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1. Introduction

Let F be a local field (or any function field k(($))), with ring of integers OF . The main object
of this manuscript is to provide a first step in defining Rapoport-Zink “local models” Mµ̌ attached
to an arbitrary split reductive OF -group G and an arbitrary dominant coweight µ̌ for G. As it
stands at this time, this paper proposes a definition for Mµ̌ when F = k(($)) and char(k) = 0
(the “equi-char 0” case).

The main idea is to use every representation of G, rather than just one (the “standard repre-
sentation” is used to define local models attached to classical groups – this does not seem to be
adequate for orthogonal groups). Thus we are looking for a “Tannakian” description of Mµ̌.

Let G denote a linear algebraic group over an algebraically closed field k. Let RepkG denote the
category of finite dimensional representations of G over the field k. By a Tannakian description
of a variety X associated to G (e.g. a flag variety), we mean a bijection between the set of points
of X and the set of collections of certain data (e.g. lines, lattices) indexed by the objects of
RepkG, subject to certain compatibilities with respect to G-morphisms and tensor products. If
G is a connected reductive group with a maximal torus T and a Borel subgroup B = TU , we let
X+(T ) denote the set of B-dominant characters of T . By a Plücker description of X we mean a
similar bijection where data is only specified for every Weyl module V (λ) (λ ∈ X+(T )), rather
than for every representation of G.

For H any closed subgroup of a linear algebraic group G, we give a Tannakian description for
the affine closure G/H of the quotient G/H. Using a theorem of Grosshans [6], the case H = U
yields a Plücker description for G/U , where U is a maximal unipotent subgroup of a connected
reductive group G. This description of G/U , apparently due to Drinfeld, is announced in work
of Kuznetsov [11] (when char(k) = 0) and also Braverman-Gaitsgory [2]. We refer to the tensor
compatibility conditions which arise in this and any similar context as Drinfeld-Plücker relations.

Letting B = TU be a Borel subgroup, the torus T acts freely on G/U and the quotient is the
finite flag variety G/B. Translating this in terms of the Plücker description for G/U we arrive
at a Plücker description for G/B, which is also due to Drinfeld (unpublished) and is used in the
characteristic zero setting by Kuznetsov [11] and Finkelberg-Mirkovic [4]. The version presented
here works equally well in any characteristic.

The first goal of this manuscript is simply to present complete proofs of the aforementioned
results (to my knowledge, no proofs have appeared in the literature before now). Also, the

description of G/H for arbitrary subgroups H does not seem to have appeared before.
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The second goal is to give similar Plücker descriptions for the affine Grassmanian and the
affine flag variety, and some indications for a Plücker description for Rapoport-Zink local models
(we describe “equi-characteristic 0” local models).

More precisely, following [4] we prove a Plücker description for the affine Grassmanian

G(k((t)))/G(k[[t]]),

when char(k) = 0. (This is apparently due to Beilinson-Drinfeld.) We give a similar description
of the closure Qµ̌ of the G(k[[t]])-orbit Qµ̌ indexed by the dominant coweight µ̌.

We also give a Plücker description of the affine flag variety G(k((t)))/Ik, where Ik is the Iwahori
subgroup Ik = π−1(B), where π : G(k[[t]]) → G(k) is the homomorphism given by t 7→ 0. We
describe as well the finite-dimensional analogues F l≤µ̌ of Qµ̌.

Adding a parameter $, we give the Plücker relations for Beilinson’s deformation of the affine
Grassmanian to the affine flag variety, which played a crucial role in Gaitsgory’s construction of
the center of the affine Hecke algebra via nearby cycles, see [5] and [7]. More precisely, we define
a model over Spec(k[[$]]) which on the generic fiber is the affine Grassmanian of G over k(($)),
and on the special fiber is the affine flag variety of G over k. The finite-dimensional scheme Mµ̌

corresponding to a minuscule µ̌ looks like a local model for a Shimura variety with Iwahori level
structure: the generic fiber is the subvariety Q̄µ̌ of the affine Grassmanian, and the special fiber
F l≤µ̌ has a stratification indexed by a set which contains the µ̌-admissible orbits of the Iwahori
subgroup Ik acting on the affine flag variety. This scheme Mµ̌ is our candidate for the definition
of a Rapoport-Zink model attached to G and µ̌.

Speculative remarks:
Similar ideas should be useful in giving a definition of Mµ̌ over a p-adic number ring. (However,

I expect that only a Tannakian description, not a Plücker description, will be possible for a general
group.) At least when µ̌ is minuscule, it should be possible to define the correct object this way
(i.e. a Witt-vector description of the affine Grassmanian is not needed in this case). Also, these
ideas should give a Tannakian description of the Bruhat-Tits parahoric group schemes. It is
conceivable that the Bruhat-Tits building itself has a Tannakian description (a point would be
identified with a “Moy-Prasad filtration” on every finite-type rational representation of G over
OF , the filtrations being compatible in a certain sense with tensor products). These things will
be studied as this project continues.

2. The affine closure of G/H

In this section G will be a linear algebraic group over k = k̄, and H ⊂ G will be a closed
subgroup. By abuse we will often write G instead of the group of k-points G(k). We write k[G]
for the ring of regular functions on G. The quotient G/H exists and its ring of regular functions
satisfies

k[G/H] = k[G]H

where H acts on k[G] via the right regular representation: h · f(g) = f(gh).
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2.1. Affine closure. We define the affine closure of G/H to be

G/H = Spec(k[G]H).

The left action of G on G/H clearly extends to an action on G/H. We denote the action

morphism by a : G × G/H → G/H and its comorphism by a∗ : k[G]H → k[G]H ⊗ k[G]. We

will often abbreviate a(g, x) = g · x, for g ∈ G and x ∈ G/H. (Similarly with respect to other
actions.)

There are canonical dominant G-morphisms

G→ G/H → G/H.

The composition is denoted ξ : G→ G/H.

2.2. Reformulation of Tannaka’s theorem. For any object (V, av) ∈ RepkG, the action
aV : G× V → V is determined by its comorphism a∗

V : V → V ⊗ k[G].
We let I denote the 1-dimensionial trivial representation of G.

Theorem 2.1 (Tannaka). The map g 7→ (aV (g))V defines a bijection between G and the set of
collections {αV ∈ AutkV }V ∈RepkG satisfying the following properties:

(1) αI = id,
(2) For any G-morphism V → W , the following diagram commutes

V

��

αV
// V

��

W
αW

// W

(3) αV ⊗W = αV ⊗ αW , for any V,W ∈ RepkG.

We want to interpret the rule g 7→ {aV (g)} in a different way, which is more amenable to
generalization to quotients. Let e ∈ G denote the identity element.

Given g ∈ G, there is a unique G-equivariant morphism

φg : G→ G

such that φg(e) = g (here G acts on the left). Its comorphism φ∗
g : k[G] → k[G] fits into the

following commutative diagram:

V
a∗

v
//

aV (g)

��

V ⊗ k[G]

id⊗φ∗
g

��

V
a∗

v
// V ⊗ k[G].

Since the map a∗
V is injective, the vertical map aV (g) : V → V is the unique map making the

diagram commute, hence is determined by id⊗ φ∗
g.

Tannaka’s map can thus be described as g 7→ {(id⊗ φ∗
g)|V }V , where restriction is with respect

to the inclusions a∗
V .
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2.3. Tannakian description of G/H. For V ∈ RepkG, let V H ⊂ V denote the subspace of
invariants under H.

Let ρ denote the right regular representation of G on k[G]. It is easy to see that the action
comorphism a∗

V : V → V ⊗ k[G] intertwines the actions aV and id ⊗ ρ. Hence a∗
V induces an

injective map

a∗
V : V H → V ⊗ k[G]H .

Suppose x ∈ G/H. Then there is a unique G-equivariant morphism

φx : G→ G/H

such that φx(e) = x. Let φ∗
x : k[G]H → k[G] denote its comorphism.

Lemma 2.2. The map

(id⊗ φ∗
x) ◦ a∗

V : V H → V ⊗ k[G]H → V ⊗ k[G]

factors (uniquely) through a∗
V : V → V ⊗ k[G]. That is, there is a unique map αV : V H → V

such that the following diagram commutes

V H

αV

��

a∗
V
// V ⊗ k[G]H

id⊗φ∗
x

��

V
a∗

V
// V ⊗ k[G].

Proof. Since a∗
V is injective, it is clear that we need only prove the existence of the factoring αV ,

i.e., that (id ⊗ φ∗
x)(a

∗
V (V H)) ⊂ a∗

V (V ). Since ξ : G → G/H has dense image, the proof consists
in verifying the following points:

(1) If x = ξ(g), for some g ∈ G, then the factoring exists.

(2) For a fixed v ∈ V H , the set of elements x ∈ G/H such that

(id⊗ φ∗
x)(a

∗
V (v)) ∈ a∗

V (V )

is a closed subvariety.

The first point (1) follows from 2.2. For point (2), fix v ∈ V H and write f = a∗
V (v) ∈ V ⊗k[G]H ;

we will think of f as a V -valued polynomial function on G, invariant under H.
Let f ′

i (i ∈ I(V )) denote a k-basis for a∗
V (V ) ⊂ V ⊗ k[G], and let us extend it to a k-basis f ′

i

(i ∈ I) for V ⊗ k[G].
By abuse we denote by

a∗ : V ⊗ k[G]H → V ⊗ k[G]H ⊗ k[G]

the map idV ⊗a∗, where a∗ : k[G]H → k[G]H⊗k[G] is the comorphism for the G-action on G/H.

We think of a∗f as a V -valued polynomial function on G×G/H.
By definition we have [(id⊗ φ∗

x)a
∗
V (v)](g) = f(g · x). Moreover, writing

a∗f =
∑

i∈I

f ′
i ⊗ f ′′

i
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for some uniquely determined f ′′
i ∈ k[G]H , we see

f(g · x) = a∗f(g, x) =
∑

i∈I

f ′′
i (x)f ′

i(g),

which is in a∗
V (V ) if and only if f ′′

i (x) = 0 for every i ∈ I\I(V ). Thus

(id⊗ φ∗
x)a

∗
V (v) ∈ a∗

V (V )⇔ f ′′
i (x) = 0,∀i ∈ I\I(V ),

which proves point (2). The lemma is proved. �

By Lemma 2.2, for each x ∈ G/H we may define a k-linear map αV : V H → V by αV =
(idV ⊗ φ∗

x)|V H , where restriction is taken with respect to the inclusions a∗
V .

The following proposition gives the Tannakian description of G/H.

Proposition 2.3. The map Φ : x 7→ {αV = (idV ⊗ φ∗
x)|V H}V defines an isomorphism between

G/H and the set of collections of k-linear maps {αV ∈ Homk(V
H , V )}V satisfying the following

properties:

(1) αI = id,
(2) For every G-morphism V → W , the following diagram commutes

V H

��

αv
// W

��

WH
αW

// W

(3) For any V,W ∈ RepkG, the following diagram commutes

V H ⊗WH
αV ⊗αW

//

can
��

V ⊗W

(V ⊗W )H
αV ⊗W

// V ⊗W

Proof. We will define the map Ψ which is inverse to Φ. But first we must verify that Φ takes
values in the right hand side. Fix x ∈ G/H, and let Φ(x) = {αV }V , where αV = (idV ⊗ φ∗

x)|V H

as above. Since φ∗
x is a k-algebra homomorphism, it is clear that property (1) is satisfied.

To check (3), let diag∗ : k[G]⊗ → k[G] denote the comorphism of the diagonal map diag :
G→ G×G. Then (3) follows easily using the equalities

a∗
V ⊗W = (idV ⊗W ⊗ diag∗) ◦ (a∗

V ⊗ a∗
W )

φ∗
x ◦ diag∗ = diag∗ ◦ (φ∗

x ⊗ φ∗
x)

and the fact that a∗
V ⊗W is injective.

To check (2), let θ : V → W be a G-morphism. Then we have a∗
V (v)(h) = h · v, for every

h ∈ G and v ∈ V . Thus
(θ ⊗ id) ◦ a∗

V = a∗
W ◦ θ,

which, together with the injectivity of a∗
W , implies (2).

Definition of Ψ:
Let {αV }V be a collection satisfying properties (1-3) in the proposition. We note that we can

easily extend the family of maps αV : V H → V to include all locally finite representation of G,
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such that properties (1-3) continue to hold; in particular for the right regular representation ρ
on k[G] we may define

α : k[G]H → k[G],

by setting α(v) = αV (v) whenever v ∈ V , where V ⊂ k[G] is a finite dimensional G-stable
subspace.

Claim 2.4. α : k[G]H → k[G] is a k-algebra homomorphism.

Proof. First α preserves the identity element since αI = id. To show α preserves multiplication,
use properties (2) and (3) applied to the multiplication morphism:

m : k[G]⊗ k[G]→ k[G]

(this intertwines the G-module structures ρ⊗ ρ and ρ). �

Using the claim, we get a morphism φ = α∗ : G→ G/H.

Lemma 2.5. φ is G-equivariant.

Proof. Denote the comultiplication by ∆ : k[G]→ k[G]⊗ k[G]. It is easily seen that

φ is equivariant⇔ (idk[G] ⊗ α) ◦ a∗ = ∆ ◦ α.

On the other hand applying (2) to ∆ (which intertwines the G-module structures ρ and id⊗ ρ),
we get the commutative diagram

k[G]H

α

��

a∗

// k[G]⊗ k[G]H

id⊗α
��

k[G]
∆

// k[G]⊗ k[G].

This proves the lemma. �

Finally, we define Ψ({αV }V ) = φ(e) ∈ G/H. It is straightforward to check that Φ and Ψ are
mutually inverse. This proves the proposition.

�

Remark. In case G is reductive and H is a reductive subgroup of G, then G/H is affine and so

G/H = G/H. Hence in this case the proposition gives a Tannakian description of the homoge-
neous space G/H.

2.4. G/H over a k-scheme S. Let S be any k-scheme. Let OS denote its structure sheaf. For
any V ∈ RepkG, let V ⊗OS denote the trivial vector bundle over S corresponding to V .

Using the same method as above, we get the following Tannakian description of the S-points
G/H(S).

Proposition 2.6. There is a bijection (functorial in S) between the set G/H(S) and the set of
all collections

{αV : V H ⊗OS → V ⊗OS}V ∈RepkG

where each αV is OS-linear, and the collection satisfies the following properties:

(1) αI = idOS
,
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(2) For any G-morphism V → W , the following diagram commutes

V H ⊗OS

αV
//

��

V ⊗OS

��

WH ⊗OS

αW
// W ⊗OS.

(3) For V,W ∈ RepkG, the following diagram commutes

V H ⊗WH ⊗OS

αV ⊗αW
//

can
��

V ⊗W ⊗OS

(V ⊗W )H ⊗OS

αV ⊗W
// V ⊗W ⊗OS.

Proof. We define the maps Φ and Ψ as in Proposition 2.3; the proof then proceeds exactly as
before.

Definition of Ψ:
Given {αV }V satisfying the properties (1-3), we first extend the collection to include all locally

finite representations V of G, such that (1-3) continue to hold. Taking V to be the right regular
representation k[G], we get

α : k[G]H ⊗OS → k[G]⊗OS,

which by the same method as Proposition 2.3 is seen to be a morphism of quasi-coherent OS-
algebras. Using the anti-equivalence of categories

{q.c sheaves of OS-algebras} ←→ {schemes X, affine over S},

α determines a map of schemes

φ = α∗ : G× S → G/H × S.

By the same argument as in Lemma 2.5, this is G × S-equivariant. Now we set Ψ({αV }) =

φ(e) ∈ G/H(S), where e ∈ (G × S)(S) is the identity element of the S-points of the S-group
scheme G× S.

Definition of Φ:
A point x ∈ G/H(S) determines for every S-scheme S ′ → S an element x(S ′) ∈ G/H(S ′) and

hence a (G× S)(S ′)-equivariant map

φx(S′) : (G× S)(S ′)→ (G/H × S)(S ′)

taking e(S ′) to x(S ′). The family {φx(S′)} determines G×S-equivariant morphism of S-schemes

φx : G× S → G/H × S

taking ′′e′′ to ′′x′′. By the anti-equivalence of categories above this determines a morphism of
quasi-coherent OS-algebras

αx = φx : k[G]H ⊗OS → k[G]⊗OS.

We would like to define Φ(x) = {αV }V by αV = (idV ⊗ αx)|V H⊗OS
where restriction is taken

relative to the inclusion a∗
V : V H ⊗OS → V ⊗ k[G]H ⊗OS. But first we must prove the analogue

of Lemma 2.2.
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Lemma 2.7. The map

(idV ⊗ αx) ◦ a∗
V : V H ⊗OS → V ⊗ k[G]⊗OS

factors uniquely through a∗
V : V ⊗OS → V ⊗ k[G]⊗OS.

Proof. We first observe that the case H = e is straightforward: this case is simply the S-scheme
analogue of §2.2. We will use this case below to prove the general case.

By passing to an open cover of S, it is enough to check this for S = Spec(R), an affine
k-scheme.

Let us denote

X(R) = {collections {αV : V H ⊗R→ V ⊗R}V over R, satisfying (1-3)}

and

X ′(R) = {collections {αV }V ∈ X(R) such that the desired factoring exists}.

These make sense for any R-algebra R′ in place of R; we denote by X and X ′ the resulting R-
schemes. Thus X ′ is a subscheme of X. By §2.2, there is an obvious map Φ′ : Spec(k[G])→ X ′

defined by the composition of Tannaka’s map with restriction map which takes a collection
{αV : V ⊗ R → V ⊗ R} to {αV : V H ⊗ R → V ⊗ R}. Write A = k[G]H ↪→ k[G] = B. Consider
the commutative diagram

Spec(B)
Φ′

//

ξ
��

X ′

��

Spec(A)
Φ

// X.

By the same argument as in Lemma 2.2, we see

Φ−1(X ′) is a closed subscheme of Spec(A).

Therefore we can write

Φ−1(X ′) = Spec(A/I)

for some ideal I ⊂ A. Since the image of Spec(B) under ξ lies in Spec(A/I), the homomorphism
ξ∗ : A→ B factors through A/I. But since ξ∗ is inclusion, this means that I = 0, and hence Φ
takes all of Spec(A) into X ′. This proves that the desired factoring exists, whence the lemma. �

Now for x ∈ G/H(S) we define Φ(x) = {(idV ⊗ αx)|V H⊗OS
}V as above.

It is straightforward to check that Ψ and Φ are mutually inverse. This proves the proposition.
�

3. Frobenius reciprocity

Let G be a connected reductive group over k. Suppose P is a parabolic subgroup and H / P
is a normal subgroup. For U ∈ RepkP/H, we define the associated induced module:

Definition 3.1.

indG
PU = {f : G→ U | f(gp) = p−1f(g), ∀g ∈ G, p ∈ P}.
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This is an object of RepkG where G acts by (g · f)(g′) = f(g−1g′). Note that we have
dimk(indG

PU) < ∞, because there is a finite-rank locally free OG/P -module L(U) associated to
U , for which we have

indG
PU = H0(G/P,L(U)).

For V ∈ RepkG, U ∈ RepkP , we have the usual Frobenius reciprocity:

HomP (V ,U) = HomG(V , indG
PU),

where V is regarded as an object of RepkP on the left hand side.
For V ∈ RepkG, let V∗ denote the contragredient representation.

Definition 3.2. For U ∈ RepkP/H, define the associated Weyl module by

V (U) = (indG
PU

∗)∗.

The usual Frobenius reciprocity implies (by dualizing) the following version which we shall
use.

Lemma 3.3. For V ∈ RepkG and U ∈ RepkP/H, we have a natural isomorphism

HomG(V (U),V) = HomP/H(U ,VH).

Consequently, we have the adjuction maps

εU : U → V (U)H (P/H − linear)

δV : V (VH)→ V (G− linear).

4. Describing G/H with RepkP/H

Let G continue to denote a connected reductive group over k.
For U1,U2 ∈ RepkP/H, there is a canonical G-morphism

V (U1 ⊗ U2)→ V (U1)⊗ V (U2),

defined to be the dual of the natural morphism

indG
PU

∗
1 ⊗ indG

PU
∗
2 → indG

P (U∗
1 ⊗ U

∗
2 ).

Note that since G/P is connected and complete, we have a canonical isomorphism V (I) = I

(we denote the trivial representations of both G and P/H by I).
In this section we will consider collections

{βU}U∈RepkP/H

consisting of k-linear maps βU : U → V (U) satisfying the following conditions:

(1) βI = id,
(2) For a P/H-morphism U1 → U2, the following diagram commutes

U1

βU1
//

��

V (U1)

��

U2

βU2
// V (U2).
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(3) For U1,U2 ∈ RepkP/H, the following diagram commutes

U1 ⊗ U2

βU1⊗U2
//

βU1
⊗βU2

��

V (U1 ⊗ U2)

can

��

V (U1)⊗ V (U2) V (U1)⊗ V (U2).

We call these conditions (1-3) tensor conditions. (We will use the same terminology for the
previous conditions (1-3) imposed on a collection {αV}V .)

We will say an arbitrary collection of k-linear maps {βU}U∈RepkP/H is compatible with P/H-
morphisms provided it satisfies condition (2) above. Similarly, we say an arbitrary collection
{αV}V∈RepkG is compatible with G-morphisms if it satisfies the corresponding property (2) from
Proposition 2.3.

Now suppose {αV}V∈RepkG is any collection of k-linear maps αV : VH → V . We construct a
collection {βU}U∈RepkP/H of k-linear maps βU : U → V (U) by setting

βU = αV (U) ◦ εU .

Conversely, given {βU}U∈RepkP/H , we construct {αV}V∈RepkG by setting

αV = δV ◦ βVH .

We have the following lemma.

Lemma 4.1. (a) The association

{αV}V∈RepkG ←→ {βU}U∈RepkP/H .

described above gives a bijection between the set of collections compatible with G-morphisms
and the set of collections compatible with P/H-morphisms.

(b) Moreover, {αV}V∈RepkG satisfies the tensor conditions if and only if the corresponding
collection {βU}U∈RepkP/H does.

Proof. Part (a) follows easily using the following identities, which follow by adjunction:

δV |V (VH)H ◦ εVH = idVH

δV (U) ◦ V (εU) = idV (U).

Part (b) is a straightforward diagram-chase, which we omit.
�

It is clear that this discussion goes over without change over an arbitrary k-scheme S. Therefore
we have the following analogue of Proposition 2.6.

Proposition 4.2. There is a bijection (functorial in S) between the set G/H(S) and the set of
all collections

{βU : U ⊗OS → V (U)⊗OS}U∈RepkP/H

consisting of OS-linear morphisms satisfying the following tensor conditions:

(1) βI = idOS
,
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(2) For a P/H-morphism U1 → U2, the following diagram commutes:

U1 ⊗OS

βU1
//

��

V (U1)⊗OS

��

U2 ⊗OS

βU2
// V (U2)⊗OS.

(3) For U1,U2 ∈ RepkP/H, the following diagram commutes

U1 ⊗ U2 ⊗OS

βU1⊗U2
//

βU1
⊗βU2

��

V (U1 ⊗ U2)⊗OS

can

��

V (U1)⊗ V (U2)⊗OS V (U1)⊗ V (U2)⊗OS.

5. Plücker description of G/U

5.1. Strongly quasi-affine quotients. We say the quotient G/H is strongly quasi-affine if the
canonical map

G/H → G/H

is an open immersion.
We will make use of the following theorem of F. Grosshans [6], Thm. 4.3.

Theorem 5.1 (Grosshans). If U(P ) is the unipotent radical of a parabolic subgroup P ⊂ G, then
G/U(P ) is strongly quasi-affine.

5.2. Tannakian description of G/U(P ). It is easy to see which collections {αV} correspond

to elements in the open subset G/U(P ) of G/U(P ).

Lemma 5.2. In the Tannakian description for G/U(P ), a collection {αV} corresponds to an
element in G/U(P ) if and only if αV is injective for every V ∈ RepkG.

Proof. Suppose x ∈ G/U(P ) corresponds to the collection {αV}. Taking into account that each
comorphism a∗

V : V → V ⊗ k[G] is injective, Theorem 5.1 yields the following equivalences:

αV is injective ∀V ∈ RepkG⇔ α : k[G]U(P ) → k[G] is injective

⇔ φx = α∗ : G→ G/U(P ) is dominant

⇔ im(φx) = G/U(P )

⇔ x ∈ G/U(P ).

�

5.3. The Weyl modules V (λ). Let B = TU denote a Borel subgroup of G, where T is a
maximal torus, and U = U(B). We denote by X∗(T ) the lattice of characters of T , and by
X+ the cone of B-dominant characters in X∗(T ). We will use the following notation: For each
λ ∈ X∗(T ), we let kλ denote the 1-dimensional representation of B/U = T where T acts via by
the character λ. When confusion is not possible, we denote kλ simply by λ. We write

V (λ) = (indG
B(−λ))∗;
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this representation is called the Weyl module for λ. It is known that

V (λ) 6= 0⇔ λ ∈ X+.

We suppose now that λ ∈ X+. Then V (λ) ∈ RepkG enjoys the following properties (cf. [9],
I.2.13).

• V (λ) possesses a B-highest weight vector vλ, which generates a B-stable line L(λ) ⊂ V (λ).
• The G-module V (λ) is generated by L(λ).
• Any G-module generated by a B-stable line is a quotient of V (λ).

In general V (λ) is not irreducible (although this holds if char(k) = 0). Let Vλ denote the
irreducible G-module with highest weight λ; by the above remarks, this is a quotient of V (λ).
We have an exact sequence

0→ radGV (λ)→ V (λ)→ Vλ → 0,

where radGV (λ) is the intersection of all maximal proper G-submodules in V (λ).
We note also the following fact.

Lemma 5.3. For any weights λ, µ ∈ X+, the canonical map

V (λ + µ)→ V (λ)⊗ V (µ)

is injective.

Proof. The dual map

H0(G/B,L(−λ))⊗H0(G/B,L(−µ))→ H0(G/B,L(−λ− µ))

(induced by cup-product) is surjective (cf. [9], II.14.20). �

5.4. Plücker description for G/U . Using Frobenius reciprocity as in Lemma 4.1, it is not
hard to translate a collection {αV}V∈RepkG giving a point in G/U into a corresponding collection
{βU}U∈RepkB/U . When we do so, the condition

αV is injective ∀V ∈ RepkG

is converted into the condition

β−1
VU (ker(δV)) = 0 ∀V ∈ RepkG.

Next we want to translate the collection {βU}U∈RepkB/U into an even simpler collection {βλ}λ∈X+ .
The category RepkB/U is semi-simple, with simple objects kλ (λ ∈ X∗(T )). Furthermore the

functor V (·) : RepkB/U → RepkG commutes with direct sums. This means that any collection
of k-linear maps

βU : U → V (U),

(U ∈ RepkB/U), is uniquely determined by the sub-collection

βλ : kλ → V (λ),

(for λ ∈ X+) – here we have used that V (λ) = 0 unless λ ∈ X+. In fact it is not hard to translate
the tensor conditions on the collection {βU} into similar tensor conditions on {βλ}.

In the following statement, we note that if λ = 0, we have kλ = I and V (λ) = V (0) = I. Also,
by abuse, we write λ + µ for the representation kλ+µ = kλ ⊗ kµ. We get the following Plücker
description for G/U .
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Proposition 5.4. There is a bijection (functorial in S) between the set (G/U)(S) and the set
of all collections

{βλ : λ⊗OS → V (λ)⊗OS}λ∈X+

of OS-linear maps βλ satisfying the following tensor conditions:

(1) βI = idOS
,

(2) For each λ, µ ∈ X+ the following diagram commutes:

(λ + µ)⊗OS

βλ+µ
//

βλ⊗βµ

��

V (λ + µ)⊗OS

can

��

V (λ)⊗ V (µ)⊗OS V (λ)⊗ V (µ)⊗OS.

(3) For each λ ∈ X+, we have βλ(kλ ⊗OS) 6⊂ radGV (λ)⊗OS.

Proof. Given a collection {βU} we let {βλ} denote the subcollection indexed by the B/U -modules
kλ, for λ ∈ X+. Conversely, suppose we are given {βλ}λ∈X+ . We have a canonical decomposition

U = ⊕λ∈X∗(T )HomB/U(λ,U)⊗ λ,

and thus
V (U) = ⊕λ∈X∗(T )HomB/U(λ,U)⊗ V (λ).

We recall that V (λ) = 0 unless λ ∈ X+, so we may define

βU = ⊕λ∈X∗(T )id⊗ βλ,

where we understand βλ = 0 unless λ ∈ X+.
It is straightforward to verify that this determines a bijection {βU}U∈RepkB/U ↔ {βλ}λ∈X+

which preserves the tensor conditions. Finally, one can check that

β−1
VU (ker(δV)) = 0 ∀V ∈ RepkG⇔ βλ(kλ) 6⊂ radGV (λ) ∀λ ∈ X+.

�

5.5. Plücker description for G/B. To simplify notation, in this section we will consider only
the case S = Spec(k) (this is all we need for our intended applications).

The torus T acts freely on G/U by (t, gU) 7→ gtU , and the quotient of this action is the finite
flag variety G/B. This transports to the following action of T on a collection {βλ}λ∈X+ :

(t, {βλ}λ) 7→ {λ(t)βλ}λ.

Given a collection {βλ}λ∈X+ , we define a collection of lines {L(λ) ⊂ V (λ)}λ∈X+ by setting

L(λ) = βλ(kλ)

for every λ ∈ X+. Recall the “standard” line L(λ) ⊂ V (λ) as described in §5.3. We have the
following Plücker description for G/B:

Proposition 5.5. The map g 7→ {gL(λ)}λ∈x+ determines a natural bijection between the finite
flag variety G/B and the set of all collections

{L(λ)}λ∈X+

consisting of lines L(λ) ⊂ V (λ) satisfying the following tensor conditions:
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(1) For λ, µ ∈ X+, let iλ,µ : V (λ + µ) ↪→ V (λ)⊗ V (µ) denote the canonical inclusion. Then
iλ,µ(L(λ + µ)) = L(λ)⊗ L(µ).

(2) For λ ∈ X+, we have L(λ) 6⊂ radGV (λ).

Proof. The map F : {βλ} 7→ {L(λ)} defined by L(λ) = βλ(kλ) clearly takes two collections in
the same T -orbit to the same collection of lines. To construct an inverse map, note first that
a collection of lines {L(λ)} satisfying the given tensor conditions is uniquely determined by the
finite collection {L(ωi)}i, where ωi ranges over the fundamental weights of X+. For each i, choose
a generator vi ∈ L(ωi). We can define βωi

: kωi
→ V (ωi) by letting βωi

(γ) = γvi, ∀γ ∈ kωi
. (Here

we identify each kλ with the underlying space k.)

Claim 5.6. If we have defined βλ and βµ such that βλ(k) = L(λ) and βµ(k) = L(µ), then there
is a unique way to define βλ+µ such that iλ,µ ◦ βλ+µ = βλ ⊗ βµ and βλ+µ(k) = L(λ + µ).

Proof. This follows easily from the injectivity of iλ,µ and the relation

iλ,µ(L(λ + µ)) = L(λ)⊗ L(µ).

�

By the claim, the choice of {βωi
}i uniquely determines a collection {βλ}λ∈X+ which satisfies

the tensor conditions and satisfies as well βλ(k) = L(λ) for every λ. The T -orbit of {βλ} depends
only on {L(λ)} (i.e., it is independent of the choice of vi), and this defines an inverse map to F .

�

Remark. If char(k) = 0, then the second condition in Proposition 5.5 can be omitted, since
V (λ) = Vλ is irreducible. The Drinfeld-Plücker relations for G/B announced by Kuznetsov [11]
differ from those appearing in Proposition 5.5, in that the tensor conditions here are expressed
using the canonical inclusion Vλ+µ ↪→ Vλ⊗Vµ and those in [11] use all G-projections Vλ⊗Vµ → Vν ,
for any weight ν � λ + µ. The tensor conditions are in fact equivalent, so the above arguments
provide a proof for the statement in [11], and also a generalization to characteristic p > 0. For
the sequel we will find it useful to slightly reformulate the tensor conditions in Proposition 5.5
in a way that looks more like [11]. This yields the proposition below.

Proposition 5.7. Assume char(k) = 0. Then g 7→ {gL(λ)}λ∈X+ gives a bijection between the
flag variety G/B and the set of collections

{L(λ)}λ∈X+

of lines L(λ) ⊂ V (λ) which satisfy the following tensor condition:

Let λ, µ, ν ∈ X+. Then for every G-inclusion φ : V (ν) ↪→ V (λ)⊗ V (µ) we have

φ−1(L(λ)⊗ L(µ)) =

{
0, if ν ≺ λ + µ,

L(λ + µ) if ν = λ + µ.

6. Affine Grassmannians

6.1. Notation. For this section and the rest of this paper, we assume char(k) = 0. (The case
of characteristic p > 0 will be considered in a subsequent version of this work.)
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We assume G is a connected reductive group over k. Suppose its based root system is
(X∗, X∗R, Ř, Π). Choose a maximal torus T and a Borel subgroup B = TU and identify X∗ with
X∗(T ) and Π with the B-positive simple roots in R. Let Q̌ denote the subgroup of X∗ generated
by the coroots Ř. Let

〈 , 〉 : X∗ ×X∗ → Z

denote the canonical pairing.

At some points below, we shall assume the derived group Gder is simply-connected.

We will use the following notation for the remainder of this paper:

- µ̌ will always denote a dominant coweight for T , and λ will always denote a dominant
weight for T .

- Given µ̌ (resp. λ), we will denote by Ω(µ̌) (resp. Ω(λ)) the set of coweights (resp. weights)
in the Weyl module associated to µ̌ (resp. λ).

- λ̌ (resp. λ′) will always denote an element of Ω(µ̌) (resp. Ω(λ)).
- for x, y ∈ X∗ (resp. X∗) the relation x � y will mean that y − x is a sum of positive

coroots (resp. roots).

- We will denote the extended affine Weyl group by W̃ = X∗ o W , where W denotes the
finite Weyl group. We let w0 denote the longest element in W .

- We fix a parameter t and let Ot = k[[t]] and Kt = k((t)).

- We denote translation elements in W̃ by tx (x ∈ X∗). We identify tx with an element of
T (Kt) ⊂ G(Kt) by the rule:

tx = x(t−1)

where x is viewed as a cocharacter x ∈ X∗(T ). Thus if vλ′ is vector with weight λ′ in
some G-module, then

tx · vλ′ = t−〈λ′,x〉vλ′ .

- For any V ∈ RepkG denote V0 = V ⊗Ot. Thus V0 is the “standard” Ot-lattice in V ⊗Kt.

6.2. Plücker description for affine Grassmannians. We denote the affine Grassmannian
over Spec(Ot) by Q. In the forgoing it is possible to describe Q as an ind-scheme, giving the
points Q(R) for every k-algebra R. To illustrate just the main ideas, we will only describe the
k-points

Q(k) = G(Kt)/G(Ot).

Proposition 6.1. The map g 7→ {gV (λ)0}λ∈X+ defines a bijection between G(Kt)/G(Ot) and
the set of collections

{L(λ)}λ∈X+

consisting of Ot-lattices L(λ) ⊂ V (λ)⊗Kt satsifying the following tensor condition:

Let λ, µ, ν ∈ X+. Then for every G-inclusion φ : V (ν) ↪→ V (λ)⊗ V (µ) we have

φ−1(L(λ)⊗ L(µ)) = L(ν),

where φ is also used to denote the induced map

φ⊗ id : V (ν)⊗Kt → V (λ)⊗ V (µ)⊗Kt.
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Proof. The injectivity follows from

∩λStabG(Kt)V (λ)0 = G(Ot),

which is a consequence of the Cartan decomposition

G(Kt) =
∐

µ̌

G(Ot)tµ̌G(Ot).

It remains to prove the surjectivity. Since the category RepkG is semi-simple, every G-module
V has a canonical decomposition

V = ⊕λHomG(V (λ),V)⊗ V (λ),

where G acts trivially on the factor HomG(V (λ),V). Given the data {L(λ)}λ∈X+ , we define for
each V ∈ RepkG an Ot-lattice in V ⊗ Kt by

L(V) = ⊕λHomG(V (λ),V)⊗ L(λ).

Let ProjMod(Ot) denote the category of finite-type projective Ot-modules. It is straightforward
to check that

L : RepkG→ ProjMod(Ot)

is a faithful, exact, ⊗-functor (i.e., it is a fiber functor). Therefore L comes from a unique G-
torsor L over Spec(Ot), see [3]. Moreover, the isomorphisms L(λ)⊗Kt

∼= V (λ)⊗Kt induced by
the inclusions L(λ) ↪→ V (λ)⊗Kt determine a trivialization of L over the generic fiber Spec(Kt).
Now by the theorem of Beauville-Laszlo [1] there is a natural correspondence

G(Kt)/G(Ot)←→ {G-torsors over Spec(Ot) with trivialization on Spec(Kt)}.

Thus we see L and hence the collection {L(λ)}λ comes from a well-defined coset gG(Ot) ∈
G(Kt)/G(Ot). This completes the proof.

�

6.3. Plücker description for Qµ̌. By the Cartan decomposition, the G(Ot)-orbits on Q are
indexed by the dominant coweights µ̌. Let Qµ̌ denote the closure of the orbit

Qµ̌ = G(Ot)tµ̌G(Ot)/G(Ot)

corresponding to µ̌. Our description of Qµ̌ is based on the following lemmas, whose proofs are
straightforward.

Lemma 6.2. Suppose λ̌ and µ̌ are two dominant coweights, and µ̌− λ̌ ∈ Q̌. Then the following
conditions are equivalent:

(a) λ̌ � µ̌.
(b) 〈λ, λ̌〉 ≤ 〈λ, µ̌〉, for every λ ∈ X+.
(c) tλ̌V (λ)0 ⊂ t−〈λ,µ̌〉V (λ)0, for every λ ∈ X+.
(d) t−〈w0λ,µ̌〉V (λ)0 ⊂ tλ̌V (λ)0 ⊂ t−〈λ,µ̌〉V (λ)0, for every λ ∈ X+.

For the next lemma, let us denote dλ = dimkV (λ), for λ ∈ X+.

Lemma 6.3. Suppose Gder is simply connected (i.e. X∗/Q̌ is torsion-free). Then the following
statements are equivalent for any dominant coweights λ̌, µ̌ ∈ X∗:

(a) µ̌− λ̌ ∈ Q̌.
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(b) ∧dλtλ̌V (λ)0 = ∧dλtµ̌V (λ)0, for every λ ∈ X+.

The closure relations in the affine Grassmannian are given by the partial order on X∗:

Qλ̌ ⊂ Qµ̌ ⇐⇒ λ̌ � µ̌.

Hence from Lemmas 6.2, 6.3 and Proposition 6.1 we derive the following Plücker description for
Qµ̌:

Proposition 6.4. Suppose Gder = Gsc. Then there is a natural bijection between Qµ̌ and the set
of collections

{L(λ)}λ∈X+

consisting of Ot-lattices L(λ) ⊂ V (λ)⊗Kt which satisfy the following properties:

(1) Let ν, λ, µ ∈ X+. For every G-injection φ : V (ν) → V (λ) ⊗ V (µ), we have φ−1(L(λ) ⊗
L(µ)) = L(ν).

(2) ∧dλL(λ) = ∧dλtµ̌V (λ)0, for every λ ∈ X+.
(3) t−〈w0λ,µ̌〉V (λ)0 ⊂ L(λ) ⊂ t−〈λ,µ̌〉V (λ)0 , for every λ ∈ X+.

6.4. Ind-scheme structure on Q.
Assume Gder = Gsc.
As mentioned above, we can easily define Qµ̌ as a k-scheme, using a similar definition as that

given above. Let ωi denote the fundamental weights for G. It is easy to see that a collection
{L(λ)}λ∈X+ is uniquely determined by the finitely many lattices in the subcollection {L(ωi)}i.
In fact, the forgetful functor

{L(λ)}λ 7→ {L(ωi)}i

defines a closed immersion of Qµ̌ into a finite-dimensional projective k-scheme.
By bounding the relative positions of the finitely-many lattices L(ωi), we see as well that every

element in Q is contained in some Qµ̌. Hence we have the following ind-scheme structure on Q:

Proposition 6.5. The equality
Q = ∪µ̌Qµ̌

realizes the affine Grassmannian as an inductive limit of finite-dimensional projective schemes
over k.

7. Affine flag varieties

7.1. Notation. Let π : G(Ot) → G(k) be the homomorphism determined by t 7→ 0. Let
I = Ik ⊂ G(Ot) be the “standard” Iwahori subgroup:

I = π−1(B).

Recall that each Weyl module V (λ) is generated by its “standard” highest-weight line L(λ) ⊂
V (λ). By definition, this line is the image of the adjunction map ελ : λ → V (λ)U (cf. Lemma
3.3).

Choose a generator vλ ∈ L(λ). We define the standard two-step lattice chain

V (λ)• = (V (λ)0 ⊂ V (λ)1 ⊂ t−1V (λ)0)

by defining V (λ)0 ⊂ V (λ)⊗Kt as before, and by defining

V (λ)1 = t−1Otvλ ⊕ (⊕λ′≺λOtvλ′).
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Here the summand on the right denotes the Ot-span of all weight vectors in V (λ) with weight
less than λ.

There is a natural isomorphism

t−1V (λ)0/V (λ)0 = V (λ)

under which we have the identification

V (λ)1/V (λ)0 = L(λ).

Furthermore, if λ, µ ∈ X+, then there is a natural isomorphism

t−1(V (λ)0 ⊗ V (µ)0)/V (λ)0 ⊗ V (µ)0 = V (λ)⊗ V (µ)

under which we have the identification

[(V (λ)0 ⊗ V (µ)0) + t(V (λ)1 ⊗ V (µ)1)]/V (λ)0 ⊗ V (µ)0 = L(λ)⊗ L(µ).

7.2. Plücker description for affine flag varieties. We denote the affine flag variety by F l.
As for affine Grassmannians, we can describe it as an ind-scheme, but for simplicity we describe
here only its k-points

F l(k) = G(k((t)))/I.

Proposition 7.1. The map g 7→ {gV (λ)•}λ determines a natural bijection between G(k((t)))/I
and the set of collections {L(λ)•}λ∈X+ consisting of two-step lattice chains

L(λ)• = (L(λ)0 ⊂ L(λ)1 ⊂ t−1L(λ)0)

in V (λ)⊗Kt which satisfy the following properties:

(1) dimkL(λ)1/L(λ)0 = 1.
(2) Let ν, λ, µ ∈ X+. For every G-inclusion φ : V (ν)→ V (λ)⊗ V (µ), we have:

φ−1(L(λ)0 ⊗ L(µ)0) = L(ν)0.

(3) For φ as above, we have

φ−1[L(λ)0 ⊗ L(µ)0 + t(L(λ)1 ⊗ L(µ)1)] =

{
L(ν)0, if ν ≺ λ + µ,

L(ν)1, if ν = λ + µ.

Proof. The map is injective, because

I = ∩λStabG(Kt)(V (λ)•).

To see the surjectivity, it suffices to prove that G(Kt) acts transitively on the set of collections
of two-step lattice chains. This follows from Proposition 6.1 and the fact that the simultaneous
stabilizer G(Ot) of the standard lattices V (λ)0 acts transitively on the collections of lines in V (λ)
which satisfy the conditions in Proposition 5.7. �
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7.3. Plücker definition of the subvariety F l≤µ̌.
For the rest of this section, we assume Gder = Gsc.
Given a dominant coweight µ̌, we will define here a finite-dimensional projective subscheme

F l≤µ̌ ⊂ F l. This will be a natural analogue of the subscheme Qµ̌ ⊂ Q.

Definition 7.2. We denote by F l≤µ̌ the set of collections {L(λ)•}λ ∈ F l which satisfy the
following properties:

(1) ∧dλL(λ)0 = ∧dλtµ̌V (λ)0, for every λ ∈ X+.
(2) t−〈w0λ,µ̌〉V (λ)i ⊂ L(λ)i ⊂ t−〈λ,µ̌〉V (λ)i, (i ∈ {0, 1}), for every λ ∈ X+.

7.4. Ind-scheme structure on F l.
By the same argument as in §6.4, the forgetful functor

{L(λ)•}λ∈X+ 7→ {L(ωi)
•}i

defines a closed immersion of F l≤µ̌ into a finite-dimensional projective k-scheme.
Moreoever, by bounding the relative positions of the finitely-many two-step lattice chains

L(ωi)
•, we see that any element of F l is contained in some F l≤µ̌. Hence we have the following

ind-scheme structure on F l:

Proposition 7.3. The equality

F l = ∪µ̌F l≤µ̌

realizes the affine flag variety as an inductive limit of finite-dimensional projective schemes over
k.

7.5. The stratification of F l≤µ̌. For w ∈ W̃ , let Y (w) = IwI/I ⊂ F l denote the corresponding

Bruhat cell, and let X(w) = Y (w) denote the corresponding affine Schubert variety. Recall the

the closure relation between Schubert varieties is given by the Bruhat order on W̃ :

X(w) ⊂ X(w′)⇐⇒ w ≤ w′.

The ind-scheme F l carries an obvious action of the Iwahori subgroup I, and this action pre-
serves the subscheme F l≤µ̌. Since the latter is finite-dimensional, the I-orbits in F l≤µ̌ are indexed
by a finite set

Strat(µ̌) ⊂ W̃ .

The following result gives a combinatorial description of this set.

Proposition 7.4. Let x ∈ W̃ , and write x = tλ̌w, with λ̌ ∈ X∗ and w ∈ W . Then x ∈ Strat(µ̌)
if and only if the following properties are satisfied:

(1) λ̌ ∈ Ω(µ̌); equivalently, 〈w0λ, µ̌〉 ≤ 〈λ′, λ̌〉 ≤ 〈λ, µ̌〉, for every λ ∈ X+ and every λ′ ∈ Ω(λ).
(2) For every λ ∈ X+, the following condition holds: if wλ 6= λ then

• 〈λ,w−1λ̌〉 < 〈λ, µ̌〉; and
• 〈w0λ, µ̌〉 < 〈λ, λ̌〉.

The set Strat(µ̌) shares certain properties with the sets Perm(µ̌) and Adm(µ̌) defined by
Kottwitz-Rapoport [10]. Some of these are listed below. It is to be hoped that Strat(µ̌) is a
better approximation to Adm(µ̌) than was the case for Perm(µ̌) (cf. [8]). In some sense, this
hope and the corollary below were the motivation for this approach to local models.
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Corollary 7.5. For every dominant coweight µ̌, we have the following properties of Strat(µ̌):

(1) Adm(µ̌) ⊂ Strat(µ̌).
(2) Adm(µ̌) ∩X∗ = Strat(µ̌) ∩X∗ = Perm(µ̌) ∩X∗ = Ω(µ̌).

Proof. It is clear from Proposition 7.4 that

Strat(µ̌) ∩X∗ = Ω(µ̌).

It is already known that this set coincides with both Perm(µ̌)∩X∗ and Adm(µ̌)∩X∗. Thus (2)
is proved.

Since F l≤µ̌ is a projective scheme, it is a closed subscheme in F l. Therefore the set Strat(µ̌)
is closed with respect to the Bruhat order. But by (2), the translation elements twµ̌ (w ∈ W ) lie
in Strat(µ̌). Hence all of Adm(µ̌) lies in Strat(µ̌), and (1) is proved. �

Unfortunately, as was the case for Perm(µ̌) [8], the set Strat(µ̌) does not coincide with Adm(µ̌)
in general:

Proposition 7.6. Suppose G is not of type An and is of rank ≥ 4. Then for every regular
dominant coweight µ̌, we have

Adm(µ̌) 6= Strat(µ̌).

Proof. We use Deodhar’s examples, as in [8]. For groups of the given type, there exist w,w ′ ∈W ,
such that

- w 6= w′,
- l(w) = l(w′),
- wλ− w′λ is a sum of positive roots, for every λ ∈ X+.

Now one can see by Proposition 7.4 and by similar reasoning as in [8], that the element

x = tw−1µ̌w
−1w′

belongs to Strat(µ̌) but not Adm(µ̌). �

It is still possible that Adm(µ̌) = Strat(µ̌) whenever µ̌ is a minuscule coweight, or more
generally, a sum of minuscule coweights.

8. Rapoport-Zink models

8.1. Notation. Let $ be a parameter. Write OF = k[[$]] and F = k(($)). Let R be any
OF -algebra. We are going to consider two-step chains of R[t]-modules contained in the module
V (λ)⊗R[t, t−1, (t + $)−1].

We define the “standard” two-step chain of R[t]-modules in V (λ)⊗R[t, t−1, (t + $)−1]

V (λ)•R = (V (λ)0
R ⊂ V (λ)1

R ⊂ (t + $)−1V (λ)0
R)

as follows: we define V (λ)0
R = V (λ)⊗R[t] and

V (λ)1
R = (t + $)−1R[t]vλ ⊕ (⊕λ′≺λR[t]vλ′).

Here the summand on the right denotes the R[t]-span of all weight vectors in V (λ) having weight
less than λ.

If φ : V → W is any G-morphism in RepkG, then we denote by

φ̃ : V ⊗R[t, t−1, (t + $)−1]→ W ⊗R[t, t−1, (t + $)−1]
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the induced map on the tensor product with R[t, t−1, (t + $)−1].

8.2. Plücker definition for Rapoport-Zink models. In this section we propose a general
Plücker definition of “Rapoport-Zink” models Mµ̌. The models defined here are the “Plücker
analogues” of the ones for GLn and GSp2n, used in [7], but here are defined only in the case of
equi-characteristic 0 function fields.

Definition 8.1. For any OF -algebra R, we define the R-points Mµ̌(R) to be the set of all
collections {L(λ)•}λ∈X+ of two-step chains of R[t]-submodules in V (λ)⊗R[t, t−1, (t + $)−1]

L(λ)• = (L(λ)0 ⊂ L(λ)1 ⊂ (t + $)−1L(λ)0)

which satisfy the following properties:

(1) ∧dλ

R[t]L(λ)i = ∧dλ

R[t]tµ̌V (λ)i
R, (i ∈ {0, 1}), for every λ ∈ X+.

(2) t−〈w0λ,µ̌〉V (λ)i
R ⊂ L(λ)i ⊂ t−〈λ,µ̌〉V (λ)i

R (i ∈ {0, 1}), for every λ ∈ X+.
(3) t−〈λ,µ̌〉V (λ)i

R/L(λ)i (i ∈ {0, 1}) is R-locally free, for every λ ∈ X+.
(4) Let ν, λ, µ ∈ X+. Then for every G-inclusion φ : V (ν) → V (λ) ⊗ V (µ), we have

φ̃−1(L(λ)0 ⊗ L(µ)0) = L(ν)0.
(5) For φ as above, we have

φ̃−1[L(λ)0 ⊗ L(µ)0 + (t + $)(L(λ)1 ⊗ L(µ)1)] =

{
L(ν)0, if ν ≺ λ + µ,

L(ν)1, if ν = λ + µ.

By arguing as in [7], we can easily describe the generic and special fibers for these models.
One finds that

Mµ̌(k(($))) = Qµ̌(k(($)))

Mµ̌(k) = F l≤µ̌(k).

The functor R 7→ Mµ̌(R) is represented by a finite-dimensional projective OF -scheme; this is
seen as in §6.4,7.4, by considering the forgetful functor

{L(λ)•}λ∈X+ 7→ {L(ωi)
•}i.

We remark that the union ∪µ̌Mµ̌ gives an ind-scheme structure to Beilinson’s deformation of
the affine Grassmannian to the affine flag variety, as mentioned in the introduction.

Finally, we point out one of the main reasons that Weyl modules look promising for use in
giving the analogue of Definition 8.1 over Zp instead of k[[$]]: all that is needed to transfer the
definition, nearly word-for-word, to one over Zp are a suitable integral structure V (λ)0

Zp
for V (λ)

over Qp, and also a good notion for V (λ)1
Zp

. But if G is a split reductive group over Zp, and if

λ ∈ X+, then the choice of a highest weight vector vλ ∈ V (λ)Qp
(the irreducible Weyl module

over Qp) determines an integral structure

V (λ)0
Zp

= Dist(GZp
) · vλ

for V (λ)Qp
, where Dist(GZp

) denotes the algebra of distributions (cf. [9], II.8.2).
Moreover, this integral structure has the property

V (λ)k = V (λ)0
Zp
⊗ k,
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where the left hand side is the Weyl module attached to λ over k, for every field k which is a
Zp-algebra. We can therefore set

V (λ)1
Zp

= p−1Zpvλ ⊕ (⊕λ′≺λZpvλ′),

and get the standard two-step chain as above. Then one can use this to define Mµ̌ over Spec(Zp).
The problem is that the special fiber could be too large: one cannot necessarily describe the affine
flag variety or the affine Grassmannian over a characteristic p > 0 field using only Weyl modules
(at least not for general groups: it can be done for GLn however).

Thus, to define the models so that the special fiber is correct, it should then be necessary to
use more representations than just the Weyl modules in the definition of Mµ̌.

Questions that will be considered in the continuation of this work:

- Is Adm(µ̌) = Strat(µ̌) for every minuscule coweight µ̌? 1

- Let MRZ
µ̌ denote a Rapoport-Zink local model. There is (at least in examples I have

considered) a natural map

MRZ
µ̌ →Mµ̌.

Is this an isomorphism?
- Define the “Tannakian” models Mµ̌ over a p-adic number ring.
- Are these models flat?
- Use the models Mµ̌ to prove Kottwitz’ conjecture for semi-simple trace of Frobenius on

nearby cycles for these models, following [7].
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