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THOMAS J. HAINES

Abstract. A construction of Bernstein associates to each cocharacter
of a split p-adic group an element in the center of the Iwahori-Hecke
algebra, which we refer to as a Bernstein function. A recent conjecture
of Kottwitz predicts that Bernstein functions play an important role
in the theory of bad reduction of a certain class of Shimura varieties
(parahoric type). It is therefore of interest to calculate the Bernstein
functions explicitly in as many cases as possible, with a view towards
testing Kottwitz’ conjecture. In this paper we prove a characterization
of the Bernstein function associated to a minuscule cocharacter (the
case of interest for Shimura varieties). This is used to write down the
Bernstein functions explicitly for some minuscule cocharacters of Gln;
one example can be used to verify Kottwitz’ conjecture for a special
class of Shimura varieties (the “Drinfeld case”). In addition we prove
some general facts concerning the support of Bernstein functions, and
concerning an important set called the “µ-admissible” set. These facts
are compatible with a conjecture of Kottwitz-Rapoport on the shape of
the special fiber of a Shimura variety with parahoric type bad reduction.

1. Introduction and Statement of Main Results

Let H denote the Iwahori-Hecke algebra of an almost simple, split con-
nected reductive group G over a p-adic field F . More concretely, if I ⊂ G(F )
is an Iwahori subgroup, then H is the convolution algebra of compactly sup-
ported I-bi-invariant functions on G(F ), where convolution is defined using
the Haar measure on G(F ) which gives I volume 1. Let q denote the size of

the residue field of F , and let Z′ = Z[q1/2, q−1/2]. Fix an F -split maximal
torus T of G and a Borel subgroup B containing T . Let W denote the
Weyl group of G and denote the cocharacter lattice by X∗(T ). Bernstein
has constructed a Z′-algebra isomorphism between the Weyl group invariant
elements of the group algebra of X∗(T ) and the center of H:

Z′[X∗(T )]W
v−→ Z(H).

This is achieved by constructing, for each dominant cocharacter µ ∈ X∗(T ),
an element zµ in the center of H (see §2 for the definition), and then by
showing these elements form a Z′-basis for Z(H), as µ runs over all dominant
cocharacters. We call the elements zµ the Bernstein functions.

The main aim of this paper is to study the Bernstein functions from a
combinatorial viewpoint, meaning that we seek an explicit expression for
zµ as a Z′-linear combination of the standard generators Tw, where Tw is
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the characteristic function of the Iwahori double coset corresponding to the

element w in the extended affine Weyl group W̃ of G (according to the

Iwahori decomposition, W̃ indexes the set I\G(F )/I). A second goal of this
article is the study of the µ-admissible subset of the extended affine Weyl
group (see §2 for definition).

The motivation for this work comes from two conjectures in the theory of
Shimura varieties with parahoric type bad reduction, which we now briefly
explain. Fix a rational prime p. A Shimura variety SK is, roughly speak-
ing, attached to a triple of group-theoretic data (G,K, {µ}), where G is
a connected reductive Q-group, K = KpK

p ⊂ G(Qp) × G(Ap
f ) is a com-

pact open subgroup, and {µ} is the G(Qp)-conjugacy class of a cocharacter
µ : (Gm)

Qp
→ G

Qp
which is minuscule, meaning that 〈α, µ〉 ∈ {−1, 0, 1}, for

every root α of G. It is known that SK is defined over a number field E. We
say SK is of parahoric type (resp. Iwahori type) (at p) if Kp is a parahoric
(resp. Iwahori) subgroup of G(Qp), meaning that the “reduction modulo p”
of Kp is a parabolic (resp. Borel) subgroup of G(Fp).

The motivating conjectures concern the “semi-simplified” local zeta func-
tion Zss

p (SK , s) of a parahoric type Shimura variety SK at a prime ideal p of
E dividing p. This is considered by M. Rapoport in [11]. Assume that Ep is
an unramified extension of Qp. By reasoning that is analogous to the case
of good reduction, Rapoport shows in loc. cit. that in order to understand
Zss

p (SK , s) one should study the function on SK(Fq) defined by

x0 7→ tr(Frq ; RΨI
x0

(Ql)),

where RΨ is the sheaf of nearby cycles on (SK)
Fq

, q = pj is such that Qpj

contains Ep, x0 ∈ SK(Fq), Frq is the geometric Frobenius on (SK)
Fq

, and

we take invariants under I, the inertia subgroup of Gal(Qp/Qp). We need
a purely group-theoretic interpretation of this function, if we are eventu-
ally going to use the Arthur-Selberg trace formula to express the local zeta
function in terms of automorphic L-functions.

Such an interpretation has been conjectured by R. Kottwitz. To state
Kottwitz’ conjecture, fix an unramified extension F = Qpj ⊃ Ep, and assume
that G is split over F . For simplicity we also assume that Kp is an Iwahori
subgroup. Then there is an Iwahori subgroup I ⊂ G(F ) such that I ∩
G(Qp) = Kp. Write pj = q, and H = Cc(I\G(F )/I). Associated to the
element {µ} in the Shimura datum is the Bernstein function zµ ∈ Z(H).

Locally in the étale topology, the special fiber of SK has a stratification

indexed by certain elements of the extended affine Weyl group W̃ of G. In
fact SK is étale locally isomorphic to a “local model” M loc (see [11]) and
the special fiber of M loc is a set of Iwahori orbits in the affine flag variety

for G(Fp((t))). To x0 we associate the element x ∈ W̃ indexing the stratum
containing x0.
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Conjecture 1 (Kottwitz) In the case of Iwahori type reduction,

tr(Frq ; RΨI
x0

(Ql)) = qdim(SK)/2zµ(x),

where q is the cardinality of the residue field of F , and zµ(x) is the coefficient
of Tx for the Bernstein function zµ in Cc(I\G(F )/I) corresponding to the
cocharacter µ.

Concerning the shape of the stratification of the “local model” we have the
following conjecture.

Conjecture 2 (Kottwitz-Rapoport) The strata of M loc are indexed by ele-
ments of the µ-admissible set.

If Conjecture 1 were true it would follow that qdim(SK)/2zµ is the cor-
rect “test function” which is “plugged into” the twisted orbital integrals
which come into the computation of the semi-simplified local zeta function
when one attempts to use the Arthur-Selberg trace formula. This is in con-
trast to the case of good reduction, where Kp is a hyperspecial maximal
compact subgroup, and the test function is simply the characteristic func-
tion of the double coset Kp(F )µ(p−1)Kp(F ) in the spherical Hecke algebra
Cc(Kp(F )\G(F )/Kp(F )) (see §16 of [9]).

In [11], Rapoport has given explicit formulae in the “Drinfeld case” for
the trace of Frobenius on nearby cycles appearing in Conjecture 1 (see loc.
cit. Thm 3.12). In order to compare these formulae with Kottwitz’ group-
theoretic prescription, one needs to compute explicitly the coefficients zµ(x)

of the Bernstein function zµ with respect to the basis {Tx, (x ∈ W̃ )} of H.
The main theorem of this paper is a characterization of zµ for any minus-

cule cocharacter, which is Theorem 5.8 in §5:
Theorem 3 (Main Theorem) Let µ be a minuscule dominant cocharacter.
Then zµ is the unique element of H such that the following three properties
hold:

(1) zµ ∈ Z(H),
(2) supp(zµ) is contained in the µ-admissible set,
(3) zµ(µ) = 1.

We use the characterization to compute the coefficients zµ(x) for Bernstein
functions in certain important cases. The main application is the computa-
tion of the function z(1,0,...,0) for the group Gln (Proposition. 7.1). This can
be reformulated as follows (comp. notation in §2).
Proposition 4 For x an element of the extended affine Weyl group of Gln,
let zµ(x) denote the coefficient of Tx in the expression for the element zµ.
Then for µ = (1, 0n−1), we have

qdim(SK)/2zµ(x) =

{
(1− q)l(µ)−l(x) if x is µ-admissible,

0 if x is not µ-admissible.
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Here we have used dim(SK) = l(µ), where l(x) denotes the length of an

element x ∈ W̃ (see §2 for precise definition). Putting this formula for zµ(x)
together with Rapoport’s explicit formulae for the trace of Frobenius on
nearby cycles ([11]), one can prove that Conjecture 1 holds in the “Drinfeld
case” (see [5] for further details and another proof of Proposition 4). A
related Shimura variety associated to the data (Gl4, µ = (1, 1, 0, 0)) has
been studied by U. Görtz. He computed the trace of Frobenius on the
sheaf of nearby cycles and, comparing the result with the formulae for the
coefficients z(1,1,0,0)(x) given in §9, he verified that Conjecture 1 also holds
in this case.

If Conjectures 1 and 2 were both true, one would expect the support of zµ

to lie in the µ-admissible set. This is in fact true even if µ is not minuscule
(see Corollary 5.7):

Proposition 5 For any dominant cocharacter µ, the support of zµ is con-
tained in the µ-admissible set.

This result is the main ingredient in the proof of Theorem 3 above. The
proof is inspired by a result of Deodhar ([4]) and uses a generalization of
one of the definitions appearing in loc. cit.

It appears to be true that the support of zµ is precisely the µ-admissible
set. This is true in the case of Gl2, as follows from the Corollary 10.4 of §10.
Moreover, it also holds for any group if µ is minuscule (see [5]). We make
the following conjecture:

Conjecture 6 For any dominant cocharacter µ, supp(zµ) is the µ-admissible
set.

We now outline the contents of the paper. In §2 we define notation and
recall some important definitions. In the next three sections (§3− 5) we es-
tablish general facts which will be required for the applications in the later
sections. In particular in §3 we give simple necessary and sufficient condi-
tions for an arbitrary element in the Iwahori-Hecke algebra to be central.
In §4 we study the relationship between conjugacy and µ-admissibility. In
§5 the support of zµ is characterized, leading to the proof of Proposition 5
(Corollary 5.7) and Theorem 3 (Theorem 5.8) cited above.

The second half of the paper is devoted to applications and examples of
the general facts proved in §3 − 5. In §6, some facts about µ-admissible
sets for Gln and µ minuscule are proved; these are used in the proof of
Proposition 4 (Proposition 7.1) mentioned above, which is given in §7. In
§8 the complexity of the µ-admissible sets is illustrated by counting the µ-
admissible set for some minuscule cocharacters of Gln and GSp2n. In §9,
further examples of Bernstein functions for minuscule cocharacters of Gln
and GSp2n are given, using the technical results from §6.

Finally, in §10, we present a proof that the Bernstein and Satake isomor-
phisms are compatible, using results of G. Lusztig ([7]) and S. Kato ([8]).
This implies that for any dominant µ there is a unique function kµ in Z(H)
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whose image in the spherical Hecke algebra has Satake transform ql(µ)/2χµ,
where χµ denotes the character of the highest weight module attached to
µ. We calculate the function kµ explicitly for any dominant cocharacter µ
of the group Gl2 (Proposition 10.3), and then use this to compute all the
Bernstein functions for Gl2 (Corollary 10.4).

2. Further Notation

2.1. Affine Weyl group. We denote by Π the set of simple roots, and S
the corresponding set of simple reflections in W . Let α̃ denote the unique
highest root, and let s0 = ˇ̃αsα̃ = s(−α̃,1) denote the affine reflection about

the affine hyperplane {x ∈ X∗(T
ad) ⊗ R | 〈α̃, x〉 = 1} ,where T ad is the

image of T in the adjoint group Gad. Let Sa = S ∪ {s0}. We denote by
T sc the inverse image of T under the map Gsc → G; T sc is a maximal torus
in the simply connected cover Gsc of Gder. The affine Weyl group is by
definition the group Wa = X∗(T

sc) o W . It is known that (Wa, Sa) is a
Coxeter group; therefore there is a length function l(x) and a Bruhat order

≤ defined on Wa. If Ω denotes the subgroup of W̃ which preserves the set

Sa under conjugation, then W̃ = Wa o Ω. We extend the length function

to W̃ by declaring it to be trivial on ω, and we extend the Bruhat order by
defining x1ω1 ≤ x2ω2 if and only if x1 ≤ x2 and ω1 = ω2.

Fix a dominant cocharacter µ.

Definition 2.1. We say an element x ∈ W̃ is µ-admissible if x ≤ w(µ) for
some w ∈W .

2.2. Hecke algebra. The braid group of W̃ is the group generated by

symbols Tw for w ∈ W̃ subject to the relation Tww′ = TwTw′ whenever
l(ww′) = l(w) + l(w′). The Hecke algebra H is by definition the quotient of

the group algebra (over Z′) of the braid group of W̃ , by the two sided ideal
generated by the elements

(Ts + 1)(Ts − q),
for s ∈ Sa. We continue to denote by Tw the image in H of the element Tw

in the braid group. It is known that the elements Tw form a Z′-basis for H.

For ψ =
∑

x∈fW
axTx ∈ H, we call supp(ψ) = {x ∈ W̃ | ax 6= 0} the

support of ψ. We occasionally denote the coefficient ax by ψ(x).

For any x ∈ X∗, define an element Θx = q−(l(x1)−l(x2))/2Tx1
T−1

x2
, where

x = x1 − x2 and xi ∈ Xdom, for i = 1, 2. This element is independent of
the choice of x1 and x2, and moreover the elements ΘxTw (for x ∈ X∗ and
w ∈W ) form a Z′-basis for H. We use these to define the Bernstein function
attached to a dominant cocharacter µ:

Definition 2.2. zµ =
∑

λ Θλ, where λ ranges over the W -orbit of µ.

The following theorem is due to Bernstein (see [7]):
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Theorem 2.3 (Bernstein) The center Z(H) of the Hecke algebra is the free
Z′-module generated by the elements zµ, where µ ranges over all dominant
cocharacters of A.

(Note: In [7] this is only stated for G a split semi-simple group, but it is
easy to deduce the general statement for G any split quasi-simple connected
reductive group.)

For any Tw, we define a renormalization T̃w = q−l(w)/2Tw. Define a new
parameter Q = q−1/2 − q1/2. Then the elements T̃w also form a basis for H,
and the usual relations can be written as

T̃sT̃w =

{
T̃sw, if l(sw) = l(w) + 1

−QT̃w + T̃sw, if l(sw) = l(w)− 1,

for w ∈ W̃ and s ∈ Sa. There is also a right-handed version of this relation.
Note in particular that T̃−1

s = T̃s +Q, for s ∈ Sa.

3. Conditions on central elements

The purpose of this section is to write down in a convenient form the

conditions for an arbitrary element ψ =
∑

w bwT̃w to be in the center of
H. The results of this section are used later (§6− 7, 9) to construct certain
elements in the center of the Iwahori-Hecke algebra. We then show these
are in fact equal to Bernstein functions by using the characterization of
Bernstein functions given in Theorem 3.

First note that for any s ∈ Sa, τ ∈ Ω, and w ∈ W̃ , we have

T̃sT̃w =

{
T̃sw, if l(sw) = l(w) + 1

−QT̃w + T̃sw, if l(sw) = l(w)− 1,

T̃wT̃s =

{
T̃ws, if l(ws) = l(w) + 1

−QT̃w + T̃ws, if l(ws) = l(w)− 1,

T̃τ T̃w = T̃τw,

T̃wT̃τ = T̃wτ .

It follows that we can write, for s ∈ Sa, and τ ∈ Ω,

T̃sψ =
∑

w : l(sw)=l(w)+1

bwT̃sw +
∑

w : l(sw)=l(w)−1

bw(−QT̃w + T̃sw),

ψT̃s =
∑

w : l(ws)=l(w)+1

bwT̃ws +
∑

w : l(ws)=l(w)−1

bw(−QT̃w + T̃ws),

T̃τψ =
∑

w

bwT̃τw,

ψT̃τ =
∑

w

bwT̃wτ .
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On equating the coefficients of T̃x in the first two equations (and also in the
second two equations), we deduce that ψ is in the center of the Iwahori-
Hecke algebra if and only if the following five conditions hold, for every

x ∈ W̃ , s ∈ Sa, and τ ∈ Ω:

• If l(sx) = l(x)− 1 and l(xs) = l(x)− 1, then bsx = bxs,
• If l(sx) = l(x)− 1 and l(xs) = l(x) + 1, then bsx −Qbx = bxs,
• If l(sx) = l(x) + 1 and l(xs) = l(x)− 1, then bsx = bxs −Qbx,
• If l(sx) = l(x) + 1 and l(xs) = l(x) + 1, then bsx = bxs,
• bτx = bxτ .

Replacing x with xs, we see that the first and fourth conditions can be ex-
pressed as a single condition, and similarly the second and third conditions,
in the presence of the first and fourth, can be expressed as a single condition.
We have proved the following Lemma:

Lemma 3.1. The element ψ is in the center of the Iwahori-Hecke algebra

if and only if the following three conditions hold, for every x ∈ W̃ , s ∈ Sa

and τ ∈ Ω:

(1) If l(sxs) = l(x), then bsxs = bx,
(2) If l(sxs) = l(x)− 2, then bx = bsxs −Qbxs,
(3) bτxτ−1 = bx.

4. Conjugacy and µ-admissibility

In this section we will establish some general facts concerning µ-admissibility
and conjugacy classes. These facts play a role in the proof of the main com-
putation (Proposition 4 in the introduction).

The first step is an easy lemma that applies to arbitrary Coxeter groups.

Lemma 4.1. Let (W,S) be a Coxeter group. Let w ∈ W and s, t ∈ S.
Suppose that l(swt) = l(w) and l(wt) = l(sw). Then sw = wt.

Proof. This can be found on p.148 of [6], but we repeat the proof for con-
venience. Write w = s1, · · · sr (reduced). There are two possibilities, ei-
ther l(sw) > l(w) or l(sw) < l(w). Suppose first that l(sw) > l(w). Then
l(swt) = l(w) < l(sw), so the Exchange Condition of Coxeter groups applies
to the pair sw, t, meaning that sw = w′t, where either w′ = ss1 · · · ŝi · · · sr

or w′ = w. The first alternative is impossible because it would imply that
w = s(sw) = s(w′t) = s1 · · · ŝi · · · srt, forcing wt to be shorter than w,
contrary to assumption. Therefore w′ = w and so sw = wt.

Now suppose that l(sw) < l(w). The hypotheses of the first case are now
satisfied with sw in place of w, so we can conclude that w = swt. �

Remark. The lemma as stated applies to affine Weyl groups (Wa, Sa), but
it easy to see that it remains true even if we allow w to be an element of an

extended affine Weyl group W̃ .

We now recall three basic facts about the Bruhat order.
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Lemma 4.2. Let x, y be elements of a Coxeter group (W,S). Suppose that
x−1y is a reflection and l(x) < l(y). Then x ≤ y in the Bruhat order.

Proof. This is Lemma 8.11 of [1]. �

Lemma 4.3. Let x, y ∈ W̃ , and let s ∈ Sa. Assume that x ≤ y. Then

(1) either sx ≤ y or sx ≤ sy, and
(2) either x ≤ sy or sx ≤ sy, and
(3) either xs ≤ y or xs ≤ ys, and
(4) either x ≤ ys or xs ≤ ys.

Proof. The first two statements, for ordinary or affine Weyl groups, are
proved in Lemma 2.5 of [1]. It is easy to check that they remain valid for
extended affine Weyl groups. The last two statements follow from the first

two and the fact that, for any x, y ∈ W̃ , x ≤ y if and only if x−1 ≤ y−1. �

Lemma 4.4. Let x, y ∈ W̃ and let x = s1 · · · sq be a reduced expression
of x. Then y ≤ x if and only if there exists a strictly increasing sequence
i1 < i2 < · · · ik (possibly empty) of integers drawn from {1, 2, ...q}, such that
y = si1 · · · sik .

Proof. This is Proposition 2.8 of [1]. �

For the next lemma let µ denote an arbitrary dominant cocharacter of the
torus T , the maximal F -split torus in G we fixed above. Let x denote an

element of the extended affine Weyl group W̃ , and s ∈ Sa a simple reflection
in Wa.

Lemma 4.5. If l(sxs) = l(x), then x and sxs are simultaneously
µ-admissible.

Proof. We must prove that if the lengths of x and sxs are the same and
x is µ-admissible, then sxs is µ-admissible. Consider the four elements x,
sx, xs, and sxs. Since x and sxs have the same length, there are only four
possible configurations of these four elements in the Bruhat order. Two of
them involve the cases where l(sx) = l(xs) (which necessarily differs from
l(x) = l(sxs) by one). But in these two cases we know by Lemma 4.1 (and
following Remark) that x = sxs, so we are done. In the remaining two
cases, either xs is the least upper bound and sx is the greatest lower bound
of the set {x, xs, sx, sxs} (in the Bruhat order), or vice-versa. Suppose for
instance that xs is the least upper bound, so that x ≤ xs and sxs ≤ xs. If
xs is µ-admissible, then so is sxs and we are done. So assume that xs is not
µ-admissible. We can write x ≤ µ′ for some µ′ ∈W · µ. By Lemma 4.3 (3),
we know that either xs ≤ µ′ or xs ≤ µ′s. The first possibility does not occur
(since xs is not µ-admissible), so the second one does. Applying Lemma 4.3
(2) to this relation we see that either xs ≤ sµ′s = s(µ′) or sxs ≤ s(µ′).
Since s(µ′) ∈ W · µ, only the second case occurs and sxs is µ-admissible.
The case where sx is the least upper bound is similar. �
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Corollary 4.6. (of Proof) Let µ′ ∈W (µ) and s ∈ Sa. If x ≤ µ′ and either
sx or xs is not µ-admissible, then s(x) ≤ s(µ′).

5. The Support of zµ and the Main Theorem

In this section we prove the main theoretical result of the paper, Theorem
5.8 (Theorem 3 in the introduction), which is a characterization of zµ for µ
minuscule. This is the principal tool used to produce the explicit expressions
for zµ given later (we write down some explicit expressions, and use the main
theorem to show that they are in fact the desired Bernstein functions). To
start the proof we give a characterization of the support of the function Θλ

for any λ ∈ X∗ (see Proposition 5.4). Using this we then show that the

support of Θλ is contained in the set {x ∈ W̃ | x ≤ λ} (Proposition 5.5).
An immediate consequence is that supp(zµ) is contained in the µ-admissible

subset of W̃ , for any dominant µ ∈ X∗ (Corollary 5.7). We then use these
observations about the supports of arbitrary Bernstein functions to prove
Theorem 5.8.

Suppose λ = λ1−λ2, where λ1 and λ2 are both dominant. Write λi = wiσi

(wi ∈ Wa and σi ∈ Ω) for i = 1, 2. Then Θλ = T̃w1σ1
T̃−1

w2σ2
= T̃w1

T̃−1
τ (w2)T̃τ ,

where τ = σ1σ
−1
2 . Note that for support questions it is enough to understand

the first two factors, meaning that we have effectively replaced W̃ with the
Coxeter group (Wa, Sa). In fact the results of this section apply to any
Coxeter group. Therefore fix a Coxeter group (W,S) and consider the Hecke

algebra HW with Z′-basis {T̃w} (w ∈W ) and having relations

T̃wT̃s =

{
T̃ws, if l(ws) = l(w) + 1

−QT̃w + T̃ws, if l(ws) = l(w)− 1,

for w ∈ W and s ∈ S. Fix elements v and w in W . Denote by Θ(v, w)

the element T̃vT̃
−1
w−1 . We want to understand the support of the function

Θ(v, w). This is simplified by the following positivity statement (where Z+

denotes the nonnegative integers):

Lemma 5.1. Write Θ(v, w) =
∑

x∈W ax(Q)T̃x. Then ax(Q) ∈ Z+[Q] for
every x ∈W .

Proof. This is an easy induction on l(w), using the identity T̃−1
s = T̃s + Q

and

T̃y(T̃s +Q) =

{
QT̃y + T̃ys, if l(ys) = l(y) + 1

T̃ys, if l(ys) = l(y)− 1.

�

Now we need to recall a definition from [4]. Fix a reduced expression
w = s1s2 · · · sr.
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Definition 5.2. We call a sequence [α0, α1, . . . , αr] a subexpression for w
(with respect to w = s1s2 · · · sr) if α0 = 1 and αj ∈ {αj−1, αj−1sj} for every
j ≥ 1.

The following definition generalizes Deodhar’s notion of distinguished subex-
pression (see loc. cit.).

Definition 5.3. Let v and w be arbitrary elements of W . Fix for w a
reduced expression w = s1 · · · sr. We call a sequence [σ0, σ1, . . . , σr] v-
distinguished (with respect to w = s1s2 · · · sr) if

(1) σj ∈ {σj−1, σj−1sj}, for every j ≥ 1,
(2) σj ≤ σj−1sj , for every j ≥ 1,
(3) σ0 = v.

Note that this last definition is actually a generalization of the one in-
troduced by Deodhar in [4]: any distinguished subexpression of w is v-
distinguished for v = 1.

Given w = s1s2 · · · sr as above and v ∈W , define D(v, w) ⊂W to be the
set of elements σr such that there exists a subexpression [α0, . . . , αr] of w
such that [vα0, . . . , vαr] is v-distinguished and vαr = σr.

Proposition 5.4. supp(Θ(v, w)) = D(v, w).

Proof. The proof is by induction on r. If r = 0 the statement is evident.
Assume the result holds for r ≥ 0; we will show it holds for r + 1. Suppose
therefore that we have a reduced expression ws = s1s2 · · · srs. Note that
Θ(v, ws) = Θ(v, w)(T̃s +Q).

First we claim that supp(Θ(v, ws)) ⊂ D(v, ws). Any element in the

left hand side must be in the support of T̃σr(T̃s + Q) for some element
σr ∈ supp(Θ(v, w)). We must consider two cases.

Case 1: σrs < σr. Then T̃σr(T̃s + Q) = T̃σrs and we must show σrs ∈
D(v, ws). But by the induction hypothesis there is a subexpression [α0, . . . , αr]
of w such that [vα0, . . . , vαr] is distinguished, with σr = vαr. But then it is
clear that [α0, . . . , αr, αrs] is a subexpression of ws and [vα0, . . . , vαr, vαrs]
is distinguished and σrs = vαrs, implying that σrs ∈ D(v, ws).

Case 2: σr < σrs. Then T̃σr(T̃s + Q) = QT̃σr + T̃σrs and we have to
show that σrs and σr are in D(v, ws). The same argument as above shows
that σrs ∈ D(v, ws). The induction hypothesis implies the existence of
a subexpression [α0, . . . , αr] of w such that [vα0, . . . , vαr] is distinguished
and vαr = σr. Note that [α0, . . . , αr, αr] is a subexpression for ws and
[vα0, . . . , vαr, vαr] is distinguished. This shows that σr ∈ D(v, ws), and
proves the claim.

Now we claim that supp(Θ(v, ws)) ⊃ D(v, ws). Suppose [α0, . . . , αr+1] is
a subexpression of ws and [vα0, . . . , vαr+1] is distinguished. Write σj = vαj

for j ≥ 0. We must show σr+1 ∈ supp(Θ(v, ws)). By induction we know
that σr ∈ supp(Θ(v, w)).
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Case 1: σr+1 = σr. Then since [σ0, . . . , σr, σr] is distinguished, we have

σr < σrs and so T̃σr(T̃s + Q) = QT̃σr + T̃σrs. It follows that σr+1 = σr ∈
supp(Θ(v, ws)).

Case 2: σr+1 = σrs. If σr < σrs, then T̃σr(T̃s + Q) = QT̃σr + T̃σrs and so

σr+1 = σrs ∈ supp(Θ(v, ws)). If σrs < σr, then T̃σr(T̃s +Q) = T̃σrs and so
σr+1 = σrs ∈ supp(Θ(v, ws)). This completes the proof.

�

Proposition 5.5. Suppose [α0, . . . , αr] is a subexpression of w = s1 · · · sr

and [v, vα1, . . . , vαr] is v-distinguished. Then vαr ≤ vw.

Proof. We use induction on r. If r = 0 the statement is evident. We assume
the statement holds for r ≥ 0 and deduce it for r+1. Suppose therefore that
wsr+1 = s1 · · · srsr+1 is a reduced expression, that [α0, . . . , αr+1] is a subex-
pression of wsr+1 and [v, vα1, . . . , vαr+1] is v-distinguished with respect to
wsr+1 = s1 · · · srsr+1. We want to prove that vαr+1 ≤ vwsr+1. By Lemma
4.4 we can write αr+1 = s1 · · · ŝi1 · · · ŝiq · · · sr+1, for 1 ≤ i1 < · · · < iq ≤ r+1
and where the ˆ symbol means we omit that term.

If q = 0 then vαr+1 = vwsr+1 and so we are done. Therefore we can
assume q > 0. We consider two cases.
Case 1: α1 = s1. This means that i1 > 1 and our sequence is of the form

[v, vs1, . . . , vαr+1].

The last r + 1 terms of this sequence form a vs1-distinguished sequence
with respect to s2 · · · sr+1. Therefore by the induction hypothesis we have
vs1(s2 · · · ŝi1 · · · ŝiq · · · sr+1) ≤ vs1(s2 · · · sr+1), i.e., vαr+1 ≤ vwsr+1.
Case 2: α1 = α0 = 1. Then i1 = 1 and our sequence is of the form

[v, v, . . . , vαr+1].

The last r + 1 terms of this sequence form a v-distinguished sequence with
respect to s2 · · · sr+1 and so by the induction hypothesis we have vαr+1 ≤
v(s2 · · · sr+1). Since the sequence is distinguished we have v < vs1 and so the
desired conclusion follows from the following lemma (taking n = r+ 1). �

Lemma 5.6. Let s1 · · · sn be reduced. Suppose v < vs1. Then vs2 · · · sn <
vs1 · · · sn.

Proof. Use induction on n. If n = 1, then the statement is evident. Suppose
that it holds for n ≥ 1; we show it holds for n+ 1. We assume v < vs1. By
the induction hypothesis we have vs2 · · · sn < vs1 · · · sn. We want to show
vs2 · · · sn+1 < vs1 · · · sn+1. Call the first term x and the second y. Note
that x−1y = sn+1 · · · s2s1s2 · · · sn+1 is a reflection. By Lemma 4.2, we need
only show l(x) < l(y). Assume this is not the case. Then because x−1y is
a reflection it is impossible to have l(x) = l(y). Therefore l(y) < l(x) and
hence x � y. The induction hypothesis asserts that xsn+1 < ysn+1, so by
Lemma 4.3 we deduce x ≤ ysn+1 and xsn+1 ≤ y. Equality is impossible
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in each of these cases, for otherwise s1 · · · sn+1 = s2 · · · sn. Hence we have
strict inequalities

l(xsn+1) < l(y) < l(x),

which is a contradiction because the numbers on the left and right must
differ by 1. Therefore we conclude that l(x) < l(y) and so x ≤ y. �

Corollary 5.7. Let λ ∈ X∗ and µ ∈ Xdom. Then the following statements
hold:

(1) The support of Θλ is contained in {x | x ≤ λ}.
(2) The support of zµ is contained in the µ-admissible set.

Proof. Using the notation at the beginning of this section we see that λ =
λ1λ

−1
2 = w1

τ (w2)
−1τ , where τ = σ1σ

−1
2 and Θλ = T̃w1

T̃−1
τ (w2)T̃τ . Therefore

we need to show that supp(Θ(w1,
τ (w−1

2 )) is contained in the set {x | x ≤
w1

τ (w−1
2 )}. This follows immediately from the previous two propositions.

Thus the first statement is proved, and the second is a direct consequence
of the first and the definition of zµ.

�

Now we can prove the main theorem.

Theorem 5.8. Let µ be a minuscule dominant cocharacter. Then zµ is the
unique element of H such that the following three properties hold:

(1) zµ ∈ Z(H),
(2) supp(zµ) is contained in the µ-admissible set,
(3) zµ(µ) = 1.

Proof. It is obvious that zµ satisfies conditions (1) and (3). Corollary 5.7
above shows it also satisfies condition (2).

We now want to prove that if f satisfies these three conditions, then it
must be zµ. First we need a lemma.

Lemma 5.9. Suppose λ ∈ Xdom is µ-admissible. Then λ = µ.

Proof. For any cocharacter x let wx denote the unique element of great-
est length in the double coset WxW . It is well known that for dominant
cocharacters λ and µ we have

wλ ≤ wµ if and only if λ � µ,
where λ � µ means µ − λ is 0 or a sum of simple coroots. Now λ being
µ-admissible implies λ ≤ wµw−1 for some w ∈ W . It follows easily (using
Lemma 4.3 repeatedly) that wλ ≤ wµ and thus λ � µ. Since µ (being
minuscule) is a minimal nonzero element of Xdom with respect to �, we
conclude that λ = µ.

�

Now suppose f ∈ H satisfies the three conditions. Because f ∈ Z(H),
Bernstein’s theorem (Theorem 2.3) implies that we can write f as a Z′-linear
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combination of elements zλ, for λ ∈ Xdom : f =
∑

λ aλzλ. Among those λ
such that aλ 6= 0, choose one of maximal length; say l(λ) = r. Then we can
write

f =
∑

λ′ : l(λ′)=r

aλ′zλ′ +
∑

λ′′ : l(λ′′)<r

aλ′′zλ′′ .

Since supp(zλ′′) is contained in the λ′′-admissible set for each λ′′ and simi-
larly for each λ′ (Cor. 5.7), and the W -orbits of the elements λ′ are disjoint,
it follows that λ ∈ supp(f). By (2), this means λ is µ-admissible. Hence by
the lemma above, λ = µ. Since λ was chosen arbitrarily (among the λ′’s),
we can now write

f = aµzµ +
∑

λ′′ : l(λ′′)<r

aλ′′zλ′′ .

Suppose that the sum on the right hand side is nonempty. Then among the
elements λ′′ such that aλ′′ 6= 0 , choose one of maximal length, say λ1. Then
again by the argument used above we see that λ1 ∈ supp(

∑
λ′′ aλ′′zλ′′). We

now reach a contradiction: If λ1 ∈ supp(f), then by (2) and the lemma
above, λ1 = µ, which can’t happen (consider lengths). On the other hand,
if λ1 /∈ supp(f) then we must have λ1 ∈ supp(zµ), which again by the lemma
leads to λ1 = µ. This contradiction shows that the sum is in fact empty, so
that

f = aµzµ.

Finally condition (3) implies that aµ = 1. �

6. Applications to Gln

The goal of this section is to extend some results in [10] and then use
these new results together with Theorem 5.8 to give an explicit formula for
the Bernstein function attached to Gln and µ = (1, 0, . . . , 0). Some further
examples for Gln will also be discussed.

6.1. Minuscule alcoves for Gln. We will need some results and definitions
pertaining to the case G = Gln. All the terminology and notation, and some
of the theorems, will be taken from [10].

The extended affine Weyl group W̃ for Gln is the semidirect product of the

symmetric group Sn and the group Zn. We view W̃ as a group of affine linear
transformations of Rn, with Sn acting by permutations of the coordinates
and Zn acting by translations. We order the affine roots in such a way that
the simple affine roots are the functions (x1, . . . , xn) 7→ xi − xi+1 (1 ≤ i ≤
n−1) together with the affine linear function (x1, . . . , xn) 7→ xn−x1+1. The
corresponding simple reflections Sa are the transpositions si = (i, i + 1) in
Sn together with the affine linear tranformation s0 given by (x1, . . . , xn) 7→
(xn + 1, x2, x3, . . . , xn−2, xn−1, x1 − 1). The affine Weyl group Wa is the
semidirect product of Sn with the subgroup of Zn consisting of elements
(x1, . . . , xn) ∈ Zn such that x1 + · · ·+xn = 0. We define the length function

l(·) and the Bruhat order on the groups Wa and W̃ using the simple affine
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reflections Sa. (Note that these are the usual simple reflections defined by
using the maximal torus T of diagonal matrices and the usual Borel subgroup
B of upper triangular matrices.)

For a vector v ∈ Zn we denote by v(m) the m-th entry of v; thus v =
(v(1), . . . , v(n)). Also we write

∑
(v) for the sum v(1) + · · · + v(n). Given

two vectors u, v ∈ Zn, we write u ≤ v if u(m) ≤ v(m) for all m such that
1 ≤ m ≤ n.

Definition 6.1. An alcove for Gln is a sequence v consisting of vectors
v0, v1, . . . , vn−1, vn = v0 + (1, . . . , 1) in Zn satisfying the following two con-
ditions:

• v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ vn,
• ∑

(vi) =
∑

(vi−1) + 1, for 1 ≤ i ≤ n.

We will call a vector v = (v(1), . . . , v(n)) ∈ Zn minuscule if 0 ≤ v(m) ≤ 1
for all m such that 1 ≤ m ≤ n.

For each r such that 0 ≤ r ≤ n, let er denote the r-th standard basis vector
in Rn, with the convention e0 = (0, . . . , 0). Also we will let ωr denote the
minuscule vector (1r, 0n−r).

Definition 6.2. We say that an alcove v consisting of the vectors v0, . . . vn

is minuscule if
ωi ≤ vi ≤ ωi + (1, . . . , 1),

for all i in the range 0 ≤ i ≤ n− 1.

We refer to the minuscule alcove ω0, . . . , ωn as the standard alcove. The

group W̃ acts on the set of alcoves in the obvious way. It is easy to see that
this action is simply transitive. Therefore by taking the standard alcove as

base point, we may identify W̃ with the set of all alcoves. If v is an alcove

and x is the corresponding element of W̃ , we write v←→ x. If w ∈ W̃ and
w v is the alcove attained by the action of w on v, then we have w v←→ wx.

Definition 6.3. We call an element x ∈ W̃ minuscule if there exists an r
(0 ≤ r ≤ n) such that x ≤ v in the Bruhat order on W̃ , for some permutation
v of ωr.

In other words, x is minuscule if and only if it is µ-admissible for some
minuscule dominant cocharacter µ (all of which are of the form ωr for some
r such that 0 ≤ r ≤ n). For the rest of this paper we will tacitly assume the
following theorem.

Theorem 6.4. (Kottwitz-Rapoport) Suppose the alcove v corresponds to

x ∈ W̃ . Then v is minuscule if and only if x is minuscule.

Proof. This is a direct consequence of Theorem 3.5 of [10]. �

If v0, . . . , vn is a minuscule alcove , we associate to it a sequence of mi-
nuscule vectors µ0, . . . , µn−1, where

µk(j) = vk(j)− ωk(j).
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Also we define, for 1 ≤ j ≤ n, the subset Kj of {0, 1, 2, . . . , n−1} by putting

Kj = {k | 0 ≤ k ≤ n− 1 and µk(j) = 1}.
Note that the set of vectors {µ0, . . . , µn−1}, or equivalently, the collection of
sets {K1, . . . ,Kn}, determines the minuscule alcove v0, . . . , vn−1 uniquely.

Definition 6.5. For any alcove v and any integer l in the range 0 ≤ l ≤ n−1,
we call the number µl(1) + · · · + µl(n) (which is independent of l) the size
of v.

Let 1 ≤ i < j ≤ n and d ∈ Z. We will consider the decomposition of the
affine reflection w = wi,j;d = d(ei − ej)s corresponding to the affine linear
function αi,j;d = xi − xj − d on Rn. In our expression for w here the term
d(ei − ej) denotes translation by this vector, and the term s is the factor
in the finite Weyl group; it is the transposition (ij). Now suppose v is the
alcove v0, . . . , vn−1 and x is the corresponding element of the extended affine
Weyl group. Then we have a similar decomposition of x:

x = (v0(1), . . . , v0(n))π,

where the first term is simply translation by the vector v0 ∈ Zn and the sec-
ond term is a permutation π ∈W . We can also describe the alcove v by spec-
ifying the initial vector v0 and the ordered set of vectors
(v1−v0, v2−v1, . . . , vn−vn−1), which can also be written as (eπ(1), . . . , eπ(n)).

If K ⊂ Z/nZ, we denote the complement of K in Z/nZ by Kc. The
characteristic function of such a subset will be denoted by ξK .

The following are some facts which will be needed later.

Lemma 6.6. (Kottwitz-Rapoport) Let v be a minuscule alcove, and let w
be as above.

(1) For each 1 ≤ j ≤ n, Kj is either Z/nZ, ∅, or an interval of the form
[?, j).

(2) Suppose that w v is minuscule. Then d ∈ {0, 1}.
(3) If d = 0, then w v is minuscule if and only if [i, j) ⊂ Kc

i ∩Kj.
(4) If d = 1, then w v is minuscule if and only if [i, j)c ⊂ Kc

j ∩Ki.

(5) Consider the statement: Either d = 0 and [i, j) = Kc
i ∩Kj or else

d = 1 and [i, j)c = Kc
j ∩Ki. Then this statement holds if and only

if v ≤ w v and w v is minuscule.

Proof. These are contained in §5 of [10]. �

Now fix x, v , and w as before. We denote by v′,v′′, and v′′′, the alcoves
corresponding to the group elements xw, wx, and wxw, respectively. If
these alcoves are minuscule, we also denote the corresponding collections
of sets with the appropriate number of primes, that is, v′ corresponds to
the collection of sets {K ′

j}, etc. We will follow the same convention when

discussing the sets of minuscule vectors µk, that is, v′ will correspond to the
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set {µ′j}, etc. It is easy to see that

x = v0π,

xw = (v0 + d(eπ(i) − eπ(j)))πs,

wx = (s(v0) + d(ei − ej))sπ,

wxw = (s(v0) + d(ei − ej) + d(esπ(i) − esπ(j)))sπs.

If we consider the case where d = 0, the expressions above can be simplified
somewhat. In particular we can write w = s = (ij). In this case the
associated alcoves may be specified by the following data:

v ←→ (v0(1), . . . , v0(n)); eπ(1), . . . , eπ(n),
v′ ←→ (v0(1), . . . , v0(n)); eπs(1), . . . , eπs(s),
v′′ ←→ (v0(s(1)), . . . , v0(s(n))); esπ(1), . . . esπ(n),
v′′′ ←→ (v0(s(1)), . . . , v0(s(n))); esπs(1), . . . esπs(n).

Next we want to describe the conditions on the element x = v0π that
ensure that v is a minuscule alcove:

Lemma 6.7. v is a minuscule alcove if and only if v0 is a minuscule vector
and the following condition holds, for every 1 ≤ i ≤ n:

v0(i) = 0⇒ π−1(i) ≤ i, and v0(i) = 1⇒ π−1(i) ≥ i.

Proof. This is an easy exercise using the definitions. �

For x and w as above, define elements i′ and j′ such that 1 ≤ i′ < j′ ≤ n
and π({i′, j′}) = {i, j}. As an application of the previous lemma and the
explicit expressions above we get the following

Lemma 6.8. Suppose x, xw, wx, and wxw are all minuscule elements of

W̃ (Gln). Then {i′, j′} ∩ {i, j} = ∅.

Proof. We know from Lemma 6.6 (2) that d ∈ {0, 1}. First we consider the
case d = 1. In this case we will prove something stronger: if the translation
parts of the four elements x, xw, wx, and wxw are minuscule vectors, then
{i′, j′} ∩ {i, j} = ∅. Indeed, if the translation parts of the first and second
elements are minuscule, we must have v0(π(i)) = 0 and v0(π(j)) = 1. On
the other hand if the translation parts of the first and third elements are
minuscule, then s(v0)(i) = 0 and s(v0)(j) = 1, so v0(j) = 0 and v0(i) = 1.
This implies that π−1(i) 6= i and π−1(j) 6= j. Finally if the translation parts
of the first and fourth elements are minuscule, then we have i 6= sπ(i) and
j 6= sπ(j), that is, π−1(j) 6= i and π−1(i) 6= j. This proves the lemma in the
case d = 1.

Now consider the case d = 0. Let τ = (1, 0, . . . , 0)c ∈ Ω ⊂ W̃ (Gln) , where
c = (12 · · ·n) ∈ Sn = W (Gln). Conjugating w by an appropriate power of
τ yields an element wl,k;1. Indeed, a direct computation shows that for any
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1 ≤ i < j < n we have

Int(τ)(wi,j;0) = wi+1,j+1;0

Int(τ)(wi,n;0) = w1,i+1;1.

Moreover conjugating any element of W̃ (Gln) by τ preserves the property
of being minuscule, since Int(τ) preserves the Bruhat order and the W -orbit
of any minuscule dominant cocharacter µ. Therefore we reduce this case to
the case d = 1 if we show that the cardinality of the set {i′, j′} ∩ {i, j} does
not change when x and w are replaced with τx and τw. The permutation
factor of τw is cs = (i + 1, j + 1). The permutation factor of τx is cπ.
Define i′′ < j′′ by cπ({i′′, j′′}) = {i + 1, j + 1}. Then we must show that
|{i′′, j′′}∩{i+1, j+1}| = |{i′, j′}∩{i, j}|. But it is clear from the definition
that {i′′, j′′} = {i′ + 1, j′ + 1}, so the result follows.

�

6.2. A technical lemma.

Lemma 6.9. Suppose w = wi,j;d is any affine reflection for Gln and x is an

element of W̃ . Suppose that x, xw, wx and wxw are all minuscule. Then
the following statements hold:

(1) Ki = K ′
i = [π−1(i), i) and K ′′

i = K ′′′
i = [π−1(j), i),

(2) Kj = K ′
j = [π−1(j), j) and K ′′

j = K ′′′
j = [π−1(i), j).

In particular, all the Kr-sets above are proper, for r ∈ {i, j}.
Proof. In light of Lemma 6.8, the last statement is a consequence of the
explicit forms given for the K-sets. We need to prove those explicit forms
are correct. By Lemma 6.6 (2) we know that d ∈ {0, 1}. Assume first that
d = 0 and write w = s = (ij).

The descriptions of the alcoves v,v′,v′′,v′′′ at the end of the previous
subsection imply the following formulas, for every 0 ≤ k ≤ n − 1 and 1 ≤
r ≤ n:

µk(r) = v0(r) +
k∑

l=1

[eπ(l)(r)− el(r)],(1)

µ′k(r) = v0(r) +
k∑

l=1

[eπs(l)(r)− el(r)],(2)

µ′′k(r) = v0(s(r)) +
k∑

l=1

[esπ(l)(r)− el(r)],(3)

µ′′′k (r) = v0(s(r)) +
k∑

l=1

[esπs(l)(r)− el(r)],(4)

where the sums are interpreted to be 0 if k = 0. Now we need a definition
to simplify the notation.
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Definition 6.10.

∆(sπs, π, k)(r) =
k∑

l=1

[esπs(l)(r)− eπ(l)(r)],

∆(sπ, πs, k)(r) =
k∑

l=1

[esπ(l)(r)− eπs(l)(r)].

We then deduce the following two formulas:

µ′′′k (r) = µk(r) + [v0(s(r))− v0(r)] + ∆(sπs, π, k)(r),(5)

µ′′k(r) = µ′k(r) + [v0(s(r))− v0(r)] + ∆(sπ, πs, k)(r).(6)

There are six possible configurations of the four integers i, j, i′, j′ (e.g.
i < i′ < j < j′). Although Lemma 6.8 implies that s(i′) = i′ and s(j′) = j′

we retain the s in the notation in much of what follows, as it clarifies some
calculations (in particular the calculation of the values in the table below).
A property that the six configurations of i′, j′, i, j have in common which
we use below is s(i′) < j′ and i′ < s(j′). We note that the four intervals
[i′, s(j′)), [s(i′), j′), [j′, s(i′)), [s(j′), i′) (which are really only two distinct in-
tervals here) are all proper intervals in Z/nZ, in the sense of Lemma 6.6.

There are some divisions into cases that are necessary, namely

• Case(1): π(i′) = i and π(j′) = j,
• Case(2): π(i′) = j and π(j′) = i.

and

• Case(A): (v0(i), v0(j)) = (0, 1),
• Case(B): (v0(i), v0(j)) = (1, 0),
• Case(C): (v0(i), v0(j)) = (0, 0) or (1, 1).

When discussing these cases we will refer to them as Case(A.1), etc. There
are a total of six cases, and it is necessary to handle each of them separately.
While carrying out this task it is necessary to make frequent reference to
the following table giving the values of the functions ∆(sπs, π, k)(r) and
∆(sπ, πs, k)(r) for r = i, j.

The ∆ functions for r = i, j.

Case \ ∆ ∆(sπs, π, k)(i) ∆(sπs, π, k)(j) ∆(sπ, πs, k)(i) ∆(sπ, πs, k)(j)
1 −ξ[i′,s(j′))(k) ξ[s(i′),j′)(k) −ξ[s(i′),j′)(k) ξ[i′,s(j′))(k)

2 ξ[s(i′),j′)(k) −ξ[i′,s(j′))(k) ξ[i′,s(j′))(k) −ξ[s(i′),j′)(k)
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The first two columns are computed directly from the definitions. The third
and fourth columns can be derived from the first two, using the relations

∆(sπ, πs, k)(i) = −∆(sπs, π, k)(j),

∆(sπ, πs, k)(j) = −∆(sπs, π, k)(i).

Now we begin the process of deducing the explicit descriptions of the K-
sets asserted in this lemma. We have six cases (A.1, A.2, B.1, B.2, C.1, C.2)
to consider. We claim that in fact cases A.2 and B.1 do not occur. Take for
example Case(A.2). Taking r = i in (5) and looking at the table we get

µ′′′k (i) = µk(i) + 1 + ξ[s(i′),j′)(k),

from which it follows (since the µ-functions take values in {0, 1}) that
[s(i′), j′) = ∅, a contradiction. A similar and equally easy contradiction
arises in Case(B.1).

The remaining four cases are A.1, B.2, C.1, and C.2. We will discuss B.2
as an example; the others are similar. Using (5) and (6) and the table we
get

µ′′′k (i) = µk(i)− 1 + ξ[s(i′),j′)(k),(7)

µ′′′k (j) = µk(j) + 1− ξ[i′,s(j′))(k),(8)

µ′′k(i) = µ′k(i)− 1 + ξ[i′,s(j′))(k),(9)

µ′′k(j) = µ′k(j) + 1− ξ[s(i′),j′)(k).(10)

These imply the first four lines of the following relations between the asso-
ciated sets, the last two being consequences of Lemma 6.6 (3):

K ′′′
i = Ki ∩ [s(i′), j′) Kc

i ∩ [s(i′), j′)c = ∅,(11)

K ′′′
j = Kj q [i′, s(j′))c,(12)

K ′′
i = K ′

i ∩ [i′, s(j′)) (K ′
i)

c ∩ [i′, s(j′))c = ∅,(13)

K ′′
j = K ′

j q [s(i′), j′)c,(14)

[i, j) ⊂ Kc
i ∩Kj [i, j) ⊂ (K ′′′

i )c ∩K ′′′
j ,(15)

[i, j) ⊂ (K ′
i)

c ∩K ′
j [i, j) ⊂ (K ′′

i )c ∩K ′′
j .(16)

The next step is to use these properties to deduce the precise descriptions of
the sets Ki,Kj ,K

′
i,K

′
j , etc. Note that (11),(12), and (15) are consequences

only of (7), (8), and Lemma 6.6.

Claim 6.11. The relations (11), (12), and (15) imply that the sets Ki, Kj ,
K ′′′

i and K ′′′
j are proper.

Proof. It is obvious from (15) that Ki 6= Z/nZ, and K ′′′
i 6= Z/nZ. If Ki = ∅,

then (11) implies that [s(i′), j′)c = ∅, a contradiction. Therefore Ki is
proper. If K ′′′

i = ∅, then (11) implies that Ki = [j′, s(i′)), and thus by
Lemma 6.6 (1), i = s(i′) and j = i′, contrary to Lemma 6.8. Therefore K ′′′

i
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is proper. Similar arguments using only (11),(12), and (15) show that Kj

and K ′′′
j are both proper. �

Now using the claim and Lemma 6.6 we can describe explicitly the sets
Ki,K

′′′
i ,Kj ,K

′′′
j . In fact, since Ki and K ′′′

i are both half-open intervals with

upper endpoint i, we see from (11) that Ki = [j′, i) and K ′′′
i = [s(i′), i).

Moreover, since Kj and K ′′′
j are both intervals with upper endpoint j, we

see from (12) that Kj = [i′, j) and K ′′′
j = [s(j′), j).

We can now argue similarly to determine the remaining four K-sets ex-
plicitly. Rather than repeating the arguments, note that we deduced the
first four sets formally from (7), (8) and Lemma 6.6. Now (9) and (10)
are formally the result of altering (7) and (8) in the following way: in the
µ-functions replace ′′′ with ′′ and “no primes” with ′, and replace i′ with
s(i′) and j′ with s(j′). Applying the same rule to any formal consequence
of (7), (8) and Lemma 6.6 gives us a formal consequence of (9), (10) and
Lemma 6.6, so we can simply read off the explicit descriptions of the re-
maining K-sets by applying the rule to the four sets already determined.
We have therefore proved the following:

Ki = [j′, i) K ′′′
i = [s(i′), i),

Kj = [i′, j) K ′′′
j = [s(j′), j),

K ′
i = [s(j′), i) K ′′

i = [i′, i),

K ′
j = [s(i′), j) K ′′

j = [j′, j).

Now recalling that s(i′) = i′ and s(j′) = j′ and that we are in Case(2) yields
the desired result. This completes the proof in Case(B.2). The other three
cases are similar and will be omitted. This completes the proof of the lemma
when d = 0.

When d = 1 we proceed as above. We give only a sketch of how the
argument differs from that above. Recall the explicit expressions for the
four elements x, xw, wx, and wxw given in the previous section, with d = 1:

x = v0π,

xw = (v0 + (eπ(i) − eπ(j)))πs,

wx = (s(v0) + (ei − ej))sπ,

wxw = (s(v0) + (ei − ej) + (esπ(i) − esπ(j)))sπs.

Here s = (ij) and w = (ei − ej)s. Because the translation parts of these
four elements are minuscule vectors, we see as in the proof of Lemma 6.8
that v0(i) = 1, v0(j) = 0, v0(π(i)) = 0, and v0(π(j)) = 1. This means that
we are automatically in Case(A), so we have only two cases (A.1 and A.2)
to consider here rather than the six cases of the d = 0 situation. As before
we can use the explicit expressions for x,xw, wx, and wxw above to write
down expressions for the µ-functions, as in equations (1) - (4). Then one
can compute the analogs of equations (5) and (6); using the result of Lemma
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6.8 and the explicit values for v0(r) and v0(π(r)) for r = i, j given above,
one finds

µ′′′k (r) = µk(r) + ∆(sπs, π, k)(r),

µ′′k(r) = µ′k(r) + ∆(sπ, πs, k)(r),

for r ∈ {i, j}. This combined with the table is enough information to proceed
as before, imitating the steps in the Case(B.2) described above. The only
difference is that where recourse to Lemma 6.6 (3) was made in the d = 0
case, here we use Lemma 6.6 (4) instead.

�

As a consequence we get:

Corollary 6.12. Let µ be the minuscule cocharacter (1, 0, . . . , 0) or (1, . . . , 1, 0)

of Gln, let x ∈ W̃ , and let w be a reflection. Then x, xw, wx, and wxw
cannot all be µ-admissible.

Proof. Suppose µ = (1, 0, . . . , 0). Let v be the alcove corresponding to x.
Because x is µ-admissible, its K-sets have the following property: Kj1 ∩
Kj2 = ∅, for j1 6= j2. For suppose k were an element of the intersection. We
recall from [10] the notion of size of an alcove: size(v) = µl(1) + · · ·+ µl(n)
(this is independent of choice of l). By definition of the K-sets, we have
µk(j1) = 1 and µk(j2) = 1, so that size(v) ≥ 2, contrary to size(v) =
size(µ) = 1 (the equality size(v) = size(µ) holds because v is µ-admissible,

as one sees from the definition of the Bruhat order on W̃ ). Now assume that
all four elements x, xw, wx, and wxw are µ-admissible, so that this comment
applies to each of their K-sets. Write w = wi,j;d. Using the explicit forms
of the K-sets given in Lemma 6.9 we see

[π−1(i), i) ∩ [π−1(j), j) = ∅ and [π−1(j), i) ∩ [π−1(i), j) = ∅.

But an easy case-by-case analysis of the (twelve) possible configurations of
the numbers i, j, π−1(i), and π−1(j) shows that these intersections cannot
simultaneously be empty. This contradiction yields the desired claim.
A similar argument (replacing ∅ with Z/nZ and ∩ with ∪) works for the
case µ = (1, . . . , 1, 0). �

Remark 6.13. It is essential for the Corollary that we assume G = Gln
and µ as prescribed. The conclusion is false for instance in the case G = Gl3
and µ = (2, 0, 0), the case G = Gl4 and µ = (1, 1, 0, 0), and in the case
G = GSp4 and µ = (1, 1, 0, 0).

7. The Bernstein function for Gln, µ = (1, 0, . . . , 0)

Here we prove the main application in the paper.
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Proposition 7.1. Let G = Gln, let µ be one of the minuscule coweights

(1, 0, . . . , 0) or (1, . . . , 1, 0) of Gln, and let φ =
∑

w∈fW

awT̃w be the element of

the Iwahori-Hecke algebra given by

aw =

{
0 if w is not µ-admissible,

Ql(µ)−l(w) if w is µ-admissible.

Then φ = zµ.

Proof. Note that supp(φ) is contained in the µ-admissible set and φ(µ) = 1
by construction. Therefore by the characterization proved in Theorem 5.8, it
suffices to show that φ ∈ Z(H). This we do by verifying the three conditions
of Lemma 3.1.

The fact that φ satisfies the first condition is an immediate consequence
of Lemma 4.5.

It is easy to see that φ satisfies the third condition. This is an imme-

diate consequence of two observations. Let x ∈ W̃ and τ ∈ Ω and write
Int(τ)(x) = τxτ−1. Then

(1) x is µ-admissible if and only if Int(τ)(x) is µ-admissible.
(2) l(Int(τ)(x)) = l(x).

The second observation follows from the fact that subgroup Ω preserves the
set Sa under conjugation. The first observation is also an easy consequence
of the definitions, using this same property of Ω along with Lemma 4.4 above
and the fact that W ·µ is stable under conjugation by τ (or even any element

of W̃ ), as is easily checked.
It remains to prove that φ satisfies the second condition of Lemma 3.1.

So assume that l(sxs) = l(x) − 2. Note that in this case l(xs) = l(sx) and
s(sx)s = xs, so by Lemma 4.5, sx and xs are simultaneously µ-admissible.
There are therefore four cases to consider:

(1) x, xs, sx , and sxs are not µ-admissible,
(2) sxs is µ-admissible, but the other three are not,
(3) sxs, xs, and sx are µ-admissible, but x is not,
(4) sxs, xs, sx, and x are all µ-admissible.

Now in case (1), the second condition of Lemma 3.1 is clearly satisfied. Case
(2) does not arise, because the fact that sxs is µ-admissible and sx is not
implies by Corollary 4.6 (with sxs instead of x) that x is µ-admissible, a
contradiction. In case (3), the conclusion of the second condition of Lemma
3.1 holds, as is easily checked by the definition of φ. Finally, Corollary 6.12
above implies that case (4) does not arise. This completes the proof. �

Remark 7.2. After this paper was written, the author learned that J.-L.
Waldspurger, in a letter to Rapoport ([13]), had earlier proved that the
function φ defined in Proposition 7.1 lies in Z(H).
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8. Counting µ-admissible Elements

When trying to make explicit computations of the Bernstein function

zµ, it is helpful to know the number of µ-admissible elements of W̃ (see
Conjecture 6). In this section we present a few formulas for the cardinalities
of µ-admissible sets for some cocharacters of the groups Gln and GSp2n.
They illustrate the combinatorial complexity of the µ-admissible sets.

We will only consider here µ-admissible sets for some minuscule cocharac-
ters µ. It turns out that in the minuscule case the support of zµ is precisely
the µ-admissible set (comp. Conjecture 6), as is shown in a forthcoming
paper by the author [5]. So one can also interpret the formulas below as
counting the number of Iwahori double cosets needed to express the Bern-
stein function zµ (as a linear combination of characteristic functions of Iwa-
hori double cosets).

For the groups Gln or GSp2n and the case where µ is minuscule, one

can enumerate the µ-admissible subset of W̃ by counting instead the more
concrete set of minuscule alcoves of given size, thanks to work of Kottwitz
and Rapoport (see Theorem 6.4). For the group G = GSp2n there is a
notion of G-alcove and a theorem in [10] analogous to Theorem 6.4, which
we now briefly discuss.

Let Θ denote the automorphism of R2n defined by Θ : (x1, . . . , x2n) 7→
(−x2n,−x2n−1, . . . ,−x2,−x1).

The Weyl group Wn of Sp2n is the group (Z/2Z)n o Sn ⊂ S2n. Here is a
concrete realization ofWn: choose a coordinate system (x1, . . . , xn, yn, . . . , y1)
for Z2n. Then ei ∈ (Z/2Z)n is the “switch” xi ←→ yi and an element σ ∈ Sn

acts on the vector by simultaneously permuting the xi’s and the yi’s.
The affine Weyl group for Sp2n is the semidirect product of the Weyl

group Wn and the lattice in Z2n consisting of the elements fixed by Θ:

{(x1, . . . , xn,−xn, . . . ,−x1) | (x1, . . . , xn) ∈ Zn}.

The extended affine Weyl group W̃ (G) of GSp2n is the semidirect product of
Wn and the lattice of translations consisting of the elements (x1, . . . , x2n) ∈
Z2n such that there exists a c ∈ Z such that

c = x1 + x2n = x2 + x2n−1 = · · · = xn + xn+1.

One can define a set of simple affine reflections Sa for G analogous to the
case of Gln, and (Wa, Sa) is a Coxeter group; thus there is a length function

and a Bruhat order on Wa and on W̃ (G).
A G-alcove is a sequence of vectors v0, ... v2n−1, v2n = v0 + (1, . . . , 1) of

Z2n which is an alcove for Gl2n and for which there exists a d ∈ Z such that

v2n−i = d + Θ(vi),

for 1 ≤ i ≤ 2n, where d denotes the vector (d, . . . , d). We call the G-alcove
minuscule if it is minuscule as an alcove for Gl2n.
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The group W̃ (G) acts simply transitively on the set of all G-alcoves; we

identify W̃ (G) with the set of all G-alcoves using as base point the minuscule
G-alcove ω0, . . . , ω2n.

The following theorem is the analogue for the symplectic group of Theo-
rem 6.4.

Theorem 8.1. (Kottwitz-Rapoport) Let G = GSp2n, and let µ denote the
minuscule vector (1n, 0n). Suppose v is a G-alcove and x is the correspond-

ing element of W̃ (G). Then v is minuscule of size n if and only if x is
µ-admissible.

Proof. This is Theorem 4.5 (3) of [10]. �

For a group G and a dominant cocharacter µ, let N(G,µ) denote the

number of µ-admissible elements of W̃ (G).

Proposition 8.2. Let n be a positive integer. Then

(1) N(Gln, (1, 0, . . . , 0)) = 2n − 1,
(2) N(Gln, (1, 1, 0, . . . , 0)) = 3n − 2n − n2n−1,
(3) N(GSp2n, (1

n, 0n)) =
∑n

i=0 2n−in!/i!.

Proof. Since the idea is the same for each of these formulas, we present only
the proof of the last one as an example. By Theorem 8.1, we need to count
the set of minuscule G-alcoves v of size n.

One can prove that the analogue of Lemma 6.7 holds: For a G-alcove
v, v is minuscule if and only if v0 is a minuscule vector and the following
condition holds:
(*) For every i with 1 ≤ i ≤ 2n,

v0(i) = 0⇒ π−1(i) ≤ i and v0(i) = 1⇒ π−1(i) ≥ i.
Moreover, a minuscule G-alcove v is of size n if and only if v0 is in the
Wn-orbit of (1n, 0n).

Each G-alcove v is completely determined by the pair (v0, π), where x =

v0π ∈ X∗(T ) o Wn = W̃ (G) is the element corresponding to v. Therefore
we need to count the pairs (v0, π) such that

• v0 is of size n (has precisely n 1’s and n 0’s),
• π ∈Wn,
• (v0, π) satisfies (*) above.

We count, for each π, the v0’s such that (v0, π) satisfies the above condi-
tions. The π’s are partioned according to the subset of the xi’s they move.
Fix d : 0 ≤ d ≤ n, and a subset S = {j1 < j2 < · · · < jd} of {1, 2, . . . n}.
Suppose π moves precisely the xjl

’s. It may be considered then as an ele-

ment of (Z/2Z)d o Sd in the obvious way. We may simplify by writing the
subscript l in place of jl, and write π = φ◦σ, where φ ∈ (Z/2Z)d and σ ∈ Sd.
These π’s which move precisely S may be further partitioned according to
the subset T = {i1 < i2 < · · · < ik} ⊂ {1, 2, . . . , d} which σ moves, where
0 ≤ k ≤ d, k 6= 1. For each T there are precisely ak possible σ’s, where
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ak is the number of “derangements” (permutations with no fixed points) on
k letters, and each derangement can be paired with 2k “switches” φ such
that the product φσ still moves precisely the set S. The number of sets T
(inside S) with cardinality k is

(
d
k

)
. Therefore the number of π’s which move

precisely the set S is
d∑

k=0

(
d

k

)
2kak,

(noting that a1 = 0). Now it is easy to see that any π which fixes precisely
the set S can be paired with 2n−d possible vectors v0 such that (v0, π)
satisfies (*). Indeed, any v0 has exactly n 1’s and n 0’s, and moreover for
each i we have (v0(i), v0(2n + 1 − i)) is either (1, 0) or (0, 1). If i is such
that π moves xi, then only one of these possibilites can occur, by (*), but
if π fixes xi, then both can occur, giving a degree of freedom of 2 in the
determination of v0. Thus the total number of allowed pairs (v0, π) such
that π fixed precisely S is 2n−d times the number above.

Finally the number of subsets S is
(
n
d

)
, so we see on summing over d that

N(GSp2n, (1
n, 0n)) =

n∑

d=0

(
n

d

)
2n−d

d∑

k=0

(
d

k

)
2kak.

The right hand side can be simplified, using a generating function coming
from the power series expansion of ex/(1−2x) (this was pointed out by Gerd
Mersmann), and we obtain

n∑

i=0

2n−in!/i!.

�

Remark 8.3. 1. The formula N(Gln, (1, 0, . . . , 0)) = 2n − 1 was known
earlier to Rapoport ([12]).
2. Helena Verrill has found a recursive procedure to calculate the numbers
N(Gln, (1

r, 0n−r)).
3. Ilan Vardi has pointed out that the formula (3) can be rewritten as

N(GSp2n, (1
n, 0n)) = [2nn!

√
e],

where [x] denotes the greatest integer less than or equal to x.

9. More Examples of Bernstein Functions

In this section we give the coefficients ax(Q) for the expression of zµ in

terms of the normalized basis elements T̃x (comp. notation in §2):
zµ =

∑

x is µ-admissible

ax(Q)T̃x.

In the examples below we will only specify ax(Q) for x a µ-admissible ele-
ment, since all other coefficients are automatically 0.



26 THOMAS J. HAINES

For each example we give the number N of µ-admissible elements and the
length of µ (however we will not explicitly describe the µ-admissible sets).
We will always let τ denote the unique element of Ω such that µτ−1 ∈ Wa.
We use a short-hand notation for elements in the extended affine Weyl group:
for example we write s321τ instead of s3s2s1τ . We use the following system
to number simple reflections. In the Gln case, let si = (i, i + 1) ∈ Sn for
1 ≤ i ≤ n− 1. Let s0 = (1, 0, . . . , 0,−1)(1, n) be the simple affine reflection.
For GSp2n, let si = (i, i+ 1)(2n+ 1− i, 2n− i) ∈Wn for 1 ≤ i ≤ n− 1. Let
sn = (n, n + 1) ∈ Wn. Let s0 = (1, 0, . . . , 0,−1)(1, 2n) be the simple affine
reflection.

9.1. Gln. Examples (1) and (2) below are for nonminuscule cocharacters.
They were computed directly from the definition. Examples (3) and (4) were
deduced from Theorem 5.8 with the help of Lemma 6.6 and Lemma 6.9. We
will explain the method for Gl4 and µ = (1, 1, 0, 0) below. The case of Gl5
and µ = (1, 1, 0, 0, 0) follows the same general pattern, but is considerably
more complicated. The details of that case will be omitted.

1. n = 3, µ = (2, 0, 0). Then N = 19, l(µ) = 4, and

ax(Q) =

{
Q2 +Q4, if l(x) = 0,

Ql(µ)−l(x), if l(x) > 0.

2. n = 3, µ = (2, 1, 0). Then N = 25, l(µ) = 4, and

ax(Q) =





3Q2 +Q4, if l(x) = 0,

Q+Q3, if l(x) = 1,

Ql(µ)−l(x), if l(x) > 1.

3. n = 4, µ = (1, 1, 0, 0). Then N = 33, l(µ) = 4, and

ax(Q) =

{
Q2 +Q4, if l(x) = 0,

Ql(µ)−l(x), if l(x) > 0.

4. n = 5, µ = (1, 1, 0, 0, 0). Then N = 131, l(µ) = 6, and

ax(Q) =





2Q4 +Q6, if l(x) = 0,

Q3 +Q5, if l(x) = 1,

Q2 +Q4, if x ∈ S1,

Q4, if x ∈ S2,

Ql(µ)−l(x), if l(x) > 2.

Here S1 and S2 are the following subsets of µ-admissible elements of length
two:
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S1 = {s01τ, s34τ, s23τ, s12τ, s40τ}
S2 = {s43τ, s41τ, s42τ, s21τ, s31τ, s32τ, s20τ, s30τ, s10τ, s04τ}.

9.2. GSp2n. The calculation for GSp4 below was done using the definition,
jointly with Robert Kottwitz. The calculation for GSp6 was done using a
method that will appear in a forthcoming paper ([5]).
1. n = 2, µ = (1, 1, 0, 0). Then N = 13, l(µ) = 3, and

ax(Q) =

{
Q+Q3, if l(x) = 0,

Ql(µ)−l(x), if l(x) > 0.

2. n = 3, µ = (1, 1, 1, 0, 0, 0). Then N = 79, l(µ) = 6, and

ax(Q) =





Q2 + 3Q4 +Q6, if l(x) = 0,

2Q3 +Q5, if l(x) = 1,

Q2 +Q4, if l(x) = 2,

Q+Q3, if x ∈ T1,

Q3, if x ∈ T2,

Ql(µ)−l(x), if l(x) > 3.

Here T1 and T2 are the following sets of µ-admissible elements of length
three:

T1 = {s321τ, s232τ, s123τ, s210τ, s101τ, s012τ},
T2 = {s323τ, s312τ, s212τ, s213τ, s230τ, s310τ, s320τ, s120τ, s301τ, s201τ, s101τ}.

9.3. Explanation of the case: Gl4, µ = (1, 1, 0, 0). The strategy is the
following:
Step 1. Use Lemma 6.6 and Lemma 6.9 to find all elements x for which
there exists a simple reflection s such that x < sx , xs < sxs and sxs is
µ-admissible. The proof of Proposition 7.1 shows that these elements are
such that ax(Q) 6= Ql(µ)−l(x). Such elements may or may not exist (none
exist for example in the situation of Proposition 7.1) but when they exist
they lie at the center of the µ-admissible set, i.e. the element τ (the base
alcove) plus perhaps a few other elements of small length.
Step 2. Use the answer to Step 1 to write down a candidate function φ such
that its support is in the admissible set, φ(µ) = 1, and which is hoped to
be in the center. For the x’s not belonging to a pair (x, s) as above, set

ax(Q) = Ql(µ)−l(x).
Step 3. Use Lemma 3.1 to verify that φ is in Z(H).
Step 4. By Theorem 5.8 we conclude φ = zµ and therefore we have computed
zµ.

To carry this out in our concrete case, note that the element
τ1 = (1, 0, 0, 0)(1234) ∈ Ω acts transitively on the set of simple reflections
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s ∈ Sa, so in order to find all pairs (x, s) that satisfy the condition in Step
1 it suffices to fix s = s1 = (12) and find all the x’s that can be paired
with this s (and then apply all powers of Int(τ1) to the pairs found). Once
s is fixed, the condition that x < sx , xs < sxs are all µ-admissible can be
interpreted, using Lemmas 6.6 and 6.9, as conditions on π, where x = v0π.
In this case it is possible to determine the possible π’s very quickly. Namely,
x < sx implies by Lemma 6.6 and Lemma 6.9 that

[1, 2) = Kc
1 ∩K2 = [π−1(1), 1)c ∩ [π−1(2), 2).

On the other hand Lemma 6.8 implies that {π−1(1), π−1(2)} = {3, 4}. The
only possibility compatible with all this is π−1(1) = 3 and π−1(2) = 4,
so that π = (13)(24) or π = (1423). In either of these cases, Lemma 6.7
shows that the only possible v0 is (1, 1, 0, 0). In the first case for π we get
x = (1, 1, 0, 0)(13)(24) = τ , i.e., the base alcove. The other element is in
fact (1, 1, 0, 0)(1423) = (1, 1, 0, 0)(13)(24)(12) = τs; therefore the second
element does not occur, because (τs)s < τs. Thus we have proved that for
s = (12), the only x such that x < sx , xs < sxs are all admissible is x = τ .
Conjugating by τ1 produces no new such x’s, so the answer to Step 1 is: τ .

Next we follow the recipe in Step 2 and write

φ = (Q2 +Q4)T̃τ +
∑

x : l(x)>0

Ql(µ)−l(x)T̃x,

where in the sum on the right hand side x ranges only over elements in the
µ-admissible set. It is easy to verify that φ is central, using Lemma 3.1
along the lines of the proof of Proposition 7.1. Therefore by Theorem 5.8
we conclude zµ = φ, as desired.

10. Compatibility of Bernstein and Satake Isomorphisms

This section has two goals. First we deduce the compatibility of the
Satake and Bernstein isomorphisms from work of Lusztig and Kato. Then we
compute, rather indirectly, the Bernstein function for an arbitrary dominant
cocharacter of Gl2.

10.1. Bernstein and Satake Isomorphisms. Let W denote the finite
Weyl group of a split p-adic group G over a p-adic field F . Let q denote
the size of the residue field of F . Let T be an maximal F -split torus in
G. Let K ⊂ G(F ) be a special maximal compact subgroup. Let I ⊂ K be
an Iwahori subgroup which is in good position, meaning that we have the
decomposition ∪w∈W IwI = K. Consider the following diagram:

C[X∗(T )]W Cc(K\G(F )/K)
b
v

oo

C[X∗(T )]W
B
v

// Z(Cc(I\G(F )/I))

eK∗−

OO
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The convolution products inHK = Cc(K\G(F )/K) andH = Cc(I\G(F )/I))
are both defined using the Haar measure on G(F ) for which vol(I) = 1. The
right vertical map is convolution by eK = |K : I|−1char(K). The Satake
isomorphism b is defined using the normalizations implicit in [7] and [8].
Note that this b differs from the usual definition of the Satake isomorphism,
which is given for instance in [2]. If we let b′ denote the Satake isomorphism
as defined in [2], then we have the relation b = |K : I|b′. The difference
comes from different choices of Haar measure on G(F ): in [2] the measure
is chosen such that K has volume 1, whereas implicit in [7] and [8] is the
measure giving I volume 1.

For each dominant cocharacter µ ∈ X∗(T ), define an element mµ =

|Wµ|−1
∑

w∈W ew(µ) ∈ C[X∗(T )]W , where Wµ denotes the stabilizer of µ
in W . By definition the map B sends mµ to the element zµ ∈ Z(H). By
Theorem 2.3, B is an algebra isomorphism. We call it the Bernstein iso-
morphism.

The next proposition seems to be well-known to the experts. It implies
that the natural map eK ∗ − : Z(Cc(I\G(F )/I) → Cc(K\G(F )/K) is an
isomorphism. A proof can be found in a paper of J.-F. Dat ([3]). It can also
be deduced easily from known results of Lusztig ([7]) and S. Kato ([8]), as
is explained below.

Proposition 10.1. The Satake and Bernstein isomorphisms are compatible,
i.e., the diagram above is commutative.

Proof. Following Lusztig’s notation ([7]), define a function in H by φ0 =

W (q)−1
∑

w∈W Tw, where W (q) =
∑

w∈W ql(w) is the Poincaré polynomial
of W . Using K = ∪w∈W IwI one sees that φ0 is just another way to write
the function eK above. Again following Lusztig, define for each dominant
cocharacter µ ∈ Xdom the following elements of H:

fµ = W (q)−1
∑

w∈WµW

Tw,

k′µ =
∑

λ�µ
λ∈Xdom

Pw0λ,w0µ(1)zλ,

c′µ = q−l(µ)/2
∑

λ�µ
λ∈Xdom

Pw0λ,w0µ(q)fλ.

where w0 is the longest element of W and Px,y(q) are the Kazhdan-Lusztig
polynomials for the extended affine Weyl group of G.

Note that fµ is just another way to write the spherical function
|K : I|−1char(KµK), so the functions fµ form a basis of HK as µ ranges
over dominant cocharacters (by the Cartan decomposition). Furthermore,
since the matrix of Kazhdan-Lusztig polynomials is invertible, Theorem 2.3
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implies that {k′µ , µ ∈ Xdom} forms a basis for Z(H). To show the commu-

tativity of the diagram it is sufficient to show that b−1B−1 and φ0 ∗ − both
map k′µ to c′µ.

We have B−1(k′µ) =
∑

λ�µ Pw0λ,w0µ(1)mλ = χµ, the character of the

module with highest weight µ (the first equality is trivial, and the second
is a theorem of Lusztig ([7])). On the other hand by a result of Kato (see
Theorem 1.8 of [8]) we have

χµ = q−l(µ)/2
∑

λ�µ

Pw0λ,w0µ(q)b(fλ).

It follows that b−1B−1(k′µ) = c′µ. It remains to prove

c′µ = φ0 ∗ k′µ.
But this is precisely Proposition 8.6 of [7]. �

Definition 10.2. We call the function kµ = ql(µ)/2k′µ the test function
attached to the dominant cocharacter µ.

10.2. Test functions and Bernstein functions for Gl2. Let µ = (n,m),
n ≥ m be an arbitrary dominant coweight for Gl2. Let s0 denote the unique
affine reflection (1,−1)s1 where s1 the unique reflection in the finite Weyl
group W = {1, (1, 2)}.

By the discussion above, kµ is the element in the Iwahori-Hecke algebra

characterized by the following property: q−l(µ)/2kµ is the unique element
in the center of the Iwahori-Hecke algebra whose image under φ0 ∗ − :
Z(HI)

v−→ HK has Satake transform equal to χµ, the character of the
module with highest weight µ. Here φ0 is the element W (q)−1

∑
w∈W Tw,

which in the case of Gl2 takes the form (1 + q)−1(1 + Ts1
). We write

kµ =
∑

x∈fW

kµ(x)Tx.

Proposition 10.3.

kµ(x) =

{
0, if x in not µ-admissible,

1− q + q2 − · · ·+ (−q)l(µ)−l(x), if x is µ-admissible.

Proof. (Sketch)

Define a function k̃µ with coefficients given as in the Proposition.

Step 1: Use Lemma 3.1 of to show that k̃µ is in the center of the Iwahori-
Hecke algebra.
Step 2: Write down explicitly the function in the spherical Hecke algebra
whose Satake transform is χµ. This is

c′µ = q−l(µ)/2
∑

λ�µ

fλ,
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where

fλ = (1 + q)−1
∑

x∈WλW

Tx.

Note that this can be written out more explicitly, using that WλW =
{λ, s1λ, λ−, s1λ−}, where λ− is the antidominant coweight in the W -orbit
of λ.
Step 3: Verify by direct computation that (φ0) ∗ (q−l(µ)/2k̃µ) = c′µ.

Conclude: k̃µ = kµ. �

On the other hand, we have

kµ = ql(µ)/2
∑

λ�µ

Pw0λ,w0µ(1)zλ = ql(µ)/2
∑

λ�µ

zλ,

the second equality holding because the Kazhdan-Lusztig polynomials are
trivial for the affine Weyl group of Gl2. As a result we can invert to calculate
the Bernstein functions. We find

ql(µ)/2zµ =

{
kµ − qkµ−α̌, if µ is not minuscule,

kµ, if µ is minuscule.

Here α̌ = (1,−1) is the unique simple coroot of Gl2. Write

zµ =
∑

x∈fW

zµ(x)Tx.

Using the explicit expression for kµ given above, we find

Corollary 10.4.

ql(µ)/2zµ(x) =





0, if x is not µ-admissible,

1, if l(x) = l(µ),

1− q, if l(x) = l(µ)− 1,

1− 2q + 2q2 − · · ·+ 2(−q)r−1 + (−q)r, if r = l(µ)− l(x) ≥ 2.
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