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Convergence of MUSCL Relaxing Schemes to the
Relaxed Schemes for Conservation Laws with
Stiff Source Terms

Tao Tang1 and Jinghua Wang2

Received September 5, 2000; accepted November 6, 2000

We consider the convergence and stability property of MUSCL relaxing schemes
applied to conservation laws with stiff source terms. The maximum principle for
the numerical schemes will be established. It will be also shown that the
MUSCL relaxing schemes are uniformly l 1- and TV-stable in the sense that they
are bounded by a constant independent of the relaxation parameter =, the
Lipschitz constant of the stiff source term and the time step 2t. The Lipschitz
constant of the l 1 continuity in time for the MUSCL relaxing schemes is shown
to be independent of = and 2t. The convergence of the relaxing schemes to the
corresponding MUSCL relaxed schemes is then established.

KEY WORDS: Relaxation scheme; nonlinear conservation laws; maximum
principle; convergence.

1. INTRODUCTION

We consider the following Cauchy problem

{ut+ f (u)x=q(u)
u(x, 0)=u0(x)

x # R, t>0
x # R

(1.1)

where f # C1(R), f (0)=0 and u0 # L1(R) & BV(R). The nonlinear conserva-
tion law (1.1) is stiff if the time scale introduced by the source term q is
small compared with the characteristic speed f $ and some other appropriate
length scale. It is observed that a realistic assumption on the source term
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is q$(u)�0 for all u # R. It is indeed the case for many practical problems,
e.g., in the model of combustion [4, 11], water waves in presence of the
friction force in the bottom [29]. This assumption is also used by several
authors in their theoretical and numerical analysis for (1.1), see, e.g.,
Chalabi [2], Chen et al.[3], Schroll and Winther [19], and Tang [25]. In
the sense of Chen, Levermore and Liu [3], q$<0 means the dissipativity
of the source term. Furthermore, as usual, we assume that u=0 is an equi-
librium solution. Hence, throughout this paper we assume that

q(0)=0, &K�q$(u)�0, for some constant K>>1 (1.2)

We want to approximate the global weak entropy solution of the
Cauchy problem (1.1) by relaxation schemes. The problem (1.1) can be
related to a singular perturbation problem:

{
u=

t+v=
x=q(u=)

v=
t+au =

x=&
1
=

(v=& f (u=)), =>0

(1.3)

where a is some positive constant. The corresponding relaxation system for
the homogeneous conservation laws is

{
u=

t+v=
x=0

v=
t+au =

x=&
1
=

(v=& f (u=)), =>0

(1.4)

The relaxation limit for the 2_2 relaxation system without source term
was first studied by Liu [9], who justified some nonlinear stability criteria
for diffusion waves, expansion waves and traveling waves. A general mathe-
matical framework was analyzed by Chen et al. [3] for the nonlinear
systems (1.4). The presence of relaxation mechanisms is widespread in both
the continuum mechanics as well as the kinetic theory contexts. Relaxation
is known to provide a subtle dissipative mechanism for discontinuities
against the destabilizing effect of nonlinear response [9]. The relaxation
models can be loosely interpreted as discrete velocity kinetic equations. The
relaxation parameter, =, plays the role of the mean free path and the system
models the macroscopic conservation law. In that sense they are a discrete
velocity analogue of the kinetic equations introduced by Perthame and
Tadmor [18] and Lions et al. [12].

On the numerical side, relaxation schemes proposed by Jin and Xin
[5] are a class of nonoscillatory numerical schemes for systems of conser-
vation laws. They provide a new way of approximating the solutions of the
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nonlinear conservation laws. The computational results, see, e.g., Jin and
Xin [5] and Aregba-Driollet and Natalini [1], indicate that the relaxation
methods obtained in the limit = � 0 provide a promising class of schemes.
The main advantages of these schemes are that they neither require the
computation of the Jacobians of fluxes for the conservation laws nor the
use of Riemann-solvers. This important property is shared by other schemes
such as the high resolution central schemes introduced by Nessyahu and
Tadmor [15].

For homogeneous conservation laws, there have been many recent
studies concerning the asymptotic convergence of the relaxation systems to
the corresponding equilibrium conservation laws as the rate of the relaxa-
tion tends to zero. Katsoulakis and Tzavaras [6] introduced a class of
relaxation systems, namely the contractive relaxation systems, and estab-
lished an O(- =) error bound in the case that the equilibrium equation is
a scalar multidimensional one. Kurganov and Tadmor [7] studied the
convergence and error estimates for a class of relaxation systems, including
(1.4) as a special case, and concluded an O(=) order of convergence for
scalar convex conversation laws. The novelty of their approach is the use
of a weak Lip$-measure of the error, which allow them to obtain the sharp
error bounds. For the relaxation system (1.4), Natalini [13] proved that
the solutions to the relaxation system converges strongly to the unique
entropy solution of the corresponding conservation laws as = � 0. Based on
a general framework developed in [26], the O(=) rate of convergence in L1

is established by Teng [27] in the case that the equilibrium solutions are
piecewisely smooth. In the same case, Tadmor and Tang [23] obtained the
optimal O(=)-pointwise error estimates away from the shock discontinuities,
which is based on a general framework of [22].

In this paper, we wish to analyze a class of fully-discretized MUSCL
schemes for approximating the relaxation system (1.3). The schemes are
extension of a prototype of MUSCL relaxing schemes introduced by Jin
and Xin [5] for approximating systems of conservation laws. In the semi-
implicit scheme (2.1) below, we treat the stiff source term q(u) and the
relaxation term (v& f (u))�= implicitly. It is the semi-implicit treatment that
makes the CFL condition independent of the Lipschitz constant of the stiff
source term. The convergence theory for the relaxing scheme (2.1) and the
relaxed scheme (2.5) with q#0 can be found in [1, 28, 30]. Consult
Natalini [14] for an overview of the recent developments for hyperbolic
relaxation problems.

This paper is organized as follows. In Sec. 2 we introduce the MUSCL
relaxing schemes for the Cauchy problem (1.1) and give some properties of
the schemes. Section 3 is devoted to show the discrete maximum principle
for the solutions of the relaxing scheme (2.1). In Sec. 4, we show that the
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solutions of the scheme (2.1) are l 1- and TV-bounded by a constant inde-
pendent of the relaxation parameter =, the Lipschitz constant of the stiff
source term and the time step 2t. In Sec. 5 we show that the Lipschitz con-
stant of the l 1-continuity in time for the numerical solutions of (2.1) is
independent of = and 2t. This property, together with the uniform TV-
boundedness, leads to the convergence of the MUSCL relaxing schemes.

2. NUMERICAL SCHEMES

We choose a time step 2t, a spatial mesh size 2x, a parameter a which
will be related to the characteristic speed of the conservation law and a
small relaxation parameter =>0. For these we define the mesh ratio
*=2t�2x, the CFL parameter +=- a * # (0, 1) and the scale parameter
k=2t�=. The mesh is given by the points (xj , tn)=( j 2x, n 2t) for j # Z,
n # N0 . The approximate solution takes the discrete values un, =

j at the grid
points. The relaxing schemes involve the discrete relaxation fluxes vn, =

j .
The numerical schemes studied in this work, i.e., (2.1) and (2.5) below,

are all natural extension of Jin and Xin's schemes for homogeneous conser-
vation laws, see (4.8) and (4.11) in [5]. In this sense, the MUSCL relaxing
scheme for Cauchy problem (1.1) is of the form

un+1, =
j &un, =

j

2t
+

1
2 2x

(vn, =
j+1&vn, =

j&1)&
- a

2 2x
(un, =

j+1&2un, =
j +un, =

j&1)

+
1&+

4
[(_+, =

j &_+=
j&1)&(_&, =

j+1&_&=
j )]=q(un+1, =

j ) (2.1a)

vn+1, =
j &vn, =

j

2t
+

a

2 2x
(un, =

j+1&un, =
j&1)&

- a

2 2x
(vn, =

j+1&2vn, =
j +vn, =

j&1)

+
- a (1&+)

4
[(_+, =

j &_+, =
j&1)+(_&, =

j+1&_&, =
j )]

=&
1
=

(vn+1
j & f (un+1, =

j )) (2.1b)

where _\, =
j and %\, =

j are defined by

_\, =
j =

1
2x

2+(vn, =
j \- a un, =

j ) ,(%\, =
j )

(2.2)

%\, =
j =

2&(vn, =
j \- a un, =

j

2+(vn, =
j \- a un, =

j )
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In the above formulas, 2\u j=�(uj&uj\1), and ,(%) is a limiter function
satisfying

0�
,(%)

%
�2, 0�,(%)�2 (2.3)

The discrete initial data are given by averaging the initial data u0(x) over
mesh cells Ij=(( j& 1

2) 2x, ( j+ 1
2) 2x), i.e., taking

u0, =
j =

1
2x |

Ij

u0(x) dx, and v0, =
j = f (u0, =

j ) (2.4)

The corresponding relaxed scheme as = � 0 limit of (2.1) is as follows:

vn
j = f (un

j ),

un+1
j &un

j

2t
+

1
2 2x

(vn
j+1&vn

j&1)&
- a

2 2x
(un

j+1&2un
j +un

j&1) (2.5)

+
1&+

4
[(_+

j &_+
j&1)&(_&

j+1&_&
j )]=q(un+1

j )

To guarantee the entropy consistency of the relaxed scheme (2.5), the
following slightly stronger conditions are proposed in Tang et al. [24]:

sup
u

| f $(u)|�
1
;

- a subcharacteristic condition (2.6)

0�
,(%)

%
�X, 0�,(%)�X limiter function condition (2.7)

The parameters ; and X in the condition (2.6) and (2.7) satisfy

;>1, 0<X<2, 1&
1
;

�X(1&+) (2.8)

It is shown by Tang et al. [24] that under the assumptions (2.6)�(2.8) the
MUSCL relaxed scheme (2.5) with q#0 satisfy the cell entropy inequalities.
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We will introduce some notations useful in the following sections. We
take the Riemann invariants

\Rn, =
1, j

Rn, =
2, j+=\

1
2 \un, =

j &
vn, =

j

- a+
1
2 \un, =

j +
vn, =

j

- a++ (2.9)

and define as usual the Maxwellians

\M1(un, =
j )

M2(un, =
j +=\

1
2 \un, =

j &
f (un, =

j )

- a +
1
2 \un, =

j +
f (un, =

j )

- a ++ (2.10)

Then the relaxing scheme (2.1) can be rewritten as

Rn+1, =
1, j =Rn+(1�2), =

1, j +k(M1(un+1, =
j )&Rn+1, =

1, j ))+q(un+1, =
j ) 2t�2

(2.11)
Rn+1, =

2, j =Rn+(1�2), =
2, j +k(M2(un+1, =

j )&Rn+1, =
2, j ))+q(un+1, =

j ) 2t�2

with

Rn+(1�2), =
1, j :=(1&+) Rn, =

1, j++Rn, =
1, j+1+

2t(1&+)
4

(_&, =
j+1&_&, =

j )

(2.12)

Rn+(1�2), =
2, j :=(1&+) Rn, =

2, j++Rn, =
2, j&1+

2t(1&+)
4

(_+, =
j &_+, =

j&1)

It can be verified that

Rn+(1�2), =
1, j =(1&cn, =

1, j ) Rn, =
1, j+cn, =

1, j Rn, =
1, j+1

Rn+(1�2), =
2, j =(1&d n, =

&1, j ) Rn, =
2, j+d n, =

&1, j R
n, =
2, j&1

where

cn, =
1, j=+&

(1&+) +
2 _

,(%&, =
j+1)

%&, =
j+1

&,(%&, =
j )&

(2.13)

d n, =
&1, j=++

(1&+) +
2 _

,(%+, =
j )

%+
j

&,(%+, =
j&1)&
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It is easily seen that condition (2.3) implies

_
,(%\=

j )

%\=
j

&,(%\=
j&1)&�2 (2.14)

It follows from (2.13) and (2.14) that

1>1&(1&+)2�cn, =
1, j�+2>0

(2.15)
1>1&(1&+)2�d n, =

&1, j�+2>0

The above results indicate that the coefficients cn, =
1, j and d n, =

&1, j take values
in the interval [+2, 1).

3. THE DISCRETE MAXIMUM PRINCIPLE

The maximum principle is an important tool for analyzing and under-
standing the theoretical properties of numerical schemes. For the numerical
scheme (2.1), it is not easy to establish such a principle due to the stiffness
of the source term. We will devote this whole section to the following
theorem. The key requirement is that the bounds for the numerical solution
un, =

j should be independent of =, 2t and the Lipschitz constant of the stiff
source term q.

Theorem 3.1 (Maximum Principle). Let b be the L� bound of initial
data u0(x), i.e.,

&u0( v)&L��b (3.1)

We assume that the subcharacteristic condition (2.6) is satisfied, namely for
some constant ;>1

sup
|u|�b

| f $(u)|�
1
;

- a (3.2)

Then any solution (un, =
j , vn, =

j ) j # Z, n # N0
of the scheme (2.1) with initial data

(2.4) satisfies

Mi (&b)�Rn, =
i, j �Mi (b), i=1, 2 (3.3)

|un, =
j |�b (3.4)

provided that = is sufficiently small.
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Proof. We prove the theorem by induction. It is obvious that the
averaging (2.4) maintains the bound

|u0, =
j |�b (3.5)

The Maxwellians Mi (u) are nondecreasing functions for |u|�b under the
sub characteristic condition (3.2). This can be verified by differentiating
(2.10). Then with v0

j = f (u0
j ) we have for i=1, 2, j # Z that

Mi (&b)�R0, =
i, j =

1
2 \u0, =

j +(&1) i
v0, =

j

- a+=Mi (u0
j )�Mi (b) (3.6)

For the induction, we assume that the estimates (3.3)�(3.4) hold for n=m,
namely,

Mi (&b)�Rm, =
i, j �M i (b), i=1, 2 (3.7)

|um, =
j |�b (3.8)

We will then show that (3.3)�(3.4) hold for n=m+1. First we prove
|um+1, =

j |�b. Adding both sides of the two equations in (2.11) with (2.12)
for n=m gives

um+1, =
j =(1&cm, =

1, j ) Rm, =
1, j +cm, =

1, j Rm, =
1, j+1+(1&d m, =

&1, j ) Rm, =
2, j

+d m, =
&1, =Rm, =

2, j&1+q(um+1, =
j ) 2t

The above result, together with q(0)=0, leads to

um+1, =
j =(1&q$(!m+1, =

j ) 2t)&1 ((1&cm, =
1, j ) Rm, =

1, j +cm, =
1, j Rm, =

1, j+1

+(1&d m, =
&1, j ) Rm, =

2, j +d m, =
&1, j Rm, =

2, j&1) (3.9)

where !m+1, =
j is an intermediate value between um+1, =

j and 0. Observe that

(1&q$(!m+1, =
j ) 2t)�1 since q$(u)�0

0<cm, =
1, j <1, 0<d m, =

&1, j<1 from (2.15)

M1(u)+M2(u)=u for all u # R

These observations, together with the induction assumption (3.7) and the
equation (3.9), yield

|um+1, =
j |�b (3.10)
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Now we will show that (3.3) holds for n=m+1. Set

rm+1, =
i, j =Rm+1, =

i, j &M i(b), rm+(1�2), =
i, j =Rm+(1�2), =

i, j &Mi (b), i=1, 2

Then the scheme (2.11) can be rewritten as

rm+1, =
1, j =rm+(1�2), =

1, j +k(M1(um+1, =
j )&M1(b)&rm+1, =

1, j )

+
2t
2

(q(um+1, =
j )&q(b))+

2t
2

q(b)
(3.11)

rm+1, =
2, j =rm+(1�2), =

2, j +k(M2(um+1, =
j )&M2(b)&rm+1, =

2, j )

+
2t
2

(q(um+1, =
j )&q(b))+

2t
2

q(b)

Applying the Mean-Value Theorem to the terms M1 , M2 and q in (3.11)
and noting that um+1, =

j &b=rm+1, =
1, j +rm+1, =

2, j yield

rm+1, =
1, j =rm+(1�2), =

1, j +k \1
2

(rm+1, =
1, j +rm+1, =

2, j )

&
f $(!)

2 - a
(rm+1, =

1, j +rm+1, =
2, j )&rm+1, =

1, j +
+

2t
2

q$(')(rm+1, =
1, j +rm+1, =

2, j )+
2t
2

q(b)

(3.12)

rm+1, =
2, j =rm+(1�2), =

2, j +k \1
2

(rm+1, =
1, j +rm+1, =

2, j )

+
f $(!)

2 - a
(rm+1, =

1, j +rm+1, =
2, j )&rm+1, =

2, j +
+

2t
2

q$(')(rm+1, =
1, j +rm+1, =

2, j )+
2t
2

q(b)

where ! and ' are intermediate values between um+1, =
j and b. It follows

from (3.10) that |!|�b. Solving the scheme (3.12) for rm+1, =
1, j and rm+1, =

2, j

gives
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rm+1, =
1, j =

1
2

[(1+:&q$(') 2t�2) rm+(1�2), =
1, j +(:+q$(') 2t�2) rm+(1�2), =

2, j ]

+
1
2

(1+2:) q(b) 2t�2
(3.13)

rm+1, =
2, j =

1
2

[(#+q$(') 2t�2) rm+(1�2), =
1, j +(1+#&q$(') 2t�2) rm+(1�2), =

2, j ]

+
1
2

(1+2#) q(b) 2t�2

where

:=
k

2 \1&
f $(!)

- a + , #=
k

2 \1+
f $(!)

- a +
2=(1+:+#)(1&q$(') 2t)

It follows from the fact |!|�b and the subcharacteristic condition (3.2)
that

:�
k

2
(1&1�;)>0, #�

k

2
(1&1�;)>0 (3.14)

Using the above results we obtain

2>0, 1+:&q$(') 2t�2>0, 1+#&q$(') 2t�2>0 (3.15)

Furthermore, using the first inequality of (3.14) and the subcharacteristic
condition (3.2) we obtain

:+q$(') 2t�2�
2t
2 _;&1

=;
+q$(')&�

2t
2 _;&1

=;
&K&�0 (3.16)

provided that =�(;&1)�K;. In (3.16), we used the definition for k, namely
k=2t�=. Similarly, the following estimate holds

#+q$(') 2t�2�0 (3.17)
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provided that =�(;&1)�K;. It follows from (2.12) and the induction
assumption (3.7) that

rm+(1�2), =
1, j =Rm+(1�2), =

1, j &M1(b)

=(1&cm, =
1, j ) Rm, =

1, j +cm, =
1, j Rm, =

1, j+1&M1(b)�0 (3.18)

In a similar manner, we can show that

rm+(1�2), =
2, j �0 (3.19)

By noting that q(0)=0, we have

q(b)=q$(!) b�0 (3.20)

where ! is an intermediate value between b and zero. Applying the
inequalities (3.15)�(3.20) to (3.13) gives

rm+1, =
i, j �0, i=1, 2

By using the definition for rm+1, =
i, j , the above estimate is equivalent to

Rm+1, =
i, j �Mi (b), i=1, 2 (3.21)

Similarly, by considering r� m+1, =
i, j =Rm+1, =

i, j &Mi (&b) we can obtain

Mi (&b)�Rm+1, =
i, j , i=1, 2 (3.22)

The inequalities (3.10), together with (3.21) and (3.22), imply that the
estimates (3.3) and (3.4) hold for n=m+1. This completes the proof of the
induction. g

4. STABILITY

This section is devoted to establishing the l 1- and TV-stability for the
numerical solution of MUSCL relaxing scheme (2.1) with initial data (2.4).
Since u0 # BV(R), there exists a constant M such that

&u0( v)&BV�M (4.1)

By the definition of the initial data u0, =
j given in (2.4), we have

TV(u0, =) :=:
j

|u0, =
j+1&u0, =

j |�M (4.2)
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Furthermore, it follows from the L�-boundedness of u0 in (3.1) and the
subcharacteristic condition (3.2) that

TV(R0, =
1 , R0, =

2 ) :=:
j

( |R0, =
1, j+1&R0, =

1, j |+ |R0, =
2, j+1&R0, =

2, j | )

�:
j \ |u0, =

j+1&u0, =
j |+

1

- a
sup

|!|�b

| f $(!)| |u0, =
j+1&u0, =

j |+
�2M (4.3)

In the following lemma, we show that the result in (4.3) holds for all time
levels.

Lemma 4.1. Assume u0 # BV & L�. If the subcharacteristic condition
(3.2) is satisfied, then the relaxing scheme (2.11) is TVD (total variation
diminishing), i.e.,

TV(Rn+1, =
1 , Rn+1, =

2 ) :=:
j

( |Rn+1, =
1, j+1&Rn+1, =

1, j |+|Rn+1, =
2, j+1&Rn+1, =

2, j | )

�TV(Rn, =
1 , Rn, =

2 )

�2M (4.4)

Proof. We begin by setting

R� n, =
i, j =Rn, =

i, j+1&Rn, =
i, j , R� n+(1�2), =

i, j =Rn+(1�2), =
i, j+1 &Rn+(1�2), =

i, j , i=1, 2

Subtracting (2.12) with j from (2.12) with j+1 gives

(1+#&q$(') 2t�2) R� n+1, =
1, j &(:+q$(') 2t�2) R� n+1, =

2, j =R� n+(1�2), =
1, j

(4.5)
&(#+q$(') 2t�2) R� n+1, =

1, j +(1+:&q$(') 2t�2) R� n+1, =
2, j =R� n+(1�2), =

2, j

where

:=
k

2 \1&
f $(!)

- a + , #=
k

2 \1+
f $(!)

- a +
and ! in the above equations and ' in (4.5) are some intermediate values
between un+1, =

j+1 and un+1, =
j . It follows from Theorem 3.1 that |!|�b. Then
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from the subcharacteristic condition (3.2) we have :�0 and #�0. Solving
the equation (4.5) gives

R� n+1, =
1, j =

1
2

[(1+:&q$(') 2t�2) R� n+(1�2), =
1, j +(:+q$(') 2t�2) R� n+(1�2), =

2, j ]

R� n+1, =
2, j =

1
2

[(#+q$(') 2t�2) R� n+(1�2), =
1, j +(1+#&q$(') 2t�2) R� n+(1�2), =

2, j ]

where

2=(1+k)(1&q$(') 2t�2)

It follows from the above two equations that

|R� n+1, =
1, j |+|R� n+1, =

2, j |

�
1
2

[[1+:&q$(') 2t�2+|#+q$(') 2t�2|] |R� n+(1�2), =
1, j |

+[1+#&q$(') 2t�2+|#+q$(') 2t�2|] |Rn+(1�2), =
2, j |] (4.6)

where the facts :�0, #�0 and q$(')�0 are used. Observe that

1+:&q$(') 2t�2+|#+q$(') 2t�2|

�max(1+k, 1+:&#&q$(') 2t)

�(1+k)(1&q$(') 2t)=2

and similarly

1+#&q$(') 2t�2+|:+q$(!) 2t�2|

�max(1+k, 1+#&:&q$(') 2t)�2

where we have used the fact |:&#|�k. The above results, together with
(4.6), yield

|R� n+1, =
1, j |+|R� n+1, =

2, j |�|R� n+(1�2), =
1, j |+ |R� n+(1�2), =

2, j | (4.7)

It follows from (2.12) that

R� n+(1�2), =
1, j =cn, =

1, j+1(Rn, =
1, j+2&Rn, =

1, j+1)+(1&cn, =
1, j )(R

n, =
1, j+1&Rn, =

1, j )

R� n+(1�2), =
2, j =(1&d n, =

&1, j+1)(Rn, =
2, j+2&Rn, =

2, j+1)+d n, =
&1, j(Rn, =

2, j+1&Rn, =
2, j )
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The above results, together with the facts 0<cn, =
1, j , d n, =

&1, j <1, yield

:
j

( |R� n+(1�2), =
1, j |+|R� n+(1�2), =

2, j | )�:
j

( |R� n, =
1, j |+|R� n, =

2, j | ) (4.8)

It follows from (4.7) and (4.8) that

:
j

( |R� n+1, =
1, j |+|R� n+1, =

2, j | )�:
j

( |R� n, =
1, j |+|R� n, =

2, j | ) (4.9)

The inequalities (4.3) and (4.9) lead to the total variation estimate (4.4). g

Having the above lemma, we are now ready to state and prove the
following stability results on the relaxing solutions (un, =

j , vn, =
j ).

Theorem 4.1. Under the same assumptions as in Lemma 4.1, the
solutions (un, =

j , vn, =
j ) of the relaxing scheme (2.1) satisfy the following

estimates:

v TV-stability

TV(un, =)=:
j

|un, =
j+1&un, =

j |�2M
(4.10)

TV(vn, =)=:
j

|vn, =
j+1&vn, =

j | �2 - a M

v l 1-stability

:
j

|un, =
j | 2x�2 &u0( v)&L1

(4.11)

:
j

|vn, =
j | 2x�2 - a &u0( v)&L1

Proof. The TV-stability (4.10) follows from Lemma 4.1 and the one
to one mapping between (Rn, =

1, j , Rn, =
2, j) and (un, =

j , vn, =
j ) given by (2.9). We

only need to prove the l 1-stability (4.11). Using the assumptions f (0)=0
and q(0)=0, we rewrite scheme (2.11) as

Rn+1, =
1, j =Rn+(1�2), =

1, j +k(M1(un+1, =
j )&M1(0)&Rn+1, =

1, j )

+(q(un+1, =
j )&q(0)) 2t�2

Rn+1, =
2, j =Rn+(1�2), =

2, j +k(M2(un+1, =
j )&M2(0)&Rn+1, =

2, j )

+(q(un+1, =
j )&q(0)) 2t�2
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Applying the Mean-Value Theorem to M1 , M2 and q in the above equations
gives

(1+#&q$(') 2t�2) Rn+1, =
1, j &(:+q$(') 2t�2) Rn+1, =

2, j =Rn+(1�2), =
1, j

(4.12)
&(#+q$(') 2t�2) Rn+1, =

1, j +(1+:&q$(') 2t�2) Rn+1, =
2, j =Rn+(1�2), =

2, j

where again we have

:=
k

2 \1&
f $(!)

- a +�0, #=
k

2 \1+
f $(!)

- a +�0

Similar to the proof of Lemma 4.1, we can obtain

|Rn+1, =
1, j |+|Rn+1, =

2, j |�|Rn+(1�2), =
1, j |+ |Rn+(1�2), =

2, j | (4.13)

Replacing the right hand side of the inequality (4.13) by (2.12) and noting
that 0<cn, =

1, j , d n, =
&1, j<1 yield

:
j

( |Rn+1, =
1, j |+|Rn+1, =

2, j | )�:
j

( |Rn, =
1, j |+|Rn, =

2, j | ) (4.14)

Then it follows from the fact Rn, =
1, j+Rn, =

2, j=un, =
j and the above inequality

that

:
j

|un, =
j | 2x�:

j

( |Rn, =
1, j |+|Rn, =

2, j | ) 2x

�:
j

( |R0, =
1, j |+|R0, =

2, j | ) 2x

�:
j \ |u0

j |+
| f (u0, =

j )|

- a + 2x

=:
j \1+

| f $(!0, =
j )|

- a + |u0, =
j | 2x

�2 &u0( v)&L1 (4.15)

where !0, =
j is some intermediate value and also in the last step the sub-

characteristic condition (3.2) is used. Similarly, we can show that

:
j

|vn, =
j | 2x�- a :

j

( |Rn, =
1, j |+|Rn, =

2, j | )�2 - a &u0( v)&L1 (4.16)

This completes the proof of Theorem 4.1. g
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5. CONVERGENCE

In this section, we will discuss the convergence of the MUSCL relax-
ing schemes. In order to carry out the convergence analysis, it is necessary
to investigate the Lipschitz continuity of the numerical solution in time and
the difference between vn, =

j and f (un, =) in the l 1-norm. To this end, we first
provide two lemmas.

Lemma 5.1. Under the same assumptions as in Lemma 4.1, the solu-
tions of the relaxing scheme (2.1) with initial data (2.4) satisfy

&vn, =& f (un, =)&l 1 :=:
j

|vn, =
j & f (un, =

j )| 2x

�4 - a(M*&1+ 1
2 K &u0( v)&L1) = (5.1)

Proof. Set

Gn, =
j =M1(un, =

j )&Rn, =
1, j

It follows from the definition for Rn, =
1, j and Rn, =

2, j in (2.9) that

Gn, =
j =

1
2

(Rn, =
2, j&Rn, =

1, j)&
1

2 - a
f (un, =

j ) (5.2)

Subtracting (5.2) with n from (5.2) with n+1 gives

k(Gn+1, =
j &Gn, =

j )=&#(Rn+1, =
1, j &Rn, =

1, j)+:(Rn+1, =
2, j &Rn, =

2, j) (5.3)

with

:=
k

2 \1&
f $(!)

- a +�0, #=
k

2 \1+
f $(!)

- a +�0

where ! is some intermediate value between un, =
j and un+1, =

j . In obtaining
(5.3) we have used the identity un, =

j =Rn, =
2, j+Rn, =

1, j and the Mean-Value
Theorem. Using the scheme (2.11) with (2.12) in the right hand side of
(5.3) yields

k(Gn+1, =
j &Gn, =

j )= &(#cn, =
1, j (R

n, =
1, j+1&Rn, =

1, j)+:d n, =
&1, j (Rn, =

2, j&Rn, =
2, j&1))

&k2Gn+1, =
j +(:&#) q(un+1, =

j ) 2t�2 (5.4)
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The above equation, together with the facts 0<:, #<k, 0<cn, =
1, j , d n, =

&1, j<1
and |:&#|�k, yield

|Gn+1, =
j |�

1
1+k

( |Rn, =
1, j+1&Rn, =

1, j |+|Rn, =
2, j&Rn, =

2, j&1 | )

+
1

2(1+k)
|q(un+1

j ) 2t|+
1

1+k
|Gn, =

j | (5.5)

It follows from the above inequality and Lemma 4.1 that

&Gn+1, =
j & l 1�(1+k)&1 \&Gn, =

j &l 1+2M 2x+2t :
j

|q(un+1, =
j )| 2x+

The above inequality, together with &K�q$(u)�0 in (1.2) and the
l 1-bound of un, = in (4.11), lead to

&Gn+1, =
j & l 1�(1+k)&1 (&Gn, =

j &l 1+2M 2x+K &u0( v)&L1 2t) (5.6)

Iterating the inequality (5.6) gives

&Gn+1, =
j &l 1�(1+k)&(n+1) &G0, =

j & l 1

+
1
k

(1&(1+k)&(n+1))(2M*&1+K &u0( v)&L1) 2t (5.7)

Noting that v0, =
j = f (u0, =

j ) in (2.4), we have &G0, =
j &l 1=0. Thus the

inequality (5.7), together with the definition k=2t�=, gives

&Gn+1, =
j & l 1�(2M*&1+K &u0( v)&L1) =

By the definition of G, we have Gn, =
j =(vn, =

j & f (un, =
j )�2 - a. This fact,

together with the above inequality, completes the proof of this lemma.

Remark 5.1. We have from (5.7) that

&vn, =& f (un, =)& l 1�2 - a(1+k)&n &v0, =
j & f (u0, =

j )& l 1+O(=) (5.8)

In (5.8), the term &vn, =& f (un, =)&l 1 serves as a measure of the deriva-
tion of solution of the relaxing scheme (2.1) from the solution of the
relaxed scheme (2.5) which is = � 0 limit of (2.1). It can be seen from (5.8)
that the derivation measured in l 1-norm is controlled by the relaxation
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error of order = and the derivation of the initial data. It is seen that the first
term on the right hand side of (5.8) is proportional to

(1+k)&n &v0, =
j & f (u0, =

j )& l 1=\ =
2t+=+

n

&v0, =
j & f (u0, =

j )&l 1 (5.9)

It is observed from (5.9) that in the case that =<<2t, which is always the
most interesting case, it is not necessary to require the initial consistency
&v0, =

j & f (u0, =
j )& l 1=O(=). If we set v0, =

j in the way such that &v0, =
j & f (u0, =

j )&l 1

is bounded as = � 0, then the theoretical estimates in this section still hold.
In the case that =<<2t, the inequality (5.9) shows that the right hand side
of (5.9) is of order = as long as the initial error &v0, =& f (u0, =)&l 1=O(1). We
point out that this fact does not contradict the result of Kurganov and
Tadmor [7] who require that &v0, =& f (u0, =)&l 1=O(=), since the relaxing
scheme (2.1) with =<<2t can not catch the initial layer.

Lemma 5.2. Under the same assumptions as in Lemma 4.1, the solu-
tions of the relaxing scheme (2.1) with the initial data (2.4) satisfy

:
j

( |Rn+1, =
1, j &Rn, =

1, j |+|Rn+1, =
2, j &Rn, =

2, j | ) 2x

�(6M*&1+4K &u0( v)&L1) 2t (5.10)

Proof. Set

R� n+1, =
i, j =Rn+1, =

1, j &Rn, =
i, j , i=1, 2

It follows from (2.11) and (2.12) that

R� n+1, =
1, j =cn, =

1, j (R
n, =
1, j+1&Rn, =

1, j)

+
k

2 - a
(vn+1, =

j & f (un+1, =
j ))+q(un+1

j ) 2t�2

R� n+1, =
2, j =&d n, =

&1, j (R
n, =
2, j&Rn, =

2, j&1)

&
k

2 - a
(vn+1, =

j & f (un+1, =
j ))+q(un+1

j ) 2t�2

Multiplying the first equation above by the sign of R� n+1, =
1, j and the second

equation above by the sign of R� n+1, =
2, j , adding up and summing the resulting

equations over j yield
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:
j

( |R� n+1, =
1, j |+|R� n+1, =

2, j | ) 2x

�2x TV(Rn, =
1 , Rn, =

2 )+
k

- a
&vn+1, =& f (un+1, =

j )&l 1+2t :
j

q(un+1
j ) 2x

Applying (4.4) in Lemma 4.1, (4.11) in Theorem 4.1 and (5.1) in Lemma 5.1
to the right hand side of the above inequality gives

:
j

( |R� n+1, =
1, j |+|R� n+1, =

2, j | ) 2x

�2M 2x+4(M*&1+ 1
2 K &u0( v)&L1) 2t+2K &u0( v)&L1 2t (5.11)

This completes the proof of this lemma. g

The following results are immediate consequences of the definition
(2.9) and Lemma 5.2.

Lemma 5.3. Under the same assumptions as in Lemma 4.1, the solu-
tions of the relaxing scheme (2.1) with the initial data (2.4) satisfy

:
j

|un+1, =
j &un, =

j | 2x�(6M*&1+4K &u0( v)&L1) 2t (5.12)

:
j

|vn+1, =
j &vn, =

j | 2x�- a (6M*&1+4K &u0( v)&L1) 2t (5.13)

We are now ready to state and to prove the main theorem of this section.

Theorem 5.1. Assume u0 # BV & L�. If the subcharacteristic condi-
tion (3.2) is satisfied, then the solutions of the MUSCL relaxing scheme
(2.1) converge to the solutions of the corresponding MUSCL relaxed
scheme (2.5) as = tends to zero for fixed 2t. Furthermore, the solutions of
the relaxed scheme (2.5) satisfy the following estimates:

&un&l ��b, &vn&l ��- a b (5.14)

TV(un)�2M, TV(vn)=2 - a M (5.15)

:
j

|un+1
j &un

j | 2x�(6M*&1+4K &u0( v)&L1) 2t (5.16)

:
j

|vn+1
j &vn

j | 2x�- a (6M*&1+4K &u0( v)&L1) 2t (5.17)

for all nonnegative integer n.
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Proof. Define the linear interpolant for the solutions of the relaxing
scheme (2.1) as follows

(un, =(x), vn, =(x))=:
j

(un, =
j , vn, =

j ) /[xj&2x�2, xj+2x�2)(x)

where /[a, b)(x) is the characteristic function on the intervat [a, b). It
follows from Theorems 3.1 and 4.1 that (un, =(x), vn, =(x)), n # N0 are bounded
piecewise constant functions of bounded variation with respect to n and =.
By Helly's Theorem, for each fixed n there exists a subsequence (un, =i (x),
vn, =i (x)) converging to a piecewise constant function

(un(x), vn(x))=:
j

(un
j , vn

j ) /[xj&2x�2, xj+2x�2)(x)

pointwisely for n # N0 as i � �. Therefore (un, =i
j , vn, =i

j ) converges to (un
j , vn

j )
as i � � for j # Z, n # N0 . Furthermore, it follows from Lemma 5.1 that

:
j

|vn, =i
j & f (un, =i

j )| 2x�4 - a (M*&1+ 1
2 K &u0( v)&L1) =i

By letting i � �, we obtain �j |vn
j & f (un

j )| 2x=0, which implies that

vn
j = f (un

j ) for j # Z, n # N0 (5.18)

Taking the limit =i � 0 in the first equation of the relaxing scheme (2.1)
gives

un+1
j &un

j

2t
+

1
2 2x

(vn
j&1&vn

j+1)&
- a

2 2x
(un

j+1&2un
j +un

j&1)

+
1&+

4
[(_+

j &_+
j&1)&(_&

j+1&_&
j )]=q(un+1

j ) (5.19)

The above two equations, (5.18)�(5.19), are exactly the relaxed scheme
(2.5). The estimates (5.14)�(5.17) follow from Theorem 3.1, Theorem 4.1
and Lemma 5.3. g

Remark 5.2. Note that (un
j , vn

j ) is uniquely determined by the relaxed
scheme (2.5) with a given limiter function. Hence the whole sequence of the
solutions (un, =

j , vn, =
j ) of the corresponding relaxing scheme (2.1) converges

to (un
j , vn

j ) as = � 0.
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6. CONCLUDING REMARKS

In this work, we investigated the convergence and stability property of
a class of MUSCL relaxing schemes applied to conservation laws with stiff
source terms. The main difficulty is the involvement of the stiff source
term in the numerical schemes. The maximum principle and the l 1- and
TV-stability are established. The l � & l 1 & BV bounds for the numerical
solutions are shown to be independent of the relaxation parameter = and
the Lipschitz constant K of the stiff source term. However, it is found that
the Lipschitz constant of the l 1 continuity in time for the MUSCL relaxing
schemes depends on the large constant K, see Theorem 5.1.

Finally, it is important to make a number of comments on the results
obtained in this work.

1. It would be ideal to establish convergence and stability theories
for the MUSCL relaxing schemes with = � 0 and 2x � 0 (or
=tO(2x)). However, it seems difficult to do that directly. An
alternative approach to study the convergence is the following:
from relaxing scheme to relaxed scheme (as = � 0); and then from
relaxed scheme to the conservation laws (as mesh sizes tend to
zero). The present work is to study the convergence and stability
properties of the first step. For the second step, it can be shown
that the MUSCL relaxed scheme (2.5) is a consistent, stable and
entropy consistent discretization of the conservation law (1.1), by
using the same arguments as used in [24]. The importance of
studying the stability and convergence for the first step was
emphasized in the work of Jin and Xin [5]. They pointed out that
``A good numerical discretization should possess the correct zero
relaxation limit, in the sence that the zero relaxation limit (= � 0
for a fixed mesh) is a consistent and stable discretization.'' Our
results demonstrate that the MUSCL relaxing scheme indeed pos-
sesses correct relaxation limit.

2. It will be interesting to provide a rigorous analysis for the con-
vergence rate for the MUSCL relaxing scheme (2.1). Ideally, the
error bounds should be independent of the relaxation parameter =
and the Lipschitz constant K of the stiff source term. However, it
seems very difficult to avoid the Lipschitz constant K, particularly
if the framework of Kuznetsov [8] is used. Even in the continuous
situation, a natural question is to establish the following estimate:

&u=&u&L1(R)�C=#
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for some 0<#�1, where u= is the solution of the relaxation equa-
tion (1.3), u the solution of the corresponding conservation law
(1.1), and C a constant independent of = and K (here K is the
measure for the stiffness of the source term, see (1.2) for its defini-
tion). Although the corresponding result for homogeneous conser-
vation laws has been established, see, e.g., [6, 10, 27], it is still an
open problem for conservation laws with stiff source terms.

3. For the historical reason, the MUSCL relaxed scheme studied in
this work is called second-order scheme (see Theorem 4.2. of [5]).
However, it seems that the relaxed scheme (2.5) is of first-order
only. In fact, it was shown in [24] that the solution of (2.5) with
q#0 satisfy the cell-entropy inequality. Using almost exactly the
same arguments, we can show that the solution of (2.5) also satisfy
the cell-entropy inequality. It is noted that Osher and Tadmor
[17] has established that for general flux and general entropy, cell
entropy inequality means first-order accuracy, see also [16, 21].
By standard truncation error analysis, it can be verified that the
relaxed scheme (2.5) (for both q�0 and q#0) is indeed a first
order scheme.
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