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Abstract We propose three novel methods for recovering edges in piecewise smooth
functions from their possibly incomplete and noisy spectral information. The pro-
posed methods utilize three different approaches: #1. The randomly-based sparse In-
verse Fast Fourier Transform (sIFT); #2. The Total Variation-based (TV) compressed
sensing; and #3. The modified zero crossing. The different approaches share a com-
mon feature: edges are identified through separation of scales. To this end, we advo-
cate here the use of concentration kernels (Tadmor, Acta Numer. 16:305–378, 2007),
to convert the global spectral data into an approximate jump function which is local-
ized in the immediate neighborhoods of the edges. Building on these concentration
kernels, we show that the sIFT method, the TV-based compressed sensing and the
zero crossing yield effective edge detectors, where finitely many jump discontinuities
are accurately recovered. One- and two-dimensional numerical results are presented.

Keywords Edge detection · Concentration factors · The RA�SFA algorithm ·
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1 Introduction

We are concerned here with edge detection in piecewise smooth functions. Let f be
such a piecewise smooth function with discontinuous jumps, [f ](ξj ) �= 0, at finitely
many locations ξ1, . . . , ξB ; here, [f ](x) := f (x+) − f (x−) denotes the jump func-
tion with the right and left side limits f (x±). The data is given to us in terms of its
spectral content, { ̂fk}{|k|≤N}, and the task is to recover the edges which are sought in
the physical space. Thus, given the ̂fk’s, one is interested in computing the locations
ξj ’s and amplitudes of the jumps, [f ](ξj ), j = 1, . . . ,B .

Our starting point is the conjugate coefficients, ˜f = ( ˜f−N, . . . , ˜fN), given by

˜fk := πi sgn(k)σ

( |k|
N

)

̂fk. (1.1a)

Here, σ(·) is a properly normalized but otherwise arbitrary function at our disposal,

∫ 1

0

σ(θ)

θ
dθ = 1. (1.1b)

Given the ˜fk’s, one computes the corresponding concentration kernel

Kσ
N [f ](x) :=

∑

|k|≤N

˜fke
ikx. (1.1c)

In [17, Theorem 4.1] and its refinement in [9, Theorem 2.3], it was shown that

Kσ
N [f ](x) = [f ](x) +

⎧

⎨

⎩

O(
log(N)

N
), d(x) � log(N)

N
,

O(
logN

(Nd(x))s
), d(x) � 1

N
.

(1.2)

Here, d(x) denotes the distance between x and the nearest jump discontinuity, d(x) =
mini |x − ξi |, and s = sσ > 0 depends on our choice of σ in (1.1a). Equation (1.2)
tells us that Kσ

N [f ](x) tends to concentrate near jumps where Kσ
N [f ](x) = O(1)

for x ≈ ξj , whereas Kσ
N [f ](x) = O((Nd(x))−s) ≈ 0 away from the jumps where

d(x) � 1/N . This implies that the concentration kernel Kσ
N [f ] can be used to detect

edges by separation of scales.
Equipped with the conjugate coefficients ˜fk , we develop in this paper three novel

methods for edge detection. These methods are based on separation of scales but
otherwise they provide more robust alternatives to the use of concentration kernels
like (1.1c). An overview of the three methods is provided in Sect. 2 below; they
include the following.

(1) The sparse (or super) Fast Fourier Transform (sFFT), see e.g., [19, 21]. The sFFT
employs random sampling to extract large scales by separating the Fourier modes
with large amplitudes from those with small amplitudes.
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(2) The compressed sensing technique, e.g., [2, 3, 7, 8]. The compressed sensing
identifies the (“relatively few”) non-zero large amplitudes of the jump function,
[f ](x), using �1 optimization to separate them from small amplitudes in the
smooth regions where [f ](x) ≈ 0.

(3) The improved zero crossing algorithm, e.g., [15]. In this improved approach,
we combine compressed sensing with zero crossing technique, inspired by the
investigation of concentration kernels (1.1c) in [11, 12].

These methods offer several advantages over the straightforward use of concentra-
tion kernels (1.1): they can detect edges from incomplete data, they are very robust
to noise, and the sFFT-based method takes only sublinear time. We now turn to elab-
orate on each of these three methods.

We begin with the sFFT method (also called RA�SFA—Randomized Algorithm
for Sparse Fourier Approximation, e.g., [19, 21]). The sFFT computes a (near-) opti-
mal sparse Fourier representation of N -dimensional data in sublinear time; indeed, it
uses poly(logN) spatial data to produce the Fourier representation with high success
probability. This sublinear efficiency is achieved by a randomized algorithm, which
takes only random samples to estimate necessary information. This approach was ex-
tended to process incomplete data in [20]. In our first novel method we import the
sFFT approach to detect edges. To this end we need to overcome one discrepancy,
namely, the sFFT produces a sparse discrete Fourier transform by processing infor-
mation in physical space, whereas our edge detection is required to work in the other
direction, processing the prescribed Fourier information { ̂fk} in order to produce its
corresponding sparse jump function in the physical space. In this context, we observe
that the conjugate coefficients, { ˜fk}, yield a well-localized approximation of the jump
function which we are trying to recover,

{ ̂f }{|k|≤N} �→ { ˜f }{|k|≤N} �→ Kσ
N [f ](x) =

∑

|k|≤N

˜fke
ikx ≈ [f ](x).

Our first edge detector is therefore based on an inverse sparse Fast Fourier Transform
(abbreviated sIFT), which processes the information in spectral space, { ˜fk}{|k|≤N},
and detects the desired information of the sparsely located edges, {ξj : [f ](ξj )}Bj=1
in the physical space. The basic ingredients of our sIFT-based edge detectors are pre-
sented in Sect. 2.1, followed by a detailed description and accompanied by numerical
results provided in Sect. 3. Our results illustrate that the proposed sIFT-based has a
strong denoising feature.

Next, we turn our attention to the compressed sensing technique, e.g.,
[2, 3, 7, 8, 16]. The focus is on the recovery of sparse data in physical space from
an incomplete spectral information, { ̂fk}{k∈�}, prescribed at the subset � ⊂ {k :
|k| ≤ N}. The recovery is achieved by a Total Variation-based (TV) optimization.
As before, the task is to recover Kσ

N(x) as a well localized approximation to the jump
function, [f ](x). The novelty here is the use of the corresponding incomplete set of
conjugate coefficients, { ˜fk}{k∈�}, as an input for the TV-based compressed sensing
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model, which in turn yields a sparse realization of the concentration kernel,

{ ̂f }{k∈�} �→ { ˜f }{k∈�} �→
prescribed data
︷ ︸︸ ︷

∑

k∈�

˜fke
ikx +

recovered data
︷ ︸︸ ︷

∑

k �∈�

˜fke
ikx ≈ Kσ

N [f ](x).

The TV-based approach for spectral edge detection is outlined in Sect. 2.2, followed
by a detailed description and accompanied by numerical results in Sect. 4.

So far, our aim in the construction of the sIFT- and TV-based edge detectors was
to separate scales, so that edges are identified as isolated extrema of the concentration
kernel Kσ

N(x). It remains to actually trace these extrema. This brings us to the third
and final method of edge detection based on the zero-crossing approach, which is
one of the more popular edge detectors by practitioners, e.g., [15]. Here, we combine
the construction of a concentration kernel, together with tracing its extrema which are
sought as the zero level-set of, say, the corresponding discrete Laplacian. Indeed, zero
crossing is intimately connected with the concentration kernels: if we set σ(θ) = θ ,
then the corresponding concentration kernel in (1.1a) amounts to the derivative of the
usual partial Fourier sum,

Kσ
N [f ] = π

N

(

SN [f ](x)
)

x
, SN [f ](x) :=

∑

|k|≤N

̂fke
ikx.

Thus, edges—which are sought as extrema points of Kσ
N [f ], can be identified as the

zeros of (Kσ
N [f ])x , or what amounts to the same thing—the zeros of (SN [f ])xx .

Similarly, in two-space dimensions one is led to zero crossing of the Laplacian,
�xSN [f ] ≈ 0. In fact, by a proper choice of σ , one obtains a larger class of “regular-
ized” zero crossing. Of course, seeking the zero crossing of the Laplacian may intro-
duce spurious, redundant edges, beyond those “true” edges which are extrema values
of ∇xSN [f ](x). We therefore propose to post-process the zero-crossing in order to
remove this redundant, non-extrema zero-crossing. The resulting method is further
extended to deal with incomplete data by incorporating the compressed sensing ap-
proach. Our improved zero-crossing edge detection method is outlined in Sect. 2.3,
followed by a detailed description and numerical results provided in Sect. 5.

2 An Overview of the Proposed Edge Detection Methods

The purpose of this section is to provide an overview of the three edge detectors
proposed in this paper: the super Fast Fourier Transform (sFFT), the TV-based com-
pressed sensing technique and the improved zero crossing algorithm. A detailed de-
scription of each method is outlined in the respective Sects. 3, 4 and 5.

2.1 Edge Detection by Sparse Inverse Fourier Transform (sIFT)

Consider the jump function associated with f (·)

[f ](x) :=
B

∑

j=1

[f ](ξj )1ξj
(x), (2.1a)
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where 1ξj
is the indicator function supported at the discrete interval containing ξj ,

1ξj
(x) =

{

1, if x ∈ Iξj
,

0, otherwise.
(2.1b)

Remark 2.1 In practice, the function f is realized by its discrete gridvalues,
{f (xν)}ν , although our terminology throughout the paper does not distinguish be-
tween the continuous and discrete versions of f . In this context, Iξj

should be inter-
preted as the unique interval enclosing the jump discontinuity

Iξj
:= [xνj

, xνj +1) such that ξj ∈ [xνj
, xνj +1). (2.1c)

The exact jump function, [f ](x), is not available to us. Instead, we use the available
spectral data of f to form the concentration kernel, Kσ

N [f ](x), as an approximate
jump function, which returns the same sparsity of [f ](x). Viewed as an approximate
jump function, Kσ

N [f ](x) takes the form

Kσ
N [f ](x) =

B
∑

j=1

[f ](ξj )
ξj
(x), (2.2)

where 
ξj
(x) = O((Nd(x))−s) are the approximate indicators localized around ξj ,

consult (1.2),


ξj
(x) ≈

{

1, if |x − ξj | � logN
N

,

0, if |x − ξj | � 1
N

.

Here is our main point: although we do not have the representation of Kσ
N [f ] in phys-

ical space, we have its Fourier representation in terms of the conjugate coefficients
in (1.1a),

Kσ
N [f ](x) =

∑

|k|≤N

˜fke
ikx, ˜fk = πi sgn(k)σ

( |k|
N

)

̂fk. (2.3)

Starting from the ˜fk’s, the evaluation of (2.3) can be carried either by a direct sum-
mation with O(N2) operations, or using the O(N logN) Fast Fourier Transform
(FFT). In contrast, we advocate here the use of the sFFT approach for edge detec-
tion in O(logN) operations. To this end we utilize the fact that the “signal” to be
recovered—the approximate jump function Kσ

N(x), is sparse
The major discrepancy for using the sFFT for edge detection is that they work on

different domains: edge detection works on spectral data ˜fk , while the sFFT processes
physical data. To overcome this discrepancy, we employ the usual duality between
physical and spectral space: one can easily obtain physical information from spectral
data by the inverse Fourier Transform. Consequently, the key is to develop an sparse

Inverse Fast Fourier Transform (sIFT) with the conjugate coefficients ˜fk = ̂Kσ
N [f ]

k
as its input.
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To this end, we introduce the main idea of sIFT. Let

R[ ˜f ](x) =
b

∑

j=1

zj 1ξj
(x), (2.4)

where zj = zj ( ˜f ) and ξj = ξj ( ˜f ) are computed iteratively as the approximate
jumps and locations sought in (2.1a). The algorithm is essentially a greedy pursuit
approach: it iteratively updates the function R[ ˜f ], b = 0,1, . . . ,B , by identifying
additional approximate amplitudes zj located at ξj , thus improving R[ ˜f ] as an ap-
proximation to Kσ

N [f ] in (2.2). In each iteration, one uses the current R[ ˜f ] to update

the so-called residual vector, ˜fk − ̂R[ ˜f ]k . The residual vector contains information
about edges that have not yet been captured by R[ ˜f ]. At the heart of our procedure
are the randomly based iterations to find edges of the residual vector (outlined in
Sect. 3 below). This iterative procedure “enforces” the jumps zj to be assigned to
their precise location ξj , and it is repeated until the residual vector converges below
a preassigned tolerance.

We should emphasize that the algorithm, as a randomized algorithm, employs

only a small fraction of the data ̂R[ ˜f ]. Hence, there is no need to compute ̂R[ ˜f ]k
and ˜fk for all k’s. Instead, we compute ̂R[ ˜f ]k and ˜fk for specific k’s only when
necessary. Hence, the computation of the ˜fk’s is carried out throughout the sIFT
procedures “on the fly”. Moreover, due to sparsity, b ≤ B � N , one computes
̂R[ ˜f ]k = ∑b

j=1 zj e
iξj k , in only O(b) evaluations.

Algorithm 2.2 (Sparse Inverse FFT (sIFT) edge detection) The sIFT algorithm uses
three sub-algorithms (outlined in Sects. 3 and 6 below): computing the approximate
amplitude of the jump in Algorithm 3.1, the group testing Algorithm 7.1, and the
energy estimation Algorithm 7.3.

(1) Input: signal ̂fk , an upper bound of the signal energy M , a ratio α for relative
precision, success probability 1 − δ, and accuracy factor ε.

(2) Initialize: set R[ ˜f ] ≡ 0 and ̂R[ ˜f ]k = 0 for all −N ≤ k ≤ N . Set the maximum
number of iterations T = O(B log(N) log(1/δ)/ε2).

(3) Test: use the energy estimation Sub-algorithm 7.3 to test whether ‖ ˜f −
̂R[ ˜f ]‖2

�2
≤ α‖R[ ˜f ]‖2

�2
. If yes, end Algorithm 2.2 with output R[ ˜f ]; else con-

tinue.
(4) Detect: use the group testing procedure in Sub-algorithm 7.1 to detect x = ξ as

an approximate location for an edge of the spectral data, ˜f − ̂R[ ˜f ].
(5) Estimate: use Sub-algorithm 3.1 to estimate the approximate amplitude of the

edge at x = ξ , z := F −1( ˜f − ̂R[ ˜f ])(ξ) ≈ [f ](ξ).
(6) Update: add z1ξ (x) to R[ ˜f ](x).
(7) Iterate: if the total number of iterations is less than T , go to #3; else end the

algorithm with output R[ ˜f ].
The resulting sIFT-based edge detection yields very accurate results as confirmed

in Sect. 3.
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2.2 Compressed Sensing-based Edge Detection for Incomplete Data

Assume that the spectral data is incomplete, that is, we have access only to ̂fk , k ∈
�, where � is a strict subset of {−N, . . . ,N}. The framework for edge detection
in such cases where only partial information is available, is to combine the use of
concentration kernels with the compressed sensing approach [2]. Equipped with the
partial information of ̂fk and hence, by (1.1a), of ˜fk in k ∈ �, we aim at recovering
an approximate concentration kernel g(x) ≈ Kσ

N [f ](x), of the form

g(x) =
∑

k∈�

˜fke
ikx +

∑

k �∈�

ĝke
ikx.

The ˜fk’s are prescribed, while the free {ĝk|k �∈ �} at our disposal and are chosen by
the total variation (TV) compressed sensing model, so that ‖g‖T V is minimized,

min{ĝk |k �∈�}

{

‖g‖T V :=
∑

ν

|g(xν+1)−g(xν) | g(x) :=
∑

k∈�

˜fke
ikx +

∑

k �∈�

ĝke
ikx

}

. (2.5a)

Here xν = ν�x are the equidistant sampling points of g(x). Similar methodology will
apply in the multidimensional case. Consider for example, the two-dimensional setup
where we have access to partial set of Fourier modes ̂fk with multi-index k ∈ � �

[−N,N ]2. We set a rectangular grid (xν, yμ) = (ν�x,μ�y), and the missing ĝk’s
for k = (k1, k2) �∈ � are sought to minimize the two-dimensional variation ‖g‖T V .
Here, the two-dimensional TV can be expressed as,1

‖g‖T V :=
∑

ν,μ

|g(xν+1, yμ) − g(xν, yμ)|�x +
∑

ν,μ

|g(xν, yμ+1) − g(xν, yμ)|�y.

(2.5b)
Why compressed sensing? The TV minimization or the �1 minimization of the dif-
ferences, imposes sparsity in the sense of maximizing the number of zero differences
(the “�0” norm), e.g., [2–4, 7, 8]. It is in this sense that the framework of compressed
sensing combined with the conjugate coefficients amounts to an effective edge de-
tector, by imposing an approximate jump function g(x) with a minimal number of
piecewise constant components. The variational model (2.5) can be formulated as
an optimization problem, which can be solved by the second order cone programs
(SOCP’s), with O(N3 logN) operations; in practical implementation, SOCP oper-
ates much faster, [4]. A detailed discussion on the proposed TV-based compressed
sensing edge detection approach is found at Sect. 4.

We close this section by noting that in many situations, the (possibly incomplete)
spectral data may be also contaminated by noise. We aim at both—to recover the
missing data and to denoise the prescribed data. Inspired by [2], we then propose the
modified TV-based edge detector

min{ĝk}
{‖g‖T V | ‖ĝk − ˜fk‖�2(�) ≤ β}. (2.6)

1Other definitions of the two-dimensional total-variation can be used here, e.g., an �2 version which is
equivalent with the �1 definition in (2.5b).
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Here β is a tolerance measure of inaccuracies due to noise; choices for β are dis-
cussed in [3].

2.3 Zero Crossing Edge Detection for Incomplete Data

Zero crossing can be viewed as a particular case of edge detection based on prop-
erly tailored concentration kernel. To clarify this point, we begin with the one-
dimensional example of concentration factor σ(θ) := θη̂(θ), with a unit mass η̂(θ),
where (1.1a)–(1.1c) amount to

Kσ
N [f ](x) = π

N

∑

|k|≤N

i sgn(k)|k|̂η
( |k|

N

)

̂fke
ikx,

∫ 1

θ=0
η̂(θ)dθ = 1.

Thus, if we let η(x) denote the indicator function,

η(x) := 1

2N

N
∑

−N

η̂

( |k|
N

)

eikx, (2.7a)

then Kσ
N [f ](x) is nothing but a mollification of SN [f ](x) with ηx , which can be

viewed as an approximate derivative of the delta function,

Kσ
N [f ](x) = π

N

(

∑

η̂

( |k|
N

)

̂fke
ikx

)

x

= ηx ∗ SN [f ](x). (2.7b)

We note in passing that zero crossing may introduce redundancy: edges which were
originally sought as extrema values of Kσ

N [f ](x), are now identified as zeros of
Kσ

N [f ](x)x , i.e.,
{

ξj

∣

∣

∣

∣

d

dx
Kσ

N [f ](x)|x=ξj
= ηxx ∗ SN [f ](x)|x=ξj

= 0

}

. (2.8)

Consequently, zero crossing may identify inflection points as spurious edges which
otherwise are ruled out as extrema values of the concentration kernel (1.1c).

We now turn to the two-dimensional case, where we consider the generic case
of extreme curves. Extending the framework of one-dimensional concentration ker-
nels, (2.7b)–(2.7a), we now seek extrema values of the gradient of Kσ

N(x, y). Set
σ(θ) = θη̂(θ) where η̂ is a unit mass concentration factor at our disposal

η(x, y) := 1

(2N)2

∑

|k1|,|k2|≤N

η̂

( |k|
N

)

eik1x+k2y,

∫ 1

0
η̂(θ)dθ = 1.

The edge detection associated with such concentration kernels, [13], is based on a
straightforward Cartesian adaptation of the one-dimensional setup (2.7. In this case,
we detect separated curves of discontinuities, and these curves are sought as joint
extrema along the x- and y-axis of

∂x

⎛

⎝

∑

|k|≤N

η̂

( |k|
N

)

̂fke
ik1x+ik2y

⎞

⎠ = ηx ∗ SN [f ](x, y), (2.9a)
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∂y

⎛

⎝

∑

|k|≤N

η̂

( |k|
N

)

̂fke
ik1x+ik2y

⎞

⎠ = ηy ∗ SN [f ](x, y). (2.9b)

One way to detect these extrema is to identify them as the zero crossing of the
Laplacian of η ∗ SN , which yields a “traditional” zero crossing method,

{

(ξj , ζk)
∣

∣ �η ∗ SN [f ](x, y)|(ξj ,ζk) ≡ �S
η
N |(ξj ,ζk) = 0

}

, S
η
N [f ] := η ∗ SN [f ].

(2.10)
The resulting method is even more redundant than in the one-dimensional case: the
method adds a considerable amount of spurious edges, as observed in [6, 10]. Indeed,
not all zero crossing of the regularized Laplacian, �S

η
Nf are necessarily extrema of

∇S
η
N [f ], which end up as “false” edges despite being zero crossings of (2.10).
Our Algorithm 2.3 outlined below will improve the “vanilla” zero-crossing corre-

sponding to (2.10) with η̂(θ) ≡ 1, in two ways: (i) eliminating spurious edges when
viewed as extrema of the corresponding concentration kernel; and (ii) enabling a
larger class of mollifiers η. Moreover, we can now extend the zero-crossing method
to deal with incomplete data. Here we combine improved zero crossing with com-
pressed sensing, seeking an approximate concentration kernel g = �η ∗ SN [f ], such
that

min{ĝk |k �∈�}

{

‖g‖T V

∣

∣

∣ g(x) :=
∑

|k|≤N

ĝke
ikx s.t. ĝk = |k|2η̂

( |k|
N

)

̂fk for k ∈ �

}

.

(2.11)
A typical choice of zero crossing mollifier η that we will be using below, is the

normalized Gaussian function

η̂(θ) = 1√
2π

e−θ2/2. (2.12)

Our improved zero-crossing edge detection method is summarized in the following
algorithm. A detailed discussion of this algorithm is postponed to Sect. 5 below.

Algorithm 2.3 (Zero crossing edge detection for incomplete data)

(1) Input: the Fourier coefficients ̂fk for k ∈ �, and a threshold parameter, γ > 0.
(2) Calculate: ĝk = |k|2η̂(|k|/N) · ̂fk for k ∈ �.
(3) Solve the TV-based compressed sensing model (2.11) for g(x) = ∑

|k|≤N ĝke
ikx .

(4) Identify possible edges as zero crossing points of g, such that g(xν, yμ) = 0.
(5) Post-process redundancy: scan the zero-crossing points. If either |gx(xν, yμ)| �=

0 or |gy(xν, yμ)| �= 0, and at least one of the immediate neighbors of (xν, yμ)

satisfies |g(x, y)| > γ , accept (xν, yμ) as an edge point.

3 Details: The Sparse Inverse Fourier Transform (sIFT) Edge Detector

This section presents the details involved in the sIFT-edge detection method. Specif-
ically, we discuss how to find edge locations in Sect. 3.1 and approximate jump am-
plitudes in Sect. 3.2. Numerical results are demonstrated in Sect. 3.3.
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3.1 How to Locate Edges

Step 4 in Algorithm 2.2 is the key procedure of the sIFT-based edge detection: it
locates edges. The procedure is a dual version of the sFFT procedure in [19], where
the input of conjugate coefficients and inverse Fourier basis functions replace Fourier
basis functions. Accordingly, we list the various algorithms involved in the appendix
and we limit ourselves here to a few clarifications of the overall sIFT-based edge
detector.

Assume, for simplicity, that f has only one dominant edge. A recursive proce-
dure, called group testing and outlined in Algorithm 7.1 below, is repeatedly used to
reduce the interval sought to contain the dominant jump discontinuity: it splits into
two halves the current interval, compares signal energies in the two half-intervals and
keeps the sub-interval with the larger energy. The same divide-and-conquer procedure
is repeated for the remaining tree of smaller half intervals, so that we end up with a fi-
nal candidate interval that contains the dominant discontinuity. In doing so, the group
testing algorithm uses two other sub-algorithms: the choice of an interval sought to
contain a significant jump is made by Algorithm 7.2, locating the jump by its Most
Significant Bit (MSB), one bit at a time. The MSB algorithm finds the significant bits
by estimating the energy in each suspected interval, using Algorithm 7.3.

The extension to general piecewise smooth f ’s which contain several jumps pro-
ceeds as follows. We first construct a new signal F with only one dominant jump,
which is then processed by the group testing in Algorithm 7.1. To generate such a
signal, we convolve the original f with the randomly permuted box-car pass filter,

̂H(k) = χ[−q1,q1](τk)e2iπkθ/N ∗ ̂Sk; (3.1)

here 2q1 + 1 is the filter width and τ and θ are random dilation and modulation fac-
tors. The decay behavior of the Box-car filter preserves the energies at the center pass
region and reduces the influence of other regions. This plays a key role in generating
a new function F with one dominant jump. Moreover, to avoid jump discontinuities
which might be clustered in the same pass region, we permute the signal randomly to
separate neighboring jumps. Although the random permutations may fail to yield a
new signal with just one dominant jump, we nevertheless continue working with the
procedures of group testing and energy estimation, and we accept the candidate jump
if its amplitude is estimated to be large enough.

3.2 How to Estimate the Amplitude of Edges

Given the location of an edge x = ξ , this subsection describes how we estimate the
amplitude of the jump there. This corresponds to step 5 in Algorithm 2.2. There are
two different approaches.

In the first approach, one computes the amplitude of the approximate jump func-
tion (1.1c). It has the advantage of computing the amplitude accurately, yet it intro-
duces a linear, O(N) computational cost. Therefore, this approach is desirable in the
situations where the accuracy is more important than the speed.
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The second approach is essentially a Monte Carlo integration. It follows the ideas
of coefficient estimation in the original sFFT. The method produces a good approxi-
mate value of Kσ

N [f ](x) by taking means and medians of ˜fke
ikx for randomly gen-

erated indices k, i.e.,

Kσ
N [f ](x) =

N
∑

−N

˜fke
ikx ≈ median

j=1,...,2 log(1/δ)

(

mean
l=1,...,8/ε2

( ˜fkj,l
eikj,lx)

)

.

Here, we use only a small fraction of the data and hence speed up the estimation
process, at the expense of losing accuracy.

Following our discussion in Sect. 2.1, we shall apply appropriate “duality”
changes to the original coefficient estimation in [19]. Thus, we replace the inverse
Fourier basis by Fourier basis, and sampling of the spectral data generated by (1.1).
The resulting algorithm reads as follows.

Algorithm 3.1 (Estimate the amplitude of jump discontinuity)
Input: the spectral data ̂fk , the candidate ξ for the jump location, accuracy factor

ε, success probability 1 − δ.

(1) Generate: uniformly random indices kj,l ∈ {−N, . . . ,N} and derive ˜fkj,l
: ˜fkj,l

=
πi sgn(kj,l)σ (

|kj,l |
N

) ̂fkj,l
, where j = 1, . . . , 2 log(1/δ), l = 1, . . . ,8/ε2.

(2) Compute: for a fixed j = 1, . . . ,2 log(1/δ), take the empirical mean:

mean(j) = ε2

8

8/ε2
∑

l=1

˜fkj,l
eikj,lξ .

(3) Compute: Take the median z = medianj=1,...,2 log(1/δ)(mean(j)).
(4) Output: z as the approximation of the amplitude of the edge [f ](ξ).

The following lemma guarantees that with high probability, the above algorithm
for estimating the jump amplitude, is within O(ε) of the energy of Kσ

N [f ].

Lemma 3.2 Every application of Algorithm 3.1 generates a realization R[f ] of a
random variable z, which estimates the jump amplitude, Kσ

N [f ], up to a tolerance of
order ε2‖Kσ

N [f ]‖2
2 with high probability ≥ 1 − δ, i.e.,

Prob
(

|z − Kσ
N [f ](ξ)|2 ≥ ε2‖Kσ

N [f ]‖2
2

)

≤ δ. (3.2)

The proof is similar to [19, Lemma 3.4], where S and e−ikx are replaced by ˜f and
eikx respectively.

As observed in [19], fewer samples than the theoretical requirement already yield
an accurate estimate for the amplitude of the discontinuity with high probability. For
instances, 150 samples are enough to determine one coefficient with accuracy 10−4.
This means that when the fast speed is desirable and the number of data is huge, the
Monte Carlo integration for amplitude estimation computes only a small fraction of
the data and can thus be very efficient.



J Fourier Anal Appl (2008) 14: 744–763 755

3.3 Numerical Results for sIFT Edge Detection

To demonstrate the performance of the sFFT-based method, we compare it with the
edge detector based on the minmod limiter employed in [14, Sect. 4],

minmod
(

K
exp
N [f ](x),K

σ3
N [f ](x)

); (3.3a)

here exp is the highly localized exponential advocated in [12, (2.23)], and [13, (3.21)],
σ3(θ) = 3θ3, and minmod stands for the usual limiter,

minmod(a, b) :=
{

s · min(|a|, |b|), if s = sgn(a) = sgn(b),

0, if sgn(a) �= sgn(b).
(3.3b)

The first set of numerical experiments involves the function fa(x),

fa(x) =
{

( x+π
π

)5 if x < 0,

( x−π
π

)5 if x > 0,
(3.4)

with the corresponding jump function

[fa](x) :=
{

−2 if x = 0,

0 if x �= 0.
(3.5)

Figure 1 shows numerical results of the sIFT edge detection technique. The sIFT
method achieves more accurate results than the edge detector based on the minmod
limiter (3.3). Specifically, it pinpoints the location of the jump and reduces oscillatory
artifacts around it, an improvement over the minmod results.

Next, we carry out experiments for noisy data. We consider the function fa conta-
minated by a white Gaussian noise with variance β , where the SNR—signal-to-noise
ratio measured as 10 log10(‖fa‖2

2/Nβ2), equals to 10 dB. As a second example we

Fig. 1 The recovery of [fa ](x) from its first N = 128 Fourier modes. The results of the sIFT edge detec-
tion method (on the left), and the results of minmod (3.3) on the right. Both experiments use σ(θ) = 3θ3

corresponding to the unit mass concentration factor η̂3(θ) = 3θ2
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Fig. 2 Demonstration of the sIFT edge detection method for recovering from noisy fa(x). Left: the results
of the sIFT method. Right: the results of minmod detector (3.3)

Fig. 3 Demonstration of the sIFT edge detection method for recovering from noisy fb(x). Left: the results
of the sIFT method. Right: the results of minmod method (3.3), where the true edges are concealed in the
noisy data

consider the function fb(x),

fb(x) :=

⎧

⎪

⎨

⎪

⎩

sin(x + 1)7 if x < −π
2 ,

( x
π
)3 − sin( 9x

2 ) + 1 if −π
2 < x < π

2 ,

sin(x − 1)7 if x > π
2 ,

(3.6)

which is contaminated by noise of SNR 1.0 dB; the aim is to recover its jump function

[fb](x) =

⎧

⎪

⎨

⎪

⎩

0.582 if x = −π
2 ,

−1.418 if x = π
2 ,

0 otherwise.

(3.7)

Our results in Figs. 2 and 3 illustrate that the sIFT edge detection method yields a
good approximate jump function despite the presence of noise, thanks to the strong
denoising feature of the sIFT method. The results are compared against the minmod
detector (3.3). It should be point out that the minmod-based edge detector was not
designed to treat noisy data, which explains why the noisy results in Fig. 3 are far
off: minmod-based detection was used here for comparison purposes, demonstrating
the effect noise. Concentration factors which are adapted to noisy data can be found
in the recent work [9].
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4 Details: The TV-based Compressed Sensing Edge Detection

This section elaborates on the TV-based compressed sensing approach for edge detec-
tion which was outlined in Sect. 2.2. Recall that the goal here is to recover the approx-
imate jump function Kσ

N [f ], based on the incomplete spectral data ̂fk , k ∈ �. In par-
ticular, we will discuss the sparsity requirement in Sect. 4.1, limitations in Sect. 4.2
and numerical results are reported in Sect. 4.3.

Remark 4.1 When dealing with discrete data, there are two different approaches to
generate the corresponding discrete conjugate coefficients ˜fk . The straightforward
approach is to compute ˜fk from the discrete Fourier coefficients ̂fk , which in turn
are defined in terms of the discrete gridvalues, f (xν, yμ). In a second approach, one
evaluates ˜fk directly in terms of differences of these discrete values. Indeed, first
order differences correspond to the concentration kernel2 (Kσ

N [f ])x with σ(θ) = θ .
In the TV-based compressed sensing detection reported below, we chose to use the
latter approach: we computed the first order differences of the discrete data.

4.1 Sparsity

How many samples are needed to recover the approximate jump function? The ability
to recovery a function from a few spectral coefficients depends on the sparsity of its
jump function. The following result is straightforward adaptation of [2].

Lemma 4.2 Suppose Kσ
N [f ] is a superposition of B spikes

Kσ
N(x) =

B
∑

j=1

zj 1ξj
(x). (4.1)

Choose a set � uniformly at random. There exists a constant Cm ∼ 1/m such that if

B ≤ Cm · (logN)−1 · |�|, (4.2)

then with probability of at least 1 − O(N−m), the minimizer to the following problem

min{ĝk |k �∈�}

{

‖g‖T V =
∑

ν

|g(xν+1)−g(xν)|
∣

∣

∣

∣

g(x) =
∑

k∈�

˜fke
ikx +

∑

k �∈�

ĝke
ikx

}

, (4.3)

recovers the exact jump function Kσ
N(x).

We note that the concentration kernel Kσ
N is only an approximate superposition of

“pure” B spikes alluded in (4.1). Accordingly, one expects an approximate recovery
of Kσ

N using the stability of the TV-based compressed sensing in (4.3).

2In general, concentration factors σk(θ) ∼ θk with odd k’s correspond to local differences in physical
space, whereas even k’s yields global discrete operators; we refer the reader to the detailed discussion
in [13].
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4.2 Limitations

Unlike the one-dimensional case, concentration kernels in d ≥ 2 dimensions remain
open to generalizations. In Sect. 2.2 we were tracing the extrema values of the gra-
dients in (2.9), inspired by [13]. This is a straightforward adaptation of the one-
dimensional framework based on a tensor product of concentration kernels in x- and
y-dimensions. But it becomes a barrier for accurate recovery of edges from incom-
plete spectral data; for example, the use of tensor products yields staircase effects.
One way to improve it is to take the largest component of the gradient in absolute
value, so that when an edge point is missed in the horizontal direction, it may still
be captured by the concentration kernel in the vertical direction. Still, the use of an
“ultimate” two-dimensional edge detector lies on progress of developing high dimen-
sional concentration kernels, beyond simple tensor products.

4.3 Numerical Results

We begin with the numerical investigation of TV-based compressed sensing edge de-
tector in the context of Fig. 4—a prototype example of the Shepp-Logan phantom
image, and Fig. 5. The main feature here is data which is collected by medical in-
struments, given in Fourier space along radial lines (Radon transform). There is a
discrepancy, however, between the radial lines and the rectangular grid and the first
task is therefore to transfer the radial spectral data into the Cartesian grid.

Given a phantom graph at [0, . . . ,256] × [0, . . . ,256] polar grid points. Since
the samples along radial lines are not necessarily located exactly on the rectangu-
lar, one cannot use the spectral data directly without proper adjustment. To this
end, we follow [2], and assign the gridvalue sampled on the polar grid into an
appropriately chosen neighboring Cartesian grid point: it is chosen as the closest
Cartesian gridpoint—either horizontally or vertically, according to the radial direc-
tion. The Cartesian neighboring gridpoint is determined by taking the same label
in one direction and shifting a pixel in another direction. Specifically, assume there
are N grid points in each direction and let φ denote the angle between the radial
line and the horizontal axis. If either φ ≤ π/4, or φ ≥ 3π

4 , we take the Cartesian
point with the same x-coordinate of the point on the radial line, x = xν and we set

Fig. 4 The recovered phantom image from incomplete spectral data. Left: the result by the standard back
projection. Right: the recovered edges of Shepp-Logan phantom graph by our compressed sensing edge
detection method
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Fig. 5 The recovery results from incomplete data by compressed sensing edge detection method. Left:
the result by the back projection method. Right: the recovered edges by the compressed sensing method.
Here the original image is based on N2 grid points, where N = 256. We take the spectral data of the first
difference and gather all the samples along each of the 120 lines in the spectral domain

Fig. 6 The recovered images by the TV-based compressed sensing edge detector. The available data
consists of 3000 Fourier coefficients which are uniformly and randomly distributed over the 1282 grid
points in the spectral domain. Left: the original cameraman image. Center: the image recovered from
available data, with unobserved data set as zero. Right: the recovered edges by the compressed sensing
edge detection method (2.5)

y = �tanφ(ν − N/2)� + N/2 + 1; if, on the other hand, π/4 < φ < 3π/4, we take
the same y-coordinate, y = yμ, and compute x = �cotφ(μ − N/2)� + N/2 + 1.

Figures 4 and 5 demonstrate the recovery of edges from incomplete data, using
the TV-based compressed sensing edge detector. Here, we randomly sample discrete
Fourier coefficients and gather all the samples at grids along each of 100 radial lines
in the spectral domain. The results are compared with the standard back projection,
when unobserved frequencies are taken as zero (minimal L2-energy), which should
be contrasted with the minimal TV (or L1-energy of differences) employed by the
compressed sensing approach. Next we turn to a different setup of an image given
in terms of its sampled gridvalues in the physical space. Our compressed sensing-
based edge detector is tested with incomplete data which was randomly distributed
on rectangular grids, shown in Fig. 6.

We note that in these examples, one recovers the edge detectors, g(x), which
should be viewed as two-dimensional concentration kernels, g(x) ≈ Kσ

N(x). Edges
are sought as the extrema of these approximate concentration kernels, and are cap-
tured by the Sobel detection method, [5], where extrema of g(x) are identified with
zero crossings of its proper (discrete) gradient.
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5 Details: The Zero Crossing Compressed Sensing Edge Detection

5.1 Sparsity and Post Processing

Following the discussion in Sect. 2.3, the zero crossing edge detection method re-
covers edges from incomplete data set �. It traces local extrema of gradients of the
concentration kernels, by capturing the zero crossings of (appropriate combination
of) second derivatives.

As pointed out in Sect. 2.3, with the incomplete spectral data ̂�η · ̂f for k ∈ �,
our purpose in using the TV-based compressed sensing is to recover the complete
“signal”, �η ∗ SN [f ]. According to Lemma 4.2, if

B ≤ Cm · (logN)−1 · |�|,
then with probability at least 1− O(N−m), the minimizer of (2.10) uniquely recovers
̂�η · ̂f . As usual, we assume finitely many edges whose number is denoted by B and
|�| is the number of available spectral modes. Also, the recovery is guaranteed if �

is large enough so that

B + |�| ≥ Const.(logN)−1/2N.

The output of this procedure is the convolved Laplacian (in our computations,
convolved with the Gaussian function). Seeking edges as the zero crossing of this
convolved Laplacian may yield spurious edges, due to inflection points and points
with small amplitude second derivatives. Hence, we need to post process the zero
crossing points in order to rule out these “false” edge points. Here we employ one
simple rule to post process the zero crossing points where g(xν, yμ) = 0: We check
whether |gx(xν, yμ)| �= 0, so that g(xν−1, yμ) · g(xν+1, yμ) < 0; similarly, the rul-
ing in the y direction requires g(xν, yμ−1) · g(xν, yμ+1) < 0. More complicated post
processing to remove redundancy can be found in [6, 18].

5.2 Numerical Results

We present the result of compressed sensing-based zero crossing in Fig. 7. Here, we
are given incomplete Fourier coefficients ̂fk of the image. By using the compressed

Fig. 7 Demonstrating the recovery results by zero crossing compressed sensing model. The available
2000 data points are uniformly and randomly distributed over 642 grids. Left: original image. Center:
the image recovered from incomplete data by back projection method. Right: the result obtained by zero
crossing compressed sensing method. Here we choose the parameters γ = 3
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sensing-base zero crossing approach outlined in Algorithm 2.3, most of edge points
are captured and there are very little artifacts.

6 Conclusion

In this paper, we utilize conjugate concentration kernels and sparse representation
to recover edges from spectral information of piecewise smooth data. We propose
the sIFT-based edge detection method, the TV-based compressed sensing method
and an improved zero-crossing method as novel methods to detect edges from both
complete and incomplete spectral data, which is possibly contaminated with noise.
Experimental evidence supports the relative advantage of these novel methods as
effective edge detectors in practical applications.
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thanks Emmanuel Candès and Tony Chan for hosting her in CalTech and in UCLA, and Ingrid Daubechies,
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Appendix: The sIFT Sub-algorithms

We provide here the details for serious sub-algorithms involved in the process of
sIFT-based edge detection discussed in Algorithm 2.2.

Algorithm 7.1 (Group testing)
Input: signal F , the length N of the signal F .
Initialize: set the signal F to F0, iterative step i = 0, the length N of the signal,

the accumulation factor q = 1, the number of nonzero taps of the filter χ .
In the ith iteration,

(1) If q ≥ N , then return 0.
(2) Find the most significant bit v and the number of significant intervals c by the

MSB Algorithm 7.2.
(3) Update i = i + 1, modulate the signal Fi by (v+0.5)N

4(2k1+1)
and dilate it by a factor of

4(2k1 + 1)/c. Store it in Fi+1.
(4) Call the group testing algorithm again with the new signal Fi ; store its result in

g.
(5) Update the accumulation factor q = q · 4(2k1 + 1)/c.
(6) If g > N/2, then g = g − N .
(7) Return mod (� cg

4(2k+1)
+ (v+1/2)N

4(2k1+1)
+ 0.5�,N).

The group testing makes use of following procedure, the so called Most Significant
bit (MSB) algorithm. It identifies the location of the jump by computing its significant
bits one by one.

Algorithm 7.2 (Most Significant Bit (MSB))
Input: signal F with length N , a threshold 0 < η < 1.
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(1) Get a series of new signals Gj(k) = D˜F �(eikx/4(2k1+1)Hk1), j = 0, . . . ,8k1 +4.

That is, each signal Gj concentrates on the pass region [ (j−1/2)N
4(2k1+1)

,
(j+1/2)N
4(2k1+1)

] :=
passj .

(2) Estimate the energies ej of Gj , j = 0, . . . ,8k1 + 4.
(3) Let l be the index for the signal with the maximum energy.
(4) Compare the energies of all other signals with the lth signal. If ei < ηel , label it

as an interval with small energy.
(5) Take the center vs of the longest chain of consecutive small energy intervals,

suppose there are cs intervals altogether in this chain.
(6) The center of the large energy intervals is v = 4(2k1 + 1) − vs , the number of

intervals with large energy is c = 4(2k1 + 1) − cs .
(7) If c > 4(2k1 + 1)/2, then do the original MSB [19] to get v and set c = 2, and

v = center of the interval with maximal energy.
(8) Output the dilation factor c and the most significant bit v.

A key procedure in group testing requires us to estimate the energy of a signal,
as a criteria for excluding the less energetic half intervals. Ideally, the signals to be
processed have most of the energy concentrate in one location, e.g., with N = 16, the
signals to be processed are of the form

̂F(k) = χ1(k)e2ijπk/16 · χ[−q1,q1](τk)e2iπkθ/N · ̂Sk, j = 0,1, . . . ,15. (7.1)

In the group testing procedure one needs to compare the energies of different sig-
nals. Instead of an O(N) exact computation of the energy, we use the following faster
energy estimation.

Algorithm 7.3 (Energy estimation)
Input: signal ̂F to be processed by the randomly permuted group testing with

success probability 1 − δ.

(1) Initialize: the number of samples: r = �12.5 ln(1/δ)�.
(2) Take r independent random samples from the signal ̂F : ̂F(k1), . . . , ̂F(kr), where

r is a multiple of 5.
(3) Return N× “60-th percentile of” |̂F(k1)|2, . . . , |̂F(kr)|2.

Following [19, Lemma 3.7], we can show that if a discrete signal ̂F is 93% “pure”
and the number of samples r > 12.5 ln(1/δ), then the output of Algorithm 7.3, X,
satisfies

‖X‖2
�2

≥ 0.3‖̂F‖2
�2

with probability exceeding 1 − δ.
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