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Abstract

All the existing entropy stable (ES) schemes for relativistic hydrodynamics (RHD) in the
literature were restricted to the ideal equation of state (EOS), which however is often a poor
approximation for most relativistic flows due to its inconsistency with the relativistic kinetic
theory. This paper develops high-order ES finite difference schemes for RHD with general
Synge-type EOS, which encompasses a range of special EOSs. We first establish an entropy
pair for the RHD equations with general Synge-type EOS in any space dimensions. We rig-
orously prove that the found entropy function is strictly convex and derive the associated
entropy variables, laying the foundation for designing entropy conservative (EC) and ES
schemes. Due to relativistic effects, one cannot explicitly express primitive variables, fluxes,
and entropy variables in terms of conservative variables. Consequently, this highly compli-
cates the analysis of the entropy structure of the RHD equations, the investigation of entropy
convexity, and the construction of EC numerical fluxes. By using a suitable set of parameter
variables, we construct novel two-point EC fluxes in a unified form for general Synge-type
EOS. We obtain high-order EC schemes through linear combinations of the two-point EC
fluxes. Arbitrarily high-order accurate ES schemes are achieved by incorporating dissipation
terms into the EC schemes, based on (weighted) essentially non-oscillatory reconstructions.
Additionally, we derive the general dissipation matrix for general Synge-type EOS based on
the scaled eigenvectors of the RHD system. We also define a suitable average of the dissipa-
tion matrix at the cell interfaces to ensure that the resulting ES schemes can resolve stationary
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contact discontinuities accurately. Several numerical examples are provided to validate the
accuracy and effectiveness of our schemes for RHD with four special EOSs.

Keywords Entropy stable scheme - Entropy conservative scheme - Relativistic
hydrodynamics - Equation of state - Dissipation matrix

1 Introduction

This paper is concerned with the development of stable high-order numerical methods for
simulating the relativistic hydrodynamics (RHD), which have important applications in astro-
physics, high energy physics, etc. The governing equations of d-dimensional special RHD
can be written as a system of hyperbolic conservation laws:

d

U JdF; (U)
— =0, 1
at ; 0x; @
where
D DU,’
U=|m|, F;U=|vm+pe (2)
E m;

with the mass density D = py, momentum vector m = phy?v, and energy E = phy? — p.
Here, p, v = (v, v2, -+, vg) T, and p denote the rest-mass density, the fluid velocity vector,
and the pressure, respectively. The vector e; denotes the ith column of the identity matrilx of
size d. The velocity is normalized such that the speed of light is 1. Additionally, y = N
is the Lorentz factor, h = 1 + ¢ + % represents the specific enthalpy, and e is the specific
internal energy.

The RHD system (1) is closed by an equation of state (EOS). A general EOS may be

written as

h = h(p, p),

which typically satisfies the following inequality [71] for relativistic causality:

1 oh oh

h (* - f(p,p)> <—(p.p) <0 3)
p dp ap

such that the local sound speed ¢y < 1; see [71] for more details. In this paper, we assume

that i only depends on %, namely,

h=h©) =1+e@®) +0 with 6:=2, )
0

where 0 is a temperature-like variable. For convenience, we will refer to such a general class
of EOS (4) as Synge-type EOS, because the Synge EOS (7) for perfect gas and its common
approximations belong to this type. Then the condition (3) can be equivalently reformulated
as

0 (14 ®)

ho) > o0

. €O)>0, (&)
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which are used throughout this paper. The condition (5), along with limgy_, ¢+ e(#) = 0,
implies that e(#) + 1 > +/6% + 1 or equivalently #(6) > ~/62+ 1 + 6. Note that this
requirement is less stringent than the Taub inequality, (h —0)(h —46) > 1, proposed in [59].
Consequently, our assumptions on the general EOS (4) are rather mild, accommodating a
wide range of commonly used EOSs. A special example of such EOSs is the ideal EOS:

r

h(G)_l—i-F_lO, (6)
where the constant I € (1, 2] stands for the adiabatic index. The ideal EOS (6) is commonly
used in non-relativistic fluid dynamics and has also been borrowed to the study of relativistic
flows. However, for most relativistic astrophysical flows, the ideal EOS (6) is a poor approx-
imation due to its inconsistency with the relativistic kinetic theory (see [59]). Furthermore,
when the adiabaticindex I > 2, the ideal EOS (6) allows for superluminal wave propagation,
which violates the principles of special relativity. In the relativistic case, the correct EOS for
the single-component perfect gas was given by Synge in [56]:

L _ Ks(1/0)

= , 7
K»(1/0) @

where K, and K3 are the second kind modified Bessel functions of order two and three,
respectively. Due to the presence of the complicated modified Bessel functions, the EOS (7)
is computationally expensive and thus rarely used in the literature. Several efforts have been
made to derive simplified EOSs that offer greater accuracy than the the ideal EOS (6), while
being simpler than the EOS (7). Ryu, Chattopadhyay, and Choi [54] proposed the following
EOS

2(60% + 46 + 1)

hO) = —— 75— ®

Sokolov, Zhang, and Sakai [55] suggested the following EOS

h(0) =20 + 1 +462. ©)

Mathews [41] gave the following EOS

5 9
h(®) = =6 1+ =62 10
O) =50+ 1+ 0% (10)

which was later employed by Mignone, Plewa, and Bodo [45] in numerical RHD. Following
[45, 54], we will abbreviate the EOSs (6), (8), (9), and (10) as ID-EOS, RC-EOS, IP-EOS,
and TM-EOS, respectively. We remark that the above EOSs (6)—(10) all belong to the general
class of EOSs in the form (4) and satisfy the condition (5).

The study of the RHD system presents significant difficulties due to its inherent nonlin-
earity, making analytical approaches difficult to employ. As a result, numerical simulations
have become the primary method for investigating the underlying physical principles in RHD.
To the best of our knowledge, the earliest numerical studies of RHD can be traced back to
references [42, 62], in which finite difference methods incorporating the artificial viscos-
ity technique were employed to solve the RHD equations in either Lagrangian or Eulerian
coordinates. Over the past few decades, numerous high-resolution and high-order accurate
numerical methods have been developed to numerically solve the RHD equations. These
methods encompass a variety of techniques, such as finite volume methods (e.g. [3, 13, 44,
60]), finite difference methods (e.g. [16, 17, 49, 69]), and discontinuous Galerkin methods
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(e.g. [34, 48, 61, 73]). Adaptive mesh refinement [72] and adaptive moving mesh [30] tech-
niques have been developed to further enhance the resolution of discontinuities and complex
RHD flow structures. The physical-constraint-preserving high-order accurate schemes were
also designed to maintain the positivity of density and pressure as well as the subluminal
constraint on the velocity; see [14, 64, 65, 67-71]. For more related works, interested readers
can refer to the review articles [39, 40], the textbook [52], a limited list of some recent papers
[23, 38, 43, 66], as well as the references therein.

The RHD Egs. (1) exhibit a nonlinear hyperbolic nature, leading to solutions that may be
discontinuous with the presence of shocks or contact discontinuities. To address this, weak
solutions are typically considered. However, weak solutions may not be unique. To identify
the physically relevant solution among the set of weak solutions, admissibility criteria in the
form of entropy conditions are commonly imposed. Numerically, it is desirable to develop
schemes that satisfy a discrete version of the entropy condition, known as entropy stable (ES)
schemes. Such ES schemes ensure that entropy is conserved in smooth regions while being
dissipated across discontinuities, thereby following the entropy principle of physics in an
accurate and robust manner. Moreover, the ES methods allow for controlling the amount of
dissipation introduced into the schemes to guarantee entropy stability. Thus, the development
of ES schemes for the RHD Egs. (1) is both highly desirable and meaningful.

The study of entropy stability analysis has been extensively carried out for first-order
accurate schemes and scalar conservation laws; see [15, 29, 46, 47]. For hyperbolic systems
of conservation laws, most of the attention has been paid to exploring ES schemes that focus
on a single given entropy function. The framework of ES schemes originates from Tadmor
[57, 58], who systematically established a solid foundation for constructing the second-order
entropy conservative (EC) numerical fluxes and first-order ES fluxes. Lefloch, Mercier, and
Rohde [35] proposed a general approach for constructing higher-order accurate EC fluxes.
Building upon these developments, Fjordholm, Mishra, and Tadmor [25] developed a general
approach to construct ES schemes with arbitrary order of accuracy. This approach combines
high-order EC numerical fluxes with the essentially non-oscillatory (ENO) reconstruction
that satisfies the sign property [26]. On the other hand, high-order ES schemes have also been
constructed via the summation-by-parts (SBP) procedure [9, 24, 27]. ES space-time discon-
tinuous Galerkin schemes have been investigated in [4, 5, 31], where the proof of entropy
stability requires exact integration. Recently, a framework for designing ES high-order dis-
continuous Galerkin methods through suitable numerical quadrature has been proposed in
[12]. In this study, the SBP operators established in [9, 24, 27] were used and generalized
to triangles. The key building blocks of high-order accurate ES schemes are the two-point
EC numerical fluxes. In [57, 58], Tadmor proposed a general way to derive the two-point
EC numerical fluxes, whose formula contains a path integration. This leads to difficulties or
much cost during the computation since the integration may not have an explicit formula.
Consequently, researchers have focused on developing affordable two-point EC numerical
fluxes with explicit formulas. Several notable advancements have been made in this area for
various equations, including the compressible Euler systems [10, 32, 36, 50, 53, 74], shallow
water equations [21, 28], and magnetohydrodynamics (MHD) [11, 37, 63]. In [1], Abgrall
proposed a general framework for residual distribution (RD) schemes to satisfy additional
conservation relations, leading to the construction of EC and ES schemes by incorporating
suitable correction terms. This entropy correction approach was further extended to time-
dependent hyperbolic problems by Abgrall, Offner, and Ranocha in [2] to design schemes that
simultaneously satisfy multiple desired properties. For the first time, the entropy correction
method was used in [2] to obtain fully-discrete EC/ES RD schemes.
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In recent years, significant efforts have been devoted to developing effective ES schemes
for RHD; see [6, 8, 18, 20, 22]. The focus of these studies was on the RHD Eqgs. (1) with
ID-EOS (6). The authors of [18] and [6] proposed high-order accurate ES finite difference
schemes for RHD using two-point EC fluxes and suitable entropy dissipation operators.
In subsequent work [20, 22], Duan and Tang extended these schemes to adaptive moving
meshes in curvilinear coordinates. Additionally, the study of ES schemes was extended to
the relativistic MHD equations in [19, 66]. It was proven in [66] that conservative relativistic
MHD equations are not symmetrizable and do not admit a thermodynamic entropy pair,
and a symmetrizable relativistic MHD system with convex thermodynamic entropy pair was
proposed in [66]. Based on the symmetrizable relativistic MHD equations, high-order ES
schemes were developed within the finite difference framework [66] and the discontinuous
Galerkin framework [19]. The high-order ES adaptive moving mesh methods were also well
studied for relativistic MHD in [22].

Itis worth noting that all the existing work on EC and ES schemes for RHD and relativistic
MHD was limited to the ID-EOS (6). The study of ES schemes for RHD with more accurate
EOSs has not been explored yet. This paper makes the first effort on constructing explicit EC
fluxes and developing high-order ES schemes for the RHD Egs. (1) with general Synge-type
EOS (4), which covers a wide range of EOSs (6)—(10) as special examples. The difficulties
of this work are multi-faceted and include the following aspects:

e The convex entropy and entropy fluxes for the RHD system with a general EOS are
unclear.

e Due to the nonlinear coupling between the RHD Eqs. (1), the primitive variables V :=
(p,v, p)T, the fluxes, and the entropy variables all cannot be explicitly expressed by the
conservative variables U = (D, m, E)T. This makes it difficult to analyze the entropy
structure of the RHD Egs. (1), study the convexity of entropy, and construct EC numerical
fluxes.

e Developing a unified EC flux formulation for RHD with general EOS is quite nontrivial.

The efforts in this paper are summarized as follows:

e We discover an admissible entropy pair for the RHD equations with general Synge-type
EOS (4) in any space dimension. We rigorously prove that the found entropy function is
strictly convex, under the relativistic causality condition (5). Furthermore, we derive the
entropy variables associated with the convex entropy. These findings lay the foundation
for designing EC and ES schemes for RHD with general Synge-type EOS. Due to rela-
tivistic effects, the formulation of the Hessian matrix of the entropy function with respect
to the conservative variables is quite complicated, making it very difficult to study the
convexity of the entropy function.

e We construct the novel two-point EC fluxes in a unified form for RHD with general Synge-
type EOS. The construction involves carefully selecting a set of parameter variables that
can express the entropy variables and potential fluxes in simple explicit forms. We remark
that constructing EC fluxes is highly technical and involves complex reformulation and
decomposition of the jumps of the entropy variables.

e We develop semidiscrete high-order accurate EC and ES schemes for the RHD equations
with general Synge-type EOS. Second-order EC schemes use the proposed two-point
EC fluxes, while higher-order EC schemes are constructed by linearly combining the
two-point EC fluxes. Arbitrarily high-order accurate ES schemes are obtained by adding
dissipation terms into the EC schemes, based on ENO or weighted ENO (WENO) recon-
structions. Moreover, we derive the general dissipation matrix, based on the scaled
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eigenvectors of the RHD system, for general Synge-type EOS. We also define a suit-
able average of the dissipation matrix at the cell interfaces, ensuring that the resulting
ES schemes can resolve stationary contact discontinuities exactly.

e We implement the proposed one-dimensional (1D) and two-dimensional (2D) high-order
EC and ES schemes coupled with strong-stability-preserving high-order Runge—Kutta
time discretization. Several numerical examples are provided to validate the accuracy
and effectiveness of our schemes for RHD with various special EOSs.

This paper is structured as follows. Section 2 presents the entropy pair for the RHD system
with general Synge-type EOS (4), and establishes the convexity of the associated entropy
function. Additionally, this section derives the relevant entropy variables. In Sect.3, we
construct the 1D EC and ES schemes. We further discuss the extensions to 2D in Sect.4.
Section 5 presents the numerical experiments, and finally, Sect.6 provides the concluding
remarks.

2 Entropy Analysis for RHD Equations

In this section, we seek an admissible entropy pair for the RHD Egs. (1) with general Synge-
type EOS (4). Furthermore, we will prove that the found entropy function is strictly convex,
and then derive the entropy variables associated with the convex entropy.

2.1 Entropy Pair

First, we recall the definition of an entropy pair.

Definition 1 For the d-dimensional RHD system (1), a continuously differentiable function
n : RY — R is called the entropy function if there exist d functions ¢; : R — R, called
entropy fluxes, such that

(%)T 1ﬁ=<%>—r i=1,---,d. (11)
In this case, we call (1, q) an entropy pair of (1), where q = (¢q1, - - -, qd)T, d=1,2,3.
Theorem 1 Define
n(U) :=-DS, q(U):=-DSv (12)
with
S:=—Inp+ /9 e/ix)dx. (13)

Then (n(U), q(U)) forms an entropy pair for the RHD system (1) with general Synge-type
EOS (4).

Proof Let us verify that (n(U), q(U)) satisfies the condition (11). Unfortunately, direct cal-

culations of g—g, % and % are very difficult, because these quantities cannot be explicitly
formulated in terms of U. Since 1, F;, ¢;, and the conservative variables U can all be explic-

. . . . T ay  IF; dqi
itly expressed by the primitive variables V = (p, v, p) ', we can calculate U 30 and U
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following the chain rule

an\' _ (" av
au/) ~ \av) ouU’
oF; oF;, oV

A 14
30 W U | ,2,000,d, (14)

ag\' _ (dq\" av
au/) ~ \av) ou’

where the matrix % can be calculated through the inverse of % which is easy to compute:
y pyivh 0
% _ yz(h —0(1+€) )v phy?ly + 2phyvw ! 2 1+e@)v |. (15)
(-0 (1+e®)) 20hyNT Y2 (14€0) — 1
Calculating the inverse of % gives
hy=' (/@) — |v?) —(E@ +IvP)vT (1+€©)Iv]?
— / vl2
WV_ Ll Z(h-e(+e@))v M, — (IO
U 4
~hy T (h =6 (14+¢©)) =(h+6 1+ @) )T h+06(1+¢©®) Iv]

(16)

where 89 = he'(0) — (1 +¢/(0))|v|%, and M is a d x d matrix for the d-dimensional RHD
system and is defined by

1—|v?
M =
ph

(591d + (o (1+e®) )va>

with I; denoting the d x d identity matrix. For d = 1, 2, 3, the formulas of g—g, %—1:;' and %
(i=1,---,d) can also be directly calculated as

327 , o T
Vo (y (1+8(9)—S),—p)/3SVT,—VT(m) , (17

yvi /oy3(v,-vT + (1= 1vP) eiT) 0
y?(h =60 +¢'©))uv M, Y21+ @)y + e
y(h=00+e©))u phy* (20T + (1= VP ) 20+ @)
(18)

oF;
v

with My being a d x d matrix given by
M, = phy4<2viva (= v (vl + vel-T)),
and

0qi 1oy 3 Cvi2) el vT) _rd®wv; T
B—V_(y(1+e(9) S) vi, — py s((l vI°) e 4+ uiv ) T) - (19)

Based on (16) and (17), we can use the chain rule (14) to calculate the derivatives of the
entropy function 1 with respect to the conservative variables U:

an\'_(on\" v
au/) \av/) au’
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Let ¢; be the ith column of the matrlx Then we have

.
(%) a=i (h(1+6(9) 5) (€'®) — V) — (7 — 6(1 + €/ 6))) S|v]?
0

L he®) (h—60 + e’<9))))

0
1 , , h2e' (0)
3( —he' () +0(1 + €' O))V]*) S — h(1 + €' ©)|v]* + 5 )
1 , , h h—6s
8—( he' ) +6(1 + ¢ 0)|v|?) <S—5)= T

.
(8—") e = é (—y(l 1) — S)E®) + vV

A h

1 <hye @ e+ e/(e))> vT
5\ 0
/ 2
- si (yS <e/(0) v et ( +9(1h+ ¢'©)) vl ) vT
0

4@V + WVT)

he'(0) , AV AN
39< 2 (1+e(6))|v|)v =7

877 ! 1 ’ ’ 2 / 2
(W) e = *(V(1+e(9)—S)(1+e(9))IVI +yS(L+e @)y

_YO) g+ @y ))

he/(G))_ 4
)=

_r / 2 _ _Y
=% ((1 + e 0)v] g

Hence, we obtain

an 1 T T
— =—(h—-068S, , — .
30 0( yYv .. =v)

Let %F =: (F(l) F(Z) F(3)) and ‘)q’ =: (cjl.(l) (1;2) @;3)). Then we have

an\' . . h—6S v
(l> FY -4 = — yvl+y—y( —0(1+¢0))uv

U 0
4
Ly (n =01+ O))v —y (14+€©) = 5)u
N _gesyvi - V;" (h—6(1 +€©0)) — yvi(1 +¢'0) — S
. (h —995 _h _9(19+e ) —e’(9)+s>
=0,
am\ | . ) h—0S
(ﬁ) Flgz) _ ql@ _ pr3(vivT +(1-1vP) e;l')
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yv'
0
y
- 5,0hy4(2vivT . |v|2)e,T) + p)/3S( (1—1vP) e + vivT)

+ phy* (211,-VVT +(1-— |v|2)(v1—Id + ve,«T))

h 3
= % (ZUiVT + (1 _ |V|2) e;r + 2y2Ui|V|2VT + |V‘zeiT . ZVZUiVT B eT)

1

phy?
= Ty (2v,-vT — 2y2v,-vT(1 — |v|2)>

=0,

aU ! ! 0
i+ )

P T R T 3
(—") PO 40 = 2 20+ d@)uiv+e) — %(1 T+ ¢ 0))v;

yvie,  ye ©)v;

=2 0 A=)+ —
) (=1 + 5 + 9
=0,
which imply
an\' oF;,  [0g;i\'
B e T 2 (1)
U A% A%
Multiplying both sides of the Eq. (21) by % from right, we obtain (11), which indicates that
(n(U), q(U)) forms an entropy pair. The proof is completed. ]

As direct consequences of Theorem 1, we have the following remarks for four specific
EOSs.
Remark 1 (ID-EOS) For the ideal EOS (6), we have
e(0) = L (22)
r—1
Then by (13), we obtain

1 1 1 1 p
Sipi=—Inp+ —— | =df=—Inp—+ Inf = In

a 23
r-1J)e r—1 r—1 pf @3)

Our entropy pair (—DS;p, —DS;pv) for the RHD system (1) with the ideal EOS is consistent
with the result in [18].

Remark 2 (RC-EOS) For the RC-EOS (8), we have

3030+ 1)

«®) =312 24

Then by (13), we obtain

3 9 9
Ske = —1 2 0
ke np+/<29+2(39+2)+(39+2)2>

3 3

30 +2°

Hence (—DSgc, —DSgrcv) forms an entropy pair for the RHD system (1) with the RC-EOS
().
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Remark 3 (IP-EOS) For the IP-EOS (9), we have

e(@) =0 —1++/1+402. (25)

Then by (13), we obtain

| 4
Slp=—1np+/<f+7>d9
0 J1+462
:—lnp+ln9+21n(29+\/1+492>.

Hence (—DS;p, —DS;pv) forms an entropy pair for the RHD system (1) with the [P-EOS
9).

Remark 4 (TM-EOS) For the TM-EOS (10), we have

3 [ 9
0) ==60—1+,/1+ =062 26
e®) =3 +yl+g (26)

3 20
Sty =—Inp+ -+

2 9
J1+ 37602
1 +319+31 39+ 1+992
=—In —1In —In| = -0 .
T3 2 M\ 27TV Ty

Hence (—D STy, —DStpmv) forms an entropy pair for the RHD system (1) with the TM-EOS
(10).

Then by (13), we obtain

do

2.2 Convexity of Entropy Function

In this subsection, we show the convexity of the entropy function 1 (U) defined in (12).

Theorem 2 For the RHD system (1) with general Synge-type EOS (4) satisfying the condition
(5), the entropy function n(U) defined in (12) is strictly convex with respect to the conservative
variables U, provided that U € G with G = {U = (D, m, EYT:p>0,6>0}.

Proof To show the convexity of the entropy function 7, it suffices to verify the positive
definiteness of the Hessian matrix of the entropy function n, which can be written as

9% T T

502 (e15y + Sue; uu)

where ¢; = (1, OJH)T, and 044 is the (d + 1) x 1 zero vector. As S can be explicitly
expressed by V but not U, we can calculate Sy and Syy following the chain rule

nou =

- (as)T v 92s  9%s 9V v
SU == - ==

2 2L LA L A S S 27
av) au W=502 ~ svauau - WU @7

Due to the explicit relation between S and V, we can derive % directly as

S [ 110 oT ¢®)"
a—v_(— /0 g pg) . (28)
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Combining (28) with (16), we obtain
1 T
Su=— (=hy=t —vT 1) . 29
U= (=hy vl (29)
The derivative of Sy with respect to V gives

14+e'(0) hy v Iz 9(1+e(9))

oy oY ) o 19 %
Suv=1 04 0 L 7 \ , (30)
0 0, — 27

where I; denotes the d x d identity matrix. Therefore, we have

aj anT as

A% 1
nuu=— (eISU —+ SUel + DSUV aU) azv Al asyv |,
P03 (1+¢©) (5—1v7)

as a4VT as

where c; denotes the sound speed with

>, 0(1+0)

c5 = he' () €0, 1) 31)

under the condition (5), and

ar:=hy'A, A= ph? — p0h (2+ [VI*) + p6% (1 +'8)),
a = p(h2 —ORV2 =02 (1 +€©)) ) a3 = —p(h2 —0h— 0% (1+¢©) |v|2),

Al = p (6 (=h+(1+®)(h— 0|v|2))
14

h
ag:=—py (h+0 (1+€®)), as:=py (h+0(1+©®)Iv]?).

Li+y(h+0(1+e®))(h+06(1-1v?) va> .

We observe that A > 0 and a; > 0, because

A = ph® — pfh (2+ |V*) + pb2 (1 + €' (9))
> ph* —3p0h + p6* (1 +¢'(9))

> ph? —3p0h+p92h —5

h
=P -2 >0,
h—0

where the condition (5) has been used. Let us define the invertible matrix
1 0j0
P] =1 — LV Id 0[]
d% OT 1
ai

Then we have

1 a 0
PinuuP| = < d“)
293 (14 ¢€'(9)) ( |V|2) 0d+l SA;
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with
0% (14¢' (0 1 o T
5. P (1L4©) (7 _ |v|2) >0, md Ayim (A (1= V) Iy + 33wy a]v) |
ai S —81v &
where
81 = ,o(h2 +0h|v* + 6 (1 + e’(e))) — A+2p0h(1 + |v]?) > 0,
8 = p(hzlvl2 +0h+62 (14 0) |v|2) — AWVP 4+ p0h(1+ V)2 >0,  (32)

5y = p(h2 + (2= V) on+62 (1 + e’(e))) — A +4p0h > 0.

Let us study the matrix A;. We consider
| Sty
P, = o),
’ (0[7 1 )

T B— lywT 0,
P,AP] = % .
0, &

and we have

Note that the eigenvalues of

82 82
C:=B- ivvT =A(1= V)1 + (85— i w'

§2 1 2
m i 2 2
A =A+(83—82—A)|v| =82p9h(1—|v|) A >0,
W == = A1 v?) >0, ifd=2.

This implies that the matrix C is positive definite, yielding that PZAZP;'— is also positive
definite. Hence, the matrix A, is positive definite, implying P nUUP;r is also positive definite.
Since Py r;UUPlT and nyy are congruent, the Hessian matrix nyy is positive definite. The proof
is completed. o

2.3 Entropy Variables

In this subsection, we derive the entropy variables corresponding to the convex entropy 7,
which will be useful for constructing the ES schemes.

Theorem 3 The entropy variables W associated with the entropy function n defined in (12)
are given by

1
W= (=08, yvi, =), (33)
and the associated entropy potential fluxes are

Yii=pyv, i=1,---.,d, (34)
where h represents the specific enthalpy, and S is defined in (13).
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Proof By definition, the entropy variable W is the gradient of the entropy function n with
respect to the conservative vector U, which we have obtained in (20). The potential flux ;
is defined as v¢; := WTF,; — qi, which can be calculated by using (2) and (12) as follows:

_h-06§ yv’

vi Dv; + e (vim + pe;) — gmi + DSv;

h Y a phy3v;
= —pyv; + — E hy?v? + pyv; — :
9,07/ i ) ,-_lp YU T Py )

h h 5 ho 5
= 5PV +5py ViV + pyvi — 5phy v;

= pyv;, i=1,---,d.

3 1D Entropy Stable Schemes

In this section, we construct the ES schemes for the 1D RHD equations.

3.1 Two-Point Entropy Conservative Flux

We first derive the unified formula of two-point EC numerical flux for the 1D RHD system
with general Synge-type EOS (4).

Definition 2 ([58]) A consistent two-point numerical flux flEC (U, Ug) is ECif

(Wg — WL)TEEC(UL’ Ur)=vir—Vir, i=1,...,d, (35)

where the entropy variables W are defined in (33), and v; is the potential flux defined in
(34). The subscript L and R means that the quantities are associated with the “left” state Uy,
and the “right” state Ug, respectively.

For convenience, we introduce some notations. The jump and the arithmetic average of a
quantity a across a cell interface are denoted by

[all :=agr —ag, (36)
and
flay = 2L, 37
respectively. Based on these notations, we have the following useful formulas
[abll = {a}o] + lalfD}, (38)
[ = 2{a}llal, (39)
aq _ lal =161 {{5}}
[ R “o
el
Jal = —el @1
el =syva
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We will also employ the logarithmic mean

[al

flatin = m .

(42)

which was proposed in [32].
To design a simple two-point EC numerical flux, we choose a set of variables z =
(z1,22.23) " as

)
21 =p, zz=;, 3 =Yyv] (43)

following [66]. After careful investigation, we find a unified simple two-point EC flux (44)
for the 1D RHD system with general Synge-type EOS (4).

Theorem 4 The two-point EC numerical flux for the 1D RHD system with general Synge-type
EOS (4) can be written into a unified form as

.
Frow,, ug) = ({{zl}}ln{{u}}, phiizs)? + g%g pAh{{J/}}{{Z,%}}) (44)

with

e 4tz hiné

= _ )
{yy? — {392’
_ [Will — [nz1

E:
[[z21

(45)

Here, € can be reformulated as

1 1
5:1+/ e< )ds, (46)
0 2,10 + 5@, —22,1)

where z2 1 and zp g represent the “left” and “right” states of the parameter variable z,
chosen in (43), respectively, and the explicit calculation of £ depends on the particular
choice of the EOS and will be given in Theorem 5.

Proof By using the set of variables (43), we can express the entropy variables and the potential
flux as

-
W= <Zzh =S8, z320, —224/ 1 + z%) ;
Y1 = 2123
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Then we write the jumps of entropy variables W and the potential flux v in terms of jumps
and arithmetic averages of the variables (43) as follows:

45
w2

[W2] = IIZ322]] {{23}}[[22]] + [z3l{{z2}}),

= [177]

D i) - (2D [[\/1 + zéﬂ 7)

2
D gy - {{Zz}}II k|
207}

3 LTy ) - (22 {{Zi{}"[}f]],

(11 = [[ZlZ%]] {{Zl}}[[Z3]] + [z11{{z3}},

5|Iz2]] + [[ln z1]l,

According to Definition 2, the two-point EC numerical flux ch (UL, Ug) =: (f 1(1), F 1(2),

~an\ T
F 1(3) ) for the 1D RHD system satisfies

IWiIF + W21 F2 + W31 FY = [y (48)

Substituting (47) into (48), we obtain

(Elza0 + Mn 21D FO 4 (23D 20 + 23Tz B2 — <[[Zz]]{{)/}} + () {{Z3}}[[Z3]]> FO

) !
= {{z1 }lz3] + Mz Tdz3 -

Collecting the terms containing [z1]], [z2]l, and [z3]], respectively, the above equation can
be reformulated as

FO N
( ‘ —{{23}}) L2l + (6F" + @b B — ) 22

1
FO _ flzo W z3
i <{{ZZ}} ‘ )

FP - {{m}}) 23] = 0.

Hence, the coefficients of [z1]], [z2], [z3] should all equal zero. Specifically, we have
FO
f{zi}n

EFV 4 {z3) FP — iy FP =0,

FO _ fzaBlzsh (3)
{2} F W = {{z1}}-

= {z3}}.
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~ i e\ T
Solving the above equations for (F 1(1), F 1(2), FI(S) ) , we obtain

FY = {21 pnlizs
~2) = 2, {zi}
)7 = phf{zs}” + —.
! fiz2})
F? = phily Miza).
which leads to (44). Next, we verify that £ defined in (45) can be reformulated as (46). Using
(33) and (13), we recast £ as

_ Wl —nzi] 33) [zah = S1— [z

&
[z21 [z21
5w (49)
13 [[th =5 dxﬂ @ IF@)]
221 Il

1,
where F(z2) := z20h(z2) — f 2 ej(c—x)dx is a function of the parameter variable z, with its

derivative given by
1 1 1
Flz)=h (*) - — (i) I+e (—) . (50)
22 22 22

1
LFG)] = Fleag) — Fleanr) = /0 Fleas +s(ag — 22.0) 22k — 22.0)ds,

Note that

from which we can deduce that

F(z !
g= 1l / F(za1 +5(za.r — 22.0))ds
[[z21 0
! 1
Oy / e( >a’s
0 22,0 +s(z2,r — 22,L)
Hence, we obtain (46) and complete the proof. O

Theorem 4 provides a unified formula of the two-point EC flux for 1D RHD with general

Synge-type EOS. Note that the quantity £ involved in the formula requires the evaluation

1
22, +s(22,R—22,1)
EOS. In order to exactly achieve the EC property, this integral should be calculated exactly.

For some EOSs, it may be difficult to explicitly express this integral, if the function e(0) is
very complicated. In the following, we provide an alternative way to derive the explicit forms
of & for four special EOSs.

of an integral fol e ( ) ds, which depends on the specific form of the adopted

Theorem 5 For the 1D RHD equations with ID-EOS (6), RC-EOS (8), IP-EOS (9), and TM-
EOS (10), the two-point EC numerical fluxes are all of the unified form in (44), where £ can
be calculated as follows:

e For ID-EOS (6), we have
1

E= T T T D

D
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e For RC-EOS (8), we have

3 3
E=1 — . 52
e, 222 4 3 ©2)

e For IP-EOS (9), we have

2

<]
.

53]

I | A _{{%” {{22}}{{%”_ G
f{z2fn H ” {{z2} {{\/@“ {{%4‘ =

(53)

e For TM-EOS (10), we have

€= 2
2{{z2}m 472

S =1 EETE R
(54)

Proof We verify the f