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Abstract. We study the rate of convergence of the viscous and numerical approximate solution
to the entropy solution of genuinely nonlinear scalar conservation laws with piecewise smooth initial
data. We show that the O(ε| log ε|) rate in L1 is indeed optimal for viscous Burgers equation.
Through the Hopf–Cole transformation, we can study the detailed structure of ‖u(·, t)− uε(·, t)‖L1 .
For centered rarefaction wave, the O(ε| log ε|) error occurs on the edges where the inviscid solution
has a corner, and persists as long as the edges remain. The O(ε| log ε|) error must also occur at the
critical time when a new shock forms automatically from the decreasing part of the initial data; thus
it is, in general, impossible to maintain O(ε) rate for all t > 0. In contrast to the centered rarefaction
wave case, the O(ε| log ε|) error at critical time is transient. It resumes the O(ε) rate right after the
critical time due to nonlinear effect. Similar examples of some monotone schemes, which admit a
discrete version of the Hopf–Cole transformation, are also included.
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1. Introduction. The hyperbolic conservation law

ut + f(u)x = 0, x ∈ R, t > 0,
u(x, 0) = u0(x)

(1.1)

can be analyzed using the method of characteristics. Due to nonlinearity of f , the
characteristic lines can intersect each other in finite time, and the solution develops
jump discontinuities even if the initial data is smooth. Due to the presence of jump
discontinuities, we need to generalize the solution class to include “weak solutions.”
In addition, since the weak solutions are not unique, entropy conditions are needed
to specify physically meaningful weak solutions.

There are several equivalent forms of the entropy condition for genuinely nonlinear
(say, f ′′ > 0) scalar conservation laws. Among them is the method of vanishing
viscosity, which asserts that the physically relevant solution is obtained by solving the
following viscous approximate equation

uεt + f(uε)x = εuεxx, x ∈ R, t > 0, ε > 0,
uε(x, 0) = u0(x)

(1.2)

and letting ε go to zero. It is known that uε converges strongly, and the limiting
function, u, is a weak solution of (1.1). Furthermore, u is the unique solution that
satisfies the following entropy condition:

u(x+ a, t)− u(x, t)

a
≤ E

t
, t > 0,(1.3)
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where E is a constant depending only on the flux function f and initial data (see, for
example, [11] for details).

Monotone difference schemes are first-order numerical schemes used to compute
approximate solutions of (1.1):

wn+1
j = G(wnj−p, w

n
j−p+1, . . . , w

n
j+q)

= wnj − λ[f̄(wnj−p+1, . . . , w
n
j+q)− f̄(wnj−p, . . . , w

n
j+q−1)],

(1.4)

where p and q are fixed nonnegative integers, G is a monotonely nondecreasing func-
tion in each of its arguments, f̄ is a Lipchitz continuous function and is consistent
with the scalar conservation law (1.1) in the sense

f̄(w, . . . , w) = f(w),(1.5)

and λ = ∆t/∆x is a constant satisfying the CFL condition λ < |f ′|.
Most well-known first-order schemes such as the Lax–Friedrichs scheme, Godunov

scheme, and Enquist–Osher scheme are monotone schemes. Monotone schemes are
known to converge to the entropy solution of (1.1) as ∆x → 0 (see [2]) and they are
at most first-order accurate [1].

Whether or not a viscous approximation/monotone scheme can be of order
O(ε)/O(∆x) accurate is an issue of practical interest and has long been studied.
Although viscous approximation and monotone schemes are formally first order, they
can really lose half-order accuracy across discontinuities. For example, it is easy to
see, using a scaling argument, that the solution of the heat equation with an initial
jump discontinuity is indeed O(

√
ε) in L1 norm away from its zero viscosity limit. In

fact, Tang and Teng [14] proved that the O(
√
ε) or O(

√
∆x) rate is indeed optimal for

all monotone schemes applied to linear advection equations with discontinuous data.
For general BV initial data with genuinely nonlinear flux, several authors have

obtained O(
√
ε) or O(

√
∆x) rate. See, for example, Kuznetsov [6], Lucier [8], Sanders

[10], and Tadmor [13]. It turns out to be optimal for this case (i.e., beyond linear
degeneracy); see Sabac [9]. For the special case of monotonely nondecreasing initial
data, Harabetian [5] has obtained O(ε| log ε|)/O(∆x| log(∆x)|) rate in L1 norm and
showed that it is indeed optimal in this case.

Although BV solution is a natural class for genuinely nonlinear scalar conserva-
tion law, we will consider here only the subclass of piecewise smooth solutions with
finitely many shocks. This class is of practical interest in shock capturing for the
following reason: We expect viscous solution or monotone schemes to have better
resolutions across an isolated jump discontinuity if the flux function is genuinely non-
linear, since for a linearly degenerate flux function, the discontinuity is a contact one,
thus the smearing is a result of diffusion only; while in case of a genuinely nonlinear
flux, the entropy condition dictates that the characteristic curves impinge into the
shock, and thus tend to squeeze the profile in shape.

The first result in this direction was Goodman and Xin [4], where the authors
considered piecewise smooth flows with noninteracting shocks for systems of hyper-
bolic conservation laws with viscosity. They obtained an O(ε) estimate away from
shock regions and an overall O(εγ) rate for any γ < 1. The proof uses a matched
asymptotic analysis employing a superposition of outer solutions (asymptotic series
off the shock) and inner solutions (asymptotic expansion near the shock in stretched
variables), as well as a nonlinear stability analysis based on energy estimates.

Inspired by [4], Teng and Zhang [16], Tang and Teng [15] showed that, for gen-
uinely nonlinear scalar conservation laws with piecewise smooth initial data having
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finitely many inflection points, the convergence rate can be improved to supt>0 ‖u(·, t)−
uε(·, t)‖ ≤ O(ε| log ε|). And in case there is no centered rarefaction wave or shock for-
mation at a later time, the rate is actually O(ε).

The corresponding counterpart for monotone schemes is more subtle. Engquist
and Yu [3] and Smyrlis and Yu [12] obtained pointwise estimates for a wide class
of finite difference schemes, which result in the O(∆x) convergence rate in L1 norm
of monotone schemes for piecewise smooth initial data with noninteracting shocks
provided no shocks form at a later time.

From the argument in [15], it is not clear whether the O(ε| log ε|) is optimal
beyond the centered rarefaction wave case (the optimality of the centered rarefaction
wave case was shown in Harabetian [5]). In this paper, we will study in detail the
structure of ‖u(·, t) − uε(·, t)‖ through an example, the viscous Burgers equation, to
gain more insight. It turns out that this rate is actually obtained at the critical time
when a shock develops from the decreasing part of the initial data. Thus, it is in
general impossible to maintain O(ε)/O(∆x) rate for all t > 0. However, in contrast
to the centered rarefaction wave case, this phenomenon is transient; it resumes the
O(ε)/O(∆x) rate right after the critical time. (This case was not covered in [14], [15],
[3], and [12], where the authors considered the shocks coming from jumps in initial
data.) This result is consistent with the following heuristic argument: The viscous
approximation/monotone schemes are first-order accurate both before and after the
critical time, but for different reasons. Before the critical time, the solution of (1.1)
is smooth if the initial data is; therefore, the viscous term εuεxx is an O(ε) · O(1)
quantity. After the critical time, the shock is already formed, and the impinging of
characteristic lines counteract with diffusion. However, at the critical time, neither of
these mechanisms is available, resulting in an underresolution.

The rest of this paper is arranged as follows: In section 2, we will review some basic
facts about formation of shocks, the Hopf–Cole transformation, and a few lemmas to
be used later. In section 3.1, we state and prove the main theorem concerning the
convergence rate at and after critical time for the viscous Burgers equation using
the Hopf–Cole transformation. In section 3.2, we give the same results for several
monotone schemes with particular flux functions, including upwind, Lax–Friedrichs,
and Godunov scheme, which admit a discrete version of Hopf–Cole transformation.
It will be clear how these elementary arguments can be utilized to study the centered
rarefaction wave case, and interactions of shocks and centered rarefaction waves, etc.
The results are as stated in the abstract of this paper; we thus omit the details.

2. Preliminaries.
Notation: ‖ · ‖ is the L1 norm. We’ll also denote the local L1 integral

∫ b
a
|g(x)|dx

by ‖g‖L1(dx;[a,b]).
Consider the viscous and inviscid Burgers equation which are special cases of (1.1)

and (1.2) with f(u) = 1
2u

2,

ut + uux = 0, x ∈ R, t > 0,
u(x, 0) = u0(x)

(2.1)

and

uεt + uεuεx = εuεxx, x ∈ R, t > 0, ε > 0,
uε(x, 0) = u0(x).

(2.2)

We first recall some facts about spontaneous formation of shocks. If the ini-
tial data is smooth and is such that f ′(u0(·)) is not monotonely nondecreasing, the
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characteristic lines can intersect each other and the shock forms. If ξ1 < ξ2 with
f ′(u0(ξ1)) > f ′(u0(ξ2)), then the two characteristic lines starting from ξ1 and ξ2
intersect at time t = ξ2−ξ1

f ′(u0(ξ1))−f ′(u0(ξ2)) ; thus the first time at which neighboring

characteristic lines intersect is when t = tc = −1
minξ

d
dξ f
′(u0(ξ))

and the initial shock is

located at the characteristic line starting from ξ0 where the minimum is taken.
Here in Burgers’s equation, f ′(u0) = u0. Up to a Galilean transformation, we may

assume that u0(0) = 0 and that ξ = 0 is where u′0 assumes its negative minimum which
corresponds to the initial formation of the shock. Thus the local Taylor expansion
near ξ = 0 reads

u0(ξ) = − 1

tc
ξ + aξ2p+1 + · · · ,(2.3)

where a > 0 and p is a positive integer. We’ll carry out the analysis for p = 1; the
proof for other values of p is similar.

By differentiating (2.1) with respect to x and then integrating along the char-
acteristic lines, one can find that the derivative blows up near t = tc (for a detail
derivation, see, for example, [11]),

ux(0, t) = − O(1)

tc − t , t < tc.(2.4)

Our main tool is the classical Hopf–Cole transformation,

uε = −2ε(log φε)x.(2.5)

Through (2.5), (2.2) linearizes to the heat equation

φεt = εφεxx.(2.6)

After transforming the initial data and solving the heat equation, we have

uε(x, t) = −2ε

(
log

∫ ∞
−∞

e−
1
2εG(x,y,t)dy

)
x

,(2.7)

where G(x, y, t) =
∫ y

0
u0(y′)dy′ + (x−y)2

2t .

Since (2.7) gives an exact formula for uε(x, t), hence for
∫ x

uε(x′, t)dx′, we can
estimate ‖uε(·, t)−u(·, t)‖ as long as we know the sign of uε(·, t)−u(·, t). The following
lemma is based on this observation.

Lemma 2.1. Let u0 be a smooth and bounded function satisfying
(A.1) u0(ξ) = − ξ

tc
+ aξ3 + bξ4 +O(ξ5) for |ξ| < δ where a > 0;

(A.2) ξ = 0 is the point corresponding to the first spontaneous formation of shocks,
that is, u′0(ξ) > − 1

tc
for all ξ 6= 0;

(A.3) u0 is antisymmetric: u0(−ξ) = −u0(ξ);
(A.4) u0 is monotonely decreasing;
(A.5) u0 is concave on ξ < 0, and, therefore, by Assumption (A.3), convex on ξ > 0.

Then

u(x, tc) ≥ (≤)uε(x, tc) on x < (>)0.(2.8)

Proof. By symmetry, we only need to prove the statement on {x < 0}. We will
apply the maximum principle in the region {(x, t) : 0 < t < tc, x < 0} for w = uε − u,
which satisfies

wt + (aw)x − εwxx = εuxx,(2.9)
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where a(x, t) = 1
2 (uε(x, t) + u(x, t)) = 1

2w(x, t) + u(x, t). Clearly, w = 0 on {(x, t) :
t = 0, x < 0} by definition and on {(x, t) : 0 < t < tc, x = 0} by symmetry. Since
monotonicity and concavity of u is preserved under the characteristic flow (one can see
this by differentiating (1.1) once and twice, then integrating along the characteristic
lines), we have the correct signs on the right-hand side of (2.8) and the coefficient of
w in order to apply the maximum principle, by which we conclude that w ≤ 0 on
{x < 0}.

We’ll also need the following lemma.
Lemma 2.2 (L1 stability). If uεi(x, t), i = 1, 2 satisfy

∂

∂t
uεi +

∂

∂x
f(uεi)− ε

∂2

∂x2
uεi = gi(x, t),(2.10)

then

‖uε1(·, t)− uε2(·, t)‖ ≤ ‖uε1(·, 0)− uε2(·, 0)‖+

∫ t

0

‖g1(·, s)− g2(·, s)‖ds.(2.11)

Proof. Let w = uε1 − uε2; then w solves the following equation:

wt + (aw)x − εwxx = g1 − g2,(2.12)

where a(x, t) = 1
2 (uε1 +uε2) for Burgers’s equation. (For general flux, a(x, t) is a proper

average of f ′(uε1(x, t)) and f ′(uε2(x, t)) .) Since the backward adjoint equation

zt + azx + εzxx = 0,
z(·, t) = sgn(w(·, t))(2.13)

satisfies the maximum principle, we then complete the proof by integrating z ·(2.12)+
w · (2.13) by parts.

3. Convergence rate at and near critical time.

3.1. The Burgers equation.
Theorem 3.1. Let uε(x, t) and u(x, t) be solutions of (2.1) and (2.2), respectively,

with the same initial data u0(x) satisfying (A.1) and (A.2) in Lemma 2.1, then for t
near tc, we have

1. If t 6= tc, then

‖uε(·, t)− u(·, t)‖ ≤ C(t)ε as ε→ 0,

where C(t) = O(log 1
|t−tc| ).

2.

‖uε(·, tc)− u(·, tc)‖ = O(ε| log ε|) as ε→ 0.

Proof. The case t < tc of the first part is a direct consequence of Lemma 2.2
above, since ‖uxx(·, t)‖ = TV (ux(·, t)) = 2‖ux(·, t)‖L∞ = −2ux(0, t) = O( 1

tc−t ).
At t = tc, we first prove the special case where the initial data satisfy the assump-

tions of Lemma 2.1. In this case we see that from (2.8),

‖uε(·, tc)− u(·, tc)‖L1(dx;[−1,0]) =

∫ 0

−1

u(x, tc)dx−
∫ 0

−1

uε(x, tc)dx.(3.1.1)
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By the Hopf–Cole transformation,

∫ 0

−1

uε(x, t)dx = −2ε log


∫
e−

1
2εG(0,y,t)dy∫

e−
1
2εG(−1,y,t)dy

 ,(3.1.2)

where G(x, y, t) =
∫ y

0
u0(y′)dy′ + (x−y)2

2t and the domain of integration in int(·)dy is
the whole real line. Following the standard stationary phase method, we check that
Gyy(−1, ξ(−1, tc), tc) = u′0(ξ) + 1

tc
> 0, where ξ = ξ(x, t) is where G(x, ·, t) assumes

its global minimum,

u0(ξ(x, t)) =
x− ξ(x, t)

t
.(3.1.3)

Thus at t = tc, the leading-order asymptotic expansion of the denominator in (3.1.2)
is ∫

e−
1
2εG(−1,y,tc)dy = e−

1
2εG(−1,ξ(−1,tc),tc)

∫
e−

1
2ε [G(−1,y,tc)−G(−1,ξ(−1,tc),tc)]dy

∼ e− 1
2εG(−1,ξ(−1,tc),tc)

∫
e−

1
2ε

Gyy(−1,ξ(−1,tc),tc)

2 (y−ξ(−1,tc))
2

dy

=
2
√
π

u′0(ξ(−1, tc)) + 1
tc

· ε 1
2 exp

(
− 1

2ε
G(−1, ξ(−1, tc), tc)

)
.(3.1.4)

The numerator, however, has a quartic exponent G(0, y, tc) at (x, t) = (0, tc),
since ξ(0, tc) = 0, Gy(0, ξ(0, tc), tc) = Gyy(0, ξ(0, tc), tc) = Gyyy(0, ξ(0, tc), tc) = 0 and
Gyyyy(0, ξ(0, tc), tc) = 6a > 0. Thus the asymptotic expansion of the integral is, to
leading order,∫

e−
1
2εG(0,y,tc)dy = e−

1
2εG(0,0,tc)

∫
e−

1
2ε [G(0,y,tc)−G(0,0,tc)]dy

∼ e− 1
2εG(0,0,tc)

∫
e−

1
8εay

4

dy

= I0(
4ε

a
)

1
4 exp

(
− 1

2ε
G(0, 0, tc)

)
,(3.1.5)

where I0 =
∫∞
−∞ e−

z4

2 dz is a constant. Therefore,∫ 0

−1

uε(x, tc)dx ∼ G(0, 0, tc)−G(−1, ξ(−1, tc), tc) +
1

2
ε log ε+ · · · .(3.1.6)

By differentiating (3.1.3) with respect to x, we see that ∂
∂xG(x, ξ(x, t), t) = u(x, t), so

G(0, 0, tc)−G(−1, ξ(−1, tc), tc) =

∫ 0

−1

u(x, tc)dx.(3.1.7)

From (3.1.2), (3.1.4), (3.1.5), (3.1.6), and (3.1.7), we conclude that

‖uε(·, tc)− u(·, tc)‖L1(dx;[−1,0]) ∼ 1

2
ε| log ε|.(3.1.8)
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The same estimate holds for ‖uε(·, tc)− u(·, tc)‖L1(dx;[0,1]) by symmetry. The integral
outside of [−1, 1] is of lower order by virtue of Lemma 3.2 below. Thus the special
case is proved.

To prove the general case, we note that, because of the structure of the initial
data, the assumptions of Lemma 2.1, except (A.3), indeed hold for ξ near zero in
general. Thus we only have to take care of the antisymmetry. We proceed as follows.

Let δ0 > 0 be a small number such that all the assumptions in Lemma 2.1, except
(A.3), are valid for |ξ| < 2δ0, and let the characteristic line starting from (−δ0, 0)
intersect the line {t = tc} at (−δ1, tc). We will concentrate on the local deviation
‖uε(·, tc) − u(·, tc)‖L1(dx;[−δ1,0]). The following lemma allows us to modify the initial
data in order to reduce to the antisymmetric case.

Lemma 3.2. Let v0, w0 be two bounded initial data such that v0(ξ) = w0(ξ) on
{ξ ≥ α} for some α ∈ R and let vε(x, t), wε(x, t) be corresponding solutions of the
viscous Burgers equation. If for some β > α, the characteristic flows of v0 and w0

left of α are strictly separated from those right of β up to some time t1 > 0, that is,
if there exist β1 > α1, such that the characteristic lines of v0 and w0 starting from
left of (α, 0) intersect the line {t = t1} at left of (α1, t1), and vice versa on the right
of (β, 0) and (β1, t1), then

‖vε(·, t1)− wε(·, t1)‖L1(dx;[β1,∞)) = O(1)e−
O(1)
ε .(3.1.9)

Proof. Equation (3.1.9) can be proved by estimating the Green function of the
backward adjoint equation, or one can prove it directly using the Hopf–Cole transfor-
mation.

Therefore, by adjusting u0(ξ) on {ξ < −2δ0} if necessary, we may assume that
u0 satisfies the assumptions (A.2), (A.4), and (A.5) globally on {ξ < 0}. To reduce
to the special case, we now construct an antisymmetric initial data

ua,0(ξ) =

{
u0(ξ) if ξ < 0,
−u0(−ξ) if ξ ≥ 0.

(3.1.10)

Since the corresponding inviscid solutions agree on the interval under consideration,

ua(x, tc) = u(x, tc) on − δ1 ≤ x ≤ 0,(3.1.11)

it suffices to estimate ‖uεa(·, tc)− uε(·, tc)‖L1(dx;[−δ1,0]).

By Assumption (A.1), we have ua,0(ξ)− u0(ξ) ≤ (≥)0 on {ξ ≤ 2δ0} if b > (<)0.
By Lemma 3.2, we can adjust u0(ξ) on {ξ > 2δ0} if necessary, so we may assume,
without loss of generality, that

ua,0(ξ)− u0(ξ) ≤ (≥)0 for all ξ ∈ R if b > (<)0.(3.1.12)

From the classical comparison lemma [2], (3.1.12) implies that

uεa(x, t)− uε(x, t) ≤ (≥)0 if b > (<)0,(3.1.13)

and, therefore,

‖uεa(·, tc)− uε(·, tc)‖L1(dx;[−δ1,0]) =

∣∣∣∣∫ 0

−δ1
uεa(x, tc)dx−

∫ 0

−δ1
uε(x, tc)dx

∣∣∣∣(3.1.14)
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Equations (3.1.11), (3.1.13), and (3.1.14) together imply

‖uε(·, tc)− u(·, tc)‖L1(dx;[−δ1,0]),

=


∫ 0

−δ1
u(x, tc)dx−

∫ 0

−δ1
uε(x, tc)dx if b < 0,∫ 0

−δ1
u(x, tc)dx+

∫ 0

−δ1
uε(x, tc)dx− 2

∫ 0

−δ1
uεa(x, tc)dx if b > 0;

(3.1.15)

therefore, we can apply the Hopf–Cole transformation again,

‖uε(·, tc)− u(·, tc)‖L1(dx;[−δ1,0]),(3.1.16)

=



−2ε log


∫
e−

1
2εG(−δ1,y,tc)−G(−δ1,ξ(−δ1,tc),tc)dy∫
e−

1
2εG(0,y,tc)−G(0,0,tc)dy

 if b < 0,

−2ε

[
log


∫
e−

1
2εGa(−δ1,y,tc)−Ga(−δ1,ξ(−δ1,tc),tc)dy∫
e−

1
2εGa(0,y,tc)−Ga(0,0,tc)dy


+ log


∫
e−

1
2εG(0,y,tc)dy∫

e−
1
2εGa(0,y,tc)dy

] if b > 0,

where Ga(x, y, t) =
∫ y

0
ua,0(y′)dy′ + (x−y)2

2t , and Ga(−δ1, ξ(−δ1, tc), tc) = G(−δ1, ξ
(−δ1, tc), tc) cancel out in the second term of the case b > 0 in (3.1.17). Since u′′′0 (0)
is preserved under antisymmetrization, we see that from (3.1.5)∫

e−
G(0,y,tc)

2ε dy∫
e−

Ga(0,y,tc)
2ε dy

= 1 + o(1).(3.1.17)

In view of (3.1.17) and (3.1.17), we have

‖uε(·, tc)− u(·, tc)‖L1(dx;[−δ1,0]) ∼ 1

2
ε| log ε|.(3.1.18)

The estimate for ‖uε(·, tc)− u(·, tc)‖L1(dx;[0,δ1]) is similar. The general case for t = tc
is thus proved.

The case t > tc can be reduced to the case t < tc by constructing a new initial
data which delays the formation of the shock. Let t0 > tc be given, with t0 − tc
sufficiently small. Denote by s(t) the location of the shock at time t, and let (ξ−, 0)
be where the backward characteristic line from (s(t0)−0, t0) intersects the x-axis. For
t0 − tc sufficiently small, ξ− is close to 0 and the tangent line of u0(·) at (ξ−, u0(ξ−))
lies above u0 in a neighborhood of ξ−. Now define

ū0(ξ) =

{
u0(ξ) if ξ < ξ−,
max(u0(ξ), u0(ξ) + u′0(ξ−)(ξ − ξ−) ) if ξ ≥ ξ−,

and let ū(x, t) and ūε(x, t) be correponding inviscid and viscous solutions. It is easy
to see that
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(a) ū(x, t0) = u(x, t0) for x < s(t0).
(b) The critical time for ū0 is t̄c = − 1

u′0(ξ−) > t0; thus no shock forms in ū(·, ·)
up to t = t0. Moreover, t̄c − t0 = 1

2 (t0 − tc) +O((t0 − tc)2).
(c) ū0(ξ) ≥ u0(ξ) and thus ūε(x, t) ≥ uε(x, t).

From (b), we have

‖ūε(·, t0)− ū(·, t0)‖ = O

(
log

1

|t− tc|
)
ε as ε→ 0,(3.1.19)

and from (c)

‖uε(·, t0)− ūε(·, t0)‖L1(dx;[−1,s(t0)])

=

∫ s(t0)

−1

ūε(x, t0)dx−
∫ s(t0)

−1

uε(x, t0)dx

= −2ε

log


∫
e−

1
2ε Ḡ(s(t0),y,t0)dy∫

e−
1
2εG(s(t0),y,t0)dy

− log


∫
e−

1
2ε Ḡ(−1,y,t0)dy∫

e−
1
2εG(−1,y,t0)dy


 ,(3.1.20)

where Ḡ(x, y, t) =
∫ y

0
ū0(y′)dy′+ (x−y)2

2t . A standard process of asymptotic expansion
leads to ∫

e−
1
2ε Ḡ(−1,y,t0)dy∫

e−
1
2εG(−1,y,t0)dy

∼ 1 +O(ε).(3.1.21)

As to the first term in (3.1.20), we note that the exponent G(s(t0), ·, t0) indeed
has two global minima occurring at ξ− and ξ+ due to the presence of the shock. Here
ξ+ is where the backward characteristic line from (s(t0) + 0, t0) intersects the x-axis.
Since ū(·, t0) is smooth, there is only one global minimum of Ḡ(s(t0), ·, t0) occurring
at ξ−, therefore,∫

e−
1
2ε Ḡ(s(t0),y,t0)dy∫

e−
1
2εG(s(t0),y,t0)dy

∼ (u′0(ξ−) + 1
t0

)
1
2

(u′0(ξ−) + 1
t0

)
1
2 + (u′0(ξ+) + 1

t0
)

1
2

+ o(1) < 1.(3.1.22)

From (a), (3.1.19), (3.1.20), (3.1.21), and (3.1.22), we conclude that

‖uε(·, t0)− u(·, t0)‖L1(dx;[−1,s(t0)]) = O

(
log

1

|t− tc|
)
ε.(3.1.23)

A similar estimate holds for ‖uε(·, t0) − u(·, t0)‖L1(dx;[s(t0),1]), and the theorem is
proved.

Remark 1. It is clear from the proof that the O(ε| log ε|) rate is indeed optimal at
the critical time. For a general exponent 2p + 1 in (2.3), the constant 1

2 in (3.1.8) is
replaced by p

p+1 .
The idea used in the proof of Lemma 2.1 and Theorem 3.1 can be carried over

to analyze the structure of the error in the case of a centered rarefaction wave. The
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O(ε| log ε|) error is optimal and, roughly speaking, is restricted to the inner edges of
the fan.

Proposition 3.3. Let the initial data u0(ξ) be a piecewise smooth function
with a jump discontinuity at ξ = 0 and u0(0−) < u0(0+) but smooth otherwise.
Assume further that u0 is concave on {ξ > 0}, convex on {ξ < 0}, and monotonely
nondecreasing. Then the following local L1 error estimates holds. For c, d ∈ R
satisfying

u0(0+) + u0(0−)

2
t < c < u0(0+)t < d,

‖u(·, t)− uε(·, t)‖
L1(dx;[

u0(0+)+u0(0−)

2 t,c])
∼ C1ε,

‖u(·, t)− uε(·, t)‖L1(dx;[c,u0(0+)t]) ∼ ε| log ε|,
‖u(·, t)− uε(·, t)‖L1(dx;[u0(0+)t,d]) ∼ C2ε,

(3.1.24)

where

C1 = 2 log

( 1
c
t−u0(0−) + 1

u0(0+)− ct
4

u0(0+)−u0(0−)

)
, C2 = 2 log

(
2

√
u0(ξ(u0(0+)t, t))

u0(ξ(d, t))

)
,(3.1.25)

and ξ(x, t) is defined implicitly by (3.1.3). Similar estimates hold for intervals at left

of the center u0(0+)+u0(0−)
2 t.

The proof is similar to the proof of Theorem 3.1; we omit the detail.
We remark here that the monotonicity and concavity (convexity) assumptions

in Proposition 3.3 are not essential; one can treat the case of a general centered
rarefaction wave up to the time when the edge is, if ever, merged into a shock. The
estimates (3.1.24) remain valid except the constants C1 and C2 may become larger
due to overestimates. After the edge is merged into a shock, the local L1 error reduces
to O(ε).

The precise form of the statement above is rather complicated; we illustrate with
the following example instead.

Example. Consider (2.1) and (2.2) with initial data

u0(ξ) =


−1, ξ < 0,

1− ξ
2 , 0 ≤ ξ < 1,

− ξ2 , 1 ≤ ξ < 2,
−1, 2 ≤ ξ.

(3.1.26)

At time t < 1, the solution to (1.1) has a rarefaction wave spanning over −t ≤ x ≤ t
and a standing shock at ξ = 1. At t = 1, the right edge of the centered rarefaction wave
is confronted with the standing shock and merged into it afterward. The following
local L1 estimates hold.

For 0 < t < 1, we have

‖u(·, t)− uε(·, t)‖L1(dx;[0,t]) ∼ ε| log ε|,
‖u(·, t)− uε(·, t)‖L1(dx;[t,1]) ∼ O(ε),
‖u(·, t)− uε(·, t)‖L1(dx;[1,∞)) ∼ O(ε).

(3.1.27)

At t = 1,

‖u(·, 1)− uε(·, 1)‖L1(dx;[0,1]) ∼ ε| log ε|,
‖u(·, 1)− uε(·, 1)‖L1(dx;[1,∞)) ∼ O(ε).

(3.1.28)



48 WEI-CHENG WANG

After the interaction, say, 1 < t < 1.5, the shock begins to move. Denoting by s(t)
the shock location, we have

‖u(·, t)− uε(·, t)‖L1(dx;[0,s(t)]) ∼ O(ε),
‖u(·, t)− uε(·, t)‖L1(dx;[s(t),∞)) ∼ O(ε).

(3.1.29)

We outline the computation for the first equation in (3.1.27); the rest is done in
a similar way. Consider

ū0(ξ) =

{ −1, ξ < 0,
1, ξ > 0,

(3.1.30)

and denote the corresponding viscous and inviscid solutions by ūε and ū, respectively.
By a variant of Lemma 2.1, we can conclude that ū(x, t) ≥ (≤)ūε(x, t) on {x >
0} ({x < 0}). Thus one can apply the Hopf–Cole transformaton. A short calculation

leads to Ḡ(x, y, t) =
∫ y

0
ū0(y′)dy′ + (x−y)2

2t near the absolute minimum,

Ḡ(0, y, t) ∼ |y|, for y near 0,

Ḡ(t, y, t) ∼
{ t

2 − 2y, y < 0
t
2 + y2

2t , y > 0
for y near 0,

(3.1.31)

from which one easily concludes that

‖ū(·, t)− ūε(·, t)‖L1(dx;[0,t]) ∼ ε| log ε|.(3.1.32)

On the other hand, ū0 ≥ u0, thus ūε ≥ uε and we can apply the Hopf–Cole transfor-
mation again. The same calculation leads to

G(0, y, t) ∼ |y|, for y near 0,

G(t, y, t) ∼
{

t
2 − 2y, y < 0[1ex]
t
2 + ( 1

2t − 1
4 )y2, y > 0

for y near 0;
(3.1.33)

one thus concludes that

‖ūε(·, t)− uε(·, t)‖L1(dx;[0,t]) ∼ ε log

(
2− t

2

)
.(3.1.34)

We conclude with the first equation of (3.1.27), with the triangle inequality and the
fact that u(x, t) coincides with ū(x, t) for x ≤ t.

3.2. Hopf–Cole–Lax transformation for some monotone schemes. We
now give another example in which the convergence rate is not first order at the
critical time—Lax–Friedrichs scheme applied to the conservation law (1.1) with a
specific flux function:

fL(u) = log

(
cosh(u) + 1

2

)
.

The Lax–Friedrichs scheme for this particular flux admits a discrete version of Hopf–
Cole transformation. This was first observed by Lax [7] for upwind scheme with a
family of flux function f(u) = log(a + be−u), a, b > 0, a + b = 1. Here we adopt
a variation of the original one in order to maintain symmetry, which simplifies the
analysis.

The following properties of fL(u) are elementary:
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(C.1) fL(u) = fL(−u).
(C.2) fL(0) = 0.

(C.3) f ′L(u) = sinh(u)
cosh(u)+1 , f ′L(0) = 0.

(C.4) f ′′L(u) = 1
cosh(u)+1 > 0.

We now study the convergence rate for the Lax–Friedrichs scheme with fL. Let
u∆(x, t) be the approximate solution obtained via the Lax–Friedrichs scheme

u∆(x, t+∆) =
1

2
( u∆(x−∆, t)+u∆(x+∆, t) )−1

2
( fL(u∆(x+∆, t))−fL(u∆(x−∆, t)) ),

(3.2.1)
where the argument (x, t) is restricted to grid points only, and we have put ∆x =
∆t = ∆ for simplicity.

Now let U∆(x, t) = 2∆
∑
k=−∞0 u∆(x− 2k∆, t). The equation for U∆ is

U∆(x, t+∆) =
1

2
( U∆(x−∆, t)+U∆(x+∆, t) )−∆fL

(
U∆(x+ ∆, t)− U∆(x−∆, t)

2∆

)
.

(3.2.2)
Now we apply the Hopf–Cole–Lax transformation

U∆ = G(V ∆) = −2∆ log(V ∆),

which brings (3.2.1) to

G(V ∆(x, t+ ∆)) =
1

2
[G(V ∆(x+ ∆, t)) +G(V ∆(x−∆, t))][1ex]

−∆fL

(
G(V ∆(x+ ∆, t))−G(V ∆(x−∆, t))

2∆

)
.

(3.2.3)

The equation for V ∆ thus linearizes as the following identity holds for all V ,
W ∈ R,

1

2
(G(V ) +G(W ))−∆fL

(
G(V )−G(W )

2∆

)
= G

(
V +W

2

)
.

Thus

V ∆(x, t+ ∆) =
1

2
( V ∆(x+ ∆, t) + V ∆(x−∆, t) ),

and, therefore,

V ∆(x, t) =
n∑
l=0

(
n

l

)
1

2n
V ∆(x− n∆ + 2∆, 0),

where t = n∆.
For fixed x, z ∈ R, t > 0, we want to estimate

U∆(x, t)− U∆(z, t) = −2∆ log


n∑
l=0

(
n

l

)
e−

1
∆U

∆(x−n∆+2l∆,0)

n∑
l=0

(
n

l

)
e−

1
∆U

∆(z−n∆+2l∆,0)

 ,(3.2.4)
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where we’ve used U∆(·, 0) = −2∆ log(V ∆(·, 0)). For the sake of a simpler formula,
we assume that (x, t) and (z, t) are always on the grid points as the mesh refines.

The following counterpart of Lemma 2.1 is crucial in establishing the ordering
of u∆(·, tc) and u(·, tc); therefore, we can estimate the L1 difference of the two using
(3.2.4).

Lemma 3.4. Let u0 be a smooth and bounded function satisfying
(B.1) f ′L(u0(ξ)) = − ξ

tc
+ aξ3 + bξ4 +O(ξ5) for |ξ| < δ where a > 0.

(B.2) ξ = 0 is the point corresponding to the first spontaneous formation of shocks;
that is, d

dξf
′
L(u0(ξ)) > − 1

tc
for all ξ 6= 0.

(B.3) f ′L(u0) is antisymmetric, and thus so is u0: u0(−ξ) = −u0(ξ).
(B.4) f ′L(u0(·)), and, therefore, u0(·) is monotonely nonincreasing.
(B.5) f ′L(u0(·)) is concave on ξ < 0, and, therefore, by Assumption (B.3), convex

on ξ > 0.
Then

u(x,∆) ≥ u∆(x,∆) x < 0, (x,∆) on the grids.

By induction and the monotonicity of Lax–Friedrichs scheme, u(x, t) ≥ u∆(x, t) for
all x < 0, t > 0, (x, t) on the grids.

Proof. Let A = (x,∆), B = (x−∆, 0), C = (x+∆, 0), and D = (x, 0) be four-grid
points on x < 0; then

• u∆
A = g(uB , uC) ≡ 1

2 (uB + uC)− 1
2 (fL(uC)− fL(uB));

• uB ≥ uC , and uA = uE for some (unique) point E on the line segment B̄D.
Denote by m = f ′L(uE) = distance(D,E)/∆, and define, for 0 ≤ θ ≤ 1, a family

of functions v(θ, ξ) on B̄C by

f ′L(v(θ, ξ)) = m+ θ(f ′L(u0(ξ))−m), 0 ≤ θ ≤ 1, x−∆ ≤ ξ ≤ x+ ∆.

Obviously, v(0, ξ) = uE and v(1, ξ) = u0(ξ).
Now let h(θ) = g(v(θ, x−∆), v(θ, x+∆)); then h(0) = uE and h(1) = g(uB , uC) =

u∆
A . A direct computation gives

dh

dθ
=

1

2
(α+ θαβ +mβ),

where α = f ′(uB)+f ′(uC)−2m < 0 and β = f ′(uB)−f ′(uC) > 0. Due to concavity of
f ′(u0(·)), the graph of f ′(u0(·)) lies above the line joining (B, f ′(uB)) and (C, f ′(uC));
therefore, α+mβ ≤ 0. Thus dh

dθ ≤ 0 and uA ≥ u∆
A .

Now we come back to estimate the leading order term of (3.2.4) using Stirling’s
formula

n! =

(
n− 1

e

)n−1

(2π(n− 1))
1
2 + · · · .(3.2.5)

After elementary calculations, we have

U∆(x, t)− U∆(z, t) = −2∆ log


n∑
l=0

e−
1
∆ [(tF ( x−yt )+U0(y,o))+E1]

n∑
l=0

e−
1
∆ [(tF ( z−yt )+U0(y,o))+E2]

 ,(3.2.6)
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where F (s) = log(1− s2) + s log( 1+s
1−s ), t = n∆, and x− y = t− 2l∆. E1 and E2 are

the errors introduced by Stirling’s formula, and are of lower order.
We next replace sums by integrals. Again, the errors are of lower order since the

integrals are at least O(∆
1
2 ) as we saw in section 3.1. This leads to

U∆(x, t)− U∆(z, t) = −2∆ log


∫ x+t

x−t
e−

1
2∆ [(tF ( x−yt )+

∫ y
u0(y′)dy′)+E1]dy∫ z+t

z−t
e−

1
2∆ [(tF ( z−yt )+

∫ y
u0(y′)dy′)+E2]dy

+ · · · .

(3.2.7)

At x = 0, t = tc, the integrand of the numerator has a quartic phase at its maximum
y = 0, while the integrand of the denominator has a quadratic phase at z =, say, −1,
t = tc. Therefore,

U∆(0, tc)− U∆(−1, tc) =

∫ 0

−1

u(., tc)− 2∆ log

(
∆

1
4

∆
1
2

)
+ · · · ,

and

‖u(·, tc)− u∆(·, tc)‖L1(∆x;[−1,0]) ∼ 1

2
∆| log ∆|.

The generalization to nonantisymmetric initial data is the same as for Burgers’s
equation in the previous subsection.

Remark 2.
1. The case t 6= tc can be proved in the same way; see [2] for a discrete version

of Lemma 2.2. The discrete analogue of the comparison lemma is an immediate
consequence of monotonicity.

2. Although we only carry out the analysis for the most dissipative first-order
scheme, namely, the Lax–Friedrichs scheme, the same argument shows that even the
upwind scheme cannot do better. Since the same transform applies to the upwind
scheme with the flux function f(u) = − log(a+be−u), a, b > 0, a+b = 1. Even though
we don’t have symmetry in this case, we still have the lower bound for free:

‖u(·, tc)− u∆(·, tc)‖L1(∆x;[xc−1,xc]) ≥ |U(xc, tc)− U∆(xc − 1, tc)| = O(∆| log ∆|)
(3.2.8)

3. Since f ′(u) = be−u
a+be−u > 0, the Godunov scheme reduces to upwind scheme.

Therefore, (3.2.8) also holds for Godunov scheme with the same family of flux.
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