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Abstract. Entropy stability plays an important role in the dynamics of non-

linear systems of hyperbolic conservation laws and related convection-diffusion
equations. Here we are concerned with the corresponding question of numer-

ical entropy stability — we review a general framework for designing entropy

stable approximations of such systems. The framework, developed in [28, 29]
and in an ongoing series of works [30, 6, 7], is based on comparing numerical

viscosities to certain entropy-conservative schemes. It yields precise charac-

terizations of entropy stability which is enforced in rarefactions while keeping
sharp resolution of shocks.

We demonstrate this approach with a host of second– and higher–order ac-
curate schemes, ranging from scalar examples to the systems of shallow-water,

Euler and Navier-Stokes equations. We present a family of energy conservative

schemes for the shallow-water equations with a well-balanced description of
their steady-states. Numerical experiments provide a remarkable evidence for

the different roles of viscosity and heat conduction in forming sharp monotone

profiles in Euler equations, and we conclude with the computation of entropic
measure-valued solutions based on the class of so-called TeCNO schemes —

arbitrarily high-order accurate, non-oscillatory and entropy stable schemes for

systems of conservation laws.
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1. Prologue: On perfect derivatives and conservative differences. Let
{uν = u(xν )} be a gridfunction based at gridpoints xν := ν∆x with mesh size

∆x = 1/N . The standard centered differencing, D∆xuν =
uν+1 − uν−1

2∆x
, is a con-

servative approximation of ux (xν ) in the sense that
∑
ν D∆xuν∆x amounts to the

boundary terms, just like
∫

uxdx is, namely

N−1∑
ν=1

D∆xuν∆x =
1

2

(
uN + uN−1

)
−

1

2

(
u0 + u1

)
≈

∫ 1

0

uxdx.

Moreover, uνD∆xuν is also a conservative approximation of the perfect derivative
uux ≡

1
2 (u2)x — indeed, a telescoping sum yields∑
ν

uνD∆xuν∆x =
1

2

∑
ν

(uν+1uν − uνuν−1) { quadratic boundary term.

The latter fact is less obvious. For example, u3
νD∆xuν is not a conservative approx-

imation of the corresponding perfect derivative u3ux ≡
1
4 (u4)x , since

∑
ν u3

νD∆xuν
lacks telescopic cancellation.
Instead, we propose to consider the centered differencing

D∆xuν :=
1

∆x

(
3

4

u4
ν+1 − u4

ν

u3
ν+1 − u3

ν

−
3

4

u4
ν − u4

ν−1

u3
ν − u3

ν−1

)
. (1)

This is a second-order approximation of ux (xν ). It is clearly conservative —∑
D∆xuν∆x amounts to the boundary terms of

(
u4
ν+1 − u4

ν

)
/
(
u3
ν+1 − u3

ν

)
. Moreover,

summation by parts shows that u3
νD∆xuν is also conservative,∑

ν

u3
ν

3

4∆x

(
u4
ν+1 − u4

ν

u3
ν+1 − u3

ν

−
u4
ν − u4

ν−1

u3
ν − u3

ν−1

)
∆x

= −
∑
ν

3

4∆x

(
u3
ν+1 − u3

ν

) (
u4
ν+1 − u4

ν

u3
ν+1 − u3

ν

)
∆x { quartic boundary terms.

The centered differencing (1) is rather unusual, and it raises three questions.
• How did we derive the quartic conservative differencing (1)?
• Is there a general recipe for construction of such conservative differences for

any multiplier, F ′(u)ux ≡ F (u)x?
• How can we utilize such recipes?

This paper provides an answer to these questions, by surveying the series of results
in [28, 29, 30, 6, 7] and concluding with the development of entropic measure-valued
computations in the recent work [8].

2. Systems of conservation laws with entropic extension. We consider one-
dimensional hyperbolic systems of conservation laws of the form

∂

∂t
u(x, t) +

∂

∂x
f (u(x, t)) = 0, (x, t) ∈ Ω × R+, (2)

which govern the balance of the conservative variables1 u(x, t) = (u1(x, t), . . . ,un (x,
t))> and their fluxes f (u) = ( f1(u), . . . , fn (u))>. We consider the cases of a pure
Cauchy problem, Ω = R, or the periodic case over the torus, Ω = T; in either case,
there are no contribution from the boundaries. The system (2) is hyperbolic in the
sense that the n× n Jacobian matrix A(u) := ∂uf (u) has real eigenvalues. The study

1Here and below, scalars are distinguished from vectors which are denoted by bold letters.
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of such systems was motivated, to a large extent, by the canonical example of Euler
equations.

Example 2.1. [Euler equations] The compressible Euler equations given by

∂

∂t



ρ
m
E


+

∂

∂x



m
qm + p

q(E + p)


= 0, (3)

express the conservation of density, momentum, m := ρq, and (total) energy, u =
(ρ,m,E)> in terms of the flux f (u) = (ρq, ρq2 + p,q(E + p))>, where the closure for
the pressure is determined by the γ-law, p := (γ − 1)(E − ρq2/2).

Euler equations (3) are augmented with yet another conservation law which is ex-
pressed in terms of the specific entropy S := ln(pρ−γ ),

∂

∂t
(
− ρS

)
+

∂

∂x
(
− ρqS

)
= 0. (4)

The last equality follows by formal manipulations of (3), stating the conservation of
the entropy η(u) = −ρS in terms of the entropy flux F (u) = −ρqS. This motivates
the notion of entropy pairs for general system of conservation laws.

Entropy function. A convex function η : Rn 7→ R is an entropy function asso-
ciated with (2) if there exists an entropy flux F : Rn 7→ R such that the following
compatibility relation holds (here and below the prime denotes the gradient w.r.t.
to specified variable, X ′(u) :=

(
Xu1

, . . . Xun

)
)

η ′(u) A(u) = F ′(u), A(u) =
∂

∂u
f (u). (5)

The existence of such compatible entropy pair allows us to proceed with the follow-
ing formal manipulation

0 =
〈
η ′(u),ut + f (u)x

〉
=

〈
η ′(u),ut + A(u)ux

〉
=

〈
η ′(u),ut

〉
+

〈
F ′(u),ux

〉
= η(u)t + F (u)x .

(6)

Thus, the pair
(
η(u),F (u)

)
forms a conservative extension of (2), in complete anal-

ogy to the conservation of physical entropy in Euler equations (4). The convexity
of η = η(·) signifies a non-trivial conserved quantity, beyond the obvious conserved
linear combinations c ·u. Thus for example, the judicious minus sign in (4) is chosen
to make the corresponding Euler’s entropy, η(u) = −ρS, a convex entropy function
of the conservative variables ρ,m and E.

Entropy variables [Godunov (1961) [10], Mock (1980) [23]]. Define the entropy
variables v ≡ v(u) := η ′(u). Thanks to the convexity of η(u), the mapping u→ v is
one-to-one and hence we can make the (local) change of variables u = u(v), which
puts the system (2) in an equivalent symmetric form

u(v)t + f (u(v))x = 0. (7)

Here, u(·) and f (·) become the temporal and spatial fluxes in the independent
entropy variables,2 v, and the system (7) becomes symmetric in the sense that
the Jacobians of these fluxes are, namely H (v) := uv(v) and B(v) := fv(u(v)) are

2We shall often abuse the notation using the same f ( ·) as a vector function of the conservative

variables f (u) and of the entropy variables, f (u(v)) { f (v), whenever their dependence is clear from
context and makes no ambiguity.
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symmetric. Indeed, a straightforward manipulation of the compatibility relation (5)
implies

u(v) = ∇vφ(v), φ(v) := 〈v,u(v)〉 − η(u(v)) (8a)

f (v) = ∇vψ(v), ψ(v) := 〈v, f (v)〉 − F (u(v)). (8b)

Consequently, the Jacobians, H (v) and B(v), are the symmetric Hessians of φ(v),
and respectively, ψ(v). The so-called entropy potential flux, ψ(v), will play a sig-
nificant role in our discussion below.

Multi-dimensional systems. We consider hyperbolic systems of nonlinear con-
servation laws in several space dimensions,

ut + ∇x · f (u) = 0, x = (x1, . . . , xd ) ∈ Ω, t ∈ R+. (9)

Here, the conservative variables u are balanced by multidimensional fluxes f (u) =(
f (1) , . . . , f (d)

)
where f ( j ) (u) : Rn 7→ Rn . The system is hyperbolic if the eigen-

values of the n × n symbol,
∑

j ξ j Aj (u), Aj (u) := ∂uf
( j ) (u), are real for all real

ξ = (ξ1, . . . , ξd ). The corresponding question of an entropic extension amounts to
searching non-trivial conservative extensions. Arguing formally along the lines of
(6),

0 =
〈
η ′(u), ut + ∇x · f (u)

〉
{

entropy︷︸︸︷
η(u)t +

perfect derivatives?︷               ︸︸               ︷〈
η ′(u),∇x · f (u)

〉
= 0, (10)

we conclude that η(·) is an entropy function if pre-multiplication by its gradient,
η ′(u)>, preserves the structure of ‘perfect gradients’:

η(u) is an entropy function if and only if
〈
η ′(u), ∇x · f (u)

〉
= ∇x · F(u). (11)

In other words, (η,F) is an entropy pair associated with (9) if a convex entropy

η : Rn 7→ R and the corresponding entropy flux F =
(
F (1) , . . . ,F (d)

)
: Rn 7→ Rd

satisfy the compatibility relations

η ′(u) Aj (u) = F ( j ) ′(u), Aj (u) =
∂

∂u
f ( j ) (u), j = 1, . . . ,d.

The formal manipulation involving (11) yields the conservation of the non-trivial
entropic extension, η(u)t + ∇x · F(u) = 0.

Strong vs. entropic weak solutions. Strong solutions of (2) are interpreted
as pointwise values u(x, t). The generic phenomena associated with these nonlinear
equations is the breakdown of their strong solutions at a finite time, after which
one must admit weak solutions, [3]. These weak solution can be observed in terms
of their (sliding) averages — for example, in the one-dimensional case, u(x, t) :=

1

∆x

∫ x+∆x/2

x−∆x/2
u(y, t)dy, are governed by the balance law,

u(x, t + ∆t) − u(x, t)
∆t

= −
1

∆x

[∫ t+∆t

τ=t
f

(
u
(
x +

∆x
2
, τ

))
dτ −

∫ t+∆t

τ=t
f

(
u
(
x −

∆x
2

))
dτ

]
.

(12)

Weak solutions reflect the balance between their spatial averages on the left and
the temporal averages (of fluxes) on the right at all finite scales (∆x,∆t). In this
context of weak solutions, one cannot proceed with the formal manipulations (6),
(10) which led to the entropy equality η(u)t + ∇x · F(u) = 0. Instead, among the
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many weak solutions, physically relevant solutions are identified as those realized
as a vanishing viscosity limit which lead to an entropy inequality [10],[13, §7], [9],

η(u)t + ∇x · F(u) 6 0. (13)

A weak solution of (9) is entropic if it satisfies the entropy inequality (13) for all
admissible entropy pairs (η,F) associated with (9). This notion of entropy solution
is the cornerstone for the theory of hyperbolic systems of nonlinear conservation
laws. We refer the reader to the pioneering contributions of Lax [14, 15], and the
comprehensive book [3].

3. Entropy conservative fluxes and entropy stable schemes. We are inter-
ested in computation of approximate entropy solutions in terms of their cell averages
uν (t) ≈ u(xν , t). To simplify matters, we consider the semi-discrete limit of the one-
dimensional weak (12), ∆t ↓ 0,

d
dt
uν (t) +

1

∆x

(
fν+ 1

2
− fν− 1

2

)
= 0, fν± 1

2
=

1

∆x

∫ t+∆t

τ=t
f
(
u
(
xν± 1

2
, τ

))
dτ.

We consider the corresponding class of semi-discrete conservative schemes of the
form

d
dt
uν (t) = −

1

∆x

(
fν+ 1

2
− fν− 1

2

)
, (14a)

serving as consistent approximations to systems of conservation laws (2). Here, uν (t)
denotes the discrete solution along the grid line (xν , t). At the heart of matter are
the numerical fluxes, fν+ 1

2
= f (uν−p+1, . . . ,uν+p ), which approximate the differential

flux, fν+ 1
2
≈ fν+ 1

2
, and in particular, consistent with the differential flux,

fν+ 1
2
= f (uν−p+1, . . . ,uν+p ), f (u,u, . . . ,u) ≡ f (u). (14b)

The framework of conservative difference schemes (14) was initiated in the seminal
paper of Lax & Wendroff [21].

Remark that the numerical flux involves a stencil of 2p neighboring grid values
centered at half-indexed gridpoints, f (·, ·, . . . , ·) { fν± 1

2
, and as such, could be clearly

distinguished from the (same notation of) the differential flux tagged at integer
indexed gridpoints, f (·) { fν .

There are several desirable and often competing properties which are sought in
the design of such numerical fluxes; we will list some of them later on. We begin
with the question of entropy stability of such schemes.
Let (η,F) be an entropy pair associated with the system 2. We ask whether the
scheme (14a) is entropy-stable with respect to such a pair, in the sense of satisfying
a discrete entropy inequality analogous to the entropy inequality η(u)t + F (u)x 6 0,

d
dt
η(uν (t)) +

1

∆x

(
Fν+ 1

2
− Fν− 1

2

)
6 0. (15)

Here, Fν+ 1
2
= F (uν−p+1, . . . ,uν+p ) is a consistent numerical entropy flux, F (u,u, . . . ,u)

= F (u). In the particular case that equality holds in (15), we say that the scheme
(14) is entropy-conservative.

The answer to this question of entropy stability provided in [28] consists of two
main ingredients: (i) the use of the entropy variables and (ii) the comparison with
appropriate entropy-conservative schemes. We conclude this section with a brief
overview.
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Making the changes of variables, uν = u(vν ), the scheme (14a) recasts into an
equivalent form expressed in terms of the discrete entropy variables vν = vν (t),

d
dt
u(vν (t)) = −

1

∆x

(
fν+ 1

2
− fν− 1

2

)
, (16)

with a numerical flux fν+ 1
2
= f (vν−p+1, . . . ,vν+p ) := f (u(vν−p+1), . . . ,u(vν+p )), con-

sistent with the differential flux, f (v,v, . . . ,v) = f (u(v)).
Fix an entropy pair (η,F) associated with (2). We say that the scheme (16) is

entropy-conservative if the discrete analogue of (6) holds,

d
dt
η(uν (t)) +

1

∆x

(
Fν+ 1

2
− Fν− 1

2

)
= 0, (17)

so that the total amount of entropy is conserved in time,
∑
ν η(uν (t))∆x =

∑
ν η(uν

(0))∆x. In other words, we seek entropy-conservative fluxes, denoted f ∗
ν+ 1

2

, such

that
d
dt
uν (t) +

1

∆x

(
f ∗
ν+ 1

2

− f ∗
ν− 1

2

)
= 0

?
{

d
dt
η(uν (t)) +

1

∆x

(
Fν+ 1

2
− Fν− 1

2

)
= 0. (18)

We conclude that f ∗
ν− 1

2

is an entropy-conservative numerical flux if pre-multiplication

by the entropy gradient, η ′(u), preserves the structure of ‘perfect differences’ in the
sense that 〈

η ′(uν ) , f ∗
ν+ 1

2

− f ∗
ν− 1

2

〉
= Fν+ 1

2
− Fν− 1

2
. (19)

This raises the question of gridfunctions {Xν }, which admit the form of a ‘perfect
difference’ in the sense of a generic representation, Xν = Yν+ 1

2
−Yν− 1

2
. This is precisely

the question of conservative differences raised in the prologue, in complete analogy
with preserving the structure of ‘perfect gradients’ in the differential framework
(11).

Expressed in terms of the entropy variables, vν = η ′(uν ), entropy conservation
(19) requires that

〈
vν , f

∗

ν+ 1
2

− f ∗
ν− 1

2

〉
is a ‘perfect difference’, or equivalently,

perfect difference︷                 ︸︸                 ︷〈
vν , f

∗

ν+ 1
2

− f ∗
ν− 1

2

〉
if and only if

perfect difference︷                 ︸︸                 ︷〈
vν+1 − vν , f

∗

ν+ 1
2

〉
. (20)

Indeed, the ‘if and only if’ stated in (20) follows from the fact that the difference
between the two terms, on the left and on the right, is a perfect difference. We con-

clude that the numerical flux f ∗
ν+ 1

2

is entropy-conservative provided
〈
vν+1 −vν , f

∗

ν+ 1
2

〉
is a perfect difference. Specifically, the following identity holds, [28] (here and below
we use ∆Xν+ 1

2
to abbreviate the jump across the cell, ∆Xν+ 1

2
:= Xν+1 − Xν),

d
dt
η(uν (t)) +

1

∆x

(
Fν+ 1

2
− Fν− 1

2

)
≡

1

2∆x

[〈
∆vν+ 1

2
, fν+ 1

2

〉
− ∆ψν+ 1

2

]
+

1

2∆x

[〈
∆vν− 1

2
, fν− 1

2

〉
− ∆ψν− 1

2

]
,

(21)

where Fν+ 1
2

is a numerical entropy flux Fν+ 1
2

:= 1
2

〈
vν + vν+1 , fν+ 1

2

〉
− 1

2

(
ψ(vν ) +

ψ(vν+1)
)
, expressed in terms of the corresponding entropy flux potential (recall

(8b), ψ(v) =
〈
v , f (v)

〉
− F (u(v))). This brings us to the following.

Theorem 3.1. [Tadmor (1987) [28]]. Let (η,F) be an entropy pair associated with
the one-dimensional system of conservation laws (2), with the corresponding entropy
variables v = η ′(u).
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(i) [Entropy conservative scheme]. The difference scheme (16) is entropy-conservative
so that (17) holds, if its numerical flux, fν+ 1

2
= f ∗

ν+ 1
2

, satisfies〈
vν+1 − vν , f

∗

ν+ 1
2

〉
= ψν+1 − ψν , ψν =

〈
vν , f (vν )

〉
− F (u(vν )) (22)

(ii) [Entropy stable schemes]. Consider a numeral flux fν+ 1
2

of the form

fν+ 1
2
= f ∗

ν+ 1
2

− Dν+ 1
2

(
vν+1 − vν

)
, Dν+ 1

2
> 0; (23)

Here, f ∗
ν+ 1

2

is an entropy-conservative flux and Dν+ 1
2

is any positive definite sym-

metric matrix. Then the resulting scheme (16) is entropy stable so that (15) holds.

Proof. If fν+ 1
2
= f ∗

ν+ 1
2

satisfies (22) holds then the two terms on the right of (21)

vanish,
〈
∆vν± 1

2
, fν± 1

2

〉
−∆ψν± 1

2
= 0, and we end with an entropy-conservative scheme

so that (17) holds. Moreover, a numerical flux of the form (23)) satisfies〈
∆vν+ 1

2
, fν+ 1

2

〉
− ∆ψν+ 1

2
=

〈
∆vν+ 1

2
, f ∗
ν+ 1

2

〉
− ∆ψν+ 1

2
−

〈
∆vν+ 1

2
,Dν+ 1

2
∆vν+ 1

2

〉
6 0.

Thus, the two terms on the right of (21) are negative,
〈
∆vν± 1

2
, fν± 1

2

〉
− ∆ψν± 1

2
6 0,

and we end with an entropy stable scheme so that (15) holds �

4. Entropy conservative schemes — examples of scalar conservation laws.
We discuss the entropy stability of scalar schemes of the form

d
dt

uν (t) = −
1

∆x

(
fν+ 1

2
− fν− 1

2

)
, uν (t) ≡ u(3ν (t)). (24)

We begin by noting that in the scalar case, all convex η’s are entropy functions,
and the corresponding entropy-conservative fluxes are given by

f ∗
ν+ 1

2

=
ψ(3ν+1) − ψ(3ν )

3ν+1 − 3ν
.

Example 4.1. [Linear equations] We begin with the linear case ut + aux = 0 and
the quartic entropy η(u) = u4/4. That is, we seek a “perfect difference”, D∆xu ≈ ux

such that both D∆xuν and u3
νD∆xuν are conserved. This is precisely the example

discussed in the opening prologue of this paper. In this case, with f (u) = u, the
entropy variables 3 := u3 and entropy potential ψ(u) = 3

4u4 yield the second-order
perfect differencing (1), which we express in terms of the numerical flux u∗

ν+ 1
2

,

D∆xuν =
u∗
ν+ 1

2

− u∗
ν− 1

2

∆x
, u∗

ν+ 1
2

=
ψ(uν+1) − ψ(uν )

uν+1 − uν
=

3

4

u4
ν+1 − u4

ν

u3
ν+1 − u3

ν

.

Observe that this is indeed a second-order accurate difference approximation

u∗
ν+ 1

2

≈
3

4
·

8u3
ν+ 1

2

∆x
2 ux

6u2
ν+ 1

2

∆x
2 ux

≈ u
(
xν+ 1

2

)
.

Thus, the difference scheme

d
dt

uν (t) + a
u∗
ν+ 1

2

− u∗
ν− 1

2

∆x
= 0, u∗

ν+ 1
2

=
3

4

u4
ν+1 − u4

ν

u3
ν+1 − u3

ν

,

is a second-order difference approximation of ut + aux = 0 which conserves both∑
uν (t)∆x and

∑
u4
ν (t)∆x.
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We turn to several nonlinear examples.

Example 4.2. [Toda flow] Consider the equation ut + (eu )x = 0 augmented with
exponential entropy pair, (eu )t + (e2u )x = 0. The entropy variable associated with
η(u) = eu are 3(u) = eu , the entropy potential is ψ(3) := 3 f − F = 1

2 3
2, and we end

up with the entropy-conservative flux:

f ∗
ν+ 1

2

=
ψ(3ν+1) − ψ(3ν )

3ν+1 − 3ν
=

1
2 3

2
ν+1 −

1
2 3

2
ν

3ν+1 − 3ν
=

1

2
(3ν + 3ν+1) =

1

2

(
euν + euν+1

)
.

This leads to the dispersive centered scheme,interesting for its own sake, e.g., [17,
20, 4]

d
dt

uν (t) +
euν+1 (t ) − euν−1 (t )

2∆x
= 0,

which conserve the exponential entropy η(uν (t)) = euν (t ),

d
dt

∑
ν

euν (t )
∆x = −

∑
ν

euν+uν+1 − euν+uν−1

2∆x
∆x = 0 {

∑
ν

η(uν (t))∆x =
∑
ν

η(uν (0))∆x.

Example 4.3. [Burgers’ equation] Consider the inviscid Burgers’ equation, ut +

( 12u2)x = 0, augmented with the quadratic entropy (
1

2
u2)t + (

1

3
u3)x = 0. The

entropy variable 3(u) = u and entropy potential ψ(3) := 3 f − F = 1
6u3 yield the

entropy-conservative flux which is the “ 1
3”-rule

d
dt

uν (t) = −
2

3

(u2
ν+1 − u2

ν−1

4∆x

)
−

1

3

(
uν

uν+1 − uν−1
2∆x

)
{

∑
u2
ν (t)∆x =

∑
u2
ν (0)∆x.

Numerical viscosity. We continue our discussion with a focus on the quadratic
scale entropy η(u) = 1

2u2 where the entropy variables coincide with the conservative
variables, 3 = u. According to (22), the entropy-conservative schemes are uniquely
determined by the numerical flux f ∗

ν+ 1
2

,

f ∗
ν+ 1

2

:=
ψ(uν+1) − ψ(uν )

uν+1 − uν
≡

∫ 1
2

ξ=− 1
2

ψ ′
(
uν+ 1

2
(ξ)

)
dξ, uν+ 1

2
(ξ) :=

1

2
(uν+uν+1)+ξ∆uν+ 1

2
.

Recall that ψ ′(u) = f (u), and a further integration by parts of f ∗
ν+ 1

2

=
∫ 1

2

ξ=− 1
2

d
dξ (ξ) ·

f
(
uν+ 1

2
(ξ)

)
dξ, implies

f ∗
ν+ 1

2

=
1

2

(
f (uν+1)+ f (uν )

)
−Q∗

ν+ 1
2

(
uν+1−uν

)
, Q∗

ν+ 1
2

:=

∫ 1
2

ξ=− 1
2

ξ f ′
(
uν+ 1

2
(ξ)

)
dξ. (25)

The resulting entropy-conservative scheme then takes the viscosity form [27]

d
dt

uν (t) = −
1

∆x

(
f ∗
ν+ 1

2

− f ∗
ν− 1

2

)
= −

1

2∆x

(
f (uν+1) − f (uν−1)

)
+

1

∆x

(
Q∗
ν+ 1

2

∆uν+ 1
2
−Q∗

ν− 1
2

∆uν− 1
2

)
.

(26)

The entropy stability portion of Theorem 3.1 can now be restated in the following
form, [28].

Corollary 4.1. [28] The conservative scheme

d
dt

uν (t) = −
1

2∆x

(
f (uν+1) − f (uν−1)

)
+

1

∆x

(
Qν+ 1

2
∆uν+ 1

2
−Qν− 1

2
∆uν− 1

2

)
, (27)
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is entropy-stable if it contains more viscosity than the entropy-conservative scheme
(26), in the sense that Qν+ 1

2
> Q∗

ν+ 1
2

.

The proof is straightforward — the numerical flux associated with (27) can be
expressed as

fν+ 1
2
=

1

2

(
f (uν+1) + f (uν )

)
−Qν+ 1

2

(
uν+1 − uν

)
≡ f ∗

ν+ 1
2

+

(
Qν+ 1

2
−Q∗

ν+ 1
2

) (
uν+1 − uν

)
,

and entropy stability follows from (23) with Dν+ 1
2
= Qν+ 1

2
−Q∗

ν+ 1
2

> 0.

The corollary above enables to verify the entropy stability of first- second-order
accurate schemes. A host of examples can be found in [29] and we quote here the
prototype example of

Example 4.4. [Lax-Wendroff viscosity (1960) [21]] We consider the genuinely non-
linear case, where f (u) is, say, convex. A quadratic entropy stability is sufficient in
this case, to single out the unique physically relevant solution [2]. To see how much
viscosity is required in this case, we use the fact that the f ′ is increasing, leading
to the upper bound of Q∗

ν+ 1
2

in (25)

Q∗
ν+ 1

2

=

∫ 1
2

ξ=− 1
2

ξ f ′
(
uν+ 1

2
(ξ)

)
dξ 6

1

8

∫ 1
2

ξ=− 1
2

f ′′
(
uν+ 1

2
(ξ)

)
dξ =

1

8

(
f ′(uν+1) − f ′(uν )

)
+
.

The resulting viscosity coefficient on the right is the second-order Lax-Wendroff
viscosity proposed in [21],

QLW
ν+ 1

2

=
1

8

(
f ′(uν+1) − f ′(uν )

)
+
. (28)

It follows that the scheme (27),(28) is entropy stable,
1

2

d
dt

u2
ν (t)+

1

∆x

(
Fν+ 1

2
− Fν− 1

2

)
6

0.

5. Entropy conservative schemes — systems of conservation laws. Our
study of entropy stability is based on comparison with entropy-conservative schemes.
In the scalar case, entropy-conservative schemes are unique (for a given entropy
pair). For systems, there are many possible choices for numerical fluxes which meet
the entropy conservation requirement (22). In this section we present a systematic
derivation of entropy-conservative schemes developed in [29], which enjoys an ex-
plicit, closed-form formulation using path integration in phase-space. To this end,
we first define the piecewise-smooth path of integration as follows. At each cell,

consisting of two neighboring values vν and vν+1, we let
{
r
j

ν+ 1
2

}n
j=1 be an arbitrary

set of n linearly independent n-vectors, and let
{
` j
ν+ 1

2

}n
j=1 denote the correspond-

ing orthogonal set,
〈
` j
ν+ 1

2

,rk
ν+ 1

2

〉
= δ jk . Next, we introduce the intermediate states,{

v
j

ν+ 1
2

}n
j=1, starting with v1

ν+ 1
2

= vν , followed by

v
j+1

ν+ 1
2

= v
j

ν+ 1
2

+
〈
` j
ν+ 1

2

,∆vν+ 1
2

〉
r
j

ν+ 1
2

, j = 1,2, . . . , (29)

and ending at vn+1
ν+ 1

2

= v1
ν+ 1

2

+

n∑
j=1

〈
` j
ν+ 1

2

,∆vν+ 1
2

〉
r
j

ν+ 1
2

= vν + ∆vν+ 1
2
≡ vν+1. Since

the mapping u 7→ v is one-to-one, the path is mirrored in the usual phase space of



4588 EITAN TADMOR

conservative variables,
{
u
j

ν+ 1
2

= u
(
v
j

ν+ 1
2

)}
j , starting with u1

ν+ 1
2

= uν and ending with

un+1
ν+ 1

2

= uν+1. Equipped with this notation we turn to our next result.

Theorem 5.1. [Tadmor (2003) [29]] Fix an entropy pair (η,F) and let ψ denote
the corresponding entropy flux potential (8b). Then, the difference scheme

d
dt
uν (t) = −

1

∆x

(
f ∗
ν+ 1

2

− f ∗
ν− 1

2

)
, f ∗

ν+ 1
2

:=
n∑
j=1

ψ
(
v
j+1

ν+ 1
2

)
− ψ

(
v
j

ν+ 1
2

)
〈
` j
ν+ 1

2

,∆vν+ 1
2

〉 ` j
ν+ 1

2

, (30)

is a conservative approximation consistent with (2), which is entropy-conservative
so that (21) is reduced to the equality equality (17) with entropy-consistent numerical
flux F∗

ν+ 1
2

,

d
dt
η(uν (t))+

1

∆x

(
F∗
ν+ 1

2

−F∗
ν− 1

2

)
= 0, F∗

ν+ 1
2

:=
1

2

〈
vν+vν+1 , f

∗

ν+ 1
2

〉
−

1

2

(
ψ(vν )+ψ(vν+1)

)
.

5.1. An entropy-conservative approximation of Euler equations. We demon-
strate the above approach in the context of Euler equations, (3). We seek a con-
servative approximation of Euler equations which respects the additional entropy
equality, η(u)t + F (u)x = 0, for the entropy pair (η,F) = (−ρS,−ρqS). This is pre-
cisely the recipe sought in the prologue — namely, we seek an entropy-conservative
flux, f ∗

ν+ 1
2

d
dt
uν (t) = −

1

∆x

(
f ∗
ν+ 1

2

− f ∗
ν− 1

2

)
,

with no artificial numerical viscosity, so that we end with the precise entropy bal-
ance,

∑
η(uν (t))∆x =

∑
η(uν (0))∆x.

Integration in phase-space. An entropy-conservative flux for Euler equations
using the recipe of theorem 5.1 was derived in [30]. The entropy function η(u) = −ρS
induces the entropy variables

v = η ′(u)=


−E/e − S + γ + 1
q/θ
−1/θ


, e := E −

1

2
ρq2 = C3 ρθ.

The corresponding entropy flux potential amounts to ψ(v) = 〈v , f 〉 − F (u) = (γ −
1)m. Next, we choose an approximate Riemann path in phase-space, v j+1 = v j +

〈` j ,∆vν+ 1
2
〉r j , where {r j }3j=1 are three linearly independent directions along the eigen-

system of the Jacobian A(u), {` j }3j=1 are the corresponding orthogonal system, and

{m j }3j=1 are the intermediate values of the momentum along the path. We end up

with an explicit form of

Entropy conservative fluxes — Euler eqs.: f ∗
ν+ 1

2

= (γ − 1)
3∑
j=1

m j+1 − m j

〈` j , ∆vν+ 1
2
〉
` j . (31)

Figure 1 shows the computations of entropy-conservative Euler solutions in [30]. No
artificial numerical viscosity is present: except for the minimal amount of entropy
decay (∼ 10−3) due to dissipation of the 4th-order Runge-Kutta time integrator, the
simulations in figure 2, reflect the conservation of entropy.

An affordable recipe for entropy-conservative flux. According to theorem
3.1, any numerical flux which satisfies the algebraic compatibility relations 〈vν+1 −
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Figure 1. Entropy conservative density, velocity and pressure for
Euler’s Sod problem. Top: 1000 spatial grid points. Bottom: 4000
grid points.
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Figure 2. The conserved entropy, η(u(·, t)) = −ρ ln
(
pρ−γ

)
with

(left) 1000 and (right) 4000 spatial grid points.

vν , f
∗

ν+ 1
2

〉 = ψ(vν+1)−ψ(vν ), is an entropy-conservative flux. An “affordable” entropy-

conservative flux for Euler equations was derived in by Ismail & Roe in [12] by clever
manipulation of these algebraic relations. Expressed in terms of the normalized

vector z :=

√
ρ

p



1
q1
q2
p



, the entropy-conservative flux, f ∗
ν+ 1

2

:= ( f 1, f 2, f 3, f 4)>, is

given by the explicit recipe,

f 1
ν+ 1

2

= (z2)ν+ 1
2

(z4)ln
ν+ 1

2

, zν+ 1
2

:=
1

2

(
zν + zν+1

)
, zln

ν+ 1
2

:=
∆zν+ 1

2

∆ log(z)ν+ 1
2

,

f 2
ν+ 1

2

=
(z4)ν+ 1

2

(z1)ν+ 1
2

+
(z2)ν+ 1

2

(z1)ν+ 1
2

f 1
ν+ 1

2

f 3
ν+ 1

2

=
(z3)ν+ 1

2

(z1)ν+ 1
2

f 1
ν+ 1

2
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f 4
ν+ 1

2

=
1

2(z1)ν+ 1
2

*.
,

γ + 1

γ − 1

1

(z1)ln
ν+ 1

2

f 1
ν+ 1

2

+ (z2)ν+ 1
2

f 2
ν+ 1

2

+ (z3)ν+ 1
2

f 3
ν+ 1

2

+/
-
.

5.2. Multidimensional systems of conservation laws. Well balanced shal-
low-water equations. We consider the 2D shallow water equations,

∂

∂t
u +

∂

∂x1
f (1) (u) +

∂

∂x2
f (2) (u) = −gh∇b(x), u := [h,hq]>

which govern the motion of shallow-water with height h and velocity field q =

(q1,q2)>, driven by the convective fluxes, f ( j ) =
[
hqj , hq1qj +

1
2gh2δ1 j , hq2qj

+ 1
2gh2δ2 j

]>
, and balanced by the prescribed bottom topography b(x),

ht + (hq1)x1 + (hq2)x2 = 0

(hq1)t +
(
hq2

1 +
1

2
gh2

)
x1
+ (hq1q2)x2 = −ghbx1

(hq2)t + (hq2q1)x1 +
(
hq2

2 +
1

2
gh2

)
x2
= −ghbx2 .

The entropy function is the total energy, E(u) = 1
2 (gh(h + b) + h|q|2). Observe

that the shallow-water fluxes are quadratic in z := (h,
√

hq1,
√

hq2)>. This enables
a straightforward “affordable” algebraic approach for satisfying the energy conser-

vative compatibility relation (22),
〈
vν+1, µ −vν,µ , f

(1)∗
ν+ 1

2
, µ

〉
= ψ(vν+1, µ )−ψ(vν,µ ). Here

we use the usual indexing of two-dimensional grid-functions attached to grid points
xν,µ :=

(
x1ν , x2µ

)
. Using the average values, zν+ 1

2
:= 1/2

(
zν + zν+1

)
, one finds the

x1-entropy-conservative flux [6]

f (1)∗
ν+ 1

2
, µ
=



hν+ 1
2
, µ (q1)ν+ 1

2
, µ

hν+ 1
2
, µ (q1)2

ν+ 1
2
, µ
+
g

2

(
h2

)
ν+ 1

2
, µ
+ gh(bx1 )

hν+ 1
2
, µ (q1)ν+ 1

2
, µ (q2)ν+ 1

2
, µ



. (32a)

Similar expression applies for the conservative flux f (2)∗
ν,µ+ 1

2

in the x2-direction. We

end up with the energy conservative scheme

d
dt
uν,µ (t) = −

1

∆x1

(
f (1)∗
ν+ 1

2
, µ
− f (1)∗

ν− 1
2
, µ

)
−

1

∆x2

(
f (2)∗
ν,µ+ 1

2

− f (2)∗
ν,µ− 1

2

)
. (32b)

These schemes are effective in computing steady solutions of shallow-water — for
example, the steady state of lake at rest, H (x) := h(x, ·) + b(x) = Const .; q = 0, as
well as other equilibria states, q · ∇xq + g∇xH = 0 shown in figure 3. Indeed, the
energy conservative scheme (32) recovers the precise energy balance,

∂t E(u) + ∂x1 F (1) (u) + ∂x2 F (2) (u) = 0, E(u) :=
1

2

(
h|q|2 + ghH

)
,

in terms of the energy fluxes F ( j ) (u) = 1
2

(
hqj |q|

2 + ghH
)
.
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(a) t = 0.4

(b) t = 0.6

Figure 3. A simulation of a perturbed two-dimensional lake at
rest using 600 × 300 gridpoints. Left column: Energy-conservative
scheme (32) with first-order numerical viscosity; right column:
Energy-conservative scheme (32) with second-order numerical vis-
cosity (outlined in section 6.2).

Euler equations. Expressed in terms of the velocity field q = (q1,q2)> and the

pressure p := (γ − 1)
(
E − ρ

2 |q|
2
)
, the 2D Euler equations read

∂

∂t



ρ
ρq1
ρq2
E



+
∂

∂x1



ρq1
ρq2

1 + p
ρq1q2

q1(E + p)



+
∂

∂x2



ρq2
ρq1q2
ρq2

2 + p
q2(E + p)



= 0 (33)

The “affordable” entropy-conservative fluxes f (1)∗
ν+ 1

2
, µ

and f (2)∗
ν,µ+ 1

2

can be found in [12].

6. Entropy stable schemes for systems of conservation laws. We recall that
the entropy inequality η(u)t + ∇x · F(u) 6 0 is imposed as a stability condition
which excludes non-physically relevant shock discontinuities, [15]. In particular, the
entropy decay follows

∫
η(u(x, t2))dx 6

∫
η(u(x, t1))dx, t2 > t1. The question is to

quantify the inequality, namely — how much entropy decay will suffice? “physically
relevant” entropy decay could be dictated by various mechanisms. We mention the
most important two:

(i) [Physical diffusion]. The canonical example of the conservative Euler equa-
tions vs. the entropy decay dictated by Navier-Stokes equations is considered in
section 6.1

(ii) [Numerical viscosity]. According to theorem 3.1, one can add any amount
of numerical viscosity to enforce entropy stability. The goal is to add a judicious
amount of vanishing viscosity so that in the resulting scheme admits additional
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desirable and often competing properties of high-resolution and non-oscillatory be-
havior. This is the topic of section 6.2

6.1. Physical viscosity — a “faithful” approximation of Navier-Stokes
equations. The one-dimensional Navier-Stokes equations (NSe) read

∂

∂t



ρ
m
E


+

∂

∂x



m
qm + p

q(E + p)


= (λ + 2µ)

∂2

∂x2



0
q

q2/2


+ κ

∂2

∂x2



0
0
θ


, λ, µ, κ > 0.

The viscosity and heat dissipation of the right (expressed in terms of the tempera-
ture θ ∼ p/ρ > 0) dictate an entropy dissipation

η(uε )︷ ︸︸ ︷
(−ρS)t +

Fε (uε )︷                 ︸︸                 ︷
(−ρqS + ε ln(θ)x )x =

viscosity︷               ︸︸               ︷
−(λ + 2µ)

(qx )2

θ

heat conduction︷   ︸︸   ︷
−κ
|θx |

2

θ2
6 0. (34)

We abbreviate these NSe writing ut + f (u)x = εd(u)xx , where ε encodes the viscosity
and heat amplitudes (λ, µ, κ) { ε . We use the entropy-conservative flux, f ∗

ν+ 1
2

to

discretize the convective term on the left of (34) and standard centered differencing
for the diffusion term on the right: this yields the semi-discrete scheme

d
dt
uν (t) +

1

∆x

(
f ∗
ν+ 1

2

− f ∗
ν− 1

2

)
=

ε

(∆x)2
(
dν+1 − 2dν + dν−1

)
. (35)

We now turn to examine the entropy balance of (35). Pre-multiply by the en-
tropy gradient η ′(uν )> = v>ν : the entropy-conservative flux f ∗

ν+ 1
2

in (31) produces

no artificial numerical viscosity,
〈
vν , f

∗

ν+ 1
2

− f ∗
ν− 1

2

〉
= F∗

ν+ 1
2

− F∗
ν− 1

2

; the expression

〈vν ,dν+1 − 2dν + dν−1〉 ≡ 〈vν ,∆dν+ 1
2
− ∆dν− 1

2
〉 can be decomposed into conservative

sums and perfect differences which amount to

d
dt
η(uν ) +

1

∆x

(
F∗
ν+ 1

2

− F∗
ν− 1

2

)
−

ε

2(∆x)2
(〈
vν + vν+1 ,∆dν+ 1

2

〉
−

〈
vν−1 + vν ,∆dν− 1

2

〉)
= −

ε

2(∆x)2
(〈
∆vν+ 1

2
,∆dν+ 1

2

〉
+

〈
∆vν− 1

2
,∆dν− 1

2

〉)
.

(36)

We end up with the following entropy balance of (35) — a precise discrete
analogue of the entropy balance in NSe derived in [30, theorem 3.6],3

d
dt
η(uν ) +

1

∆x

(
F∆

ν+ 1
2

− F∆

ν− 1
2

)
= −

ε

2(∆x)2
(〈
∆vν+ 1

2
,∆dν+ 1

2

〉
+

〈
∆vν− 1

2
,∆dν− 1

2

〉)
{ −

1

2
(λ + 2ν) *

,

∆qν± 1
2

∆x
+
-

2 (1

θ

)
ν± 1

2

−
κ

2
*
,

∆θν± 1
2

∆x
+
-

2 (̃1

θ

)2
ν± 1

2

6 0.

(37)

Here, F∆

ν+ 1
2

is the entropy numerical flux F∆

ν+ 1
2

:= F∗
ν+ 1

2

− ε
2∆x

〈
vν + vν+1 ,∆dν+ 1

2

〉
.

Figures 4–6 show the computations [30] of Navier-Stokes equations with precise
activation of either viscosity, heat conduction or both. No artificial numerical
viscosity is present.

3The notations {Xν+ 1
2
} and {X̃ν+ 1

2
} denote the arithmetic and respectively, harmonic means.
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Figure 4. NSe for Sod’s problem: entropy-conservative fluxes
with viscosity but no heat conduction; 4000 spatial grid points.
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Figure 5. NSe for Sod’s problem: entropy-conservative fluxes
with heat conduction but no viscosity; 4000 spatial grid points.
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Figure 6. NSe for Sod problem: entropy-conservative fluxes with
viscosity and heat conduction; 4000 spatial grid points.

6.2. Numerical viscosity — the class of higher-order entropy stable TeC-
NO schemes. Numerical viscosity was introduced by von Neumann in the early
days of scientific computation [24], as a basic paradigm to stabilize the computation
of shock discontinuities4 Peter Lax is a chief architect who developed this paradigm,
[21, 15, 16]. The key question is how to tune the numerical viscosity, Dν+ 1

2
, in order

to satisfy a competing set of desired requirements. In this section we review the
recent construction of highly-accurate, non-oscillatory entropic TeCNo schemes [7]
based on vanishing viscosities tuned to entropy-conservative fluxes.

We begin by setting numerical flux of the form (23)

fν+ 1
2
= f ∗

ν+ 1
2

− Dν+ 1
2

(vν+1 − vν ),

4A vivid description for the leading role of J. von Neumman is found at [19].
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where Dν+ 1
2
> 0 is a matrix viscosity coefficient at our disposal. The corresponding

difference scheme reads

d
dt
uν (t) +

1

∆x

(
f ∗
ν+ 1

2

− f ∗
ν− 1

2

)
= Dν+ 1

2

vν+1 − vν
∆x

− Dν− 1
2

vν − vν−1
∆x

.

The expression on the right is a discretized diffusion term of vanishing order ∼
∆x(Dvx )x . Recall that according to theorem 3.1, any positive definite viscosity
coefficient D > 0 will induce entropy stability: repeating the same arguments we
used in the derivation of NSe (35)-(36) (with ε∆dν+ 1

2
{ ∆xDν+ 1

2
∆vν+ 1

2
), we find

the entropy stability statement

d
dt
η(uν ) +

1

∆x

(
F∆

ν+ 1
2

− F∆

ν− 1
2

)
= −

1

2∆x

〈
∆vν+ 1

2
,Dν+ 1

2
∆vν+ 1

2

〉
−

1

2∆x

〈
∆vν− 1

2
,Dν+ 1

2
∆vν− 1

2

〉
6 0,

(38a)

with entropy flux

F∆

ν+ 1
2

= F∗
ν+ 1

2

−
1

2
〈vν + vν+1 ,Dν+ 1

2
∆vν+ 1

2
〉. (38b)

Next, we need to address the question of accuracy : how to tune the {Dν+ 1
2
}’s to

achieve highly accurate scheme, say, order of accuracy p? the entropy-conservative

fluxes outlined in sections 4–5 are second-order accurate, f ∗
ν+ 1

2

= f (u(xν+ 1
2

)) +

O
(��∆uν+ 1

2

��2
)
. Richardson extrapolation enables to upgrade these entropy conserva-

tive fluxes of any order [22], f ∗
ν+ 1

2

{ f
∗〈p〉

ν+ 1
2

, so that

f
∗〈p〉

ν+ 1
2

= f (u(xν+ 1
2

)) + O
(��∆uν+ 1

2

��p
)
. (39)

To maintain entropy stability while keeping the high-order accuracy one can aug-
ment these pth-order entropy-conservative fluxes with a judicial amount of high-
order numerical viscosity so that

Dν+ 1
2

(
vν+1 − vν

)
∼ ��∆vν+ 1

2

��p = O
(��∆uν+ 1

2

��p
)
.

Finally, we need to come into terms with a third constraint of maintaining a non-
oscillatory behavior of our scheme, namely, the presence of shock discontinuities
should not create spurious oscillations. This enforces viscosity coefficients cannot be
too small: at the entropy-conservative limit of Dν+ 1

2
≡ 0, one observes the spurious

oscillations present in the numerical simulations reported in figures 1. This brings
us to the class of TeCNO schemes — the Entropy Conservative fluxes based on
ENO reconstruction schemes developed in [7], which are able to achieve the three
competing properties of

(i) entropy stability;
(ii) arbitrarily high-order accuracy; and
(iii) non-oscillatory.

Here is a bird’s eye view of this class of schemes.
We begin with given cell averages {uν (t) = uν (t)} across the computational cell

Cν := [xν− 1
2
, xν+ 1

2
] at time-level t. Using the ENO procedure, developed in [11, 26],

one can reconstruct the pointvalues u+
ν+ 1

2

(t) and u−
ν+ 1

2

(t) on the left and right edges

of the computational cells {Cν }, with high-accuracy so that the jump across each
interface is of order ��u+ν+ 1

2

− u−
ν+ 1

2

�� ∼ ��∆uν+ 1
2

��p . Here is the main point: the ENO
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reconstruction produces these interface values such that they are Essentially Non-

Oscillatory; this is the source of their ENO acronym. Now, let f
∗〈p〉

ν+ 1
2

be a p-order

entropy-conservative flux. We then set

TeCNO numerical flux — fTeCNO
ν+ 1

2

:= f
∗〈p〉

ν+ 1
2

−Dν+ 1
2
〈〈v〉〉ν+ 1

2
, 〈〈v〉〉ν+ 1

2
:= v+

ν+ 1
2

−v−
ν+ 1

2

.

Observe that the numerical viscosity terms are evaluated in terms of the entropy
variables, v±ν := v(u±ν ). The resulting class of TeCNO schemes inherent the essen-
tially non-oscillatory property of the ENO reconstruction. Moreover, they achieve
arbitrarily high-order accuracy, so that (39) holds

fTeCNO
ν+ 1

2

= f
∗〈p〉

ν+ 1
2

− Dν+ 1
2

(
v+
ν+ 1

2

− v−
ν+ 1

2

)
= f (u(xν+ 1

2
)) + O

(��∆uν+ 1
2

��p
)
.

What about their entropy stability? arguing along the lines of (36)-(38) we arrive
at

d
dt
η(uν ) +

1

∆x

(
F∆

ν+ 1
2

− F∆

ν− 1
2

)
= −

1

2∆x

〈
∆vν+ 1

2
,Dν+ 1

2
〈〈v〉〉ν+ 1

2

〉
−

1

2∆x

〈
∆vν− 1

2
,Dν+ 1

2
〈〈v〉〉ν− 1

2

〉
,

(40)

with F∆

ν+ 1
2

= F∗
ν+ 1

2

− 1
2 〈vν+vν+1 ,Dν+ 1

2
〈〈v〉〉ν+ 1

2
〉. It is here that we use the sign property

of the ENO reconstruction: according to [7], the jump across of the reconstructed
ENO cell interfaces has the same sign as the jump of the underlying cell averages,

sign 〈〈3〉〉ν+ 1
2
= sign∆3ν+ 1

2
,

which confirms the entropy dissipation on the right of (40),
〈
∆vν+ 1

2
,Dν+ 1

2
〈〈v〉〉ν+ 1

2

〉
> 0.

The viscosity matrices used in [7] take the form D = RΛR> where R is the matrix
of eigenvectors of A(u) = f ′(u) and the diagonal Λ is one of two canonical choices
involving the (real) eigenvalues λ j = λ j (A(u)):

(i) Roe viscosity matrix: Λ = diag (|λ1 |, . . . , |λn |);
(ii) Rusanov viscosity matrix: Λ = max

j
|λ j |In×n .

The ENO reconstruction is performed on the scalar components of the rescaled
entropy variables w := R>v. The sign property for these rescaled variables ends up
with the desired entropy stability

−
〈
∆vν+ 1

2
,Dν+ 1

2
〈〈v〉〉ν+ 1

2

〉
= −

〈
∆vν+ 1

2
,Rν+ 1

2
Λν+ 1

2
R>
ν+ 1

2

〈〈v〉〉ν+ 1
2

〉
= −

〈
∆wν+ 1

2
,Λν+ 1

2
〈〈w〉〉ν+ 1

2

〉
< 0.

7. Epilogue: Computation of measure-valued solutions.

7.1. Kelvin-Helmholtz instability. There is a rather complete stability theory
for one-dimensional systems of conservation laws, whose entropic solutions are re-
alized by the vanishing viscosity limit, uεt + f (uε )x = εuεxx , [1]. The situation is
different, however, in more than one-space dimension. Consider fore example, the
Kelvin-Helmholtz instability – the 2D Euler equations (33) subject to initial state

which consists of three layers u0(x) =



uL , H1 6 x2 < H2

uR , 0 6 x2 6H1 or H2 6 x2 6 1;
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here, uL,R are fixed states with a perturbed interface Hi =
i
2
−

1

4
+ εYi (x,ω), i =

1,2. When ε = 0, u0(x) is an entropic steady state. When ε > 0, the initial state
experiences a small perturbation

Yi (x,ω) =
∑
j

ai j (ω) cos
(
bi j (ω) + 2nπx1

)
,

∑
j

ai j = 1, i = 1,2,

of order |εYi | 6 ε . Nevertheless, no matter how small ε is, there is a lack of con-
vergence. To this end, set ε = 0.01, fix ω and keep refining the computational
mesh. The density ρε computed in figure 7 does not seem to settle as the number
of gridpoints increases

(a) 2562 (b) 5122 (c) 10242

Figure 7. Approximate density of the perturbed Kelvin-
Helmholtz (ε = 0.01) computed with TeCNO2 scheme at t = 2

We note that these computations are carried out by highly-accurate, non-oscillat-
ory entropy stable TeCNO schemes [8]. Lack of convergence is not numerical in-
stability but rather, a property inherent from the underlying conservation laws. In
his 2009 Gibbs lecture, [18], Lax noted that “Just because we cannot prove that
compressible flows with prescribed initial values exist doesn’t mean that we cannot
compute them”. The question arises, therefore, what information is encoded in our
computations?

7.2. Computation of entropy measure valued solutions. Recall that in the
passage from strong to weak solutions, we had to give up on the certainty of point-
values, and instead, one can observe only cell averages. A new paradigm of measure
valued solutions for conservation laws was introduced by DiPerna, [5] in which one
seeks a family of (weighted) measures {νx, t } such that the conservation law and its
entropic extension read

ut + ∇x · f (u) = 0 { ∂t 〈νx, t , id〉 + ∇x · 〈νx, t , f 〉 = 0

η(u)t + ∇x · F(u) 6 0 { ∂t 〈νx, t , η〉 + ∇x · 〈νx, t ,F〉 6 0

Thus, in entropic measure valued (EMV) solutions we give up the certainty of any
one solution (either strong or weak) and instead, we only observe the averages in
configuration space. The measure νx, t quantifies the probability of assigning of
value 〈νx, t ,u〉 at a given space-time (x, t) The careful computation of EMVs for
2D Euler equations was carried out in [8]. The point we make here is that these
faithful computations require high-resolution without artificial numerical viscosity.
This is precisely what the TeCNO schemes provide. The use of perfect differences
prevails. They enable us to explore the question of what computed quantities are
encoded in unstable 2D Euler computations. Indeed, the instability is not due to
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the computation but is sought to be part of the underlying model. These are shown
in figure 7 — the lack of convergence of Kelvin-Helmholtz computations, and the
apparent convergence of the pdf realization of their entropy measure valued solutions
in figure 8, which was extracted from accurate computation over large ensembles.
We refer the interested reader to [8].
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Figure 8. The approximate PDF for density ρ for a series of
meshes at x = (0.5,0.7) (first row) and x = (0.5,0.8) (second row).
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