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Abstract

The possibility of using the spectral vanishing viscosity method for the spec-
tral element computation of high Reynolds number incompressible flows is
investigated. An exponentially accurate stabilized formulation is proposed
and then applied to the computation of the 2D wake of a cylinder. Such a
formulation can be easily implemented in existing spectral element solvers,
since only modifying the computation of the viscous term while preserving
the symmetry of the corresponding bilinear form.

1 Introduction

High Reynolds number flows are difficult to compute, especially when using
spectrally accurate numerical schemes. This directly results from the fact
that spectral approximations are much less numerically diffusive than low-
order ones, so that the non artificially dissipated energy accumulates at the
high spatial frequencies and finally leads to the divergence of the computa-
tions. One way to overcome this difficulty is to use stabilization techniques,
but then the spectral accuracy of the algorithm is generally destroyed. This
is e.g. particularly obvious for approaches which essentially consist in adding
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some O(h") hyper viscous term, in the spirit of [14]. For a long time filtering
techniques have also been proposed to overcome the stability problem. In
the frame of spectral element approximations it is however essential to pre-
serve the inter-element continuity, as discussed in [2]. One of the most recent
advances in this field has been proposed in [6], (and discussed in [16]) where
a spectrally accurate approach is applied to the direct numerical simulation
(DNS) of high Reynolds number flows.

Here we essentially focus on the spectral vanishing viscosity (SVV)
method, which appears to be an efficient stabilization technique possess-
ing the property to preserve the spectral accuracy. It was initially developed
for the resolution of hyperbolic equations using standard Fourier spectral
methods [21]. The non-periodic case was then considered in the frame of
the spectral Legendre approximation [13]. Further refinements have been
recently suggested, through the use of a spectral hyper-viscous (rather than
a viscous) term or through the redefinition of the stabilization term [8]. Re-
cently, it has also been suggested to use the SVV method, in its first formu-
lation, for the large-eddy simulation of turbulent flows [10, 15].

In this paper, our goal is to check the capabilities of the SVV method, in
terms of accuracy and stability, when it is implemented in a Navier-Stokes
spectral element solver.

First we show how to implement the SVV method in the frame of a
spectral element approximation. The fact that complex multidimensional
geometries and vector valued functions are concerned make this point non
trivial, so that one cannot yet consider that a standard way to implement
the SVV method already exists. Moreover, we suggest using an approximate
form which can be efficiently implemented in any spectral element solver.
The advantage of such an approximate form is that the computational cost
per iteration (time-step if a direct solver is used) is roughly the same with
and without SVV stabilization.

Second we consider an elliptic equation solved by a steep analytical so-
lution and show that the convergence results obtained with the spectral el-
ement approximation are coherent with those obtained in the 1D periodic
case, when using Fourier expansions. A detailed study of the influence of
the SVV tuning parameters on the convergence rates is provided. Then we
consider the so-called ”Kovasznay flow”, which is an exact solution of the
incompressible Navier-Stokes equations, and again check the capabilities of
the SVV method.

Third, in order to numerically demonstrate the stabilization property of
the method, we compute 2D wakes of a cylinder, at Reynolds numbers up
to Re = 1000, i.e. much higher than the critical value associated with the
2D-3D transition (Re ~ 190).



Finally, we conclude by emphasizing the interest in the SVV-stabilized
spectral element method (SEM) for the large-eddy simulation (LES) of tur-
bulent flows.

2 Stabilized spectral element formulation

The flow of an incompressible Newtonian fluid is governed by the ”incom-
pressible Navier-Stokes equations”. For an unsteady flow in a domain €2 they
read:
Diu—vV?u+Vp =s QxR (1)
V-u =0 inQ xRt

where u, p and s denote the velocity, pressure and source term respectively,
Dyu the material (Lagrangian) derivative of u with respect to time t and
v the dimensionless viscosity (the inverse of the Reynolds number). The
unsteady Navier-Stokes equations must be associated to appropriate initial
and boundary conditions, e.g. u(t = 0) = 0 (fluid at rest) and u|r = 0
(no-slip condition at the boundary I" of ), in order to set up a well-posed
problem that one can then try to solve numerically.

If (i) complex geometries are considered and (ii) high accuracy is desired,
then the SEM is well suited (see e.g. [11]). The spectral element approxima-
tion of the weak form of the incompressible Navier-Stokes equations yields
the following semi-discrete variational problem, to be solved at each time-step
after the time-discretization: Find uy € X y and py € My such that

{ (DtUN,UN) + V(VUN; VUN) - (V : UN,pN) = (SNa'UN) , Voy € Xy
(V-un,qv) =0, Vgy € My

where uy, py and sy denote the spectral element approximations of u, p
and s and where (-,-) is used to denote the standard L?(§2) inner product,
without difference if scalar, vectorial or tensorial functions are concerned,
but of course the second and third cases involve dot-products and contracted
products respectively.

The computational domain €2, assumed to be two dimensional for the sake
of simplicity, is partitioned into a geometrically conforming decomposition

Q=Ur O

LN =0, Vk, I,k #1.
The velocity space Xy = Xn X Xy and pressure space My consist of,

XN - PN’K(Q) ﬂ H&(Q) y MN - PN_2,K(Q) ﬂ L%(Q)
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with standard notations for the Hilbert spaces H}(2) and L3(2), see e.g. [1],
and with:

Py k() = {v € L*(Q);v|gx o f¥ € Py(A?),1 <k < K}

where f¥ is the transformation function from the reference domain A2, with
A = (-1,1), to QF and Py the space of the polynomials of maximum degree
N in each variable. For the reason of simplicity again, homogeneous bound-
ary conditions have been assumed through the use of the H](f2) space.

The term involving the material derivative, (Dyun,vy), can be handled
in different ways. Thus, an implicit treatment of the time-derivative together
with an explicit treatment of the advection term yields the so-called “Gen-
eralized Stokes problem” for the fully discrete version of problem (2). Here
our goal is not to investigate these different ways, but to develop a stabilized
spectral element formulation of problem (2), basically by using the spectral
vanishing viscosity method.

2.1 The Spectral Vanishing Viscosity method

For the 1D non-linear conservation law of the scalar quantity u(X,t):
Owu+0x(F(u)) =0 inAx R,

where F(u) is a scalar function of u (e.g. F(u) = u?/2), the SVV method
consists in solving:

atU,N + afo(F(uN)) = ENax(Q(aXuN)) (3)

where uy € Py(A) and with ey = O(1/N), where Iy denotes the polynomial
interpolation onto Py and () the spectral viscosity operator such that, with
L; for the Legendre polynomial of degree 4:

N [e's}
Qb= Qibili, Vo, ¢=) bl
=0 1=0

with: Q, =0ifi <myand 1 > QZ > 0 if 4+ > my. Typical choices for my
are my = O(V'N) [13] or my = N/2 [10], whereas for the Biirgers equation
theoretical studies rather yield my < O(N'Y4) [13]. For my < i < N the
numerical experiments show that a smooth variation for QZ yields better
results. Thus, as in [13] we will use:

X N —i\?2
Qi = exp (—( Z.) > , 1> my.
my —1




With vy € Py(A), the weak formulation of the SVV term —eyn0x (Q(Oxun))
reads:

Vv = GN(Q(axuN), aXUN)L2(A)-

Let us remark that the SVV term may be made symmetric:

Vi = en(QY?(0xun), @*(0xvn)) r2(a)

with the following definition of Q'/2:

Q"¢ = Z QidiLi, Vo, ¢= Z@

1=0
Indeed:
VN = / Q axuN avadX
N —
= / [ 8XuN Z aXUN ] dX
=0
N
= Z Qi(Bxun); @xvn); | Lil
= €N [Z V Qz aXUN Z V Qz aXUN ] dX,
-1
where we have used || - || to denote the L?(A) norm.

2.2 Preliminaries

In order to implement the SVV method in the spectral element approxima-
tion, the two following points must first be fixed:

- formulation of the SVV method when coordinate transforms are consid-
ered,

- formulation of the SVV method in the context of a multidimensional
problem.

Up to our knowledge these points were generally overlooked. Thus, some
details were given in [9], where systems of conservation laws were consid-
ered. However, the computational domains were in this paper rectangular,
so that the problem of coordinate transforms was not really addressed. A
similar remark is also relevant for our previous works, see e.g. [15], where
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the geometry was 3D cartesian. In [10], it seems that a tensor product was
simply used to define the spectral viscosity operator (see eq. (11) of [10])
and no more details were given. It should be noticed that the tensor product
implementation of the SVV method differs from what was utilized in [9].
From our point of view, the proper implementation of the SVV method in a
spectral element approximation requires to go into some “technical details”,
which moreover are not specific to the Navier-Stokes equations.

Let us consider a coordinate transform, say z = f(X) with z € Q and
X € A, and give a meaning to the SVV term:

Vi = en(Q(Orun), Oxun) 12(0)

where the ey value may differ from the one used with the reference domain.
Of course, we have first to express d,uy as a function of X € A:

Bpun (z) = 0,9(X) Oxiin(X)

where g is the inverse of f, X = g(z) and ¢ = ¢ o f. From the above
form it is possible to compute Q(0;uy). However such an approach is to
be rejected, because the goal is in fact to damp the high frequency range of
Gy € Py(A). Thus, in another context of the spectral element method, if the
coordinate transform was used to accumulate some grid-points in a region of
strong variation of the exact solution, then possibly it would be unnecessary
to smooth its numerical approximation uy through the use of a dissipation
term. This is why we state that:

N
Q(Osun) = 0ag > Qi(Oxiin); L.
i=0

When expressed in the reference domain A, the SVV term reads:

Vv = GN(B;EQ(aXaN)aaXfé;gaX@N)Lz(A)
= en(0,9 Q(OxTn), OxVN)12(n)- (4)

Such a term can only be made symmetric if d,¢ is constant, i.e. if g (equiv-
alently f) is a linear mapping. In this case, (4) can be written:

Vy = en (0x f)"H(Q"*(0xin), Q' (DxTw)) 12(a)

where, in order to conform with the definition in (3), ey should be chosen

such that: .
N (8Xf)_1 = O(N)



that is:
L,

v =00y

).
where L, is the length of Q.

In the frame of the spectral element implementation, it is highly desirable
to handle in any case a symmetric form. To this end we come back to the
case where f is not a linear mapping and introduce the symmetric bilinear
form:

Vi = en (0,9 Q% (0x i), Q2 (9x ) p2a) (5)

where we may suppose that /6—;5/7 > 0.
It is clear that the above expression may be written as a weighted inner
product:

Vi = en(Q?(0xin), Q" (Oxn)) L2 )

where y = 0,9 stands for the weight function. As a result of the
equivalence between the L?*(A) and LZ(A) norms (+oo > pu > 0),
Vi, an) ~ Vy(an,dy) > 0, if 4y # 0. Consequently V3 constitutes
a SVV term, in the sense that it is dissipative and, as Vy, controlled
by the the parameters my and ey. Of course, its expression is coherent
with the result obtained within the linear mapping assumption for which
p = 0,9 = (0x f)"*! is constant.

Let us go now to the multidimensional case, e.g. to the 2D case which
can easily be generalized to the 3D one. With uy,vy € Py(A?) the 1D
formulation extends in:

VN = EN(Q(VU,N), V’UN)L2(A2)

where, for the sake of simplicity, we have kept the same notation for the
operator () acting on vector functions and scalar functions. However the
meaning of Q(Vuy) must be clarified; From the 1D scalar definition of Q) we
define Q(Vuy) as follows:

) = (G50 ) ©)
where

N
—_—

Q' (dxun) = Q(dxun(-Y)) = Y Qi(@xun)i(Y)Li(X)



so that dissipative terms arise in both X and Y directions, as desired. More-
over, one may easily check that Vy can still be made symmetric:

Vi = en(Q* (Vuw), Q2 (Vuw) ) 2(az).

Although some details are missing in [9], it seems that the 2D extension
of the initial 1D SVV method proposed in this paper was similar to ours.
However it was a collocation method which was finally used in [9], so that
no symmetrization was carried out.

At this point it is of interest to emphasize that the above definition of @)
may be discussed. Thus, using the 2D Legendre polynomial basis, in A% one
may think to define an operator @ such that:

&
<
Il
WE
S

by Lili, Vo, o(X,Y)=> Y ¢, Li(X)L;(Y)

=0 j=0 i=0 j=0

and the problem is then to provide the QZ] To this end, it is natural to
restart from the 1D definition. However, the tensor product Qij = Q,Q]
must be rejected, because the SVV term would then be only active if 7+ > my
and j > mpy. To see that readily, the SVV term may be detailed, in strong
formulation, into:

V- Q(Vuy) = Y QiQi((Bxun) Li(X) Li(Y) + (Byun)i Li(X) Li(Y))

1,j=0

where ’ is used to denote the differentiation. Taking an extreme case where
the solution uy depends only on X, i.e. uy = un(X), then (@)” =0 if
j # 0, which means that no spectral viscosity acts even in X direction. This
remains true if (ay);; = 0 for j > my.

One may consider a definition such that the SVV term acts if ¢« > my or
j > my. This can be achieved for instance by assuming:

Qij=1-(1-Q)(1-Q;)=Qi+Q; — QiQ;
However in this case the SVV term reads:

VN' Q(Vuy) =
S Qi+ Q) — Q@) ((Bxun)iy LX) L (V) + @vun)iy Li( X)L (Y)),

i,j=0
which may induce a non-desired dissipative term. For example, if uy does

not show high frequencies in the Y direction, i.e. (uy);; = 0if j > my, we
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obtain:

N

Q(Vuy) =Z Oxun )i Li(X)L; (V) + By un )iy Li(X) Li(Y))

where the second term in the right hand side should be rejected.
On the contrary with the definition (6) we obtain:

V- Q(Vun) = 3 QiBxun)i(V) LX) + 3 Qs @y un); (X)L (Y)

1=0

so that if uy does not show high frequencies in Y direction:

V-Q(Vuy) =Y Qi(Oxun)i(Y)Li(X).

To conclude this Section, let us consider the case of vector functions. With
uy = (u1,us9), the coherent extension of our previous definition for scalar
functions reads:

— Ql(axul) QQ(aym)
Q(Vuy) = ( Ql(axuz) Q2(ayu2) ) (7)

2.3 Spectral element implementation

Let f be the mapping from (X,Y), in the reference element A?, to (z,y) in
the element QF and g = f~', G the Jacobian matrix of g and J the Jacobian
determinant of f (for the sake of simplicity in the notation we use f, g, ...,
rather than f* g* ..). As a result of our previous investigations, the SVV
term reads:

VN = GN(Q(VﬂN)é, (V’f)N)éJ)L2(A2) (8)

where V denotes the gradient with respect to the reference domain and with
¢g=gpof.

This form can only be made symmetric if GG is constant and diagonal.
Note that if G is constant but non-diagonal then cross terms arise in the
above L? product, e.g.:

N

[ (@ Q@i (1) L0 s 3 i) (L, (V)XY 0

J=0



where we have used again the notation uy = (u1,us). If G is constant and
diagonal, that is if the element is a rectangle, then:

Vi = en J(QV2(Vay)G, QY3 (Von)G) 12(a2)-

Just like in 1D it is of interest to provide a symmetric SVV term valid for
any mapping f. To this end we introduce the symmetric bilinear form:

Vi = en(QY3(Vay)G, Q2 (Von)GJ) 12 (a2 (9)

where we may suppose (without loss of generality) that J > 0. With ¢r for
trace, “:” to denote the contracted product and exponent ¢ to denote the
transposition, one has:

(QV2(Vay)G) : (QY*(Voy)GJ) = tr(QY?*(Vay)GJGH QY (Vo))

so that V may be expressed as the sum of inner products of vector valued
functions involving the symmetric positive definite weight matrix p = GJG":

Vi = enl(QY2(Vin), QY% (Vi) 2 a2) + (@Y (Viiz), Q12 (V2)) 13, (a2)-

Then, as in the 1D case, V3, as defined in (9), constitutes a SVV term.
Coming back to the Navier-Stokes system, we obtain the following semi-
discrete problem: Find uy € Xy and py € My such that

(Dyun,vn) +v(Vun, Voy)—
(V-vn,pn) + en(QV?(Vuy), Q' (Vuy)) = (sy,vn) , Yoy € Xy (10)
(V-un,qy) =0, Vgy € My
where a clear sense has been given to the SVV term. Note that as in 1D, ey

must take into account a characteristic length of the elements. With A such
a dimensionless length: ey = O(h/2N).

Problem (10) can be handled as it stands by SEM. However, for the sake
of numerical efficiency, it would be of interest to couple the computation of
the viscous and SVV terms. To this end let us add the viscous term of the
Navier-Stokes equations and the non-symmetric SVV term (8) to obtain:

V(V’U,N, V’UN)Lz(Qk) + VN = V(S(@’&N)é, @’T)NGJ)Lz(Az)

where S stands for: c
S=I+-Q
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with I for the identity operator.
Then, following an approach similar to the one we have just described,
we can introduce the “viscous stabilizing term”, say Ty such that:

Ty = v(SY*(Vay)G, SY2(Von)GJT) 2 (a2).- (11)

The spectral element approximation is usually based on a nodal basis. Then
this form is easy to implement, since after discretization one has simply to
substitute the Legendre differentiation matrix, say D, by the matrix S'/2D,
where S'/? reads:

SY2 = M~tdiag(1 + 6—NQi)l/QM
v

with M: passage matrix from physical space to spectral Legendre space.
As a result, using such a “viscous stabilizing term” allows us to stabilize the
scheme without additional computational time per iteration (resp. time-step)
if an iterative (resp. direct) solver is used for the final system of algebraic
equations.

The stabilized spectral element formulation of the semi-discrete Navier-
Stokes system then writes:

(Dyun,vy) + V(SI/Q(VUN), SI/Q(V'UN))—
(V-vn,py) = (sn,vn), Yoy € Xy (12)

(V-un,qv) =0, Vgyv € My

Of course, the usual viscous term is recovered as soon as ey = 0 or my =
N, and if the mappings from A2 to the QF are linear and diagonal, then
the proposed formulation is equivalent to the previous (symmetric or non-
symmetric) ones.

Details on the practical implementation of the viscous term 71y are pro-
vided in Appendix.

3 Accuracy tests

In this Section we focus on:

- an elliptic Helmholtz equation, solved by a steep analytical solution,
to demonstrate that the stabilized spectral element approximation retains
the exponential accuracy. We begin with the Fourier approximation of the
standard 1D periodic case and proceed with a 2D problem which we handle
with spectral elements.

- the so-called “Kovasznay flow”, which constitutes an exact solution of
the incompressible Navier-Stokes equations.
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3.1 Elliptic Helmholtz problem
3.1.1 1D Fourier test

The basic idea is to consider an exact solution of the form: u = tanh(ax) in
(—1,1). However, tests are made with the following modified exact solution:
u = exp(—10z?) tanh(az) in order to recover (at least approximatively) the
periodicity. In all our tests a = 50.

Using such an analytical solution we can set up the source term of the
following Helmholtz-like equation:

—vu+u=s v>0.

Two values of v have been considered: v = 0 and v = 1/a?.

Concerning the SVV parameters, we have used the following values of ey
and my:

-ey =1/N and ey = 1/2N,

-my = VN and my = N/2,

where here N is the maximal wavenumber.

In Fig.1 we present some accuracy results in both L? and H' norms.
Clearly, the errors show an exponential decay, since in this semi-log repre-
sentation one observes that the error variations are essentially linear versus
the number of grid-points. The dependence of the results with respect to v
appears to be rather weak. On the contrary, the influence of the character-
istic parameters of the SVV method is more important. Thus, as could be
expected, the convergence rate is better when decreasing the value of ey or
when increasing the value of my.

3.1.2 2D spectral element test

Here we consider the 2D analogue of the previous 1D test case:

—vWViu+u=s inQ=(-1,1)?2
U|r = ur

in order to check numerically its SVV-stabilized spectral element formulation:
Find uny € Xy, such that

(un,vn) + v(SY2(Vuy), SY?(Vun)) = (sn,vn) , Yoy € Xn. (13)

For the exact solution we choose the analytical function:
2 2
u(x,y) = tanh(ag(l“ -)) tanh(ag(m +9)) (14)
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with o = 50 as in the 1D test. Fig.2 shows the sharp form of this solution.

The computational domain is first partitioned in 10 x 10 square elements
and we successively study (i) the influence of the SVV stabilization tech-
nique on the accuracy of the SEM solution, (ii) the sensitivity of the error
to the viscosity parameter v and (iii) the dependence of the error on the
characteristic parameters my and ey of the SVV stabilization.

Second, we consider a deformed mesh and point out that a mesh deforma-
tion does not deteriorate the accuracy properties of the SVV spectral element
approximation.

Fig.3 shows some accuracy results (in H', L? and L* norms) obtained
with the stabilized and the non-stabilized formulations. Here the SVV
method is used with my = N/2 and ey = 1/N. As expected from the
1D results, even though the SVV-SEM is less accurate than the SEM, the
errors show an exponential decay when the polynomial degree is increased.

In Fig.4 it is the influence of the viscosity v which is pointed out. Here
again, my = N/2 and ey = 1/N. Essentially, as for the 1D tests one observes
that the results depend only weakly on the value of v: similar errors are
obtained with » = 1072 and v = 10~%.

In Fig.5 we study the influence of the spectral viscosity activation pa-
rameter my. The convergence results have been obtained for the following
values of my: VN, N/2, 2N/3 and N — 2. The value of ey is ey = 1/N.
Clearly the best results are obtained for my close to V.

Fig.6 shows the sensitivity of the error to the viscosity parameter ampli-
tude ey. The value of my is fixed to my = N/2 and results obtained with
ey = 1/N and ey = 0.1/N are compared. Note that this last value is co-
herent with the theoretical analysis, from which ey = O(h/2N). It appears
that only slightly better results are obtained with the lower value of ¢y, with
a negligible difference in the convergence rate. Clearly, changing my is here
much more significant than changing ey. The fact that only low values of N
are used in the spectral element approximation may provide an explanation
for this weak dependence of the error on the ey value.

Let us now point out the influence of a deformation of the mesh. This is
especially important as pointed out in the theoretical part: If the mappings
from the reference domain (—1,1)? to the spectral elements are linear and
diagonal then the different approaches described in Section 2 are equivalent.
The deformed spectral element mesh is shown in Fig.7. Here using a non-
symmetric SVV term, a symmetrized one or the stabilized viscous term is no
longer equivalent.

Fig.8 compares the results obtained with the deformed mesh and with the
regular one. Here we have used my = 2N/3 and ey = 1/N. One observes
that the errors still decrease exponentially as NV increases, which means that
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the stabilized formulation remains spectrally accurate. Moreover, we note
that the convergence rate is roughly the same for the two considered meshes,
i.e. with and without mesh deformation.

The main conclusions of the study carried out in this Section for the
elliptic Helmholtz equation are the following:

- Although less accurate than the SEM, the SVV-SEM remains spectrally
accurate,

- Using a deformed mesh preserves the exponential convergence property.

3.2 Kovasznay flow

The following velocity and pressure fields
A 1
u = (1 — exp(A\z) cos(2my), o exp(Az) sin(27y)) and p= ) exp(2\x)

where A = Re/2 — (Re?/4 + 47%)%5, exactly solve the incompressible Navier-
Stokes equations. Just like for the elliptic Helmholtz problem, it is then of
interest to check the influence of the spectral vanishing viscosity term on the
accuracy of the spectral element solution.

Tests have been carried out in the domain Q = (—0.5,1) x(—0.5,1.5), with
the spectral element mesh shown in Fig. 9, for Re = 40 and using Dirichlet
boundary conditions. Such a test was considered in [10], where it appeared
that the SVV method retains the accuracy of the spectral approximation, on
the contrary of what we have obtained for the elliptic Helmholtz problem.

Our results are presented in Fig. 10, where we show the errors ||u—egact||
in different norms for my = N — 2 and my = N/2. Clearly, for my =
N —2, the results obtained with SVV are slightly better than those obtained
without. Thus, although the Navier-Stokes solver is based on an elliptic
solver (see next Section) yielding worse results when the SVV is activated,
this Navier-Stokes solver may yield better results with SVV than without!
Moreover, a similar result has been recently obtained for a time-dependent
analytical solution by one of the authors [24]. The non-linear term may be
responsible for such a behavior: Especially, one may think that the spurious
“high-frequency modes” resulting from aliasing effects are damped when the
SVV is activated. Nevertheless, for my = N/2, one recovers the expected
behavior, with a better accuracy when the SVV is not activated, and also
slight differences in the convergence rates.

From our point of view the fact that the Kovasznay exact solution is very
smooth is misleading. For the Helmholtz problem, close results can also be
obtained with or without SVV, if the solution is too smooth. Beyond a critical
wavenumber, the “exact solution” (within the computational accuracy) is
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captured, so that nothing changes if my is chosen greater than this value.
Concerning the results reported in [10], we think that their implementation
of the SVV method together with the fact that the Kovasznay exact solution
is much smoother in z-direction than in y-direction may explain why it was
found that the spectral accuracy was retained (cf. Section 2.2). In any cases,
at this point of the discussion more numerical experiments are required before
going to a conclusion.

In the next Section the stabilization capabilities of the proposed SVV
stabilized spectral element formulation are demonstrated through the com-
putation of the 2D high Reynolds number wake of a cylinder.

4 Flow past a cylinder

The Py x Py_s spectral element approximation of the Navier-Stokes system,
as briefly described in Section 2, has been largely used in numerical simula-
tions of incompressible flows in the two last decades. However, for the reasons
mentioned in Introduction, it is also known that stability problems have been
encountered in the use of SEM for the computation of high Reynolds number
flows, especially transitional laminar-turbulent flows.

To show the efficiency of the proposed SVV stabilized SEM, several cal-
culations have been carried out for the flow around an impulsively started
circular cylinder, the Reynolds number being varied from Re = 300 up to
Re = 1000. Such 2D flows are of course not physical, since the 2D-3D tran-
sition occurs for Re ~ 190, but our goal here is only to check the capabilities
of the SVV-SEM in a case where the standard SEM would not converge for
reasonable time and space discretizations.

The temporal discretization is based upon an operator splitting approach
in which the nonlinear convective term is decoupled from the viscous and di-
vergence operators via an operation-integration-factor technique introduced
in [12] and studied e.g. in [4, 23]. This temporal discretization results in a
saddle point problem coupling the velocity and the pressure, which is decou-
pled later via an additional splitting step. Such an algorithm was analyzed
and applied to various computations in [18, 4, 5]. The approach has a com-
mon root with traditional projection approaches which lead to a Poisson
equation for the pressure except that, in the present case, the splitting is
done for the discrete form of the equations, and therefore no boundary con-
ditions are needed for the pressure.

Dirichlet boundary conditions, i.e. uy = (1,0), have been assumed ev-
erywhere except at the outlet of the computational domain where “Orlanski’s
outflow boundary conditions”, dyu+ U, - Vu = 0, have been imposed, where
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Uy is the free stream velocity (see e.g. [22] for details). At time ¢t = 0 the
fluid is at rest, i.e. the initial condition simply reads uy = 0.

Fig.11 shows the macro-element mesh used in the calculations. Finer
elements have been chosen at the cylinder surface for a better resolution of the
boundary layer. In all our calculations, the number of the elements has been
fixed to K = 310. Mesh notation Nx means using polynomial degree x in each
element. The Reynolds number is defined as Re = Uy, D/v, where D is the
cylinder diameter. In this domain decomposition, using the standard SEM
we were unable to compute flows at Re > 500 at any reasonable resolution.
For example,

- at Re=500: The N6 computation diverges at ¢ = 5.9, N10 diverges at
t =15.9 and N12 diverges at t = 16.4;

- at Re = 1000: N6 diverges at t = 1.9, N12 diverges at ¢t = 9.84 and N16
diverges at ¢ = 11.01 (moreover, this last computation was very costly).

By contrast, using the SVV-stabilized formulation with my = 2N/3 and
ey = 1/N for example, we were able to compute all these flows for all the
above mentioned polynomial approximations. Hereafter we study the influ-
ence of the parameters N, my and ey, by focusing on a sensitive compu-
tational result: the vorticity variations at the cylinder surface during the
development of the wake. Such vorticity variations are particularly of in-
terest, to be sure that the use of a “viscous stabilizing term” would not
deteriorate the numerical results in those regions of the flow dominated by
viscous effects, especially the boundary layer around the cylinder.

4.1 Influence of the polynomial approximation degree

Here we check the spatial resolution, i.e. the sensitivity of the results to
an increase of the polynomial approximation degree. Several values of the
polynomial degree have been used in the calculation at Re = 1000. In this
space discretization study, the SVV parameters have been fixed to my =
2N/3 and ey = 1/N.

In Fig.12, we compare the vorticity distribution at the cylinder surface
calculated, at time t = 6, with different values of N. Also shown is a result
given in [19] for comparison. For N = 6, the resolution seems to be inaccu-
rate, but already comparable with the one of [19]. However the convergence
is obvious by increasing N: For N varying from N = 8 to 16 the results are
very close, indicating that for N > 8 the grids are fine enough to capture all
the flow structures.

The vorticity isolines at ¢t = 4 and ¢ = 6 are shown in Fig.13 for the cases
N6, N8 and N12. Clearly, the N6 grid is not fine enough to give smooth
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vorticity contours. For N8 and N12, although one observes slight differences
close to the cylinder surface, the vorticity fields compare well.

4.2 Influence of the SVV tuning parameters

Here we check the effect of the parameters ey and my on the computational
results, with comparison to the “reference result” obtained with the very fine
grid N16, the SVV parameters being my = N — 2 and ey = 1/N.

Fig.14 shows the vorticity variations at the cylinder surface, at ¢ = 6,
computed with ey = 1/N and ey = h/2N, my being fixed to my = 2N/3,
where h = 1/7.2 equals the ratio of the cylinder diameter to the domain
height. These variations are compared to the reference ones. One observes,
for N = 6 and N = 9 on the figure, that the choice ey = h/2N gives
better results. When increasing the value of N, the curves get closer to the
reference one. Thus, for N = 12 (not shown), one can no longer discern the
three curves.

In Fig.15, where again N = 6 and N = 9, the vorticity distribution
at the cylinder surface is plotted for my = N/3 and my = N — 2, with
ey = 1/N. A better result is obtained by using a higher value of my, i.e.,
mpy = N — 2. This difference is in fact less significant when a smaller ey (i.e.
ey = h/2N) is used. For larger values of my and/or smaller values of ey, it
is still possible to get a SVV stabilization effect. However, for the considered
test-case we have checked that the value my = N — 2 was the maximal one:
For my = N — 1, the calculations were not stable.

Better results are thus obtained when decreasing the amplitude ey or
when increasing the SVV activation parameter my. However it is remarkable
that even for a large values of my the SVV stabilization can still remain
efficient. The value my = N — 2 is indeed much greater than what could be
expected from the theoretical studies carried out for the Biirgers equation.

4.3 Long time behavior

The stabilization effect of the SVV term is furthermore confirmed by the
long time simulation of the unsteady wake at Re = 1000. The N12 mesh is
used for the simulation and the time step equals 0.02, using 5 sub time-cycles
in the transport step. No artificial perturbation was applied to the flow to
initiate the vortex shedding. The SVV parameters used in the computation
are ey = 1/N and my = N — 2. Fig.16 shows the vorticity isolines at time
t = 160,162, i.e. approximatively on a half-period, to clearly visualize the
well-known vortex shedding phenomenon. The corresponding streamlines are
shown in Fig.17. From the time evolution of the cross-flow velocity we obtain
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a Strouhal number (dimensionless frequency) of 0.251. This result is in good
agreement, although slightly higher, with those of [19] and the references
therein (see Table I of [19]).

Let us conclude this Section as follows: the SVV stabilized SEM allows
us to compute flows out of reach of the standard SEM and the best accuracy
is obtained for the highest values of my and the smallest of ey. As a result,
for a particular mesh, we should take €y minimal and my maximal whenever
the calculation is stable. For a given problem and computational mesh, there
exist of course critical values of ey and my beyond which the SVV-SEM is
no longer stable. Thus, the computation with ey = /2N and my = N — 1
is not stable, but (exy = h/2N, my = 2N/3) and (ey = 1/N, my = N — 2)
are stable. Until now we do not know how to select the most satisfactory
values of ey and my for a particular simulation. This crucial point will be
further investigated in the future.

5 Concluding remarks

The highly accurate computation of high-Reynolds number flows is of real
interest for both fundamental studies, e.g. concerned with the transition
to turbulence, and engineering applications, which generally involve non-
laminar flows. When using spectral elements the computation of such flows
is a challenging task, as a result from the fact that they are much less affected
than low order methods by numerical diffusion. On the grounds of the SVV
method, initially introduced for 1D conservation laws, we have proposed
a new approach resulting in a stabilized formulation of the SEM for the
Navier-Stokes equations. It should be mentioned that this formulation yields
an algorithm which can be easily implemented in any spectral element solver
and which does not require additional computational time per iteration, the
stabilization term being included in the viscous term.

First, a detailed study of the convergence properties of the SVV-SEM
has been provided for the Helmholtz-elliptic solver. Using a steep analytical
solution, it has been shown that the exponential property of the spectral
method is preserved although if the convergence rate worsens. However,
this may be no longer true for the Navier-Stokes equations, when a smooth
analytical solution is considered: For the Kovasznay flow, we have found
that with a high value of the SVV activation parameter the results could be
slightly better when the SVV is activated.

Second, to demonstrate the stabilization capabilities of the SVV-SEM for
the Navier-Stokes equations, we have computed the wake of a cylinder at
high Reynolds number and again, the influence of the SVV parameters on
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the results has been pointed out.

Beyond the computation of high Reynolds number flows, the algorithm
that we propose is well adapted to the LES of turbulent flows and the interest
in the SVV method for LES was e.g. outlined in [10, 15, 3]. The SVV-SEM
may then be used as a no-model approach, i.e. no modeling of the sub-grid
scale tensor which results from the spatial filtering of the Navier-Stokes
equations. However, it can also be combined with such a modeling, then
providing a way to avoid a non-controlled mixing between the modeling
adjustments and the numerical approximation errors. Thus, in [15, 3] a SVV
stabilization is used together with an approximate deconvolution technique
[7, 20]. In the frame of 3D spectral Chebyshev-Fourier computations of
the turbulent wake of a cylinder, some comparisons of the two possible
routes are provided in [17], but of course, numerous detailed studies are still
needed. In this frame, our goal is to apply the SVV-SEM to LES of complex
turbulent flows, with or without sub-grid scale modeling, and thus provide
additional contributions to the challenging topic of their highly accurate
computations.
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APPENDIX

Here we give the details of the implementation of the elemental (i.e. before
stiffness summation) “viscous stabilizing term” Ty. The approach described
here follows what is usually done when a nodal basis is chosen.

The space X y is first splitted into X} and X%, Xy = X3 ® X%, such
that X} (respectively X3’) contains vectors with only the first (respectively
the second) component non equal to zero.

Second, the Lagrangian basis is used to span X} and X%, which vector
fields may be assimilated to scalar fields.

Third, in each element Q% k = 1,--- K, the inner products are approxi-
mated by using the Gauss-Lobatto quadrature formula.

Let us focus on test-functions belonging to X3 and again denote u; €
Xy and v; € X, the first component of uy and vy respectively. The
corresponding viscous term, say Ty, can be written:

N
Ty =v Y [FSY*(0x1i1)S"?(0x01) + FoS'/? (v i) S"* Oy 1)
i,j=0
+ Fs(SI/Q(ax?h)Sl/Q(ay?ﬁ) + 51/2(8}/@1)51/2(8)(?71))] (&i5) J'(Og )
4]
where &; = (&,&;), pij = pip; With &, pi,i =0,---, N denoting the Legendre-
Gauss-Lobatto points and corresponding weights in [—1,1]. F, F», F3 are
three geometric factors, defined as

Fri= Oy i)+ Oy f2)° = T [(0,01)" + (0201)”]

Fy = (0xf1)" + (0x o)’ = J° [(ay92)2 + (8$g2)2]

F3:= — (0x fi0v f1 + Ox f20v f2) = J? [0y920y91 + 05920, 91]

where f; and f, (respectively g; and g5) are the components of the mapping
f (respectively g).

Choosing now for each test function v; € X3 the Lagrangian polynomial
hunn, such that Ay, (&, &) = 0midn; (6, Kronecker symbol) and expressing u;
in this Lagrangian basis, we arrive at the matrix statement of Tj,. For the
element O, with u;; for u;(&;, ;) and Dg = S'Y/2D, where D is the usual
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differentiation matrix:

N
Pin
’T1 m n = VZ ‘Jf lm S)im Z(Ds)ipupn)
in 0
N

N
Pmj
+v mj(Ds)jn (Ds) jqtm
2;|J(§m])| 2.mj(Ds); (qz:; s)iq q)

j_
N
3mj DS (Z DS mp“’p])

3
e

9=
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Figure 1: L? and H! norms of the error with and without spectral vanishing
viscosity: v = 1/2500 for the 2 first diagrams and v = 0 elsewhere, my = VN
for the diagrams at left and my = N/2 for those at right, ey = 1/2N for the

two last diagrams and ey = 1/N elsewhere.
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Figure 2: Exact analytical solution used in the 2D test.
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Figure 7: Deformed spectral element mesh.
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Figure 9: Spectral element mesh used to compute the Kovasznay flow
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Figure 11: Spectral element mesh using 310 elements with 7 x 7 Gauss-
Lobatto-Legendre grid-points. The height of the computational domain

equals 7.2 and the distance from the cylinder axis to the outflow boundary
equals 12.
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Figure 12: Surface vorticity distribution for different N with my = 2N/3
and ey = 1/N (t =6, Re = 1000).
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N=12, T=4

Figure 13: Vorticity isolines for different meshes, N = {6,8,12} at times
t =4 at left and ¢ = 6 at right (Re = 1000).

31



N=6
60

‘ referencé
eps=h/2N
eps=1/N

180

2
S
b=
o
>
,40 - m
60 L L L L L L L L
0 20 40 60 80 100 120 140 160
surface angle
N=9
60 T T
reference
eps=h/2N --—-----
eps=1/N --------
2
S
b=
o
>

40

60 ! ! ! ! !

0 20 40 60 80 100
surface angle

Figure 14:

120

32

140 160

180

Surface vorticity distribution for N = 6 (top) and N = 9 (bot-
tom), ey = h/2N and ey = 1/N with my = 2N/3 (t

6, Re = 1000).



60

N=6

‘ referencé
/3

180

2
S
b=
o
>
,40 - m
60 L L L L L L L L
0 20 40 60 80 100 120 140 160
surface angle
N=9

60 T T

reference

/3
2
S
b=
o
>

-40 +

-60

Figure 15:

tom), my = N/3 and my = N — 2 with ey =1/N (t =6, Re =1

20 40 60 80 100
surface angle

120

33

140

160

180

0

0

0).



t=162

Figure 16: Vorticity contours for Re = 1000 at t = 160 and ¢ = 162 using
SVV-SEM with ey =1/N and my = N —2 (-104 < w < 104, 80 equidistant
levels).
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t=160

t=162

Figure 17: Streamlines for Re = 1000 at ¢ = 160 and ¢ = 162 using SVV-
SEM with ey = 1/N and my = N —2 (-3.75 < ¥ < 3.75, 40 non-equidistant
levels with x? distribution).
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