant grid values on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral njgllifier
based on various choices pf (a)—(b) p = N%5, (c)-(d) p = N°8, and (e)—(f)p = Nd(x) /7 /&.
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singularity,6(x) = d(x)/z. The resulting error estimate tells us that there exist
constants, Consy, ande > 1, such that one can recover a piecewise analytic
f (x) from its spectral or pseudospectral projectiofg,f (-):

[¥ps * Pu f(X) — f(X)| < Const. @ (7d0ON™

The error bound on the right shows that the adaptive mollifier is exponentially
accurate for alk’s, except for what we refer to dbe immediate vicinityf the

jump discontinuities off , namely, those’s whered(x) ~ 1/N. This should be
compared with previous, nonadaptive choices for choosing the degygg, ofor
example, withp ~ +/N we found a loss of exponential accuracy in a zone of size
~ 1/+/N around the discontinuities df. Put differently, there ar®(+v/N) “cells”

which are not accurately recovered in this case. In contrast, our adaptive mollifier
is exponentially accurate at all Hintitely manycells near the jump discontinuities.
According to the error estimates (3.21), (3.22), and (3.25), convergence may fail
in these cells inside the immediate vicinity of sing sujppnd, indeed, spurious
oscillations could be noticed in Figures 3.1 and 3.2. In this section we address the
question of convergena® tothe jump discontinuities.

One possible approach is to retain a uniform exponential accuracy up to the
jump discontinuities. Such an approach, developed by Gottlieb, Shu, Gelb, and
their coworkers is surveyed [isoSh95], [GoSh98] It is based on Gegenbauer
expansions of degree~ N. Exponential accuracy is retainadiformlythrough-
out each interval of smoothness of the piecewise analfytithe computation
of the high-order Gegenbauer coefficients, however, is numerically sensitive and
the parameters involved need to be properly tuned in order to avoid triggering of
instabilities[Ge97], [Ge00]

Here we proceed with another approach where we retamriable order of
accuracy near the jump discontinuities, of ordaf(d(x))" ™). Comparing this
polynomial error bound against the interior exponential error bounds,
say (3.22),

Const: d(x)N - e 0845V nedIN > (g (x))+1,

we find that there are onlfinitely manycells in which the error, dictated by the
smaller of the two, is dominated by polynomial accuracy

r?logd(x)* r?

d Const: .
(x) < Cons N N

(4.2)
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In this approach, the variable order of accuracy suggested by (441)/d(X)N,

is increasing together with the increasing distance away from the jumps or, more
precisely, together with the number of cells away from the discontinuities, which
is consistent with theadaptive nature of our exponentially accurate mollifier
away from the immediate vicinity of these jumps. The current approach of a
variable order of accuracy, which adapted to the distance from the jump dis-
continuities, is reminiscent of the Essentially Non Oscillatory (ENO) piecewise
polynomial reconstruction employed in the context of nonlinear conservation
laws[HEOCS85], [Sh97].

How do we enforce that our adaptive mollifiers are polynomially accurate in
the immediate vicinity of jump discontinuities? As we argued earlier in (2.11),
the adaptive mollifier)rp ¢ admits spectrally small moments of ordprs ~
(d(xX)N)~s. More precisely, using (3.7), we find, fore G,:

o

Youpo (W) dy = [ (y0)°p(y)Dp(y)dy = Dp* ((YO)°0)(¥),0
0

-7 -7

— 8¢ - Const. 65 . g @@ p~d(x)N.

Consequentlyyr, o possesses exponentially small moments akallexcept in

the immediate vicinity of the jumps wheme ~ d(xX)N ~ 1, the same&)(1/N)
neighborhoods where the previous exponential error bounds fail. This is illustrated
in the numerical experiments exhibited in Section 3.2 which show the blurring in
symmetric intervals with a width- 1/N around each discontinuity. To remove
this blurring, we will impose a novelormalizationso that finitely many moments

of (the projection of)y,, 4 preciselyanish. As we shall see below, this will regain

a polynomial convergence rate of the corresponding finite ardéfe have seen

that the general adaptivity (4.1) requines~ /d(x)N; in practice, enforcing a
fixed number of vanishing moments;~ 2, 3, will suffice.

4.1. Spectral NormalizatiorAdaptive Mollifiers in the Vicinity of Jumps

Rather than), 4 possessing a fixed number of vanishing moments, as in standard
mollification (2.7), we require that its spectral projecti®,/p ¢, POSsess a unit
mass and, say vanishing moments,

/ Y (Su¥pe)(y) dy = dso, s=01,....r. (4.2)

T

It then follows that adaptive mollification of the Fourier projectigi, » Sy f,
recovers the point values of with the desired polynomial ordeP(d(x))".
Indeed, noting that for eack, the function f (x — y) remains smooth in the
neighborhoody| < 76 = d(x) we find, utilizing the symmetry of the spectral
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projection, [ (Sy f)g = [ f(S\v0):

e

Vpo* SNF(X)— f(x) = / 6)[f(X— y) — FOO1(Su¥p.0)(y) dy

r _1 S Y
=Y 551000 [ yswenmdy
s=1 -

(=1t r+1) "o
mf “) Y T (SN Ype) (Y) dy

4 r+1
~ | (SvyHwpa(y) dy < Const (d(x) N %) _

The last step follows from an upper bound for the spectral projection of monomials
outlined at the end of this subsection.

To enforce the vanishing moments condition (4.2) on the adaptive mollifier,
Ypo() = (p(-)Dp(-/6)) /0, we take advantage of the freedom we have in choosing
the localizero (-). We begin by normalizing

Yp,0(Y)
7 pe(2)dz

SO thathﬁ has a unit mass, and hence (4.2) holds fer 0, for [ Sy (¥p,¢)(y) dy
= [¥pe(y)dy = 1. We note that the resulting mollifier takes the same form as
before, namely,

Vpo(y) =

- 1 y
Tpo¥) = 5(5:Dp) (). 43)
where the only difference is associated with the modified localizer
0c(y) = ) = ! (4.4
Pc y - QO Pc y ’ qO - f:{n ‘(‘[/pﬁ (Z) dZ .

Observe that, in fact,/jo = [ Ype(2) dz= [ ¥p(2) dz= (Dp * pc)(0) and that,
with our choice ofp = « - 6(X)N, we have, in view of (3.7),

pc(0) = 0o =1+ 0(e),

B 1
B (Dp * pc)(0)
e ~d(X)N - e 2VP, p=rk- 0N,

which is admissible within the same exponentially small error bound we had before,
consult (3.11). In other words, we are able to modify the localizén — oc(-)

to satisfy the first-order normalization, (4.2), with= 0, while the corresponding
mollifier, (oxDp)e — (6cDp)s, retains the same overall exponential accuracy.
Moreover, using evep’s implies thaty (-) is an even function and hence its odd
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moments vanish. Consequently, (4.2) holds with: 1, and we end up with the
following quadratic error bound in the vicinity of (compared with (3.22)):

2
V.o (X) % S f(x) — f(x)| < Const (d(x) + %) - g 0845/medON,

In a similar manner, we can enforce higher vanishing moments by pnoperal-
izationof the localizerp (-). There is clearly more than one way to proceed—here
is one possibility. In order to satisfy (4.2) with= 2 we use a prefactor of the form
Pe(X) ~ (1 + q2x?) pe(X). Imposing a unit mass and a vanishing second moment
we may take

~ 1 y ~ 2
o) = 56:Dp) (3) . Ael) ~ (1+a2y)0e().
with the normalized localizefi(y), given by

S 1+ gpy?
pely) = 7 A+ qa(2/6)D)Ype(2) a2

— /T (NP pe(2) dz
J7 (SNDD)(2/6)2Yrp0(2) dZ

As before, the resulting moIIifie@p,G is admissible in the sense of satisfying
the normalization (3.11) within the exponentially small error term. Indeed, since

[ Y?¥p.e(y) dy = (Dp * (Y20c(¥)(0) = O(e), we find
1
ST (A4 a2(y/0)D)Yrpe(y) dy
1

= 15 g 5/ = 1+ Const (d(x)N)3 . e 2VcP p=x-0(X)N.
.

02 = (4.5)

:50 (O) =

A straightforward computation shows that the unit m§§§ has a second van-
ishing moment

b ~ T 2
YA(Supa)Wdy = [ (Suyd (ao +ap (g) ) Vo (y) dy

-7 -7

= | (SWY)¥pa(y)dy

T 2
o [ S (3) verdy=0. @6
Sincepe(+) is even, so is the normalized moIIifi&r(-), and hence its third moment
vanishes yielding a fourth-order convergence rate in the immediate vicinity of the
jump discontinuities

4
|(Fp.o () * Sy F)(x) — F(x)] < Const: (d(x) + %) - g 084V edCON,
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We close this section with the promised

Lemma 4.1[Tao]. The following pointwise estimate holds
1 r
ISNYOI S (Iyl + N) :

To prove this, we use a dyadic decomposition (similar to the Littlewood—Paley
construction) to split
y =Y 2 (y/29
k<0
whereys is a bump function adapted to the $e¥4 < |y| < 7}.
For 2 < 1/N, the usual upperbounds of the Dirichlet kernel tell us that

ISNW (/2D ()] < 2N/ L+ NJyD.

Now suppose 2> 1/N. In this case we can use the rapid decay of the Fourier
transform ofyr (-/2X), for frequenciess N, to obtain the estimate

11— SOW /2 oo S (2KN)20,

In particular, since supp ~ 1, we haveSy (v (-/24)(x)| < 1when|y| ~ 2¥, and
1SN (Y (/29 ()] < (2N)~1% otherwise. The desired bound follows by adding
together all these estimates oker

4.2. Pseudospectral NormalizatioAdaptive Mollifiers in the Vicinity of Jumps

We now turn to the pseudospectral case which will only require evaluations of
discrete sums and, consequently, can be implemented with little increase in com-
putation time.

Let f % g(x) :== >, f(X — ¥,)g(y,)h denote the (noncommutative) discrete
convolution based oni® equidistant grid pointsy, = vh, h = 7 /N. Noting that
for eachx, the functionf (y) remains smooth in the neighborhged- y| < 76 =
d(x), we find

(Yoo INT(X) — T(X)| =

> Ype(x =yl f(y) = F0IN

r —1s
> Dok D X = Y)Wpe(x — y)h

& sl
Lo FOEDE) Y = y) e (x — yi)h
r+1! - R !
- Il
< Const (d(x))" ™, Const~ e
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providedy, » has its first discretemoments vanish

2N-1
3 X =Y Wpe(X — Y =80,  S=0,12...r. @47
v=0

Observe that, unlike the continuous case associated with spectral projections,
the discrete constraint (4.7) is not translation invariant and hence it requires
dependent normalizations. The additional computational effort is minimal, how-
ever, due to the discrete summations which are localized in the immediate vicinity
of x. Indeed, as a first step, we note the validity of (4.7)xX@rwhich are away

from the immediate vicinity of the jumps of. To this end, we apply the main
exponential error estimate (3.25) fér-) = (x — -)® (for arbitrary fixedx), to
obtain

2N-1

DX =Y Ypa(X — Y = (X = Y)fy_y + O(e) = 850+ Oe),
v=0

g~ (dOON)? - e VEorstdeoN (4 8)

Thus, (4.7) holds modulo exponentially small error for thesewhich are away

from the jumps off, whered(x) > 1/N. The issue now is to enforce discrete
vanishing moments on the adaptive mollifigs(x) = p(x) Dp(x) in the vicinity

of these jumps and, to this end, we take advantage of the freedom we have in
choosing the localizes (-). We begin by normalizing

~ Yp,6(Y)
Ypo(y) = — ,
P Zggolwp,e(x - y»h

S0 that{Ep,@(x — ) has a (discrete) unit mass, i.e., (4.7) holds wita 0. We note
that the resulting mollifier takes the same form as before, namely,

~ 1
Tpa(¥) =5 (5:Dp) (2). (4.9)

and that the only difference is associated with the modified localizer

1
ﬁc(y) = 0o - pc(y), Qo = - .
° O T T (X — yoh

By (4.8), thex-dependent normalization factaog = go(X) is, in fact, an approxi-
mate identity

(4.10)

2N-1
Yao= ) vpo(x—y)h=1+0(), &~ (dOON)*. e VCrn,
v=0
which shows that the normalized localizer is admissibig0) — 1| = |gg —

1| < O(e), within the same exponentially small error bound we had before,
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consult (3.11) with our choice gp ~ d(x) - N. In other words, we are able
to modify the localizeroc.(-) — pc(-) to satisfy the first-order normalization,
(4.7), withr = 0 required near jump discontinuities, while the corresponding
mollifier, (oxDp)e — (0cDp)e, retains the same overall exponential accuracy
required outside the immediate vicinity of these jumps.

Next, we turn to enforcing that the first discrete moment vanishgsx —
Vo) ¥pe(X — y,)h = 0 and, to this end, we seek a modified mollifier of the form

~ acy/e)

Ypo(y) = —
>.q (X 5 y”) Yp.o (X — Yy)h

Yp.o(Y), aly) :==1+ay.

with ¢; chosen so that the second constraint, (4.7) with 1, is satisfied

ZV(X - yu)Wp,(?(X - yv)h

2
O DEVAIEAT

01 = — (4.11)

Consequently, (4.7) holds with= 1, and we end up with a quadratic error bound
corresponding to (3.22):

[¥p.0 % In F(X) — F(X)| < Const: (d(x))? - eV ConstdeoN,

Moreover, (4.8) implies that; = O(e) and hence the new normalized localizer is
admissible o.(0) = 1 + O(e). In a similar manner we can treat higher moments
usingnormalizedocalizers,o.(y) ~ q(y)ec(Y), of the form

~ 1 .
Vo) = 5Dy (2),

1ty +---+ay
£,0 (52 ) vt - yon

pe(y) = pc(y). (4.12)

Ther free coefficients of(y) = 1+ a1y +-- -+ ¢ y" are chosen so as to enforce
(4.7) so that the first discrete moments ofy vanish. This leads to a simple
r x r Vandermonde system (outlined at the end of this section) involving the
grid values{ f (y,)}, in the vicinity of x, |y, — X| < 6(x)7r. With our choice of

a symmetric support of siz&(x) = d(x)/x, there are precisely = 267/h =
2Nd(x)/m such grid points in the immediate vicinity of which enable us to
recover the intermediate grid values(x), with an adaptiveorder, (d(x))" 2,

7 We note, in passing, thak(-) being even implies tha’}/’p,g(-) is an even function and hence its
odd moments vanish. It follows that the first discrete momE;)(x — Yu)¥p,0 (X — ¥y)h, vanishes at
the grid pointsx = y,,, and thereforey; = 0 there. But otherwise, unlike the similar situation with the
spectral normalizatiorg; # 0. The discrete summation @, however, involves only finitely many
neighboring values in th@-vicinity of x.



Adaptive Mollifiers for Recovery of Piecewise Smooth Data 185

r ~ Nd(x). As before, this normalization does not affect the exponential accuracy
away from the jump discontinuities, noting that0). = 1/go = 1+ O(e) in
agreement with (3.11). We summarize by stating

Theorem 4.1. Given the equidistant gridvalugisf (x,)}o<y<2n-1 Of @ piecewise
analytic f(-), we want to recover the intermediate value&x). To this engdwe
use the two-parameter family of pseudospectral mollifiers

~

Too(y) = %ﬁc (g) Dy (g) . p=0559.0N, c=>0,

wheref = 0(x) := d(x)/z is the(scaled distance between x and its nearest
jump discontinuityWe setg.(y) := q(y)e® /¥ =71, as the normalizing
factor, with

Ity +---+ay

2.9 (X > y“) Vpo(X = yo)h

aly) =

so that the first r discrete moments@ﬁg(y) vanish i.e., (4.7)holds with r ~
Nd(x).

Then there exist constantSonst andn., depending solely on the analytic be-
havior of f(-) in the neighborhood of ysuch that we can recover the intermediate
values of fx) with the following exponential accuracy

2N-1

S D YpaX =y F %) = £0
v=0

0.845,/ncd(x)N
) . r~Ndx). (4.13)

< Const - (d(x))"** <5

The error bound (4.13) confirms our statement in the introduction of Section 4,
namely, theadaptivityof the spectral mollifier, in the sense of recovering the grid
values in the vicinity of the jumps with an increasing ordsdl(x), is proportional
to their distance from sing supp. We have seen that the general adaptivity (4.1)
requiresr ~ /d(x)N so that, in practice, enforcing a fixed humber of vanishing
momentsy ~ 2, 3, will suffice as a transition to the exponentially error decay in
the interior region of smoothness. We highlight the fact that the modified mollifier
¥p.0, NOrmalized by having finitely many-{( 2, 3) vanishing moments, can be con-
structed with little increase in computation time and, as we will see in Section 4.3
below, it yields greatly improved results near the discontinuities.

We close this section with a brief outline of the construction of Heeder accu-
rate normalization factag(-). To recoverf (x), we seek am-degree polynomial,
qly) := 14+ qy+---+ gy, so that (4.7) holds. We emphasize that th's
depend on the specific poirtin the following manner. Setting, := X — y,,, then
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satisfying (4.7) for thdnighermoments oﬁ/~fp,9, requires

> Bps)h=0,  s=12...r

and Withlzp,g(-) ~q(-/0)¥p,0(-) we end up with
>z [q (%) - l] Ypo@Ih == ZYpe(z), s=12...r

Expressed in terms of the discrete momentg of

Z, 14«
a(z) =Y (5) Voo(@),  a=12....2,
this amounts to the x r Vandermonde-like system féq, ..., g }:
a(z) &) - - - a@)|[a; > Zopo(Z)
=— : . (414
a41(z2) &422) - - - ax(@)]| o >0 2 Vpe(2)

Finally, we scale(-) so that(4.7) holds withs = 0, which led us to the normalized
localizer in (4.12).

4.3. Numerical Experiments

Figure 3.1(d) shows the blurring oscillations near the edges when using the non-
normalized adaptive mollifier. To reduce this blurring we will use the normalized
Jp,@ for x’s in the vicinity of the jumps wheré(x) < 6x/N. The convolution
is computed at the same locations as in Section 3.2, and a minimum window
width of 6(x) = min(d(x)/z, 27/N) was imposed. The trapezoidal rule (with
spacing otr/8000) was used for the numerical integration( &f y2)v,.¢ (y) and
(SN Y?)Y*¥p6(Y), required for the computation @f andg, in Figure 4.1. Fig-
ure 4.1(a)—(d) shows the clear improvement near the edges once we utilize the
normalizedlzp,g, while retaining the exponential convergence away from these
edges is illustrated in Figure 4.1(e)—(f).

We conclude with the pseudospectral case. Thi&) error remains in Fig-
ure 3.4(d) for the non-normalized mollifier. The normalization of the discrete
mollifier in Section 4.2 shows that by usirfg,ﬁ given in (4.12), with a fourth-
degree normalization factoy-), results in a minimum convergence ratedok)*
in the vicinity of the jumps, and with exponentially increasing order as we move
away from the jumps. This modification @f, » leads to a considerable improve-
ment in the resolution near the discontinuity, which can be seen in Figure 4.2.
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(e) (®

Fig. 4.1. Recovery off1(x) on the left andf,(x) on the right from theilN = 128 modes spectral
projections, using the fourth-order normalized mollifier (4.3), (4.5) of degree d(x)N/x./e.
Regularization errors (dashed) and truncation errors (solid) are shown on (c)—(d), and Log errors based
onN = 32, 64, and 128 modes are shown in (e)—(f).
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(©) (d)

Fig. 4.2. Recovery of (a)f1(x) and (b) f2(x) (b) from theirN = 128 modes spectral projections,
using the normalized mollifier. Log error for recovery of ()x) and (d) f2(x) from their spectral
projections based oN = 32, 64, and 128 modes. Here we use the normalized mollifigry of
degreep = d(x)N/x /€.

Here normalization was implemented ushﬁge in the vicinity of the jumps, for
d(x) < 4 /N, and the adaptive mollifiegr, ¢ was used fox’s “away” from the
jumpsd(x) > 4sr/N. A minimum window of widthd (x) = min(d(x) /=, 2t /N)
was imposed.

5. Summary

In their original work Gottlieb and Tadm¢GoTa85] showed how to regaifor-
malspectral convergence in recovering piecewise smooth functions using the two-
parameter family of mollifierg, ¢. Our analysis shows that with a proper choice of
parameters, in particular, @ulaptivechoice for the degrep ~ d(x)N, hides the
overall strength in the method. By incorporating the distance to the discontinuities,
6 = d(x)/m, along with the optimal value gb, we end up with an exponentially
accurate recovery procedure up to the immediate vicinity of the jump disconti-
nuities. Moreover, with a proper locabrmalizationof the spectral mollifier, one
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can further reduce the error in the vicinity of these jumps. For the pseudospectral
case, the normalization adds little to the overall computation time. Overall, this
yields a high resolution yet very robust recovery procedure which enables one to
effectively manipulate pointwise values of piecewise smooth data.
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