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Abstract
All the existing entropy stable (ES) schemes for relativistic hydrodynamics (RHD) in the
literature were restricted to the ideal equation of state (EOS), which however is often a poor
approximation for most relativistic flows due to its inconsistency with the relativistic kinetic
theory. This paper develops high-order ES finite difference schemes for RHD with general
Synge-type EOS, which encompasses a range of special EOSs. We first establish an entropy
pair for the RHD equations with general Synge-type EOS in any space dimensions. We rig-
orously prove that the found entropy function is strictly convex and derive the associated
entropy variables, laying the foundation for designing entropy conservative (EC) and ES
schemes. Due to relativistic effects, one cannot explicitly express primitive variables, fluxes,
and entropy variables in terms of conservative variables. Consequently, this highly compli-
cates the analysis of the entropy structure of the RHD equations, the investigation of entropy
convexity, and the construction of EC numerical fluxes. By using a suitable set of parameter
variables, we construct novel two-point EC fluxes in a unified form for general Synge-type
EOS. We obtain high-order EC schemes through linear combinations of the two-point EC
fluxes. Arbitrarily high-order accurate ES schemes are achieved by incorporating dissipation
terms into the EC schemes, based on (weighted) essentially non-oscillatory reconstructions.
Additionally, we derive the general dissipation matrix for general Synge-type EOS based on
the scaled eigenvectors of the RHD system. We also define a suitable average of the dissipa-
tionmatrix at the cell interfaces to ensure that the resulting ES schemes can resolve stationary
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contact discontinuities accurately. Several numerical examples are provided to validate the
accuracy and effectiveness of our schemes for RHD with four special EOSs.

Keywords Entropy stable scheme · Entropy conservative scheme · Relativistic
hydrodynamics · Equation of state · Dissipation matrix

1 Introduction

This paper is concerned with the development of stable high-order numerical methods for
simulating the relativistic hydrodynamics (RHD),which have important applications in astro-
physics, high energy physics, etc. The governing equations of d-dimensional special RHD
can be written as a system of hyperbolic conservation laws:

∂U
∂t

+
d∑

i=1

∂Fi (U)

∂xi
= 0, (1)

where

U =
⎛

⎝
D
m
E

⎞

⎠ , Fi (U) =
⎛

⎝
Dvi

vim + pei
mi

⎞

⎠ (2)

with the mass density D = ργ , momentum vectorm = ρhγ 2v, and energy E = ρhγ 2 − p.
Here, ρ, v = (v1, v2, · · · , vd)

�, and p denote the rest-mass density, the fluid velocity vector,
and the pressure, respectively. The vector ei denotes the i th column of the identity matrix of
size d . The velocity is normalized such that the speed of light is 1. Additionally, γ = 1√

1−|v|2
is the Lorentz factor, h = 1 + e + p

ρ
represents the specific enthalpy, and e is the specific

internal energy.
The RHD system (1) is closed by an equation of state (EOS). A general EOS may be

written as

h = h(p, ρ),

which typically satisfies the following inequality [71] for relativistic causality:

h

(
1

ρ
− ∂h

∂ p
(p, ρ)

)
<

∂h

∂ρ
(p, ρ) < 0 (3)

such that the local sound speed cs < 1; see [71] for more details. In this paper, we assume
that h only depends on p

ρ
, namely,

h = h(θ) = 1 + e(θ) + θ with θ := p

ρ
, (4)

where θ is a temperature-like variable. For convenience, we will refer to such a general class
of EOS (4) as Synge-type EOS, because the Synge EOS (7) for perfect gas and its common
approximations belong to this type. Then the condition (3) can be equivalently reformulated
as

h(θ) >
θ
(
1 + e′(θ)

)

e′(θ)
, e′(θ) > 0, (5)
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which are used throughout this paper. The condition (5), along with limθ→0+ e(θ) = 0,
implies that e(θ) + 1 >

√
θ2 + 1 or equivalently h(θ) >

√
θ2 + 1 + θ . Note that this

requirement is less stringent than the Taub inequality, (h−θ)(h−4θ) ≥ 1, proposed in [59].
Consequently, our assumptions on the general EOS (4) are rather mild, accommodating a
wide range of commonly used EOSs. A special example of such EOSs is the ideal EOS:

h(θ) = 1 + �

� − 1
θ, (6)

where the constant � ∈ (1, 2] stands for the adiabatic index. The ideal EOS (6) is commonly
used in non-relativistic fluid dynamics and has also been borrowed to the study of relativistic
flows. However, for most relativistic astrophysical flows, the ideal EOS (6) is a poor approx-
imation due to its inconsistency with the relativistic kinetic theory (see [59]). Furthermore,
when the adiabatic index� > 2, the ideal EOS (6) allows for superluminal wave propagation,
which violates the principles of special relativity. In the relativistic case, the correct EOS for
the single-component perfect gas was given by Synge in [56]:

h = K3(1/θ)

K2(1/θ)
, (7)

where K2 and K3 are the second kind modified Bessel functions of order two and three,
respectively. Due to the presence of the complicated modified Bessel functions, the EOS (7)
is computationally expensive and thus rarely used in the literature. Several efforts have been
made to derive simplified EOSs that offer greater accuracy than the the ideal EOS (6), while
being simpler than the EOS (7). Ryu, Chattopadhyay, and Choi [54] proposed the following
EOS

h(θ) = 2(6θ2 + 4θ + 1)

3θ + 2
. (8)

Sokolov, Zhang, and Sakai [55] suggested the following EOS

h(θ) = 2θ +
√
1 + 4θ2. (9)

Mathews [41] gave the following EOS

h(θ) = 5

2
θ +

√
1 + 9

4
θ2, (10)

which was later employed by Mignone, Plewa, and Bodo [45] in numerical RHD. Following
[45, 54], we will abbreviate the EOSs (6), (8), (9), and (10) as ID-EOS, RC-EOS, IP-EOS,
and TM-EOS, respectively.We remark that the above EOSs (6)–(10) all belong to the general
class of EOSs in the form (4) and satisfy the condition (5).

The study of the RHD system presents significant difficulties due to its inherent nonlin-
earity, making analytical approaches difficult to employ. As a result, numerical simulations
have become the primarymethod for investigating the underlying physical principles in RHD.
To the best of our knowledge, the earliest numerical studies of RHD can be traced back to
references [42, 62], in which finite difference methods incorporating the artificial viscos-
ity technique were employed to solve the RHD equations in either Lagrangian or Eulerian
coordinates. Over the past few decades, numerous high-resolution and high-order accurate
numerical methods have been developed to numerically solve the RHD equations. These
methods encompass a variety of techniques, such as finite volume methods (e.g. [3, 13, 44,
60]), finite difference methods (e.g. [16, 17, 49, 69]), and discontinuous Galerkin methods
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(e.g. [34, 48, 61, 73]). Adaptive mesh refinement [72] and adaptive moving mesh [30] tech-
niques have been developed to further enhance the resolution of discontinuities and complex
RHD flow structures. The physical-constraint-preserving high-order accurate schemes were
also designed to maintain the positivity of density and pressure as well as the subluminal
constraint on the velocity; see [14, 64, 65, 67–71]. For more related works, interested readers
can refer to the review articles [39, 40], the textbook [52], a limited list of some recent papers
[23, 38, 43, 66], as well as the references therein.

The RHD Eqs. (1) exhibit a nonlinear hyperbolic nature, leading to solutions that may be
discontinuous with the presence of shocks or contact discontinuities. To address this, weak
solutions are typically considered. However, weak solutions may not be unique. To identify
the physically relevant solution among the set of weak solutions, admissibility criteria in the
form of entropy conditions are commonly imposed. Numerically, it is desirable to develop
schemes that satisfy a discrete version of the entropy condition, known as entropy stable (ES)
schemes. Such ES schemes ensure that entropy is conserved in smooth regions while being
dissipated across discontinuities, thereby following the entropy principle of physics in an
accurate and robust manner. Moreover, the ES methods allow for controlling the amount of
dissipation introduced into the schemes to guarantee entropy stability. Thus, the development
of ES schemes for the RHD Eqs. (1) is both highly desirable and meaningful.

The study of entropy stability analysis has been extensively carried out for first-order
accurate schemes and scalar conservation laws; see [15, 29, 46, 47]. For hyperbolic systems
of conservation laws, most of the attention has been paid to exploring ES schemes that focus
on a single given entropy function. The framework of ES schemes originates from Tadmor
[57, 58], who systematically established a solid foundation for constructing the second-order
entropy conservative (EC) numerical fluxes and first-order ES fluxes. Lefloch, Mercier, and
Rohde [35] proposed a general approach for constructing higher-order accurate EC fluxes.
Building upon these developments, Fjordholm,Mishra, and Tadmor [25] developed a general
approach to construct ES schemes with arbitrary order of accuracy. This approach combines
high-order EC numerical fluxes with the essentially non-oscillatory (ENO) reconstruction
that satisfies the sign property [26]. On the other hand, high-order ES schemes have also been
constructed via the summation-by-parts (SBP) procedure [9, 24, 27]. ES space-time discon-
tinuous Galerkin schemes have been investigated in [4, 5, 31], where the proof of entropy
stability requires exact integration. Recently, a framework for designing ES high-order dis-
continuous Galerkin methods through suitable numerical quadrature has been proposed in
[12]. In this study, the SBP operators established in [9, 24, 27] were used and generalized
to triangles. The key building blocks of high-order accurate ES schemes are the two-point
EC numerical fluxes. In [57, 58], Tadmor proposed a general way to derive the two-point
EC numerical fluxes, whose formula contains a path integration. This leads to difficulties or
much cost during the computation since the integration may not have an explicit formula.
Consequently, researchers have focused on developing affordable two-point EC numerical
fluxes with explicit formulas. Several notable advancements have been made in this area for
various equations, including the compressible Euler systems [10, 32, 36, 50, 53, 74], shallow
water equations [21, 28], and magnetohydrodynamics (MHD) [11, 37, 63]. In [1], Abgrall
proposed a general framework for residual distribution (RD) schemes to satisfy additional
conservation relations, leading to the construction of EC and ES schemes by incorporating
suitable correction terms. This entropy correction approach was further extended to time-
dependent hyperbolic problems byAbgrall, Öffner, andRanocha in [2] to design schemes that
simultaneously satisfy multiple desired properties. For the first time, the entropy correction
method was used in [2] to obtain fully-discrete EC/ES RD schemes.

123



Journal of Scientific Computing            (2024) 98:43 Page 5 of 62    43 

In recent years, significant efforts have been devoted to developing effective ES schemes
for RHD; see [6, 8, 18, 20, 22]. The focus of these studies was on the RHD Eqs. (1) with
ID-EOS (6). The authors of [18] and [6] proposed high-order accurate ES finite difference
schemes for RHD using two-point EC fluxes and suitable entropy dissipation operators.
In subsequent work [20, 22], Duan and Tang extended these schemes to adaptive moving
meshes in curvilinear coordinates. Additionally, the study of ES schemes was extended to
the relativistic MHD equations in [19, 66]. It was proven in [66] that conservative relativistic
MHD equations are not symmetrizable and do not admit a thermodynamic entropy pair,
and a symmetrizable relativistic MHD system with convex thermodynamic entropy pair was
proposed in [66]. Based on the symmetrizable relativistic MHD equations, high-order ES
schemes were developed within the finite difference framework [66] and the discontinuous
Galerkin framework [19]. The high-order ES adaptive moving mesh methods were also well
studied for relativistic MHD in [22].

It is worth noting that all the existing work on EC and ES schemes for RHD and relativistic
MHD was limited to the ID-EOS (6). The study of ES schemes for RHD with more accurate
EOSs has not been explored yet. This paper makes the first effort on constructing explicit EC
fluxes and developing high-order ES schemes for the RHD Eqs. (1) with general Synge-type
EOS (4), which covers a wide range of EOSs (6)–(10) as special examples. The difficulties
of this work are multi-faceted and include the following aspects:

• The convex entropy and entropy fluxes for the RHD system with a general EOS are
unclear.

• Due to the nonlinear coupling between the RHD Eqs. (1), the primitive variables V :=
(ρ, v, p)�, the fluxes, and the entropy variables all cannot be explicitly expressed by the
conservative variables U = (D,m, E)�. This makes it difficult to analyze the entropy
structure of the RHDEqs. (1), study the convexity of entropy, and construct EC numerical
fluxes.

• Developing a unified EC flux formulation for RHD with general EOS is quite nontrivial.

The efforts in this paper are summarized as follows:

• We discover an admissible entropy pair for the RHD equations with general Synge-type
EOS (4) in any space dimension. We rigorously prove that the found entropy function is
strictly convex, under the relativistic causality condition (5). Furthermore, we derive the
entropy variables associated with the convex entropy. These findings lay the foundation
for designing EC and ES schemes for RHD with general Synge-type EOS. Due to rela-
tivistic effects, the formulation of the Hessian matrix of the entropy function with respect
to the conservative variables is quite complicated, making it very difficult to study the
convexity of the entropy function.

• Weconstruct the novel two-point ECfluxes in a unified form forRHDwith general Synge-
type EOS. The construction involves carefully selecting a set of parameter variables that
can express the entropy variables and potential fluxes in simple explicit forms.We remark
that constructing EC fluxes is highly technical and involves complex reformulation and
decomposition of the jumps of the entropy variables.

• We develop semidiscrete high-order accurate EC and ES schemes for the RHD equations
with general Synge-type EOS. Second-order EC schemes use the proposed two-point
EC fluxes, while higher-order EC schemes are constructed by linearly combining the
two-point EC fluxes. Arbitrarily high-order accurate ES schemes are obtained by adding
dissipation terms into the EC schemes, based on ENO or weighted ENO (WENO) recon-
structions. Moreover, we derive the general dissipation matrix, based on the scaled
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eigenvectors of the RHD system, for general Synge-type EOS. We also define a suit-
able average of the dissipation matrix at the cell interfaces, ensuring that the resulting
ES schemes can resolve stationary contact discontinuities exactly.

• We implement the proposed one-dimensional (1D) and two-dimensional (2D) high-order
EC and ES schemes coupled with strong-stability-preserving high-order Runge–Kutta
time discretization. Several numerical examples are provided to validate the accuracy
and effectiveness of our schemes for RHD with various special EOSs.

This paper is structured as follows. Section2 presents the entropy pair for the RHD system
with general Synge-type EOS (4), and establishes the convexity of the associated entropy
function. Additionally, this section derives the relevant entropy variables. In Sect. 3, we
construct the 1D EC and ES schemes. We further discuss the extensions to 2D in Sect. 4.
Section5 presents the numerical experiments, and finally, Sect. 6 provides the concluding
remarks.

2 Entropy Analysis for RHD Equations

In this section, we seek an admissible entropy pair for the RHD Eqs. (1) with general Synge-
type EOS (4). Furthermore, we will prove that the found entropy function is strictly convex,
and then derive the entropy variables associated with the convex entropy.

2.1 Entropy Pair

First, we recall the definition of an entropy pair.

Definition 1 For the d-dimensional RHD system (1), a continuously differentiable function
η : Rd −→ R is called the entropy function if there exist d functions qi : Rd −→ R, called
entropy fluxes, such that

(
∂η

∂U

)�
∂Fi

∂U
=
(

∂qi
∂U

)�
, i = 1, · · · , d. (11)

In this case, we call (η,q) an entropy pair of (1), where q = (q1, · · · , qd)�, d = 1, 2, 3.

Theorem 1 Define

η(U) := −DS, q(U) := −DSv (12)

with

S := − ln ρ +
∫ θ e′(x)

x
dx . (13)

Then (η(U),q(U)) forms an entropy pair for the RHD system (1) with general Synge-type
EOS (4).

Proof Let us verify that (η(U),q(U)) satisfies the condition (11). Unfortunately, direct cal-
culations of ∂η

∂U ,
∂Fi
∂U , and ∂qi

∂U are very difficult, because these quantities cannot be explicitly
formulated in terms ofU. Since η, Fi , qi , and the conservative variablesU can all be explic-
itly expressed by the primitive variables V = (ρ, v, p)�, we can calculate ∂η

∂U ,
∂Fi
∂U , and ∂qi

∂U
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following the chain rule
(

∂η

∂U

)�
=
(

∂η

∂V

)�
∂V
∂U

,

∂Fi

∂U
= ∂Fi

∂V
∂V
∂U

, i = 1, 2, · · · , d,

(
∂q

∂U

)�
=
(

∂q

∂V

)�
∂V
∂U

,

(14)

where the matrix ∂V
∂U can be calculated through the inverse of ∂U

∂V which is easy to compute:

∂U
∂V

=

⎛

⎜⎜⎝

γ ργ 3v� 0

γ 2
(
h − θ

(
1 + e′(θ)

) )
v ρhγ 2Id + 2ρhγ 4vv� γ 2

(
1 + e′(θ)

)
v

γ 2
(
h − θ

(
1 + e′(θ)

) )
2ρhγ 4v� γ 2

(
1 + e′(θ)

)− 1

⎞

⎟⎟⎠ . (15)

Calculating the inverse of ∂U
∂V gives

∂V
∂U

= 1

δθ

⎛

⎜⎜⎝

hγ −1
(
e′(θ) − |v|2) − (e′(θ) + |v|2) v� (

1 + e′(θ)
) |v|2

γ −3

ρ

(
h − θ

(
1 + e′(θ)

) )
v M1 − (1+e′(θ))

(
1−|v|2)

ρ
v

−hγ −1
(
h − θ

(
1 + e′(θ)

) ) −
(
h + θ

(
1 + e′(θ)

) )
v� h + θ

(
1 + e′(θ)

) |v|2

⎞

⎟⎟⎠ ,

(16)

where δθ = he′(θ)− θ(1+ e′(θ))|v|2, andM1 is a d × d matrix for the d-dimensional RHD
system and is defined by

M1 := 1 − |v|2
ρh

(
δθ Id +

(
h + θ

(
1 + e′(θ)

) )
vv�

)

with Id denoting the d × d identity matrix. For d = 1, 2, 3, the formulas of ∂η
∂V ,

∂Fi
∂V and ∂qi

∂V
(i = 1, · · · , d) can also be directly calculated as

∂η

∂V
=
(
γ
(
1 + e′(θ) − S

)
,− ργ 3Sv�,− γ e′(θ)

θ

)�
, (17)

∂Fi

∂V
=

⎛

⎜⎜⎜⎝

γ vi ργ 3
(
viv� + (1 − |v|2) e�

i

)
0

γ 2
(
h − θ(1 + e′(θ))

)
viv M2 γ 2(1 + e′(θ))viv + ei

γ 2
(
h − θ(1 + e′(θ))

)
vi ρhγ 4

(
2viv� + (1 − |v|2)e�

i

)
γ 2(1 + e′(θ))vi

⎞

⎟⎟⎟⎠

(18)

with M2 being a d × d matrix given by

M2 := ρhγ 4
(
2vivv� + (1 − |v|2)(vi Id + ve�

i

))
,

and
∂qi
∂V

=
(
γ
(
1 + e′(θ) − S

)
vi ,− ργ 3S

( (
1 − |v|2) e�

i + viv�
)
,− γ e′(θ)vi

θ

)�
. (19)

Based on (16) and (17), we can use the chain rule (14) to calculate the derivatives of the
entropy function η with respect to the conservative variables U:

(
∂η

∂U

)�
=
(

∂η

∂V

)�
∂V
∂U

.
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Let ci be the i th column of the matrix ∂V
∂U . Then we have

(
∂η

∂V

)�
c1 = 1

δθ

(
h
(
1 + e′(θ) − S

)
(e′(θ) − |v|2) − (h − θ(1 + e′(θ))

)
S|v|2

+he′(θ)
(
h − θ(1 + e′(θ))

)

θ

)

= 1

δθ

((−he′(θ) + θ(1 + e′(θ))|v|2) S − h(1 + e′(θ))|v|2 + h2e′(θ)

θ

)

= 1

δθ

(−he′(θ) + θ(1 + e′(θ))|v|2)
(
S − h

θ

)
= h − θ S

θ
,

(
∂η

∂V

)�
c2 = 1

δθ

(
−γ (1 + e′(θ) − S)(e′(θ) + |v|2)v� − γ Sv� (δθ Id + (h + θ(1 + e′(θ))

)
vv�)

h

)

+ 1

δθ

(
hγ e′(θ)

θ
+ γ e′(θ)(1 + e′(θ))

)
v�

= 1

δθ

(
γ S

(
e′(θ) + |v|2 − δθ + (h + θ(1 + e′(θ))

) |v|2
h

)
v�

−γ (1 + e′(θ))|v|2v� + hγ e′(θ)

θ
v�
)

= γ

δθ

(
he′(θ)

θ
− (1 + e′(θ))|v|2

)
v� = γ v�

θ
,

(
∂η

∂V

)�
c3 = 1

δθ

(
γ (1 + e′(θ) − S)(1 + e′(θ))|v|2 + γ S(1 + e′(θ))|v|2

−γ e′(θ)

θ

(
h + θ(1 + e′(θ))|v|2)

)

= γ

δθ

(
(1 + e′(θ))|v|2 − he′(θ)

θ

)
= −γ

θ
.

Hence, we obtain

∂η

∂U
= 1

θ
(h − θ S, γ v�,−γ )�. (20)

Let ∂Fi
∂V =:

(
F̂(1)
i F̂(2)

i F̂(3)
i

)
and ∂qi

∂V =:
(
q̂(1)
i q̂(2)

i q̂(3)
i

)
. Then we have

(
∂η

∂U

)�
F̂(1)
i − q̂(1)

i = h − θ S

θ
γ vi + γ v�

θ
γ 2
(
h − θ(1 + e′(θ))

)
viv

− γ

θ
γ 2
(
h − θ(1 + e′(θ))

)
vi − γ

(
1 + e′(θ) − S

)
vi

= h − θ S

θ
γ vi − γ vi

θ

(
h − θ(1 + e′(θ))

)− γ vi (1 + e′(θ) − S)

= γ vi

(
h − θ S

θ
− h − θ(1 + e′(θ))

θ
− 1 − e′(θ) + S

)

= 0,
(

∂η

∂U

)�
F̂(2)
i − q̂(2)

i = h − θ S

θ
ργ 3

(
viv� + (1 − |v|2) e�

i

)
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+ γ v�

θ
ρhγ 4

(
2vivv� + (1 − |v|2)(vi Id + ve�

i

))

− γ

θ
ρhγ 4

(
2viv� + (1 − |v|2)e�

i

)
+ ργ 3S

( (
1 − |v|2) e�

i + viv�)

= ρhγ 3

θ

(
2viv� + (1 − |v|2) e�

i + 2γ 2vi |v|2v� + |v|2e�
i − 2γ 2viv� − e�

i

)

= ρhγ 3

θ

(
2viv� − 2γ 2viv�(1 − |v|2)

)

= 0,
(

∂η

∂U

)�
F̂(3)
i − q̂(3)

i = γ v�

θ

(
γ 2(1 + e′(θ))viv + ei

)− γ 3

θ
(1 + e′(θ))vi

= −γ 3vi (1 + e′(θ))

θ
(1 − |v|2) + γ v�ei

θ
+ γ e′(θ)vi

θ

= 0,

which imply
(

∂η

∂U

)�
∂Fi

∂V
=
(

∂qi
∂V

)�
, i = 1, · · · , d. (21)

Multiplying both sides of the Eq. (21) by ∂V
∂U from right, we obtain (11), which indicates that

(η(U),q(U)) forms an entropy pair. The proof is completed. �	
As direct consequences of Theorem 1, we have the following remarks for four specific

EOSs.

Remark 1 (ID-EOS) For the ideal EOS (6), we have

e(θ) = θ

� − 1
. (22)

Then by (13), we obtain

SI D := − ln ρ + 1

� − 1

∫
1

θ
dθ = − ln ρ + 1

� − 1
ln θ = 1

� − 1
ln

p

ρ�
. (23)

Our entropy pair (−DSI D,−DSI Dv) for theRHDsystem (1)with the ideal EOS is consistent
with the result in [18].

Remark 2 (RC-EOS) For the RC-EOS (8), we have

e(θ) = 3θ(3θ + 1)

3θ + 2
. (24)

Then by (13), we obtain

SRC = − ln ρ +
∫ (

3

2θ
+ 9

2(3θ + 2)
+ 9

(3θ + 2)2

)
dθ

= − ln ρ + 3

2
ln θ + 3

2
ln (3θ + 2) − 3

3θ + 2
.

Hence (−DSRC ,−DSRCv) forms an entropy pair for the RHD system (1) with the RC-EOS
(8).

123



   43 Page 10 of 62 Journal of Scientific Computing            (2024) 98:43 

Remark 3 (IP-EOS) For the IP-EOS (9), we have

e(θ) = θ − 1 +
√
1 + 4θ2. (25)

Then by (13), we obtain

SI P = − ln ρ +
∫ (

1

θ
+ 4√

1 + 4θ2

)
dθ

= − ln ρ + ln θ + 2 ln
(
2θ +

√
1 + 4θ2

)
.

Hence (−DSI P ,−DSI Pv) forms an entropy pair for the RHD system (1) with the IP-EOS
(9).

Remark 4 (TM-EOS) For the TM-EOS (10), we have

e(θ) = 3

2
θ − 1 +

√
1 + 9

4
θ2. (26)

Then by (13), we obtain

ST M = − ln ρ +
∫ ⎛

⎝3

2
+

9
4θ√

1 + 9
4θ

2

⎞

⎠ dθ

= − ln ρ + 3

2
ln θ + 3

2
ln

(
3

2
θ +

√
1 + 9

4
θ2

)
.

Hence (−DSTM ,−DSTMv) forms an entropy pair for the RHD system (1)with the TM-EOS
(10).

2.2 Convexity of Entropy Function

In this subsection, we show the convexity of the entropy function η(U) defined in (12).

Theorem 2 For the RHD system (1) with general Synge-type EOS (4) satisfying the condition
(5), the entropy function η(U) defined in (12) is strictly convexwith respect to the conservative
variables U, provided that U ∈ G with G = {U = (D,m, E)� : ρ > 0, θ > 0}.
Proof To show the convexity of the entropy function η, it suffices to verify the positive
definiteness of the Hessian matrix of the entropy function η, which can be written as

ηUU = ∂2η

∂U2 = −(e1S�
U + SUe�

1 + DSUU),

where e1 = (1, 0�
d+1)

�, and 0d+1 is the (d + 1) × 1 zero vector. As S can be explicitly
expressed by V but not U, we can calculate SU and SUU following the chain rule

S�
U =

(
∂S

∂V

)�
∂V
∂U

, SUU = ∂2S

∂U2 = ∂2S

∂V∂U
∂V
∂U

= SUV
∂V
∂U

. (27)

Due to the explicit relation between S and V, we can derive ∂S
∂V directly as

∂S

∂V
=
(
− 1+e′(θ)

ρ
0�
d

e′(θ)
ρθ

)�
. (28)
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Combining (28) with (16), we obtain

SU = 1

ρθ

(−hγ −1 −v� 1
)�

. (29)

The derivative of SU with respect to V gives

SUV =
⎛

⎜⎝

1+e′(θ)

ρ2γ

hγ
ρθ

v� h−θ(1+e′(θ))

ρ2θ2γ

0d − 1
ρθ
Id 1

ρ2θ2
v

0 0�
d − 1

ρ2θ2

⎞

⎟⎠ , (30)

where Id denotes the d × d identity matrix. Therefore, we have

ηUU=−
(
e1S�

U + SUe�
1 + DSUV

∂V
∂U

)
= 1

ρ2θ3 (1 + e′(θ))
(

1
c2s

− |v|2
)

⎛

⎜⎜⎜⎜⎝

a1 a2v� a3

a2v A1 a4v

a3 a4v� a5

⎞

⎟⎟⎟⎟⎠
,

where cs denotes the sound speed with

c2s = θ(1 + e′(θ))

he′(θ)
∈ (0, 1) (31)

under the condition (5), and

a1 := hγ −1	, 	 := ρh2 − ρθh
(
2 + |v|2)+ ρθ2

(
1 + e′(θ)

)
,

a2 := ρ
(
h2 − θh|v|2 − θ2

(
1 + e′(θ)

) )
, a3 := −ρ

(
h2 − θh − θ2

(
1 + e′(θ)

) |v|2
)
,

A1 := ρ

h

(
θ
(−h + (1 + e′(θ)

) (
h − θ |v|2))

γ
Id + γ

(
h + θ

(
1 + e′(θ)

)) (
h + θ

(
1 − |v|2)) vv�

)
,

a4 := −ργ
(
h + θ

(
1 + e′(θ)

))
, a5 := ργ

(
h + θ

(
1 + e′(θ)

) |v|2) .

We observe that 	 > 0 and a1 > 0, because

	 = ρh2 − ρθh
(
2 + |v|2)+ ρθ2

(
1 + e′(θ)

)

> ρh2 − 3ρθh + ρθ2
(
1 + e′(θ)

)

> ρh2 − 3ρθh + ρθ2
h

h − θ

= ρh

h − θ
(h − 2θ)2 ≥ 0,

where the condition (5) has been used. Let us define the invertible matrix

P1 :=
⎛

⎝
1 0�

d 0
− a2

a1
v Id 0d

− a3
a1

0�
d 1

⎞

⎠ .

Then we have

P1ηUUP�
1 = 1

ρ2θ3 (1 + e′(θ))
(

1
c2s

− |v|2
)
(

a1 0�
d+1

0d+1 δA2

)
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with

δ := ρθ2
(
1 + e′(θ)

)

a1

(
1

c2s
− |v|2

)
> 0, and A2 :=

(
	
(
1 − |v|2) Id + δ3vv� −δ1v

−δ1v� δ2

)
,

where

δ1 := ρ
(
h2 + θh|v|2 + θ2

(
1 + e′(θ)

) ) = 	 + 2ρθh(1 + |v|2) > 0,

δ2 := ρ
(
h2|v|2 + θh + θ2

(
1 + e′(θ)

) |v|2
)

= 	|v|2 + ρθh(1 + |v|2)2 > 0,

δ3 := ρ
(
h2 + (2 − |v|2) θh + θ2

(
1 + e′(θ)

) ) = 	 + 4ρθh > 0.

(32)

Let us study the matrix A2. We consider

P2 :=
(
Id

δ1
δ2
v

0�
d 1

)
,

and we have

P2A2P�
2 =

(
B − δ21

δ2
vv� 0d

0�
d δ2

)
.

Note that the eigenvalues of

C := B − δ21

δ2
vv� = 	

(
1 − |v|2) Id +

(
δ3 − δ21

δ2

)
vv�

are

λ
(1)
C = 	 +

(
δ3 − δ21

δ2
− 	

)
|v|2 = 1

δ2
ρθh

(
1 − |v|2)2 	 > 0,

λ
(2)
C = · · · = λ

(d)
C = 	

(
1 − ‖v‖2) > 0, if d ≥ 2.

This implies that the matrix C is positive definite, yielding that P2A2P�
2 is also positive

definite. Hence, thematrixA2 is positive definite, implyingP1ηUUP�
1 is also positive definite.

SinceP1ηUUP�
1 and ηUU are congruent, theHessianmatrix ηUU is positive definite. The proof

is completed. �	

2.3 EntropyVariables

In this subsection, we derive the entropy variables corresponding to the convex entropy η,
which will be useful for constructing the ES schemes.

Theorem 3 The entropy variables W associated with the entropy function η defined in (12)
are given by

W = 1

θ
(h − θ S, γ v�,−γ )�, (33)

and the associated entropy potential fluxes are

ψi := ργ vi , i = 1, · · · , d, (34)

where h represents the specific enthalpy, and S is defined in (13).
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Proof By definition, the entropy variable W is the gradient of the entropy function η with
respect to the conservative vector U, which we have obtained in (20). The potential flux ψi

is defined as ψi := W�Fi − qi , which can be calculated by using (2) and (12) as follows:

ψi = h − θ S

θ
Dvi + γ v�

θ
(vim + pei ) − γ

θ
mi + DSvi

= h

θ
ργ vi + γ vi

θ

d∑

i=1

ρhγ 2v2i + ργ vi − ρhγ 3vi

θ

= h

θ
ργ vi + h

θ
ργ 3vi |v|2 + ργ vi − h

θ
ρhγ 3vi

= ργ vi , i = 1, · · · , d.

�	

3 1D Entropy Stable Schemes

In this section, we construct the ES schemes for the 1D RHD equations.

3.1 Two-Point Entropy Conservative Flux

We first derive the unified formula of two-point EC numerical flux for the 1D RHD system
with general Synge-type EOS (4).

Definition 2 ([58]) A consistent two-point numerical flux F̃EC
i (UL ,UR) is EC if

(WR − WL)�F̃EC
i (UL ,UR) = ψi,R − ψi,L , i = 1, . . . , d, (35)

where the entropy variables W are defined in (33), and ψi is the potential flux defined in
(34). The subscript L and R means that the quantities are associated with the “left” state UL

and the “right” state UR , respectively.

For convenience, we introduce some notations. The jump and the arithmetic average of a
quantity a across a cell interface are denoted by

[[a]] := aR − aL , (36)

and

{{a}} := aR + aL
2

, (37)

respectively. Based on these notations, we have the following useful formulas

[[ab]] = {{a}}[[b]] + [[a]]{{b}}, (38)

[[a2]] = 2{{a}}[[a]], (39)
[[a
b

]]
= [[a]] − [[b]] {{ ab

}}

{{b}} , (40)

[[√
a
]] = [[a]]

2
{{√

a
}} . (41)
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We will also employ the logarithmic mean

{{a}}ln = [[a]]
[[ln a]]

. (42)

which was proposed in [32].
To design a simple two-point EC numerical flux, we choose a set of variables z =

(z1, z2, z3)� as

z1 = ρ, z2 = ρ

p
, z3 = γ v1 (43)

following [66]. After careful investigation, we find a unified simple two-point EC flux (44)
for the 1D RHD system with general Synge-type EOS (4).

Theorem 4 The two-point EC numerical flux for the 1DRHD systemwith general Synge-type
EOS (4) can be written into a unified form as

F̃
EC
1 (UL ,UR) =

(
{{z1}}ln{{z3}}, ρ̂h{{z3}}2 + {{z1}}

{{z2}} , ρ̂h{{γ }}{{z3}}
)�

(44)

with

ρ̂h :=
{{z1}}{{z2}} + {{z1}}lnE
{{γ }}2 − {{z3}}2 ,

E := [[W1]] − [[ln z1]]
[[z2]] . (45)

Here, E can be reformulated as

E = 1 +
∫ 1

0
e

(
1

z2,L + s(z2,R − z2,L)

)
ds, (46)

where z2,L and z2,R represent the “left” and “right” states of the parameter variable z2
chosen in (43), respectively, and the explicit calculation of E depends on the particular
choice of the EOS and will be given in Theorem 5.

Proof Byusing the set of variables (43),we can express the entropy variables and the potential
flux as

W =
(
z2h − S, z3z2,−z2

√
1 + z23

)�
,

ψ1 = z1z3.
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Then we write the jumps of entropy variablesW and the potential flux ψ1 in terms of jumps
and arithmetic averages of the variables (43) as follows:

[[W1]] (45)= E[[z2]] + [[ln z1]],
[[W2]] = [[z3z2]] (38)= {{z3}}[[z2]] + [[z3]]{{z2}},
[[W3]] =

[[
−z2

√
1 + z23

]]

(38)= −[[z2]]{{γ }} − {{z2}}
[[√

1 + z23

]]

(41)= −[[z2]]{{γ }} − {{z2}}
[[
1 + z23

]]

2{{γ }}
(39)= −[[z2]]{{γ }} − {{z2}} {{z3}}[[z3]]{{γ }} ,

[[ψ1]] = [[z1z3]] (38)= {{z1}}[[z3]] + [[z1]]{{z3}},

(47)

According to Definition 2, the two-point EC numerical flux F̃
EC
1 (UL ,UR) =:

(
F̃ (1)
1 , F̃ (2)

1 ,

F̃ (3)
1

)�
for the 1D RHD system satisfies

[[W1]]F̃ (1)
1 + [[W2]]F̃ (2)

1 + [[W3]]F̃ (3)
1 = [[ψ1]]. (48)

Substituting (47) into (48), we obtain

(E[[z2]] + [[ln z1]]) F̃ (1)
1 +({{z3}}[[z2]] + [[z3]]{{z2}}) F̃ (2)

1 −
(

[[z2]]{{γ }} + {{z2}} {{z3}}[[z3]]{{γ }}
)
F̃ (3)
1

= {{z1}}[[z3]] + [[z1]]{{z3}}.

Collecting the terms containing [[z1]], [[z2]], and [[z3]], respectively, the above equation can
be reformulated as

(
F̃ (1)
1

{{z1}}ln − {{z3}}
)

[[z1]] +
(
E F̃ (1)

1 + {{z3}}F̃ (2)
1 − {{γ }}F̃ (3)

1

)
[[z2]]

+
(

{{z2}}F̃ (2)
1 − {{z2}}{{z3}}

{{γ }} F̃ (3)
1 − {{z1}}

)
[[z3]] = 0.

Hence, the coefficients of [[z1]], [[z2]], [[z3]] should all equal zero. Specifically, we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F̃ (1)
1

{{z1}}ln = {{z3}},

E F̃ (1)
1 + {{z3}}F̃ (2)

1 − {{γ }}F̃ (3)
1 = 0,

{{z2}}F̃ (2)
1 − {{z2}}{{z3}}

{{γ }} F̃ (3)
1 = {{z1}}.
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Solving the above equations for
(
F̃ (1)
1 , F̃ (2)

1 , F̃ (3)
1

)�
, we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F̃ (1)
1 = {{z1}}ln{{z3}},

F̃ (2)
1 = ρ̂h{{z3}}2 + {{z1}}

{{z2}} ,

F̃ (3)
1 = ρ̂h{{γ }}{{z3}},

which leads to (44). Next, we verify that E defined in (45) can be reformulated as (46). Using
(33) and (13), we recast E as

E = [[W1]] − [[ln z1]]
[[z2]]

(33)= [[z2h − S]] − [[ln z1]]
[[z2]]

(13)=

[[
z2h − ∫ 1

z2
e′(x)
x dx

]]

[[z2]]
(4)=: [[F(z2)]]

[[z2]] ,

(49)

where F(z2) := z2h(z2) − ∫ 1
z2

e′(x)
x dx is a function of the parameter variable z2 with its

derivative given by

F ′(z2) = h

(
1

z2

)
− 1

z2

(4)= 1 + e

(
1

z2

)
. (50)

Note that

[[F(z2)]] = F(z2,R) − F(z2,L) =
∫ 1

0
F ′(z2,L + s(z2,R − z2,L))(z2,R − z2,L)ds,

from which we can deduce that

E = [[F(z2)]]
[[z2]] =

∫ 1

0
F ′(z2,L + s(z2,R − z2,L))ds

(50)= 1 +
∫ 1

0
e

(
1

z2,L + s(z2,R − z2,L)

)
ds.

Hence, we obtain (46) and complete the proof. �	
Theorem 4 provides a unified formula of the two-point EC flux for 1D RHD with general

Synge-type EOS. Note that the quantity E involved in the formula requires the evaluation

of an integral
∫ 1
0 e
(

1
z2,L+s(z2,R−z2,L )

)
ds, which depends on the specific form of the adopted

EOS. In order to exactly achieve the EC property, this integral should be calculated exactly.
For some EOSs, it may be difficult to explicitly express this integral, if the function e(θ) is
very complicated. In the following, we provide an alternative way to derive the explicit forms
of E for four special EOSs.

Theorem 5 For the 1D RHD equations with ID-EOS (6), RC-EOS (8), IP-EOS (9), and TM-
EOS (10), the two-point EC numerical fluxes are all of the unified form in (44), where E can
be calculated as follows:

• For ID-EOS (6), we have

E = 1 + 1

(� − 1){{z2}}ln . (51)
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• For RC-EOS (8), we have

E = 1 + 3

{{z2}}ln − 3

{{2z2 + 3}}ln . (52)

• For IP-EOS (9), we have

E = 1

{{z2}}ln +
{{√

1 + 4

z22

}}
−
{{

2
z2

}}

{{z2}}

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

2
z2

}}

{{√
1 + 4

z22

}} −

2

⎛

⎜⎜⎝1 +
{{

2
z2

}}

{{√
1+ 4

z22

}}

⎞

⎟⎟⎠

{{
2
z2

+
√
1 + 4

z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(53)

• For TM-EOS (10), we have

E = 3

2{{z2}}ln +
{{√

1 + 9

4z22

}}
−
{{

3
2z2

}}

{{z2}}

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

3
2z2

}}

{{√
1 + 9

4z22

}} − 3

2

1 +
{{

3
2z2

}}

{{√
1+ 9

4z22

}}

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(54)

Proof We verify the formulas of E for the four special EOSs separately, by first rewriting the
jump of W1 and then substituting it into (45) to calculate E . One can also follow (46) to give
a direct calculation of E .

ID-EOS: From (33) and (23), we can reformulate the jump of W1 as follows:

[[W1]] =
[[

�

� − 1
+ z2 − SI D

]]
= [[z2]] − [[SI D]].

= [[z2]] −
[[

− ln(z1) − 1

� − 1
ln(z2)

]]

= [[z2]] + [[ln(z1)]] + 1

� − 1
[[ln(z2)]].

Substituting it into (45), we have

E = [[z2]] + [[ln(z1)]] + 1
�−1 [[ln(z2)]] − [[ln(z1)]]
[[z2]]

= 1 + [[ln(z2)]]
(� − 1)[[z2]]

(42)= 1 + 1

(� − 1){{z2}}ln .

(55)

Since the function e(θ) = θ
�−1 is very simple, the explicit form of E can also be easily

derived by using the integral formulation (46):

E = 1 + 1

� − 1

∫ 1

0

1

z2,L + s(z2,R − z2,L)
ds
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= 1 + [[ln(z2)]]
[[z2]]

(42)= 1 + 1

(� − 1){{z2}}ln ,

which is consistent with (55).
RC-EOS: From (33), we can derive the jump term of W1 by

[[W1]] = [[z2h − SRC ]]

=
[[
4 + z2 + ln(z1) + 3 ln(z2) − 3

2
ln(2z2 + 3)

]]

= [[z2]] + [[ln(z1)]] + 3[[ln(z2)]] − 3

2
[[ln(2z2 + 3)]] .

Substituting it into (45), we have

E = [[z2]] + [[ln(z1)]] + 3[[ln(z2)]] − 3
2 [[ln(2z2 + 3)]] − [[ln(z1)]]

[[z2]]
= 1 + 3

[[ln(z2)]]
[[z2]] − [[ln(2z2 + 3)]]

[[z2]]
(42)= 1 + 3

{{z2}}ln − 3

{{2z2 + 3}}ln .

(56)

On the other hand, since the function e(θ) = 3θ(3θ+1)
3θ+2 is fairly simple, the explicit form of E

can also be easily derived by using the integral formulation (46):

E = 1 +
∫ 1

0

3(3 + z2,L + s(z2,R − z2,L))

(2(z2,L + s(z2,R − z2,L)) + 3)(z2,L + s(z2,R − z2,L))
ds

= 1 +
∫ 1

0

(
3

z2,L + s(z2,R − z2,L)
− 3

2(z2,L + s(z2,R − z2,L)) + 3

)
ds

= 1 + 3[[ln(z2)]]
[[z2]] − 3[[ln(2z2 + 3)]]

2[[z2]]
(42)= 1 + 3

{{z2}}ln − 3

{{2z2 + 3}}ln ,

which is consistent with (56).
IP-EOS: From (33), we can derive the jump term of W1 by

[[W1]] = [[z2h − SI P ]]

=
[[

2 + z2

√
1 + 4

z22
+ ln(z1) + ln(z2) − 2 ln

(
2

z2
+
√
1 + 4

z22

)]]

(38)= [[z2]]
{{√

1 + 4

z22

}}
+ {{z2}}

[[√
1 + 4

z22

]]
+ [[ln(z1)]] + [[ln(z2)]]

− 2

[[
ln

(
2

z2
+
√
1 + 4

z22

)]]

(42)= [[z2]]
{{√

1 + 4

z22

}}
+ {{z2}}

[[√
1 + 4

z22

]]
+ [[ln(z1)]] + [[ln(z2)]]

− 2

[[
2
z2

+
√
1 + 4

z22

]]

{{
2
z2

+
√
1 + 4

z22

}}

ln
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(41)= [[z2]]
{{√

1 + 4

z22

}}
+ {{z2}}

[[
1 +

(
2
z2

)2]]

2

{{√
1 + 4

z22

}} + [[ln(z1)]] + [[ln(z2)]]

− 2

[[
2
z2

]]

{{
2
z2

+
√
1 + 4

z22

}}

ln

− 2{{
2
z2

+
√
1 + 4

z22

}}

ln

[[
1 +

(
2
z2

)2]]

2

{{√
1 + 4

z22

}}

(39)= [[z2]]
{{√

1 + 4

z22

}}
+ {{z2}}

{{
2
z2

}} [[
2
z2

]]

{{√
1 + 4

z22

}} + [[ln(z1)]] + [[ln(z2)]]

− 2

[[
2
z2

]]

{{
2
z2

+
√
1 + 4

z22

}}

ln

− 2{{
2
z2

+
√
1 + 4

z22

}}

ln

{{
2
z2

}} [[
2
z2

]]

{{√
1 + 4

z22

}}

(40)= [[z2]]
{{√

1 + 4

z22

}}
−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

2
z2

}}

{{√
1 + 4

z22

}} −

2

⎛

⎜⎜⎝1 +
{{

2
z2

}}

{{√
1+ 4

z22

}}

⎞

⎟⎟⎠

{{
2
z2

+
√
1 + 4

z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[[z2]]
{{

2
z2

}}

{{z2}}

+ [[ln(z1)]] + [[ln(z2)]]. (57)

Substituting it into (45), we have

E =

[[z2]]
{{√

1 + 4
z22

}}
−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

2
z2

}}

{{√
1+ 4

z22

}} −

2

⎛

⎜⎜⎜⎝1+
{{

2
z2

}}

⎧
⎨

⎩

⎧
⎨

⎩

√
1+ 4

z22

⎫
⎬

⎭

⎫
⎬

⎭

⎞

⎟⎟⎟⎠

{{
2
z2

+
√
1+ 4

z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

[[z2]]
{{

2
z2

}}

{{z2}} + [[ln(z2)]]

[[z2]]
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(42)=
{{√

1 + 4

z22

}}
−
{{

2
z2

}}

{{z2}}

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

2
z2

}}

{{√
1 + 4

z22

}} −

2

⎛

⎜⎜⎝1 +
{{

2
z2

}}

{{√
1+ 4

z22

}}

⎞

⎟⎟⎠

{{
2
z2

+
√
1 + 4

z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

{{z2}}ln .

TM-EOS: From (33), we can derive the jump term of W1 by

[[W1]] = [[z2h − ST M ]]

=
[[

5

2
+ z2

√
1 + 9

4z22
+ ln(z1) + 3

2
ln(z2) − 3

2
ln

(
3

2z2
+
√
1 + 9

4z22

)]]

(38)= [[z2]]
{{√

1 + 9

4z22

}}
+ {{z2}}

[[√
1 + 9

4z22

]]
+ [[ln(z1)]] + 3

2
[[ln(z2)]]

−3

2

[[
ln

(
3

2z2
+
√
1 + 9

4z22

)]]

(42)= [[z2]]
{{√

1 + 9

4z22

}}
+ {{z2}}

[[√
1 + 9

4z22

]]
+ [[ln(z1)]] + 3

2
[[ln(z2)]]

− 3

2

[[
3
2z2

+
√
1 + 9

4z22

]]

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

(41)= [[z2]]
{{√

1 + 9

4z22

}}
+ {{z2}}

[[
1 +

(
3
2z2

)2]]

2

{{√
1 + 9

4z22

}} + [[ln(z1)]] + 3

2
[[ln(z2)]]

− 3

2

[[
3
2z2

]]

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

− 3

2

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

[[
1 +

(
3
2z2

)2]]

2

{{√
1 + 9

4z22

}}

(39)= [[z2]]
{{√

1 + 9

4z22

}}
+ {{z2}}

{{
3
2z2

}} [[
3
2z2

]]

{{√
1 + 9

4z22

}} + [[ln(z1)]] + 3

2
[[ln(z2)]]

− 3

2

[[
3
2z2

]]

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

− 3

2

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

{{
3
2z2

}} [[
3
2z2

]]

{{√
1 + 9

4z22

}}
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(40)= [[z2]]
{{√

1 + 9

4z22

}}
−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

3
2z2

}}

{{√
1 + 9

4z22

}} −

3
2

⎛

⎜⎜⎝1 +
{{

3
2z2

}}

{{√
1+ 9

4z22

}}

⎞

⎟⎟⎠

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[[z2]]
{{

3
2z2

}}

{{z2}}

+ [[ln(z1)]] + 3

2
[[ln(z2)]]. (58)

Substituting it into (45), we have

E =

[[z2]]
{{√

1 + 9
4z22

}}
−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

3
2z2

}}

{{√
1+ 9

4z22

}} −

3
2

⎛

⎜⎜⎜⎝1+
{{

3
2z2

}}

⎧
⎨

⎩

⎧
⎨

⎩

√
1+ 9

4z22

⎫
⎬

⎭

⎫
⎬

⎭

⎞

⎟⎟⎟⎠

{{
3

2z2
+
√
1+ 9

4z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

[[z2]]
{{

3
2z2

}}

{{z2}} + 3
2 [[ln(z2)]]

[[z2]]

(42)=
{{√

1 + 9

4z22

}}
−
{{

3
2z2

}}

{{z2}}

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{{z2}}
{{

3
2z2

}}

{{√
1 + 9

4z22

}} −

3
2

⎛

⎜⎜⎝1 +
{{

3
2z2

}}

{{√
1+ 9

4z22

}}

⎞

⎟⎟⎠

{{
3
2z2

+
√
1 + 9

4z22

}}

ln

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 3

2{{z2}}ln .

The proof is completed. �	

Remark 1 It is easy to verify that the two-point EC numerical flux F̃
EC
1 (UL ,UR) in (44)

is consistent with the flux function F1(U) in the 1D RHD equations, and E − 1 =∫ 1
0 e
(

1
z2,L+s(z2,R−z2,L )

)
ds is consistent with the specific internal energy e.

Remark 2 It is worth mentioning that the choice of parameter variables in (43) follows
[66] and is different from [18]. Thanks to this choice, we obtain the EC numerical flux
F̃
EC
1 (UL ,UR) in a unified form (44) for general Synge-type EOS. Moreover, in the case of

ID-EOS, the expressions of our EC numerical flux are simpler than those obtained in [18]
via a different set of parameter variables.

3.2 Entropy Conservative Schemes

In this subsection, we construct EC schemes for the 1D RHD equations. To avoid confusing
subscripts, we use x to denote the 1D spatial coordinate, F to denote the 1D flux function
F1, and q to represent the entropy flux associated with the convex entropy function η in the
x-direction. The spatial domain is divided into cells Ii = (xi− 1

2
, xi+ 1

2
) by uniform meshes

x1 < x2 < · · · < xN , with the mesh size 	x = xi+1 − xi . A semi-discrete finite difference
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scheme of the 1D RHD equations can be written as

d

dt
Ui (t) +

F̂i+ 1
2
(t) − F̂i− 1

2
(t)

	x
= 0, (59)

where Ui (t) ≈ U(xi , t), and the numerical flux F̂ is consistent with the flux F.

Definition 3 ([58]) The semi-discrete scheme (59) is EC if its numerical solutions satisfy a
discrete entropy equality

d

dt
η(Ui ) + 1

	x

(
q̃i+ 1

2
− q̃i− 1

2

)
= 0 (60)

for some numerical entropy flux q̃ consistent with the entropy flux q .

3.2.1 Second-Order Entropy Conservative Schemes

If we take F̂i+ 1
2
as the two-point EC numerical flux F̃EC

1 (Ui ,Ui+1) in (44), then the scheme
(59) becomes

dUi

dt
= − F̃EC

1 (Ui ,Ui+1) − F̃EC
1 (Ui−1,Ui )

	x
, (61)

which is second-order accurate. To verify the EC property of this scheme, we follow the
framework of Tadmor [57, 58] to show the discrete entropy equality (60). Note that

d

dt
η(Ui ) = η′(Ui )

dUi

dt
= −W�

i

(
F̃EC
1 (Ui ,Ui+1) − F̃EC

1 (Ui−1,Ui )

	x

)
. (62)

Recalling that the definition of jump and arithmetic average operators in (36) and (37), one
obtains

Wi = {{W}}i+ 1
2

− 1

2
[[W]]i+ 1

2
= {{W}}i− 1

2
+ 1

2
[[W]]i− 1

2
. (63)

Combining (62)–(63) with the property (35) of the two-point EC flux, we have

d

dt
η(Ui ) = −

(
{{W}}i+ 1

2
− 1

2 [[W]]i+ 1
2

)�
F̃EC
1 (Ui ,Ui+1) −

(
{{W}}i− 1

2
+ 1

2 [[W]]i− 1
2

)�
F̃EC
1 (Ui−1,Ui )

	x

= −
{{W}}�

i+ 1
2
F̃EC
1 (Ui ,Ui+1) − {{W}}�

i− 1
2
F̃EC
1 (Ui−1,Ui ) − 1

2

(
[[ψ1]]i+ 1

2
+ [[ψ1]]i− 1

2

)

	x

= − 1

	x

((
{{W}}�

i+ 1
2
F̃EC
1 (Ui ,Ui+1) − {{ψ1}}i+ 1

2

)
−
(
{{W}}�

i− 1
2
F̃EC
1 (Ui−1,Ui ) − {{ψ1}}i− 1

2

))

If we take the numerical entropy flux q̃i+ 1
2
as

q̃(Ui ,Ui+1) := {{W}}�
i+ 1

2
F̃EC
1 (Ui ,Ui+1) − {{ψ1}}i+ 1

2
, (64)

then the discrete entropy equality (60) is satisfied. Moreover, the numerical entropy flux (64)
is clearly consistent with the entropy flux q . Therefore, the scheme (61) is a second-order
EC scheme with the corresponding numerical entropy flux given by (64).
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3.2.2 High-Order Entropy Conservative Schemes

The semi-discrete EC scheme (61) is only second-order accurate in space. To obtain higher-
order EC schemes, we can consider a linear combination of the two-point EC fluxes (cf.
[35]):

F̃2k
i+ 1

2
=

k∑

r=1

αk,r

r−1∑

s=0

F̃EC
1 (Ui−s,Ui−s+r ), (65)

where the constants {αk,r } satisfy
k∑

r=1

rαk,r = 1,
k∑

r=1

r2s−1αk,r = 0, s = 2, · · · , k. (66)

For example, the fourth- and sixth-order EC fluxes are given by

F̃4
i+ 1

2
=4

3
F̃EC
1 (Ui ,Ui+1) − 1

6

(
F̃EC
1 (Ui ,Ui+2) + F̃EC

1 (Ui−1,Ui+1)
)

,

F̃6
i+ 1

2
=3

2
F̃EC
1 (Ui ,Ui+1) − 3

10

(
F̃EC
1 (Ui ,Ui+2) + F̃EC

1 (Ui−1,Ui+1)
)

+ 1

30

(
F̃EC
1 (Ui ,Ui+3) + F̃EC

1 (Ui−1,Ui+2) + F̃EC
1 (Ui−2,Ui+1)

)
.

If we take the numerical flux F̂i+ 1
2
in (59) as F̃2k

i+ 1
2
, then we obtain a 2kth-order semi-

discrete scheme

dUi

dt
= −

F̃2k
i+ 1

2
− F̃2k

i− 1
2

	x
. (67)

Following [35], one can verify that the high-order scheme (67) is EC with the corresponding
numerical entropy flux given by

q̃2k
i+ 1

2
=

k∑

r=1

αk,r

r−1∑

s=0

q̃(Ui−s,Ui−s+r ), (68)

where the constants {αk,r } are defined in (66), and q̃ is defined in (64).

3.3 Entropy Stable Schemes

The above EC schemes may produce oscillations when solutions of the RHD equations
contain discontinuities. Hence, we need to add some dissipation terms to guarantee the
entropy stability [57, 58].

If the numerical flux in (59) is taken as

F̂i+ 1
2

= F̃i+ 1
2

− 1

2
Di+ 1

2
[[W]]i+ 1

2
, (69)

where F̃i+ 1
2
is an EC flux, and Di+ 1

2
is a positive semi-definite matrix, then the scheme (59)

is first-order accurate and satisfies the discrete entropy inequality

d

dt
η(Ui ) + 1

	x

(
q̂i+ 1

2
− q̂i− 1

2

)
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= − 1

4	x

(
[[W]]�

i+ 1
2
Di+ 1

2
[[W]]i+ 1

2
+ [[W]]�

i− 1
2
Di− 1

2
[[W]]i− 1

2

)
≤ 0 (70)

with

q̂i+ 1
2

:= q̃i+ 1
2

− 1

2
{{W}}�

i+ 1
2
Di+ 1

2
[[W]]i+ 1

2
. (71)

Therefore, the resulting scheme (59)with (69) is ES, and the corresponding numerical entropy
flux is given by (71).

In the following, we will discuss how to define the positive semi-definite matrixDi+ 1
2
and

how to generalize the first-order ES scheme to design high-order ES schemes.

3.3.1 Dissipation Matrix

The positive semi-definite matrix in equation (69) is referred to as the dissipation matrix. It
can be defined as follows:

Di+ 1
2

:= Ri+ 1
2

∣∣∣�i+ 1
2

∣∣∣R�
i+ 1

2
, (72)

where the matrixR is formed by the suitably scaled right eigenvectors of the Jacobian matrix
∂F1(U)

∂U of the 1D RHD system, and it satisfies

∂F1

∂U
= R�R−1,

∂U
∂W

= RR�. (73)

The formula ofR is derived in Theorem 6. In (73), the diagonal matrix� = diag{λ1, λ2, λ3},
where

λ1 = v1 − cs
1 − v1cs

, λ2 = v1, λ3 = v1 + cs
1 + v1cs

.

are the three eigenvalues of the Jacobianmatrix ∂F1(U)
∂U . There are two commonways to define

|�| in (72):

|�| = diag{|λ1|, |λ2|, |λ3|}, (74)

or

|�| = max{|λ1|, |λ2|, |λ3|}I. (75)

The definition (74) gives the Roe-type dissipation term, while (75) leads to the Rusanov-type
dissipation term.

Theorem 6 For the 1D RHD system with general Synge-type EOS (4), the scaled eigenvector
matrix R satisfying (73) is given by

R := R̃
√
D̃ :=

⎛

⎜⎜⎝

1 1 1

(v1 − cs)hγ
(
h − θ

(
1 + e′(θ)

) )
γ v1 (v1 + cs)hγ

(1 − v1cs)hγ
(
h − θ

(
1 + e′(θ)

) )
γ (1 + v1cs)hγ

⎞

⎟⎟⎠

⎛

⎝

√
d1 0 0
0

√
d2 0

0 0
√
d3

⎞

⎠ ,

(76)
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where the scaling coefficients d j , j = 1, 2, 3, are defined as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d1 =
(

ρe′(θ)

2(1 + e′(θ))
− ρθv1

2csh

)
γ,

d2 = ργ

1 + e′(θ)
,

d3 =
(

ρe′(θ)

2(1 + e′(θ))
+ ρθv1

2csh

)
γ.

(77)

Proof Note that R̃ defined in (76) is a right eigenvector matrix of the Jacobian matrix ∂F1(U)
∂U ;

see [73]. Since
√
D̃ is a diagonal matrix, we know that R = R̃

√
D̃ is also a right eigenvector

matrix of ∂F1(U)
∂U . Thus, R satisfies ∂F1

∂U = R�R−1. We only need to verify that R satisfies
∂U
∂W = RR�. Next, we would like to derive the formula of ∂U

∂W . Since U cannot be explicitly
formulated by W, we derive ∂U

∂W by the chain rule

∂U
∂W

= ∂U
∂V

∂V
∂W

, (78)

where ∂V
∂W is the inverse of ∂W

∂V . AsW is explicitly expressed byV, a direct calculation gives

∂W
∂V

=

⎛

⎜⎜⎝

h
ρθ

0 θ−h
ρθ2

γ v1
ρθ

γ 3

θ
− γ v1

ρθ2

− γ
ρθ

− γ 3v1
θ

γ

ρθ2

⎞

⎟⎟⎠ , (79)

and we then obtain the inverse ∂V
∂W as

∂V
∂W

=
⎛

⎝
ρ ργ v1(h − θ) ργ (h − θ)

0 θ
γ

θv1
γ

ρθ ρhγ θv1 ρhγ θ

⎞

⎠ . (80)

Combining (80) with (15) for the case d = 1, we can compute ∂U
∂W by (78) as

∂U
∂W

=
⎛

⎜⎝
ργ ρhγ 2v1 ρ(−θ + hγ 2)

ρhγ 2v1 ργ 3
(
θ2v21(1 + e′(θ)) + θh + h2v21

)
ργ 3v1

(
θ2(1 + e′(θ)) + h2 + θhv21

)

ρ(−θ + hγ 2) ργ 3v1

(
θ2(1 + e′(θ)) + h2 + θhv21

)
ργ 3

(
θ2(1 + e′(θ)) + h2 − 2θh + 3θhv21

)

⎞

⎟⎠ .

(81)

Thenwe substitute the scaling coefficients d j , j = 1, 2, 3, in (77) into the scaling eigenvector
matrix (76) to computeRR�. Let ri be the i th row of the scaled eigenvector matrix. We have

r1r�
1 = d1 + d2 + d3 = ρe′(θ)γ

1 + e′(θ)
+ ργ

1 + e′(θ)
= ργ =

(
∂U
∂W

)

1,1
,

r1r�
2 = (v1 − cs)hγ d1 + (h − θ(1 + e′(θ)

)
γ v1d2 + (v1 + cs)hγ d3

= v1hγ 2 ρe′(θ)

1 + e′(θ)
+ cshγ 2 ρθv1

csh
+ ρhγ 2v1

1 + e′(θ)
− ργ 2v1θ = ρhγ 2v1 =

(
∂U
∂W

)

1,2
,

r1r�
3 = (1 − v1cs)hγ d1 + (h − θ(1 + e′(θ)

)
γ d2 + (1 + v1cs)hγ d3

= hγ 2 ρe′(θ)

1 + e′(θ)
+ v1cshγ

ρθv1γ

csh
+ ρhγ 2

1 + e′(θ)
− ργ 2θ = ρhγ 2 − ρθ =

(
∂U
∂W

)

1,3
,
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r2r�
2 = (v1 − cs)

2h2γ 2d1 + (h − θ(1 + e′(θ)
)2

γ 2v21d2 + (v1 + cs)
2h2γ 2d3

= (v21 + c2s )h
2γ 3 ρe′(θ)

1 + e′(θ)
+ 2v1csh

2γ 3 ρθv1

csh
+ h2γ 2v21

ργ

1 + e′(θ)

+ ρθ2(1 + e′(θ))γ 3v21 − 2θh(1 + e′(θ))γ 2v21
ργ

1 + e′(θ)

= ρh2γ 3v21 + ρθhγ 3 + ρθ2(1 + e′(θ))γ 3v21

= ργ 3 (h2v21 + θh + θ2v21(1 + e′(θ))
) =

(
∂U
∂W

)

2,2
,

r2r�
3 = (v1 − cs)(1 − v1cs)h

2γ 2d1 + (h − θ(1 + e′(θ)
)2

γ 2v1d2 + (v1 + cs)(1 + v1cs)h
2γ 2d3

= h2γ 3v1
ρe′(θ)

1 + e′(θ)

(
1 + c2s

)+ cs(1 + v21)h
2γ 3 ρθv1

csh
+ ργ 3v1

1 + e′(θ)

(
h − θ(1 + e′(θ))

)2

= ργ 3v1

(
h2e′(θ)

1 + e′(θ)
+ hθ(2 + v21) +

(
h − θ(1 + e′(θ))

)2

1 + e′(θ)

)

= ργ 3v1
(
h2 + θ2(1 + e′(θ)) + hθv21

) =
(

∂U
∂W

)

2,3
,

r3r�
3 = (1 − v1cs)

2h2γ 2d1 + (h − θ(1 + e′(θ))
)2

γ 2d2 + (1 + v1cs)
2h2γ 2d3

= (1 + v21c
2
s )h

2γ 2 ρe′(θ)γ

1 + e′(θ)
+ 2v1csh

2γ 2 ρθv1γ

csh
+ (h − θ(1 + e′(θ))

)2 ργ 3

1 + e′(θ)

= ργ 3

(
h2e′(θ)

1 + e′(θ)

(
1 + θ(1 + e′(θ)v21

he′(θ)

)
+ 2θv21h +

(
h − θ(1 + e′(θ))

)2

1 + e′(θ)

)

= ργ 3 (h2 + 3θhv21 − 2θh + θ2(1 + e′(θ))
) =

(
∂U
∂W

)

3,3
.

Noting that both matrices RR� and ∂U
∂W are symmetric, we have

r2r�
1 =

(
∂U
∂W

)

2,1
, r3r�

1 =
(

∂U
∂W

)

3,1
, r3r�

2 =
(

∂U
∂W

)

3,2
.

Hence, we have verified that ∂U
∂W = RR�. The proof is completed. �	

The dissipation matrix Di+ 1
2
is defined at the cell interface xi+ 1

2
. In order to calculate

it, we need to estimate the “averaged” states at xi+ 1
2
. Following the discussion in [10] for

the non-relativistic Euler equations, we seek an appropriate average for Di+ 1
2
, such that the

resulting ES scheme can accurately resolve stationary contact discontinuities. Consider the
following initial condition

ρ(x, 0) =
{

ρL , x < 0,

ρR, x > 0,
v1(x, 0) = 0, p(x, 0) = p = const, (82)

which represents a stationary contact discontinuity corresponding to the λ2−field. For the
above initial condition, our EC numerical flux reduces to F̃i+ 1

2
= (0, p, 0)�.Hence, in order

to preserve the stationary contact discontinuity, we require for all i that F̂i+ 1
2

= (0, p, 0)�,

or equivalently,

Di+ 1
2
[[W]]i+ 1

2
= 0. (83)
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Theorem 7 Assume that the “averaged" specific enthalpy hi+ 1
2
in the dissipation matrix

Di+ 1
2
satisfies

hi+ 1
2

= Ei+ 1
2

+ 1

{{z2}}ln,i+ 1
2

, (84)

where z2 = ρ
p = 1

θ
and the calculation of E is given in Theorem 5. Then, the ES scheme

(59) with numerical flux (69) and Roe-type dissipation term can exactly resolve stationary
contact discontinuities.

Proof For the stationary contact wave (82) with v1 = 0, the dissipation matrix D reduces to

D =
⎛

⎝
1 1 1

−csh 0 csh
h h − θ

(
1 + e′(θ)

)
h

⎞

⎠

⎛

⎝
cs 0 0
0 0 0
0 0 cs

⎞

⎠

⎛

⎝
d1 0 0
0 d2 0
0 0 d3

⎞

⎠

⎛

⎝
1 1 1

−csh 0 csh
h h − θ

(
1 + e′(θ)

)
h

⎞

⎠
�

(85)

with

d1 = d3 = ρe′(θ)

2(1 + e′(θ))
, d2 = ρ

1 + e′(θ)
. (86)

Taking v1 = 0 and z2 = 1
θ
, the entropy variables in (33) become

W = (z2h − S 0 −z2
)�

. (87)

It follows that

Di+ 1
2
[[W]]i+ 1

2
= (cs)i+ 1

2

ρi+ 1
2
e′(θi+ 1

2
)

1 + e′(θi+ 1
2
)

(
[[z2h − S]]i+ 1

2
− hi+ 1

2
[[z2]]i+ 1

2

)
⎛

⎝
1
0

hi+ 1
2

⎞

⎠ .(88)

For the stationary contact wave (82) with constant pressure, we have

[[ln p]]i+ 1
2

= 0, [[ln z2]]i+ 1
2

= [[ln ρ]]i+ 1
2

− [[ln p]]i+ 1
2

= [[ln ρ]]i+ 1
2
. (89)

If hi+ 1
2
satisfies (84), we obtain

hi+ 1
2

= Ei+ 1
2

+ 1

{{z2}}ln,i+ 1
2

(42)= Ei+ 1
2

+
[[ln(z2)]]i+ 1

2

[[z2]]i+ 1
2

(89)= Ei+ 1
2

+
[[ln(ρ)]]i+ 1

2

[[z2]]i+ 1
2

(45)=
[[W1 − ln(ρ)]]i+ 1

2

[[z2]]i+ 1
2

+
[[ln(ρ)]]i+ 1

2

[[z2]]i+ 1
2

=
[[W1]]i+ 1

2

[[z2]]i+ 1
2

=
[[z2h − S]]i+ 1

2

[[z2]]i+ 1
2

,
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which implies

[[z2h − S]]i+ 1
2

= hi+ 1
2
[[z2]]i+ 1

2
.

This together with (88) yields Di+ 1
2
[[W]]i+ 1

2
= 0. The proof is completed. �	

The formula (84) determines the averaged state hi+ 1
2
, with (z2)i+ 1

2
= {{z2}}ln,i+ 1

2
. We

take θi+ 1
2

= 1
{{z2}}ln,i+ 1

2

. The rest-mass density ρ and the velocity v1 can be evaluated by either

the arithmetic or logarithmic average. In this paper, we choose the logarithmic average for
ρi+ 1

2
and the arithmetic average for (v1)i+ 1

2
. Other quantities in Di+ 1

2
, such as cs , γ , e′(θ),

are computed by using the averaged states θi+ 1
2
, ρi+ 1

2
, and (v1)i+ 1

2
.

Remark 3 For ID-EOS (6), the evaluation for hi+ 1
2
in the dissipation matrix Di+ 1

2
in [18] is

calculated by taking (z2)i+ 1
2
as the logarithmic average. This is consistent with our result in

Theorem 7, because

hi+ 1
2

= Ei+ 1
2

+ 1

{{z2}}ln,i+ 1
2

(51)= 1 + 1

(� − 1) {{z2}}ln,i+ 1
2

+ 1

{{z2}}ln,i+ 1
2

= 1 + �

(� − 1) {{z2}}ln,i+ 1
2

.

3.3.2 High-Order Entropy Stable Schemes

As mentioned previously, the numerical scheme (59) using the numerical flux (69) is only
first-order accurate. This is due to the calculation of the jump [[W]]i+ 1

2
at the cell interface

xi+ 1
2
using only Wi and Wi+1. To achieve higher-order accuracy for the ES schemes, it is

necessary to estimate the jump more precisely [25]. This can be accomplished by employing
ENO or WENO reconstruction techniques for the scaled entropy variables ω := R�

i+ 1
2
W.

The reconstructed values of the scaled entropy variablesω, denoted byω−
i+ 1

2
andω+

i+ 1
2
for the

left and right limiting values at the interface xi+ 1
2
, respectively. For the ENO-based method

[25], the corresponding 2kth-order ES flux is defined by adding the 2kth-order dissipation
terms to the 2kth-order EC flux:

F̂2k
i+ 1

2
= F̃2k

i+ 1
2

− 1

2
Ri+ 1

2

∣∣∣�i+ 1
2

∣∣∣⟪ω⟫ENO
i+ 1

2
, (90)

where F̃2k
i+ 1

2
is the 2kth-order EC flux defined in (65),Ri+ 1

2
and�i+ 1

2
are defined in (72), and

⟪ω⟫ENO
i+ 1

2
:= ω+

i+ 1
2

− ω−
i+ 1

2
denotes the jump of the scaled entropy variables at the interface

xi+ 1
2
. For the scheme (59) using the 2kth-order ES numerical flux defined in (90), we have

d

dt
η(Ui ) = −

W�
i

(
F̃2k
i+ 1

2
− F̃2k

i− 1
2

)

	x
+

W�
i

(
Ri+ 1

2

∣∣∣�i+ 1
2

∣∣∣⟪ω⟫ENO
i+ 1

2
− Ri− 1

2

∣∣∣�i− 1
2

∣∣∣⟪ω⟫ENO
i− 1

2

)

2	x

= −
q̂2k
i+ 1

2
− q̂2k

i− 1
2

+ 1
4

(
[[ω]]�

i+ 1
2

∣∣∣�i+ 1
2

∣∣∣⟪ω⟫ENO
i+ 1

2
+ [[ω]]�

i− 1
2

∣∣∣�i− 1
2

∣∣∣⟪ω⟫ENO
i− 1

2

)

	x
,

(91)
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where

q̂2k
i+ 1

2
= q̃2k

i+ 1
2

− 1

2
{{W}}�

i+ 1
2
Ri+ 1

2

∣∣∣�i+ 1
2

∣∣∣⟪ω⟫ENO
i+ 1

2
(92)

with q̃2k
i+ 1

2
defined in (68). Since the ENO reconstruction satisfies the sign property [26]:

sign(⟪ω⟫ENO
i+ 1

2
) = sign([[ω]]i+ 1

2
), (93)

then we have

d

dt
η(Ui ) + 1

	x

(
q̂2k
i+ 1

2
− q̂2k

i− 1
2

)

= − 1

4	x

(
[[ω]]�

i+ 1
2

∣∣∣�i+ 1
2

∣∣∣⟪ω⟫ENO
i+ 1

2
+ [[ω]]�

i− 1
2

∣∣∣�i− 1
2

∣∣∣⟪ω⟫ENO
i− 1

2

)
≤ 0,

which implies the discrete entropy inequality (70) for the numerical entropy flux (92). Hence,
the scheme (59) with the ENO-based numerical flux (90) is ES.

For the WENO-based method, we follow the idea in [7]. The WENO-based high-order
accurate ES flux is defined as

F̂2k
i+ 1

2
= F̃2k

i+ 1
2

− 1

2
Ri+ 1

2

∣∣∣�i+ 1
2

∣∣∣⟪ω⟫WENO
i+ 1

2
, (94)

where the lth component of the jump⟪ω⟫WENO
i+ 1

2
of the scaled entropy variable at the interface

xi+ 1
2
is defined by

⟪ωl⟫
WENO
i+ 1

2
= θl,i+ 1

2

(
ω+
l,i+ 1

2
− ω−

l,i+ 1
2

)

with

θl,i+ 1
2

:=
{
1, if (ω+

l,i+ 1
2

− ω−
l,i+ 1

2
)[[ωl ]]i+ 1

2
> 0,

0, otherwise.
(95)

The switch operator θl,i+ 1
2
in (95) is introduced to ensure the sign property

sign(⟪ω⟫WENO
i+ 1

2
) = sign([[ω]]i+ 1

2
). (96)

Hence, by using the same approach as ENO-basedmethod, we can verify that the scheme (59)
with the WENO-based numerical flux (94) is ES, and the corresponding numerical entropy
flux is given by

q̂2k
i+ 1

2
= q̃2k

i+ 1
2

− 1

2
{{W}}�

i+ 1
2
Ri+ 1

2

∣∣∣�i+ 1
2

∣∣∣⟪ω⟫WENO
i+ 1

2
. (97)

4 2D Entropy Stable Schemes

The EC and ES schemes for the 2D RHD equations can be constructed in a dimension-by-
dimension fashion, and the construction is analogous to the 1D case. Hence we only present
the derivation of two-point ECfluxes and the dissipationmatrix, which are the key ingredients
of EC and ES schemes.
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4.1 Two-Point Entropy Conservative Flux

In this subsection, we derive a unified formula of two-point EC numerical fluxes for the 2D
RHD equations with general Synge-type EOS (4), based on the entropy variables (3) and the
entropy potential (34). To design a simple two-point EC numerical flux, we choose a set of
variables z = (z1, z2, z3, z4)� as

z1 = ρ, z2 = ρ

p
, z3 = γ v1, z4 = γ v2. (98)

Theorem 8 The two-point EC numerical fluxes for the 2D RHD equations with general
Synge-type EOS (4) can be written into a unified form as

F̃1
EC

(UL ,UR) =
(

{{z1}}ln{{z3}}, ρ̂h{{z3}}2 + {{z1}}
{{z2}} , ρ̂h{{z3}}{{z4}}, ρ̂h{{γ }}{{z3}}

)�
,

(99)

and

F̃2
EC

(UL ,UR) =
(

{{z1}}ln{{z4}}, ρ̂h{{z3}}{{z4}}, ρ̂h{{z4}}2 + {{z1}}
{{z2}} , ρ̂h{{γ }}{{z4}}

)�

(100)

with

ρ̂h :=
{{z1}}{{z2}} + {{z1}}lnE

{{γ }}2 − {{z3}}2 − {{z4}}2 ,

where E is defined in (45), and a unified formulation of E is given by (46) via an integral.
The explicit calculation of E depends on the particular choice of the EOS (see Theorem 5).

Proof By using the set of variables (98), we can express the entropy variables and the entropy
potential as

W =
(
z2h − S, z3z2, z4z2,−z2

√
1 + z23 + z24

)�
,

ψ1 = z1z3, ψ2 = z1z4.
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Then we write the jumps of entropy variablesW and the potential fluxes ψ1, ψ2 in terms of
jumps and arithmetic averages of the variables (98) as follows:

[[W1]] (45)= E[[z2]] + [[ln z1]],
[[W2]] = [[z3z2]] (38)= {{z3}}[[z2]] + [[z3]]{{z2}},
[[W3]] = [[z4z2]] (38)= {{z4}}[[z2]] + [[z4]]{{z2}},
[[W4]] =

[[
−z2

√
1 + z23 + z24

]]

(38)= −[[z2]]{{γ }} − {{z2}}
[[√

1 + z23 + z24

]]

(41)= −[[z2]]{{γ }} − {{z2}} [[1 + z23 + z24]]
2{{γ }}

(39)= −[[z2]]{{γ }} − {{z2}} ({{z3}}[[z3]] + {{z4}}[[z4]])
{{γ }} ,

[[ψ1]] = [[z1z3]] (38)= {{z1}}[[z3]] + [[z1]]{{z3}},
[[ψ2]] = [[z1z4]] (38)= {{z1}}[[z4]] + [[z1]]{{z4}},

(101)

According toDefinition 2, the two-point ECnumerical fluxes F̃
EC
1 (UL ,UR) =:

(
F̃ (1)
1 , F̃ (2)

1 ,

F̃ (3)
1 , F̃ (4)

1

)�
and F̃

EC
2 (UL ,UR) =:

(
F̃ (1)
2 , F̃ (2)

2 , F̃ (3)
2 , F̃ (4)

2

)�
for the 2D RHD system sat-

isfy

[[W1]]F̃ (1)
1 + [[W2]]F̃ (2)

1 + [[W3]]F̃ (3)
1 + [[W4]]F̃ (4)

1 = [[ψ1]],
[[W1]]F̃ (1)

2 + [[W2]]F̃ (2)
2 + [[W3]]F̃ (3)

2 + [[W4]]F̃ (4)
2 = [[ψ2]].

(102)

Substituting (101) into (102), we obtain

(E[[z2]] + [[ln z1]]) F̃ (1)
1 + ({{z3}}[[z2]] + [[z3]]{{z2}}) F̃ (2)

1 + ({{z4}}[[z2]] + [[z4]]{{z2}}) F̃ (3)
1

−
(

[[z2]]{{γ }} + {{z2}} ({{z3}}[[z3]] + {{z4}}[[z4]])
{{γ }}

)

F̃ (4)
1 = {{z1}}[[z3]] + [[z1]]{{z3}},

and

(E[[z2]] + [[ln z1]]) F̃ (1)
2 + ({{z3}}[[z2]] + [[z3]]{{z2}}) F̃ (2)

2 + ({{z4}}[[z2]] + [[z4]]{{z2}}) F̃ (3)
2

−
(

[[z2]]{{γ }} + {{z2}} ({{z3}}[[z3]] + {{z4}}[[z4]])
{{γ }}

)

F̃ (4)
2 = {{z1}}[[z4]] + [[z1]]{{z4}}.

Collecting the terms containing [[z1]], [[z2]], [[z3]], and [[z4]], respectively, the above two equa-
tions can be reformulated as
(

F̃ (1)
1

{{z1}}ln − {{z3}}
)

[[z1]] +
(
E F̃ (1)

1 + {{z3}}F̃ (2)
1 + {{z4}}F̃ (3)

1 − {{γ }}F̃ (4)
1

)
[[z2]]
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+
(

{{z2}}F̃ (2)
1 − {{z2}}{{z3}}

{{γ }} F̃ (4)
1 − {{z1}}

)
[[z3]] +

(
{{z2}}F̃ (3)

1 − {{z2}}{{z4}}
{{γ }} F̃ (4)

1

)
[[z4]] = 0,

and
(

F̃ (1)
2

{{z1}}ln − {{z4}}
)

[[z1]] +
(
E F̃ (1)

2 + {{z3}}F̃ (2)
2 + {{z4}}F̃ (3)

2 − {{γ }}F̃ (4)
2

)
[[z2]]

+
(

{{z2}}F̃ (2)
2 − {{z2}}{{z3}}

{{γ }} F̃ (4)
2

)
[[z3]] +

(
{{z2}}F̃ (3)

2 − {{z2}}{{z4}}
{{γ }} F̃ (4)

2 − {{z1}}
)

[[z4]] = 0.

Hence, the coefficients of [[z1]], [[z2]], [[z3]] should all equal zero. Specifically, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ (1)
1

{{z1}}ln = {{z3}},

E F̃ (1)
1 + {{z3}}F̃ (2)

1 + {{z4}}F̃ (3)
1 − {{γ }}F̃ (4)

1 = 0,

{{z2}}F̃ (2)
1 − {{z2}}{{z3}}

{{γ }} F̃ (4)
1 = {{z1}},

{{z2}}F̃ (3)
1 − {{z2}}{{z4}}

{{γ }} F̃ (4)
1 = 0,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ (1)
2

{{z1}}ln = {{z4}},

E F̃ (2)
1 + {{z3}}F̃ (2)

2 + {{z4}}F̃ (3)
2 − {{γ }}F̃ (4)

2 = 0,

{{z2}}F̃ (2)
2 − {{z2}}{{z3}}

{{γ }} F̃ (4)
2 = 0,

{{z2}}F̃ (3)
2 − {{z2}}{{z4}}

{{γ }} F̃ (4)
2 = {{z1}},

Solving the above two linear systems for
(
F̃ (1)
1 , F̃ (2)

1 , F̃ (3)
1 , F̃ (4)

1

)�
and

(
F̃ (1)
2 , F̃ (2)

2 , F̃ (3)
2 ,

F̃ (4)
2

)�
, respectively, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F̃ (1)
1 = {{z1}}ln{{z3}},

F̃ (2)
1 = ρ̂h{{z3}}2 + {{z1}}

{{z2}} ,

F̃ (3)
1 = ρ̂h{{z3}}{{z4}},

F̃ (4)
1 = ρ̂h{{γ }}{{z3}},

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F̃ (1)
2 = {{z1}}ln{{z4}},

F̃ (2)
2 = ρ̂h{{z3}}{{z4}},

F̃ (3)
2 = ρ̂h{{z4}}2 + {{z1}}

{{z2}} ,

F̃ (4)
2 = ρ̂h{{γ }}{{z4}},

which lead to (99) and (100), respectively. The proof is completed. �	
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4.2 DissipationMatrix

In this subsection, we present the explicit formulas of the dissipation matrices for the 2D
RHD equations with general Synge-type EOS (4). In the 2D case, we need two dissipation
matrices

D1 = R1 |�1|R�
1 , D2 = R2 |�2|R�

2 (103)

corresponding to the x1- and x2-directions, respectively, where the matrices R1 and R2 are
respectively formed by the suitably scaled right eigenvectors of the Jacobian matrices ∂F1(U)

∂U
and ∂F2(U)

∂U of the 2D RHD system, and they satisfy

∂Fk

∂U
= Rk�kR

−1
k ,

∂U
∂W

= RkR�
k , k = 1, 2. (104)

The formulas of R1 and R2 will be derived in Theorem 9. In (104), the diagonal matrix
�1 = diag{λ(1)

1 , λ
(2)
1 , λ

(3)
1 , λ

(4)
1 }, where

λ
(1)
1 =

v1(1 − c2s ) − cs
√

(1 − v21 − v22)(1 − v21 − v22c
2
s )

1 − (v21 + v22)c
2
s

,

λ
(2)
1 = λ

(3)
1 = v1,

λ
(4)
1 =

v1(1 − c2s ) + cs
√

(1 − v21 − v22)(1 − v21 − v22c
2
s )

1 − (v21 + v22)c
2
s

are the four eigenvalues of the Jacobian matrix ∂F1(U)
∂U , and the diagonal matrix �2 =

diag{λ(1)
2 , λ

(2)
2 , λ

(3)
2 , λ

(4)
2 }, where

λ
(1)
2 =

v2(1 − c2s ) − cs
√

(1 − v21 − v22)(1 − v22 − v21c
2
s )

1 − (v21 + v22)c
2
s

,

λ
(2)
2 = λ

(3)
2 = v2,

λ
(4)
2 =

v2(1 − c2s ) + cs
√

(1 − v21 − v22)(1 − v22 − v21c
2
s )

1 − (v21 + v22)c
2
s

are the four eigenvalues of the Jacobian matrix ∂F2(U)
∂U .

Theorem 9 For the 2D RHD system with general Synge-type EOS (4), the x1-directional
scaled eigenvector matrix R1 satisfying (104) is given by

R1 := R̃1

√
D̃1 :=

⎛

⎜⎜⎜⎝

1 1
γ

γ v2 1

hγ	
λ

(1)
1

λ
(1)
1 	θv1 2hγ 2v1v2 hγ	

λ
(4)
1

λ
(4)
1

hγ v2 	θv2 h(1 + 2γ 2v22) hγ v2
hγ	

λ
(1)
1

	θ 2hγ 2v2 hγ	
λ

(4)
1

⎞

⎟⎟⎟⎠
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⎛

⎜⎜⎜⎜⎜⎜⎝

√
d(1)
1 0 0 0

0
√
d(2)
1 0 0

0 0
√
d(3)
1 0

0 0 0
√
d(4)
1

⎞

⎟⎟⎟⎟⎟⎟⎠
, (105)

where	
λ

(1)
1

= 1−v21

1−v1λ
(1)
1

,	
λ

(4)
1

= 1−v21

1−v1λ
(4)
1

,	θ = h−θ(1+e′(θ)), and the scaling coefficients

d( j)
1 , j = 1, 2, 3, 4, are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(1)
1 = M1 − N1

2
,

d(2)
1 = ργ 3

1 + e′(θ)
,

d(3)
1 = ρθ

h(1 − v21)γ
,

d(4)
1 = M1 + N1

2
,

(106)

with

M1 = ργ

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)
, N1 =

ρθv1

√
1 − v21 − v22c

2
s

hcs(1 − v21)
.

The scaled eigenvector matrix R2 satisfying (104) is given by

R2 := R̃2

√
D̃2 :=

⎛

⎜⎜⎜⎝

1 γ v1
1
γ

1
hγ v1 h(1 + 2γ 2v21) 	θv1 hγ v1

hγ	
λ

(1)
2

λ
(1)
2 2hγ 2v1v2 	θv2 hγ	

λ
(4)
2

λ
(4)
2

hγ	
λ

(1)
2

2hγ 2v1 	θ hγ	
λ

(4)
2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

√
d(1)
2 0 0 0

0
√
d(2)
2 0 0

0 0
√
d(3)
2 0

0 0 0
√
d(4)
2

⎞

⎟⎟⎟⎟⎟⎟⎠
, (107)

where	
λ

(1)
2

= 1−v22

1−v2λ
(1)
2

,	
λ

(4)
2

= 1−v22

1−v2λ
(4)
2

,	θ = h−θ(1+e′(θ)), and the scaling coefficients

d( j)
2 , j = 1, 2, 3, 4, are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(1)
2 = M2 − N2

2
,

d(2)
2 = ρθ

h(1 − v22)γ
,

d(3)
2 = ργ 3

1 + e′(θ)
,

d(4)
2 = M2 + N2

2
,

(108)
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with

M2 = ργ

(
e′(θ)

1 + e′(θ)
− θv21

h(1 − v22)

)
, N2 =

ρθv2

√
1 − v22 − v21c

2
s

hcs(1 − v22)
.

Proof Note that R̃1 defined in (105) is a right eigenvector matrix of the Jacobian matrix
∂F1(U)

∂U ; see [73]. Since
√
QD1 is a diagonal matrix, we know that R1 = QR1

√
QD1 is also a right

eigenvector matrix of ∂F1(U)
∂U . Hence, R1 satisfies

∂F1
∂U = R1�1R

−1
1 . We only need to verify

that R1 satisfies ∂U
∂W = R1R�

1 . Since U cannot be explicitly formulated byW, we derive ∂U
∂W

by the chain rule (78). AsW can be explicitly formulated by V, a direct calculation leads to

∂W
∂V

=

⎛

⎜⎜⎜⎜⎜⎝

h
ρθ

0 0 θ−h
ρθ2

γ v1
ρθ

γ 3(1−v22 )

θ
γ 3v1v2

θ
− γ v1

ρθ2

γ v2
ρθ

γ 3v1v2
θ

γ 3(1−v21 )

θ
− γ v2

ρθ2

− γ
ρθ

− γ 3v1
θ

− γ 3v2
θ

γ

ρθ2

⎞

⎟⎟⎟⎟⎟⎠
,

whose inverse matrix is given by

∂V
∂W

=

⎛

⎜⎜⎝

ρ ργ v1(h − θ) ργ v2(h − θ) ργ (h − θ)

0 θ
γ

0 θv1
γ

0 0 θ
γ

θv2
γ

ρθ ρhγ θv1 ρhγ θv2 ρhγ θ

⎞

⎟⎟⎠ . (109)

Combining (109) with (15) for the case d = 2, we can compute ∂U
∂W by (78) as

∂U
∂W

=

⎛

⎜⎜⎝

ργ ρhγ 2v1 ρhγ 2v2 ρ(−θ + hγ 2)

ρhγ 2v1 ργ 3σ1 ργ 3v1v2σ2 ργ 3v1σ4
ρhγ 2v2 ργ 3v1v2σ2 ργ 3σ3 ργ 3v2σ4

ρ(−θ + hγ 2) ργ 3v1σ4 ργ 3v2σ4 ργ 3
(
σ4 − 2θh

(
1 − (v21 + v22)

))

⎞

⎟⎟⎠ (110)

with

σ1 = θ2v21(1 + e′(θ)) + θh + h2v21 − θhv22, σ2 = θ2(1 + e′(θ)) + θh + h2,

σ3 = θ2v22(1 + e′(θ)) + θh + h2v22 − θhv21, σ4 = θ2(1 + e′(θ)) + h2 + θh(v21 + v22).

Let ri be the i th row of the scaled eigenvector matrix R1. In the following, we would like to
verify the relation ∂U

∂W = R1R�
1 by calculating rir�

j , i, j = 1, 2, 3, 4, and then comparing
the results with (110). Since the Lorentz factor couples the velocities v1 and v2, the structures
of the eigenvectors and eigenvalues are much more complicated than the 1D case, making
the verification more difficult. To simplify our calculation, we first observe the following
identities

t1 := λ
(1)
1

1 − v1λ
(1)
1

=
(1 − c2s )v1 − cs

√
(1 − v21 − v22)(1 − v21 − v22c

2
s )

(1 − v21 − v22c
2
s ) + csv1

√
(1 − v21 − v22)(1 − v21 − v22c

2
s )

,

t4 := λ
(4)
1

1 − v1λ
(4)
1

=
(1 − c2s )v1 + cs

√
(1 − v21 − v22)(1 − v21 − v22c

2
s )

(1 − v21 − v22c
2
s ) − csv1

√
(1 − v21 − v22)(1 − v21 − v22c

2
s )

,
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t̃1 := 1

1 − v1λ
(1)
1

=

⎛

⎜⎜⎝1 −
v1

(
(1 − c2s )v1 − cs

√
(1 − v21 − v22)(1 − v21 − v22c

2
s )

)

1 − (v21 + v22)c
2
s

⎞

⎟⎟⎠

−1

,

t̃4 := 1

1 − v1λ
(1)
1

=

⎛

⎜⎜⎝1 −
v1

(
(1 − c2s )v1 + cs

√
(1 − v21 − v22)(1 − v21 − v22c

2
s )

)

1 − (v21 + v22)c
2
s

⎞

⎟⎟⎠

−1

,

from which we can further deduce that

t1 + t4 = 2v1
1 − v21

, t4 − t1 =
2cs
√
1 − v21 − v22

(1 − v21)

√
1 − v21 − v22c

2
s

, (111)

t21 + t24 = 2

(1 − v21)
2

(
v21 + c2s (1 − v21 − v22)

(1 − v21 − v22c
2
s

)
, t24 − t21 =

4csv1
√
1 − v21 − v22

(1 − v21)
2
√
1 − v21 − v22c

2
s

,

(112)

t̃1 + t̃4 = 2

1 − v21
, t̃4 − t̃1 =

2csv1
√
1 − v21 − v22

(1 − v21)

√
1 − v21 − v22c

2
s

, (113)

t̃21 + t̃24 = 2

(1 − v21)
2

(
1 + c2s v

2
1(1 − v21 − v22)

1 − v21 − v22c
2
s

)
, t̃24 − t̃21 =

4csv1
√
1 − v21 − v22

(1 − v21)
2
√
1 − v21 − v22c

2
s

,

(114)

t1 t̃1 + t4 t̃4 = 2v1
(1 − v21)

2

(
1 + c2s (1 − v21 − v22)

1 − v21 − v22c
2
s

)
, t4 t̃4 − t1 t̃1 =

2cs(1 + v21)

√
1 − v21 − v22

(1 − v21)
2
√
1 − v21 − v22c

2
s

.

(115)

Using (31) and (111)–(115), we calculate

r1r�
1 = d(1)

1 + d(2)
1

γ 2 + γ 2v22d
(3)
1 + d(4)

1 = M1 + ργ

1 + e′(θ)
+ ρθγ v22

h(1 − v21)

= ρe′(θ)γ

1 + e′(θ)
+ ργ

1 + e′(θ)
= ργ =

(
∂U
∂W

)

1,1
,

r1r�
2 = hγ (1 − v21)t1d

(1)
1 + 	θv1

γ
d(2)
1 + 2hγ 3v1v

2
2d

(3)
1 + hγ (1 − v21)t4d

(4)
1

= M1

2
hγ (1 − v21)(t1 + t4) + N1

2
hγ (1 − v21)(t4 − t1) + ργ 2	θv1

1 + e′(θ)
+ 2ρθγ 2v1v

2
2

1 − v21

(111)= ρhγ 2v1

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)
+ ρθv1

1 − v21
+ ργ 2	θv1

1 + e′(θ)
+ 2ρθγ 2v1v

2
2

1 − v21

= ργ 2v1

(
h − θ + θv22

1 − v21

)
+ ρθv1

1 − v21
= ρhγ 2v1 =

(
∂U
∂W

)

1,2
,
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r1r�
3 = hγ v2d

(1)
1 + 	θv2

γ
d(2)
1 + hγ v2(1 + γ 2v22)d

(3)
1 + hγ v2d

(4)
1

= ρhγ 2v2

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)
+ ργ 2	θv2

1 + e′(θ)
+ ρθv2

1 − v21
(1 + 2γ 2v22)

= ργ 2v2(h − θ) + ρθv2

1 − v21
(1 + γ 2v22) = ρhγ 2v2 =

(
∂U
∂W

)

1,3
,

r1r�
4 = hγ (1 − v21)t̃1d

(1)
1 + 	θ

γ
d(2)
1 + 2hγ 3v22d

(3)
1 + hγ (1 − v21)t̃4d

(4)
1

= M1

2
hγ (1 − v21)(t̃1 + t̃4) + N1

2
hγ (1 − v21)(t̃4 − t̃1) + ργ 2	θ

1 + e′(θ)
+ 2ρθγ 2v22

1 − v21

(113)= ρhγ 2

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)
+ ρθv21

1 − v21
+ ργ 2	θ

1 + e′(θ)
+ 2ρθγ 2v22

1 − v21

= ργ 2(h − θ) + ρθγ 2(v21 + v22) = ρhγ 2 − ρθ =
(

∂U
∂W

)

1,4
,

r2r�
2 = h2γ 2(1 − v21)

2t21d
(1)
1 + 	2

θ v
2
1d

(2)
1 + 4h2γ 4v21v

2
2d

(3)
1 + h2γ 2(1 − v21)

2t24d
(4)
1

= h2γ 2(1 − v21)
2
(
M1

2
(t21 + t24 ) + N1

2
(t24 − t21 )

)
+ ργ 3	2

θ v
2
1

1 + e′(θ)
+ 4ρθhγ 3v21v

2
2

1 − v21

(112)= h2γ 2

(
ργ

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)(
v21 + c2s

γ 2(1 − v21 − v22c
2
s

)
+ 2ρθv21

hγ (1 − v21)

)

+ ργ 3	2
θ v

2
1

1 + e′(θ)
+ 4ρθhγ 3v21v

2
2

1 − v21

= ρh2γ 3

(
v21 + c2s

γ 2(1 − v21 − v22c
2
s

)
e′(θ)

1 + e′(θ)
+ ργ 3	2

θ v
2
1

1 + e′(θ)

− ρh2γ 3

(
v21 + c2s

γ 2(1 − v21 − v22c
2
s

)
θv22

h(1 − v21)
+ 2ρhγ θv21

1 − v21
+ 4ρθhγ 3v21v

2
2

1 − v21

(31)= ργ 3

(
h2v21 + θ2(1 + e′(θ)v21 + θhv21v

2
2

1 − v21
+ θh

γ 2(1 − v21)

)

= ργ 3 (h2v21 + θ2(1 + e′(θ)v21 + θh(1 − v22)
) =

(
∂U
∂W

)

2,2
,

r2r�
3 = h2γ 2v2(1 − v21)t1d

(1)
1 + 	2

θ v1v2d
(2)
1 + 2h2γ 2v1v2(1 + 2γ 2v22)d

(3)
1

+ h2γ 2v2(1 − v21)t4d
(4)
1

= h2γ 2v2(1 − v21)

(
M1

2
(t1 + t4) + N1

2
(t4 − t1)

)
+ ργ 3	2

θ v1v2

1 + e′(θ)

+ 2ρθhγ v1v2(1 + 2γ 2v22)

1 − v21

(111)= ρh2γ 3v1v2

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)
+ ρθhγ v1v2

1 − v21
+ ργ 3	2

θ v1v2

1 + e′(θ)

+ 2ρθhγ v1v2(1 + 2γ 2v22)

1 − v21
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= ργ 3v1v2
(
h2 − 2θh + θ2(1 + e′(θ))

)+ 3ρθhγ v1v2

1 − v21
(1 + γ 2v22)

= ργ 3v1v2
(
h2 + θh + θ2(1 + e′(θ))

) =
(

∂U
∂W

)

2,3
,

r2r�
4 = h2γ 2(1 − v21)

2t1 t̃1d
(1)
1 + 	2

θ v1d
(2)
1 + 4h2γ 4v1v

2
2d

(3)
1 + h2γ 2(1 − v21)

2t4 t̃4

= h2γ 2(1 − v21)
2
(
M1

2
(t1 t̃1 + t4 t̃4) + N1

2
(t4 t̃4 − t1 t̃1

)
+ ργ 3	2

θ v1

1 + e′(θ)
+ 4ρθhγ 3v1v

2
2

1 − v21

(115)= h2γ 2v1

(
ργ

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)(
1 + c2s (1 − v21 − v22)

1 − v21 − v22c
2
s

)
+ ρθ(1 + v21)

hγ (1 − v21)

)

+ ργ 3	2
θ v1

1 + e′(θ)
+ 4ρθhγ 3v1v

2
2

1 − v21

= ρh2γ 3v1

(
1 + c2s (1 − v21 − v22)

1 − v21 − v22c
2
s

)
e′(θ)

1 + e′(θ)
+ ργ 3	2

θ v1

1 + e′(θ)

− ρhγ 3θv1v
2
2

1 − v21

(
1 + c2s (1 − v21 − v22)

1 − v21 − v22c
2
s

)
+ ρhγ θv1(1 + v21)

1 − v21
+ 4ρθhγ 3v1v

2
2

1 − v21

(31)= ργ 3v1
(
h2 − 2θh + θ2(1 + e′(θ))

)+ ρhγ θv1

1 − v21
(2 + v21 + 3γ 2v22)

= ργ 3v1
(
h2 + θh(v21 + v22) + θ2(1 + e′(θ))

) =
(

∂U
∂W

)

2,4
,

r3r�
3 = h2γ 2v22d

(1)
1 + 	2

θ v
2
2d

(2)
1 + h2(1 + 2γ 2v22)

2d(3)
1 + h2γ 2v22d

(4)
1

= ργ 3v22

(
h2e′(θ)

1 + e′(θ)
+ 	2

θ

1 + e′(θ)

)
+ ρθh

γ (1 − v21)

(−γ 4v42 + (1 + 2γ 2v22)
2)

= ργ 3(h2v22 + θh(1 − v21) + θ2(1 + e′(θ))v22) =
(

∂U
∂W

)

3,3
,

r3r�
4 = h2γ 2v2(1 − v21)t̃1d

(1)
1 + 	2

θ v2d
(2)
1 + 2h2γ 2v2(1 + 2γ 2v22)d

(3)
1 + h2γ 2v2(1 − v21)t̃4d

(4)
1

= h2γ 2v2(1 − v21)

(
M1

2
(t̃1 + t̃4) + N1

2
(t̃4 − t̃1)

)
+ ργ 3	2

θ v2

1 + e′(θ)
+ 2ρθhγ v2(1 + 2γ 2v22)

1 − v21

(113)= h2γ 2v2

(
ργ

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)
+ ρθv21

hγ (1 − v21)

)
+ ργ 3	2

θ v2

1 + e′(θ)

+ 2ρθhγ v2(1 + 2γ 2v22)

1 − v21

= ργ 3v2

(
h2e′(θ)

1 + e′(θ)
+ 	2

θ

1 + e′(θ)

)
+ ρθhγ v2

1 − v21

(
2(1 + 2γ 2v22) − γ 2v22 + v21

)

= ργ 3v2
(
h2 + θh(v21 + v22) + θ2(1 + e′(θ))

) =
(

∂U
∂W

)

3,4
,

r4r�
4 = h2γ 2(1 − v21)

2 t̃21d
(1)
1 + 	2

θd
(2)
1 + 4h2γ 4v22d

(3)
1 + h2γ 2(1 − v21)

2 t̃24d
(4)
1

= h2γ 2(1 − v21)
2
(
M1

2
(t̃21 + t̃24 ) + N1

2
(t̃24 − t̃21 )

)
+ ργ 3	2

θ

1 + e′(θ)
+ 4ρθhγ 3v22

1 − v21
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(114)= h2γ 2

(
ργ

(
e′(θ)

1 + e′(θ)
− θv22

h(1 − v21)

)(
1 + c2s v

2
1(1 − v21 − v22)

1 − v21 − v22c
2
s

)
+ 2ρθv21

hγ (1 − v21)

)

+ ργ 3	2
θ

1 + e′(θ)
+ 4ρθhγ 3v22

1 − v21

= ργ 3

(
h2e′(θ)

1 + e′(θ)
+ 	2

θ

1 + e′(θ)

)
+ ρθhγ

1 − v21

(
2v21 + 3γ 2v22

)

+ ργ v21

1 − v21 − v22c
2
s

(
h2e′(θ)c2s
1 + e′(θ)

− θhv22c
2
s

1 − v21

)

(31)= ργ 3(h2 − 2θh + θ2(1 + e′(θ)) + 3ργ hθ

1 − v21
(v21 + γ 2v22)

= ργ 3(h2 − 2θh + θ2(1 + e′(θ)) + 3θh(v21 + v22)) =
(

∂U
∂W

)

4,4
.

Noting that both matrices R1R�
1 and ∂U

∂W in (110) are symmetric, we have

r2r�
1 =

(
∂U
∂W

)

2,1
, r3r�

1 =
(

∂U
∂W

)

3,1
, r3r�

2 =
(

∂U
∂W

)

3,2
,

r4r�
1 =

(
∂U
∂W

)

4,1
, r4r�

2 =
(

∂U
∂W

)

4,2
, r4r�

3 =
(

∂U
∂W

)

4,3
.

Hence, we have verified that ∂U
∂W = R1R�

1 . Next, in order to verify
∂U
∂W = R2R�

2 , we consider
the rotation matrix

T =

⎛

⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎠ .

We observe that

R̃2(V) = T R̃1(TV)T , D̃2(V) = T D̃1(TV)T , R1(TV)R1(TV)� = T
∂U
∂W

T ,

�2(V) = �1(TV), F2(V) = TF1(TV),
∂F2(U)

∂U
= T

∂F1(TU)

∂U
= T

∂F1(TU)

∂TU
T .

Then we have

R2(V)�2(V)R−1
2 (V) = R̃2(V)

√
D̃2(V)�2(V)

(√
D̃2(V)

)−1

R̃−1
2 (V)

= T R̃1(TV)T�1(TV)T R̃−1
1 (TV)T

= T R̃1(TV)

√
D̃1(TV)�1(TV)

(√
D̃1(TV)

)−1

R̃−1
1 (TV)T

= TR1(TV)�1(TV)R−1
1 (TV)T = T

∂F1(TU)

∂TU
T = ∂F2(U)

∂U
,

and

R2(V)R2(V)� = R̃2(V)D̃2(V)R̃2(V)� = T R̃1(TV)D̃1(TV)R̃1(TV)�T

123



   43 Page 40 of 62 Journal of Scientific Computing            (2024) 98:43 

= TR1(TV)R1(TV)�T = T 2 ∂U
∂W

T 2 = ∂U
∂W

.

The proof is completed.
�	

Since the dissipation matrices (105) and (107) are defined at the cell interfaces, we should
estimate the quantities in the dissipation matrices by some “averged” states. Similar to the
1D case in Theorem 7, we evaluate hi+ 1

2
appropriately to obtain an accurate resolution of

stationary contact discontinuities. The averages of the other quantities are consistent with the
choice in the 1D case.

Remark 4 Up to now, we have achieved semi-discrete EC and ES schemes for the RHD
equations, which can be written into an ODE system

d

dt
U = L(U), (116)

where U and L(U) in the 1D case read

U = (U1, . . . ,UN )� , L(U) =
(
F̄ 1

2
− F̄ 3

2

	x
, . . . ,

F̄i− 1
2

− F̄i+ 1
2

	x
, . . . ,

F̄N− 1
2

− F̄N+ 1
2

	x

)�
,

where F̄ = F̃ for EC schemes and F̄ = F̂ for ES schemes. The semi-discrete system (116)
can be further discretized in time by using some Runge–Kutta (RK) methods, for example,
the classic third-order strong-stability-preserving RK (SSP-RK3) method:

U (1) = Un + 	tL(Un),

U (2) = 3

4
Un + 1

4

(
U (1) + 	tL(U (1))

)
,

Un+1 = 1

3
Un + 2

3

(
U (2) + 	tL(U (2))

)
.

(117)

The semi-discreteES schemes coupledwithSSP-RK3methodworkwell formanybenchmark
problems, but the rigorous analysis of the fully discrete ES property is yet unavailable in
theory. To obtain the fully discrete, provably EC/ES schemes, one can employ the relaxation
RK (RRK) method developed in [33, 51]. For example, we can use the third order RRK
(RRK3) method [51]:

U (1) = Un + 	tL(Un),

U (2) = 3

4
Un + 1

4

(
U (1) + 	tL(U (1))

)
,

Un+1 = Un + 1

6
γn	t

(
L(Un) + L(U (1)) + 4L(U (2))

)
,

(118)

where γn is the relaxation parameter. Define the total entropy E :=
N∑
i=1

η(Ui )	x , then

the relaxation parameter γn is computed in each time step by solving the following scalar
algebraic equation

r(γ ) = E(Un + γdn) − E(Un) − γ ε = 0,

where

dn = 	t

6

(
L(Un) + L(U (1)) + 4L(U (2))

)
,
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ε = 	t

6

N∑

i=1

(
W(Un

i )
�Li (Un) + W(U(1)

i )�Li (U (1)) + 4W(U(2)
i )�Li (U (2))

)
	x

with Li (U) := 1
	x (F̄i− 1

2
− F̄i+ 1

2
).

5 Numerical Experiments

In this section, we present a series of numerical experiments to demonstrate the accuracy
and effectiveness of our high-order accurate EC and ES schemes for 1D and 2D RHD with
various special EOSs. Specifically, we investigate the sixth-order and fourth-order accurate
EC schemes, referred to as EC6 and EC4 respectively, as well as the fifth-order accurate
ES scheme with WENO-based numerical flux (abbreviated as ES5), and the fourth-order
accurate ES scheme with ENO-based numerical flux (abbreviated as ES4). To obtain the
fully discrete schemes, we use either RRK3 (118) or SSP-RK3 (117) for time discretization.
To illustrate the importance of ES property, we will also present a comparison between our
EC/ES schemes and a non-EC, non-ES scheme. Unless otherwise specified, the CFL number
for all tests is set as 0.4, and the Rusanov-type dissipation term (75) is used. The choice of
EOS will be specified in each test case.

5.1 One-Dimensional Examples

Example 1 (Accuracy test) In this example, we evaluate the accuracy of our high-order EC
and ES schemes for 1D RHD using a smooth problem with the initial data provided by

V(x, 0) = (1 + 0.2sin(x), 0.2, 1)� .

The periodic boundary conditions and TM-EOS (10) are employed. The exact solution of
this problem is given by

V(x, t) = (1 + 0.2sin (x − 0.2t) , 0.2, 1)� ,

which describes a sine wave propagating in the domain [0, 2π].
To examine the spatial accuracy, we set the mesh size as 	x = 2π

N with a varying number
of uniformly distributed grids N ∈ {10, 20, 40, 80, 160}. We test both RRK3 and SSP-RK3
methods for time discretization. The time step-size is chosen to match the spatial accuracy,

with 	t = 0.4	x2 for EC6, 	t = 0.4	x
5
3 for ES5, and 	t = 0.4	x

4
3 for EC4 and ES4,

respectively. The quadruple precision is used for implementation. The l1 and l2 errors at
t = 1.5 in the rest-mass density ρ and the corresponding rates are shown in Table 1 for EC6
and ES5, and in Table 2 for EC4 and ES4, respectively. As shown in the tables, the schemes
achieve the expected convergence orders. We also verify the time evolution of discrete total
entropy

∑
i η(Ui (t))	x up to t = 1.5. As shown in Figs. 1 and 2, the discrete total entropy

decreases for ES5 and ES4 schemes, owing to their numerical dissipation mechanism, but
this effect reduces as the number of grids increases. For EC6 and EC4 schemes, the discrete
total entropy remains nearly unchanged with time, as expected.

Example 2 (Relativistic isentropic problem) In this example. we investigate a truly isentropic
problem [49] to study the temporal evolution of discrete total entropy. The initial conditions
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Fig. 1 Example 1: Evolution of discrete total entropy, EC6 and ES5

Fig. 2 Example 1: Evolution of discrete total entropy, EC4 and ES4

for the rest-mass density and pressure are given by

ρ(x, 0) =
{
1 + exp

[−1/(1 − x2/L2)
]
, |x | < L,

1, otherwise,
p = Kρ�.

The initial velocity v(x, 0) = 0 for |x | ≥ L , while it is determined for |x | < L by enforcing
the following Riemann invariant constant

J− = 1

2
ln

(
1 + v

1 − v

)
− 1√

� − 1
ln

(√
� − 1 + cs√
� − 1 − cs

)
.

The computational domain is [−0.4, 2]with periodic boundary conditions. The parameters
are consistent with those in [49]: L = 0.3, � = 5

3 , K = 100, and the CFL number is set to be
0.2. Figure3 presents the temporal evolution of the discrete total entropy,

∑
i η(Ui (t))	x ,

up to t = 0.8 for the EC6 and ES5 schemes on different uniform mesh grids. One can
observe that the discrete total entropy remains nearly constant for EC6 schemes, while for
ES5 schemes, it decays slightly over time due to the inherent dissipation mechanism, as
expected.

Furthermore, we conduct a comparative analysis between the ES/EC schemes and a fifth-
order non-EC, non-ES scheme (termed non-ES5), which is constructed by adding a time-
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Fig. 3 Example 2: Evolution of discrete total entropy for EC and ES schemes with SSP-RK3 and RRK3 time
discretization

Fig. 4 Example 2: Comparison between EC6, ES5, and non-ES5

dependent sinusoidal term to the dissipation item into the EC flux:

F̂i+ 1
2

= F̃i+ 1
2

− 3

5
sin(50t) Di+ 1

2
[[W]]i+ 1

2
. (119)

For time discretization, we use the SSP-RK3 method in this comparison. The numerical
results at t = 0.8 computed with 200 uniform grids are shown in Fig. 4a. One can see that
the non-ES5 solution exhibits spurious oscillations and is unable to accurately resolve the
structure of the solution in comparison with EC6 and ES5. The evolution of discrete total
entropy is presented in Fig. 4b, where we observe that the discrete total entropy generated by
non-ES5 does not always diminish over time. This indicates that the non-ES5 scheme fails
to satisfy the discrete entropy inequality (70).

In the following, we test a density perturbation problem, a blast wave interaction problem,
and four Riemann problems to validate the capability of our high-order ES schemes in
resolving discontinuous solutions. Due to the complexity of obtaining the exact solutions for
these problemswith variousEOSs,we utilize the first-order local Lax–Friedrichs schemewith
100,000 uniform grids to produce reference solutions. The reference solutions are depicted
with solid lines, while the numerical solutionswith SSP-RK3 time discretization are indicated
by circle markers “◦”. For the examples using RRK3, the numerical results are denoted by
square markers “�”.
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Fig. 5 Example 3: Numerical results obtained by ES5 with SSP-RK3 (circle markers “◦”) and RRK3 (square
markers “�”) at t = 0.376. RC-EOS (8) is used

Fig. 6 Evolution of discrete total entropy for Example 6: SSP-RK3 (left) and RRK3 (right)

Example 3 (Density perturbation problem) The initial conditions of this example are given
by

V(x, 0) =
{

(5, 0, 50)�, 0 ≤ x < 0.5,

(2 + 0.3 sin(50x), 0, 5)�, 0.5 ≤ x ≤ 1,

which introduce a sine-type perturbation to the rest-mass density [16]. This problem models
the interaction between a shock and a sine wave. We adopt the RC-EOS (8) for this test. The
outflow boundary conditions are imposed on both the left and right boundaries of the domain
[0, 1], by setting the data for all left (and similarly, right) ghost points to match the values
of the nearest computational points. We numerically simulate this problem by using ES5 on
400 uniform grids up to time t = 0.376. The computational results are shown in Fig. 5. We
observe that ES5 resolves the small perturbation waves with high fidelity. To verify the ES
property of our scheme, we compute the discrete total entropy

∑
i η(Ui (t))	x , which should

decrease over time. The resulting plot is shown in Fig. 6, and we observe the expected decay
of the discrete total entropy, which confirms the ES property of the scheme.

Example 4 (Blast wave interaction) The final 1D example simulates the interaction between
two strong relativistic blast waves in the domain [0, 1]. The initial conditions are defined as
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Fig. 7 Example 4: Numerical results obtained by ES5 with SSP-RK3 (circle markers “◦”) and RRK3 (square
markers “�”) at t = 0.43. TM-EOS (10) is used

Fig. 8 Evolution of discrete total entropy for Example 6: SSP-RK3 (left) and RRK3 (right)

follows:

V(x, 0) =

⎧
⎪⎨

⎪⎩

(1, 0, 103)�, 0 ≤ x < 0.1,

(1, 0, 10−2)�, 0.1 ≤ x < 0.9,

(1, 0, 102)�, 0.9 ≤ x ≤ 1,

We employ TM-EOS (10) as our EOS, and apply outflow boundary conditions at both left
and right boundaries. At t = 0.43, the solutions form a complex wave structure, which
encompasses three contact discontinuities and two shockwaveswithin the interval [0.5, 0.53].
We compute the reference solution via a first-order local Lax–Friedrichs scheme, using an
ultra-fine mesh of 200, 000 uniform cells. The numerical solutions obtained by ES5 on
4000 uniform grids are presented in Fig. 7, where we observe good agreement between the
numerical and reference solutions. Furthermore, we compute the discrete total entropy, which
is shown in Fig. 8. We can observe that the discrete total entropy is decreasing over time,
indicating that the fully discrete scheme is ES.

Example 5 (1D Riemann problem I) The initial conditions are taken as

V(x, 0) =
{

(10, 0, 40
3 )�, 0 ≤ x < 0.5,

(1, 0, 10−6)�, 0.5 ≤ x ≤ 1.

123



   43 Page 48 of 62 Journal of Scientific Computing            (2024) 98:43 

Fig. 9 Example 5: Numerical results obtained by ES5 with SSP-RK3 (circle markers “◦”) and RRK3 (square
markers “�”) at t = 0.4, RC-EOS (8)

Fig. 10 Evolution of discrete total entropy for Example 5: SSP-RK3 (left) and RRK3 (right)

The computational domain [0, 1] is divided into 400 uniform cells, and we use the outflow
boundary conditions. For this example, we use the RC-EOS (8) and set the CFL number as
0.1. The exact solution contains a left-moving rarefaction wave, a contact discontinuity, and
a right-moving shock over time. The numerical solutions at t = 0.4 obtained by ES5 are
shown in Fig. 9. We can see that the computed solutions agree with the reference solution,
and the wave structures are well captured by ES5. To verify the ES property, we examine the
evolution of discrete total entropy, as shown in Fig. 10. We observe that the total numerical
entropy

∑
i η(Ui (t))	x decreases over time, as expected.

Example 6 (1D Riemann problem II) The wave structure of this problem is akin to that of
Example 5.However, the regionbetween the contact discontinuity and the right-moving shock
is significantly narrow, which poses a challenge to the simulation. The initial conditions of
the problem are as follows:

V(x, 0) =
{

(1, 0, 103)�, 0 ≤ x < 0.5,

(1, 0, 10−2)�, 0.5 ≤ x ≤ 1.

We adopt the TM-EOS (10) for this test case and use the outflow boundary conditions.
Figure11 shows the numerical solutions of the rest-mass density ρ, the velocity v1, and the
pressure p obtained by ES5 with 400 uniform grids at t = 0.4. The results demonstrate that
our ES5 method can effectively resolve wave structures without producing any significant
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Fig. 11 Example 6: Numerical results obtained by ES5 with SSP-RK3 (circle markers “◦”) and RRK3 (square
markers “�”) at t = 0.4. TM-EOS (10) is used

Fig. 12 Evolution of discrete total entropy for Example 6: SSP-RK3 (left) and RRK3 (right)

oscillations. The evolution of the discrete total entropy is depicted in Fig.12, which reveals
a dissipated entropy. This verifies the entropy stability of the fully discrete scheme.

As observed from the above examples, the numerical results with SSP-RK3 and RRK3
time discretization are very close for both smooth and discontinuous problems. To save space,
in the following, we will only present the numerical results with the classic SSP-RK3 time
discretization.

Example 7 (1D Riemann problem III) The initial conditions of this Riemann problem are

V(x, 0) =
{

(1, 0.9, 1)�, 0 ≤ x < 0.5,

(1, 0, 10)�, 0.5 ≤ x ≤ 1.

This test models a contact discontinuity and two shock waves that propagate in opposite
directions. The spatial domain [0, 1] is divided into 400 uniform cells, with outflow boundary
conditions. The RC-EOS (8) is used for this example, and the outflow boundary conditions
are employed. We compare the ES5 scheme and a non-EC, non-ES scheme (termed non-
ES5), which is constructed by augmenting the dissipative term in the numerical flux (69)
with a sinusoidal term:

F̂i+ 1
2

= F̃i+ 1
2

− 6

5
sin(7.6t + 0.1) Di+ 1

2
[[W]]i+ 1

2
. (120)
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Fig. 13 Example 7: Numerical results obtained by ES5 (symbols “◦”) and non-ES5 (symbols “�”) schemes
at t = 0.4. RC-EOS (8) is used

Fig. 14 Example 8: Numerical results obtained by ES5 at t = 0.4. IP-EOS (9) is used

For comparison purpose, the computational settings of non-ES5 are the same as ES5. The
numerical solutions obtained by using ES5 and non-ES5 at t = 0.4 are shown in Fig. 13,
where the ES5 solution is indicated by circle markers “◦” and the non-ES solution is denoted
by square markers “�”. One can see that the ES5 solution is in good agreement with the
reference one, while the non-ES5 solution exhibits significant nonphysical oscillations.

Example 8 (1D Riemann problem IV) For this test, we consider the following initial data

V(x, 0) =
{

(1,−0.7, 20)�, 0 ≤ x < 0.5,

(1, 0.7, 20)�, 0.5 ≤ x ≤ 1.

We choose the IP-EOS (9) for this problem. The solution consists of a contact discontinuity,
and two rarefaction waves moving left and right, respectively. Figure14 gives the numerical
solutions at t = 0.4 obtained by using ES5 on 400 uniform grids. The wave patterns of
the numerical solutions are consistent with the reference ones, but there exists a undershoot
for the rest-mass density ρ at x = 0.5. This phenomenon was also observed in the results
obtained using the ID-EOS (6) as reported in [18].
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Fig. 15 Example 9: Evolution of discrete total entropy with different EOSs

5.2 Two-Dimensional Examples

Example 9 (Accuracy test) This example investigates a 2D smooth problem with periodic
boundary conditions in the domain [0, 2π ]2. The initial conditions are given by

V(x, y, 0) = (1 + 0.2sin(x + y), 0.2, 0.2, 1)� .

We consider the three EOSs (8), (9), and (10), repetitively. The exact solution is

V(x, y, t) = (1 + 0.2sin (x + y − 0.4t) , 0.2, 0.2, 1)� .

To investigate the spatial accuracy, we set the mesh size as 	x = 	y = 2π
N with varying

N ∈ {10, 20, 40, 80, 160}. The time step-size is chosen to match the spatial accuracy: 	t =
0.4	x2 for EC6 and 	t = 0.4	x

5
3 for ES5. We report the l1 and l2 errors at t = 0.1 for the

rest-mass density and corresponding orders in Tables 3, 4, and 5 for RC-EOS (8), IP-EOS (9),
and TM-EOS (10), respectively.We observe the expected convergence rates for ES5 andEC6.
In addition, we analyze the evolution of the discrete total entropy

∑
i, j η(Ui, j (t))	x	y, as

shown in Fig. 15. The results indicate that the total numerical entropy decreases over time
for ES5, while it almost remains constant for EC6, as expected.

In the following, we solve three 2D Riemann problems of RHD, which were proposed
and studied in [30] with ID-EOS (6). We perform the same tests but with different EOSs.

Example 10 (2D Riemann problem I) The initial conditions of the first 2D Riemann problem
are given by

V(x, y, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0.5, 0.5,−0.5, 5)� x > 0.5, y > 0.5,

(1, 0.5, 0.5, 5)� x < 0.5, y > 0.5,

(3,−0.5, 0.5, 5)� x < 0.5, y < 0.5,

(1.5,−0.5,−0.5, 5)� otherwise.

The domain is taken as the unit square [0, 1]2 with outflowboundary conditions. This problem
describes the interaction between four contact discontinuities, resulting in a spiral over time.

We adopt the IP-EOS (9) as our EOS and employ a uniform mesh consisting of 400×400
grids. The numerical solutions obtained by ES5 at t = 0.4 are presented in Fig. 16 as contours
for the rest-mass density and pressure logarithms. The results demonstrate that our ES5 can
effectively resolve complex 2D relativistic waves.
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Fig. 16 Example 10: Numerical results obtained by ES5 at t = 0.4. 30 equally spaced contour lines are
displayed

Example 11 (2D Riemann problem II) The initial data of the second Riemann problem are
given by

V(x, y, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 0, 0, 1)� x > 0.5, y > 0.5,

(0.5771,−0.3529, 0, 0.4)� x < 0.5, y > 0.5,

(1,−0.3529,−0.3529, 1)� x < 0.5, y < 0.5,

(0.5771, 0,−0.3529, 0.4)� otherwise,

which is about the interaction between four rarefaction waves.
In this example, TM-EOS (10) is adopted as our EOS, and the spatial domain [0, 1]2

is divided into 400 × 400 uniform cells. The outflow boundary conditions are specified.
Figure17 presents the contours of the rest-mass density and pressure logarithms at t = 0.4
computed by ES5. Our numerical scheme successfully captures the formation of two shock
waves resulting from the interaction of four rarefaction waves.

Example 12 (2D Riemann problem III) The initial data for the third Riemann problem are
given by

V(x, y, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0.035145216124503, 0, 0, 0.162931056509027)� x > 0.5, y > 0.5,

(0.1, 0.7, 0, 1)� x < 0.5, y > 0.5,

(0.5, 0, 0, 1)� x < 0.5, y < 0.5,

(0.1, 0, 0.7, 1)� otherwise,

which describe two contact discontinuities and two shock waves, located at two corners. As
time progresses, these waves interact with each other and coalesce into a “mushroom cloud”
at the center of the domain [0, 1]2. For this problem, we adopt the RC-EOS (8) as our EOS
and divide the computational domain [0, 1]2 into 400 × 400 uniform cells. Additionally,
we specify outflow boundary conditions. The contours of the rest-mass density and pressure
logarithms at t = 0.4 are displayed in Fig. 18, which shows the high resolution of the complex
wave patterns.
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Fig. 17 Example 11: Numerical results obtained by ES5 at t = 0.4. 30 equally spaced contour lines are
displayed
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Fig. 18 Example 12: Numerical results obtained by ES5 at t = 0.4. 30 equally spaced contour lines are
displayed

Example 13 (Shock-bubble interaction problems) The last example simulates two shock-
bubble interaction problems within the computational domain [0, 325] × [0, 90], with
reflective boundary conditions at y = 0 and y = 90, inflow boundary conditions at x = 325,
and outflow boundary conditions at x = 0. The setups are similar to those in [30], but with a
different EOS, namely, the RC-EOS (8) is used in our setups. The left and right states of the
shock are set as follows:

V(x, y, 0) =
{

(1, 0, 0, 0.05)� x < 265,

(1.941272902134272,−0.200661045980881, 0, 0.15)� x > 265.
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Fig. 19 The first problem of Example 13: the schlieren images of ρ at t = 90, 180, 270, 360, 450 (from top
to bottom). RC-EOS (8) is used
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We consider two shock-bubble interaction problems, and the setups of these two problems
are the same except for the state of the bubble. For the first problem, the state of a (light)
bubble is given by

V(x, y, 0) = (0.1358, 0, 0, 0.05)�,

√
(x − 215)2 + (y − 45)2 ≤ 25.

For the second problem, the state of a (heavy) bubble is defined as

V(x, y, 0) = (3.1538, 0, 0, 0.05)�,

√
(x − 215)2 + (y − 45)2 ≤ 25.

To visualize the interaction between the shock and the bubble for both problems, we
present the schlieren images of the rest-mass density ρ at t = 90, 180, 270, 360, 450 in
Figs. 19 and 20. The numerical solutions are obtained using ES5 on 650×180 uniform grids.
As the figures demonstrate, our scheme effectively captures the dynamics of the interaction
between the left-moving shock and the bubble.

6 Conclusions

The ideal EOS, originating from the non-relativistic case, is often a poor approximation for
most relativistic flows. In this paper, we have made the first attempt to develop high-order ES
finite difference schemes for RHD with general Synge-type EOS (4), which covers a wide
range of more accurate EOSs. We have discovered an entropy pair for the RHD equations
with general Synge-type EOS. We have rigorously proven that the found entropy function is
strictly convex and derived the associated entropy variables. However, due to the nonlinear
coupling between theRHDequations, it is impossible to explicitly express primitive variables,
fluxes, and entropy variables in terms of conservative variables. As a result, it is challenging
to analyze the entropy structure of the RHD equations, study the convexity of the entropy,
and construct EC numerical fluxes. Based on a suitable set of parameter variables, we have
constructed novel and explicit two-point EC fluxes in a unified form for general Synge-type
EOS. These two-point EC fluxes are used to design second-order EC schemes, and higher-
order EC schemes are obtained by linearly combining the two-point EC fluxes. We have
achieved arbitrarily high-order accurate ES schemes by adding dissipation terms into the EC
schemes, based on ENOorWENO reconstructions. Furthermore, we have derived the general
dissipation matrix for general Synge-type EOS based on the scaled eigenvectors of the RHD
system. The accuracy and effectiveness of the proposed schemes have been demonstrated
through several numerical RHD examples with various special EOSs.

Our results are also useful for further developing ES discontinuous Galerkin or finite
volume schemes for RHD with general EOS and may be helpful for exploring EC and ES
schemes for the relativistic MHD equations with Synge-type EOS.
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Fig. 20 The second problem of Example 13: the schlieren images of ρ at t = 90, 180, 270, 360, 450 (from
top to bottom). RC-EOS (8) is used
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