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Abstract

In part one of this dissertation, we develop a systematic matrix-analytic approach, based

on intertwinings of Markov semigroups, for proving theorems about hitting-time distribu-

tions for finite-state Markov chains—an approach that (sometimes) deepens understanding

of the theorems by providing corresponding sample-path-by-sample-path stochastic con-

structions. We employ our approach to give new proofs and constructions for two theorems

due to Mark Brown, theorems giving two quite different representations of hitting-time dis-

tributions for finite-state Markov chains started in stationarity. The proof, and correspond-

ing construction, for one of the two theorems elucidates an intriguing connection between

hitting-time distributions and the interlacing eigenvalues theorem for bordered symmetric

matrices.

In part two, we develop the theory of strong stationary duality for diffusion processes on

finite intervals. We analytically derive the generator and boundary behavior of the dual pro-

cess and recover a central tenet of the classical theory by proving that the separation mixing

time in the primal diffusion is equal in law to the absorption time in the dual diffusion. We

also exhibit our strong stationary dual as the natural limiting process of the strong station-

ii



ABSTRACT

ary dual sequence of a well chosen sequence of approximating birth-and-death Markov

chains, allowing for simultaneous numerical simulations of our primal and dual diffusion

processes. Lastly, we show how our new definition of diffusion duality allows the spectral

theory of cutoff phenomena to extend naturally from birth-and-death Markov chains to the

present diffusion context.

Primary Reader: Professor James Allen Fill

Secondary Reader: Professor Avanti Athreya
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Chapter 1

Introduction and Summary

In Chapter 2, we develop a systematic matrix-analytic approach, based on intertwinings

of Markov semigroups, for proving theorems about hitting-time distributions for finite-

state Markov chains—an approach that (sometimes) deepens understanding of the theo-

rems by providing corresponding sample-path-by-sample-path stochastic constructions. In

Sections 2.1.1–2.1.3 we describe a systematic approach, using intertwinings of Markov

semigroups, for obtaining simple stochastic decompositions of the distributions of hitting

times for Markov chains and also providing sample-path-by-sample-path constructions for

the individual components in these decompositions.

Our approach is essentially matrix-analytic, but if certain conditions elaborated in Sec-

tions 2.1.1–2.1.2 are met, then our method also yields a decomposition for each sample

path. For the applications discussed in this dissertation, our approach provides new matrix-

analytic proofs for hitting-time results which were previously only known via analytic
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CHAPTER 1. INTRODUCTION AND SUMMARY

methods (such as computation of Laplace transforms), and these new proofs provide new

insights into the evolution of the Markov chain. A simple example of our approach, with

an application to the Moran model in population genetics, is presented in Section 2.2.

We then employ our intertwinings approach to provide new proofs for two theorems

due to Mark Brown, providing two quite different representations of hitting-time distribu-

tions for Markov chains started in stationarity. The proof, and subsequent construction, for

the first theorem (Section 2.3) will elucidate an interesting connection between hitting-time

distributions and the interlacing eigenvalues theorem for bordered symmetric matrices. Ap-

plication of our approach obtains a construction for the second theorem (Section 2.4) that

results in a bonus: We are able to extend Brown’s theorem from reversible chains to more

general ones. The material in Chapter 2 has been published in [24], and is reproduced here

with Springer’s permission.

In Chapter 3, we systematically develop the theory of strong stationary duality for dif-

fusion processes on finite intervals. The theory of strong stationary duality was first devel-

oped in the setting of discrete-state Markov chains in [12] and [19]. In the Markov chain

setting, strong stationary duality gives that the separation mixing time in the primal chain

is equal in law to a suitable absorption time in the dual chain. By studying and bounding

the absorption time, which is sometimes more tractable than direct consideration of the

mixing time, we can tightly bound the separation mixing time in our primal chain. See [12]

for further detail and background. This mixing-time/hitting-time duality played a leading

role in the development of such diverse techniques as perfect sampling of Markov chains
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CHAPTER 1. INTRODUCTION AND SUMMARY

(see [20], [23]) to characterizing separation cut-offs in birth and death chains (see [14]),

just to name a few.

In Section 3.2.1, we define the strong stationary dual in the diffusion setting and in

Section 3.2.2 we analytically derive the form of the dual diffusion’s generator; in the pro-

cess we explicitly derive the boundary behavior of the dual diffusion. In Section 3.3, we

show that a suitably defined sequence of Markov chains and their strong stationary duals

converge respectively to our primal diffusion and its strong stationary dual. By establishing

the newly defined strong stationary dual diffusion as a limit of a sequence of Markov chain

strong stationary duals, we ground our definition and our present work in the classical the-

ory and allow for simultaneous discrete approximations of our primal and dual diffusions

using the appropriately defined Markov chains. In Section 3.4, we recover a central tenet

of the classical theory by proving that the separation mixing time in the primal diffusion

is equal in law to the absorption time in the dual diffusion. We exploit this connection in

Section 3.5 to derive the analogue to the birth-and-death cut-off phenomenon theory of [14]

in the present diffusion setting.
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Chapter 2

Hitting Times and Interlacing

Eigenvalues: A Stochastic Approach

Using Intertwinings

2.1 Introduction and Outline of our General Tech-

nique

Recently, stochastic proofs and constructions have been provided for some theorems

that give explicit descriptions of Markov chain hitting-time distributions; previously known

proofs of the theorems had been analytic in nature. Specifically, Fill [22] and Diaconis and

Miclo [13] both give stochastic constructions for a famous birth-and-death hitting-time re-
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CHAPTER 2. HITTING TIMES AND INTERLACING EIGENVALUES

sult first proven analytically by Karlin and McGregor [28] in 1959. Fill [21] (see also

Miclo [39]) extends to upward-skip-free and more general chains, in particular giving a

(sometimes) stochastic proof for a hitting-time theorem for upward-skip-free chains estab-

lished analytically by Brown and Shao [10].

In Sections 2.1.1–2.1.3 we describe a systematic approach, using intertwinings of Markov

semigroups, for obtaining simple stochastic decompositions of the distributions of hitting

times for Markov chains and also providing sample-path-by-sample-path constructions for

the individual components in these decompositions. For example, if one can prove a the-

orem that the law of a certain Markov chain hitting time T is a convolution of Geometric

distributions with certain parameters, our additional goal is to decompose T explicitly—

sample path by sample path—as a sum of independent Geometric random variables with

the specified parameters; this deepens understanding as to “why” the theorem is true.

See Fill [21] for a class of examples using this approach. Our approach is essentially

matrix-analytic, but if certain conditions elaborated in Sections 2.1.1–2.1.2 are met, then

our method also yields a decomposition for each sample path. For the applications dis-

cussed in this chapter, our approach provides new matrix-analytic proofs for hitting-time

results which were previously only known via analytic methods (such as computation of

Laplace transforms), and these new proofs provide new insights into the evolution of the

Markov chain. A simple example of our approach, with an application to the Moran model

in population genetics, is presented in Section 2.2.

We then employ our intertwinings approach to provide new proofs for two theorems
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CHAPTER 2. HITTING TIMES AND INTERLACING EIGENVALUES

due to Mark Brown, providing two quite different representations of hitting-time distribu-

tions for Markov chains started in stationarity. The proof, and subsequent construction, for

the first theorem (Section 2.3) will elucidate an interesting connection between hitting-time

distributions and the interlacing eigenvalues theorem for bordered symmetric matrices. Ap-

plication of our approach obtains a construction for the second theorem (Section 2.4) that

results in a bonus: We are able to extend Brown’s theorem from reversible chains to more

general ones.

Notation: Throughout this chapter, all vectors used are by default row vectors. We write

δj for the vector of 0’s except for a 1 in the jth position, and ~1 for the vector of 1’s. The

transpose of a matrix A is denoted by AT . The notation A(:, j) := AδTj is used to denote

the jth column ofA, andA(i, :) := δiA to denote the ith row ofA. For any matrixA, we let

A0 denote the principal submatrix of A obtained by deleting the topmost row and leftmost

column.

2.1.1 Intertwinings and sample-path linking

The main conceptual tool in our approach is the notion of an intertwining of Markov

semigroups, for which we now provide the needed background in the context (sufficient

for our purposes) of finite-state Markov chains. For further background on intertwinings,

see [6], [11], [41]. Suppose that we have two state spaces, the first (“primary”) of size n

and the second (“dual”) of size n̂. Let P be the transition matrix of a Markov chain X ,

begun in distribution π0, on the primary state space. [We write X ∼ (π0, P ) as shorthand.]
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Similarly, let P̂ be the transition matrix of a Markov chain X̂ , begun in π̂0, on the dual state

space. Let Λ be an n̂-by-n stochastic matrix.

Definition 2.1.1. We say that the Markov semigroups (P t)t=0,1,2,... and (P̂ t)t=0,1,2,... are

intertwined by the link Λ (or, for short, that P and P̂ are intertwined by the link Λ) if

ΛP = P̂Λ;

and we say that (π0, P ) and (π̂0, P̂ ) are intertwined by Λ if additionally

π0 = π̂0Λ.

Here are three consequences when (π0, P ) and (π̂0, P̂ ) are intertwined by Λ (with the

first two immediate—for example, ΛP 2 = P̂ΛP = P̂ 2Λ—and the third crucial for our

purposes):

• For t = 0, 1, 2, . . . , we have ΛP t = P̂ tΛ.

• For t = 0, 1, 2, . . . , the distributions πt and π̂t at time t satisfy πt = π̂tΛ.

• Given X ∼ (π0, P ), one can build X̂t from X0, . . . , Xt and randomness independent

of X so that X̂ ∼ (π̂0, P̂ ) and the conditional law of Xt given (X̂0, . . . , X̂t) has

probability mass function given by the X̂t-row of Λ:

L(Xt | X̂0, . . . , X̂t) = Λ(X̂t, ·), t = 0, 1, 2, . . . . (2.1.1)

We call this last consequence sample-path linking, and will explain next, once and for all,

(a) how it is done and (b) why it is useful for hitting-time (or mixing-time) constructions.
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We will then have no need to repeat this discussion when we turn to applications, each of

which will therefore culminate with the explicit construction of an intertwining (or at least

of a quasi-intertwining, as discussed in Section 2.1.3).

Whenever we have an intertwining of (π0, P ) and (π̂0, P̂ ), Section 2.4 of the strong

stationary duality paper [12] by Diaconis and Fill gives a family of ways to create sample-

path linking. Here is one [12, eq. (2.36)], with ∆ := P̂Λ = ΛP :

• Set X̂0 ← x̂0 with probability π̂0(x̂0)Λ(x̂0, x0)/π0(x0).

• Inductively, for t ≥ 1, set X̂t ← x̂t with probability

P̂ (x̂t−1, x̂t)Λ(x̂t, xt)/∆(x̂t−1, xt).

Suppose (π0, P ) and (π̂0, P̂ ) are intertwined and that, given X ∼ (π0, P ), we have

created linked sample paths for X̂ ∼ (π̂0, P̂ ), as at (2.1.1). Suppose further that there are

states, call them 0 and 0̂, such that 0 (respectively, 0̂) is the unique absorbing state for P

(resp., P̂ ) and that

ΛδT0 = δT
0̂
, (2.1.2)

i.e., that Λ(0̂, 0) = 1 and Λ(x̂, 0) = 0 for x̂ 6= 0̂. Then, for the bivariate process (X̂,X),

we see that absorption times agree: T0(X) = T0̂(X̂). For a parallel explanation of how

sample-path linking can be used to connect the mixing time for an ergodic primary chain

with a hitting time for a dual chain, consult [12]; very closely related is the FMMR perfect

sampling algorithm [20, 23].

8
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2.1.2 Strategy for absorption-time decompositions

The two hitting-time theorems discussed in Sections 2.3–2.4 both concern ergodic

Markov chains. However, since for these theorems we have no interest in the chain af-

ter the specified target state 0 has been hit, the hitting-time distribution for such a chain

is the same as the absorption-time distribution for the corresponding chain for which the

target state is converted to absorbing by replacing the row of P corresponding to state 0 by

the row vector δ0.

It should also be noted that hitting-time theorems and stochastic constructions are easily

extended to hitting times of general subsets A, by the standard trick of collapsing A to a

single state.

Here is then a general strategy for obtaining a decomposition of the time to absorption

in state 0 of a Markov chain X ∼ (π0, P ) from a decomposition of its distribution:

1. Discover another chain X̂ ∼ (π̂0, P̂ ) for which the sample-point-wise decomposition

of the time to absorption in state 0̂ is clearly of the form specified for X . (For

example, for a pure-death chain started at d with absorbing state 0̂ = 0, the time to

absorption is clearly the sum of independent Geometric random variables.)

2. Find a link Λ that intertwines (π0, P ) and (π̂0, P̂ ).

3. Prove the condition (2.1.2).

4. Conclude from the preceding discussion that (after sample-path linking) T0(X) =

T0̂(X̂) and use the sample-point-wise decomposition for T0̂(X̂) as the decomposition

9



CHAPTER 2. HITTING TIMES AND INTERLACING EIGENVALUES

for T0(X).

An early use of our strategy (adapted for mixing times, rather than absorption times) was

in connection with the theory of strong stationary duality [12], for which the fullest devel-

opment has resulted in the case of set-valued strong stationary duality (see especially [12,

Secs. 3–4] and [20]; very closely related is the technique of evolving sets [40]). For a very

recent application to hitting times and fastest strong stationary times for birth and death

chains, see [22] and [21].

2.1.3 Quasi-intertwinings

Suppose that the (algebraic) intertwining conditions ΛP = P̂Λ and π0 = π̂0Λ hold

for some not necessarily stochastic matrix Λ with rows summing to unity. We call this

a quasi-intertwining of (π0, P ) and (π̂0, P̂ ) by the quasi-link Λ. Then we again have the

identities ΛP t = P̂ tΛ and πt = π̂tΛ. As before, suppose further that (2.1.2) holds. Then,

although (if Λ is not stochastic) we cannot do sample-path linking and so cannot achieve

T0(X) = T0̂(X̂), we can still conclude that T0(X) and T0̂(X̂) have the same distribution,

because

P(T0(X) ≤ t) = πt(0) =
∑

x̂ π̂t(x̂)Λ(x̂, 0) = π̂t(0̂) = P(T0̂(X̂) ≤ t).

Remark 2.1.2. The following easily-verified observations will be used in our application

in Section 2.3.

10
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(a) If Λ1 is a quasi-link providing a quasi-intertwining of (π0, P ) and (π∗0, P
∗) and Λ2 is

similarly a quasi-link from (π∗0, P
∗) to (π̂0, P̂ ), then Λ := Λ2Λ1 is a quasi-link from (π0, P )

to (π̂0, P̂ ).

(b) If, additionally, the chains have respective unique absorbing states 0, 0∗, 0̂ and

(2.1.2) holds for Λ1 and for Λ2 (i.e., Λ1δ
T
0 = δT0∗ and Λ2δ

T
0∗ = δT

0̂
), then (2.1.2) holds

also for Λ (i.e., ΛδT0 = δT
0̂

).

(c) If Λ1 and Λ2 in (a) are both links, then so is Λ.

2.2 An illustrative example: Block chains and

the Moran model

2.2.1 Block chains

In this section we warm up to the main applications of Sections 2.3–2.4 by providing a

simple application of the technique outlined in Section 2.1. Let P be a Markov kernel on

finite state space X with the following block structure:

P =



P00 P01 P02 . . . P0k

P10 P11 P12 . . . P1k

P20 P21 P22 . . . P2k

...
...

... . . . ...

Pk0 Pk1 Pk2 . . . Pkk


. (2.2.1)

11
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For i = 0, . . . , k, let µi be a Perron left eigenvector of Pii [that is, a nonzero row vector

with nonnegative entries such that

µiPii = ρ(Pii)µi,

where ρ(A) denotes the spectral radius of a matrix A], normalized to sum to 1. It is well

known (e.g., [26, Theorem 8.3.1]) that such an eigenvector exists; when, additionally, Pii is

irreducible, the vector µi is unique (e.g., [26, Theorem 8.4.4]) and is often called the quasi-

stationary distribution for Pii. We make the following special assumption concerning P :

For every i and j, the vector µiPij is proportional to µj , say µiPij = P̂ (i, j)µj . In words,

the chain with transition matrix P , started in distribution µi over block i, moves in one

step to block j with probability P̂ (i, j); and, conditionally given that it moves to block j, it

“lands” in block j with distribution µj . We note in passing that P̂ is a (k + 1)-by-(k + 1)

matrix, and that P̂ (i, i) = ρ(Pii) for every i. Define a (k + 1)-by-|X | stochastic matrix Λ

by setting

Λ :=



µ0 0 0 . . . 0

0 µ1 0 . . . 0

0 0 µ2 . . . 0

...
...

... . . . ...

0 0 0 . . . µk


. (2.2.2)

Now consider a chain X with transition matrix P and initial distribution π0; suppose

that π0 is a mixture, say
∑k

i=0 π̂0(i)µi, of the distributions µi (each of which can be regarded

naturally as a distribution on the entire state space).

12
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Proposition 2.2.1. In the block-chain setting described above, (π0, P ) and (π̂0, P̂ ) are

intertwined by the link Λ.

Proof. The proof is a simple matter of checking Definition 2.1.1 by checking that the iden-

tity µiPij ≡ P̂ (i, j)µj gives ΛP = P̂Λ and that the assumption π0 =
∑k

i=0 π̂0(i)µi gives

π0 = π̂0Λ.

The sample-path linking developed in Section 2.1.1 is very simple to describe in our

present block-chain setting: X̂t is simply the block (∈ {0, . . . , k}) to which Xt belongs.

This simple description is due to the very simple nature of the link (2.2.2); the sample-path

linking is more complicated for the applications in Sections 2.3–2.4.

2.2.2 The Moran model

We now apply the block-chain development in the preceding subsection to a Markov

chain on partitions of the positive integer n introduced in [38] as a somewhat light-hearted

model for collaboration among mathematicians. Their model is precisely the Moran model

from population genetics according to the following definition [17, Definition 2.26] modi-

fied (a) to switch in natural fashion from continuous time to discrete time and (b) to limit the

description of the state at each unit of time by distinguishing between genes with different

labels but otherwise ignoring the values of the labels:

A population of N genes evolves according to the Moran model if at exponen-
tial rate

(
N
2

)
a pair of genes is sampled uniformly at random from the popula-

tion, one dies and the other splits in two.

13
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The chain we will consider here is a simple example of a coalescent chain, a class pop-

ularized in the seminal works of Kingman (see for example [31], [32], [33]). For a more

complete modern picture of the application and study of coalescing chains, see [15].

Let S be a set of n indistinguishable objects. (The objects are gene labels in the Moran

model and are mathematicians in [38].) The Markov chain of interest in [38] is more easily

described if we make use of the natural bijection between partitions of the integer n and set

partitions of S obtained by identifying a partition (n1, n2, . . . , nr) (with 1 ≤ r < ∞ and

n1 ≥ n2 ≥ · · · ≥ nr ≥ 1) of the integer n with a partition of S into r indistinguishable

subsets where the subsets are of sizes n1, n2, . . . , nr. Accordingly, if the present state of

the Markov chain is the partition (n1, n2, . . . , nr), then, viewing this as a partition of S,

uniformly select an ordered pair of unequal objects from S, and suppose that the first and

second objects are currently in subsets of size ni and nj , respectively. The transition is

realized by moving the second object from the second subset to the first, resulting in two

new subsets of sizes ni + 1 and nj − 1. For example, if n = 6 and the Markov chain is

currently in the partition (4, 1, 1), then with probability 8/30 the chain transitions to (5, 1);

with probability 2/30, to (4, 2); with probability 8/30, to (3, 2, 1); and with probability

12/30 the chain stays in (4, 1, 1). The authors of [38] are concerned with the distribution of

the hitting time of state (n), the (absorbing) single-part partition, when the chain is begun

in the n-parts partition (1, . . . , 1).

Collecting partitions into blocks, where block i contains all partitions with i parts (1 ≤

i ≤ n), it is clear that the transition matrix P for this chain is block upper bidiagonal, since

14
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a one-step transition can only change the number of parts by 0 or −1. For example, in the

simple case n = 4, one possible ordering of the partitions by decreasing number of parts is

(1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4) and the corresponding P is given by

P =



P44 P43 0 0

0 P33 P32 0

0 0 P22 P21

0 0 0 P11


=



0 1 0 0 0

0 6/12 2/12 4/12 0

0 0 4/12 8/12 0

0 0 3/12 6/12 3/12

0 0 0 0 1


.

We will make use of results in [38] to see that P satisfies the assumptions of Sec-

tion 2.2.1. To describe the results, let 1 ≤ t ≤ n and consider a partition r of n with t

parts. For i = 1, . . . , n, let ri be the number of parts of r equal to i, so that
∑

i iri = n. Let

mr :=
(

t
r1,r2,...,rn

)
. Define µt to be the row vector, supported on partitions of size t, whose

entry corresponding to partition r is
(
n−1
t−1

)−1
mr. For 1 ≤ t ≤ n, define λt := 1 − t(t−1)

n(n−1)
.

For example, if n = 4 and t = 2 and partitions with 2 parts are listed (as above) in the

order (2, 2), (3, 1), then µ2 = (1/3, 2/3) and λ2 = 5/6. Let the dual state space be ordered

n, n− 1, . . . , 1 (corresponding naturally to the ordering we have used for the primary state

space). Define Λ by (2.2.2), but with the nonzero blocks correspondingly in decreasing
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order µn, µn−1, . . . , µ1 of subscript. Let

P̂ :=



λn 1− λn 0 · · · 0

0 λn−1 1− λn−1 · · · 0

...
...

... . . . ...

0 0 0 · · · λ1


.

From Theorems 2 and 4 of [38] we can use our Proposition 2.2.1 to derive easily the

following intertwining result.

Proposition 2.2.2. Let π0 be unit mass at the partition (1, . . . , 1). Then (π0, P ) and (δn, P̂ )

are intertwined by the link Λ.

As a direct consequence of Proposition 2.2.2, we get the following hitting-time result.

Corollary 2.2.3. For fixed n, the law of the time to absorption in state (n) for the partitions-

chain started in (1, . . . , 1) is that of
∑n

t=2 Yn,t where Yn,t ∼ Geo(1 − λn,t), with λn,t =

1− t(t−1)
n(n−1)

, are independent.

In [38], the authors were able to identify a simple expression for the expected hitting

time of state (n) when the chain is started in π0 = δ(1,...,1), and challenged the reader to

discover a pattern for the associated variance. The authors found that Eπ0 T(n) = (n− 1)2.

This is confirmed by our Corollary 2.2.3, as

Eπ0 T(n) = E
n∑
k=2

Yn,k =
n∑
k=2

n(n− 1)

k(k − 1)
= (n− 1)2.

16
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Similarly, lettingH(2)
n :=

∑n
j=1 j

−2 denote the nth second-order harmonic number, we find

Varπ0 T(n) = Var
n∑
k=2

Yn,k =
n∑
k=2

([
n(n− 1)

k(k − 1)

]2

− n(n− 1)

k(k − 1)

)

= 2[n(n− 1)]2H(2)
n − (n− 1)2(3n2 − 2n+ 2)

∼ (π
2

3
− 3)n4 as n→∞.

Proceeding further, it is not difficult to show that, when the partition chain is started in

π0, we have

T(n)

n2

L→S∞ :=
∞∑
j=2

Xj

for independent random variables

Xj ∼ Exp(j(j − 1)), j = 2, 3, . . . ,

with convergence of moments of all orders and (pointwise) of moment generating func-

tions. We omit the details.

2.3 Hitting times and interlacing eigenvalues

2.3.1 Brown’s theorem

Our next construction will provide insight into a hitting-time result of Mark Brown [9]

that elegantly connects the hitting time of a state for a reversible Markov chain started in

stationarity to the celebrated interlacing eigenvalues theorem of linear algebra (see, e.g.,

Theorem 4.3.8 in [26]). We now proceed to set up Brown’s result.

17
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Let (Xt)t=0,1,2,... be a time-reversible ergodic discrete-time Markov chain with transition

matrix P on finite state space X = {0, 1, . . . , n} with stationary distribution π. If we let

D := diag(π(0), . . . , π(n)), then reversibility of P implies that S := D1/2PD−1/2 is a

symmetric matrix and thus P has a real spectrum and a basis of real eigenvectors. Denote

the eigenvalues of P by 1 = θ0 > θ1 ≥ · · · ≥ θn > −1.

Recall that, for any matrix A, the principal submatrix of A obtained by deleting row 0

and column 0 is denoted A0. Denote the eigenvalues of P0 by η1 ≥ · · · ≥ ηn. Note

that S0 = D
1/2
0 P0D

−1/2
0 is symmetric; by the interlacing eigenvalues theorem for bordered

symmetric matrices (e.g., [26, Theorem 4.3.8]), the eigenvalues of P and P0 interlace:

θ0 > η1 ≥ θ1 ≥ · · · ≥ ηn ≥ θn. Cancel out common pairs of eigenvalues from the spectra

σ(P ) and σ(P0) as follows. Consider σ(P ) and σ(P0) as multisets and remove the multiset

σ(P ) ∩ σ(P0) from each of σ(P ) and σ(P0). Relabel the reduced set of eigenvalues of P

as {λi}ri=0 with λ0 ≥ λ1 ≥ · · · ≥ λr and of P0 as {γi}ri=1 with γ1 ≥ · · · ≥ γr. After this

cancellation, it is clear that the remaining eigenvalues strictly interlace: 1 = λ0 > γ1 >

λ1 > · · · > γr > λr > −1.

In what follows we need to assume that λr ≥ 0. This is a rather harmless assumption,

since we can if necessary shift attention from P to 1
1+c

(P + cI) for suitably large c.

Brown found it convenient to work in continuous time, but he could just as easily have

proven the analogous result in our present discrete-time setting. To state Brown’s original

continuous-time result, we make use of a very standard technique to produce a continuous-

time chain from a discrete-time chain, by using independent and identically distributed (iid)

18
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Exp(1) holding times (in place of unit times) between transitions. This continuous-time

chain is sometimes called the continuization of the Markov chain with one-step transition

matrix P , and it has generator matrix Q = P − I .

Brown’s original result can be stated as follows.

Theorem 2.3.1. Let Q = P − I be the generator of the continuization of a Markov chain

with one-step transition matrix P . In the continuized chain, the distribution (or law) LπT0

of the hitting time of state 0 when the chain is started in stationarity, is that of
∑r

i=1 Yi,

where Y1, Y2, . . . , Yr are independent and the distribution of Yi is the “modified Exponen-

tial” mixture

Yi ∼
1− γi
1− λi

δ0 +

(
1− 1− γi

1− λi

)
Exp(1− γi)

of unit mass at 0 and the Exponential distribution with parameter 1 − γi; the λ’s and γ’s

are defined as above.

We find it more convenient to work in discrete time, where the corresponding theorem

(involving Geometric, rather than Exponential, distributions) is as follows.

Theorem 2.3.2. In the discrete-time setting outlined above, LπT0 is the distribution of∑r
i=1 Yi, where Y1, Y2, . . . , Yr are independent with the following “modified Geometric”

distributions:

Yi ∼
1− γi
1− λi

δ0 +

(
1− 1− γi

1− λi

)
Geo(1− γi). (2.3.1)

We have our choice of working in discrete or continuous time because, fortunately, for

any finite-state Markov chain and any target state 0 there is a simple relationship between
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hitting-time distributions in the two cases. Let T d
0 be the time to hit state 0 in the discrete-

time chain (Xt)t=0,1,2,... with transition matrix P , and let T c
0 be the corresponding hitting

time in the continuized chain. Then the Laplace transform ψT c
0
(s) := E exp(−s T c

0 ) and

the probability generating function GTd
0
(z) := E zT

d
0 of the hitting times satisfy a simple

relationship:

Lemma 2.3.3. For any finite-state discrete-time Markov chain and any target state 0, we

have the following identity relating the distributions of the hitting time of state 0 for the

continued chain and the discrete-time chain:

ψT c
0
(s) = GTd

0

(
1

1 + s

)
, s ≥ 0.

Proof. Let Xi ∼ Exp(1) be iid and independent of T d
0 . By definition of the continuized

chain, we have T c
0
L
=
∑Td

0
i=1Xi. Then

ψT c
0
(s) = E exp(−sT c

0 ) = E exp

−s Td
0∑

i=1

Xi

 = E

(
1

1 + s

)Td
0

= GTd
0

(
1

1 + s

)
.

This lemma allows us to easily derive Theorem 2.3.1 from Theorem 2.3.2 (and vice

versa), since for s ≥ 0 we have

ψT c
0
(s) = GTd

0

(
1

1 + s

)
=
∏
i

[
1− γi
1− λi

+

(
1− 1− γi

1− λi

) 1−γi
1+s

1− γi
1+s

]

=
∏
i

[
1− γi
1− λi

+

(
1− 1− γi

1− λi

)
1− γi

1− γi + s

]
.

Our main result of Section 2.3 is another proof for Theorem 2.3.2, culminating in our

Theorem 2.3.16 (see also the last paragraph of Section 2.3.4). Our proof provides—at least
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when the quasi-link Λ we construct is a bona fide link—an explicit stochastic construc-

tion of the hitting time of state 0 from a stationary start as a sum of independent modified

Geometric random variables. We tackle our proof of Theorem 2.3.2 in two stages: in Sec-

tion 2.3.2 we build a certain “star chain” (random walk on a weighted star graph) from

the given chain and prove Theorem 2.3.2 when this star chain is substituted for the given

chain, and in Section 2.3.3 we attempt to “link” the given chain with the star chain of Sec-

tion 2.3.2. In Section 2.3.4 we combine the results of Sections 2.3.2–2.3.3 and provide our

complete proof of Theorem 2.3.2. We could equally well prove the continuous-time ana-

logues of all of our theorems and then apply the analogous intertwining results outlined in

Section 2.3 of [19] to provide (again when Λ is a link) an explicit continuous-time stochas-

tic construction for Theorem 2.3.1. We choose to work in discrete time for convenience

and because, we believe, the ideas behind our constructions are easier to grasp in discrete

time.

2.3.2 A stochastic construction for the star chain

Carrying out step 1 of the four-step strategy outlined in Section 2.1.2 (finding a chain X̂

for which the hitting time of state 0̂ can be decomposed as a sum of independent modified

Geometric random variables) turns out not to be too difficult; this step is carried out later,

in Lemma 2.3.10. However, step 2 (finding a link Λ between the given X and X̂) proved

challenging to us, so we break it down into two substeps, as described at the end of the

preceding subsection. In this subsection we build an ergodic star chain X∗ from the given
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chain X and show that the Markov semigroups for X∗ (with the target state 0∗ converted

to absorbing) and X̂ are intertwined by a link Λ2. The state spaces for X∗ and X̂ will

both be {0, . . . , r}, and the roles of 0̂ and 0∗ will both be played by state 0. For the star

chain, we make full use of the notation in Section 2.3.1. The “star” has “hub” at 0 and

“spokes” terminating at vertices 1, . . . , r. The r-spoke star chain we build has previously

been constructed in [2].

For the sake of brevity it is convenient to establish some additional notation. Define

ρi :=
1− γi
1− λi

for i = 1, . . . , r,

and for 0 ≤ k ≤ r define

π∗k(i) :=


(1− ρi)

∏
1≤j≤k, j 6=i

1−γj−ρj(1−γi)
γi−γj for i = 1, . . . , k

∏k
j=1 ρj for i = 0.

(2.3.2)

Set π∗k := (π∗k(0), . . . , π∗k(k), 0, . . . , 0) ∈ Rr+1 and note that π∗0 = δ0. The following lemma

lays out the ergodic star chain of interest corresponding to the given chain.

Lemma 2.3.4.

(a) For all 0 ≤ k ≤ r we have π∗k(i) > 0 for i = 0, . . . , k and
∑k

i=0 π
∗
k(i) = 1.

(b) The row vector π∗ := π∗r is the stationary distribution of the ergodic r-spoke star chain

with transition matrix P ∗ satisfying, for i = 1, . . . , r,

P ∗(i, 0) = 1− γi and P ∗(i, i) = γi.

P ∗(0, i) =
(1− γi)π∗(i)

π∗(0)
and P ∗(0, 0) = 1− 1

π∗(0)

r∑
i=1

(1− γi)π∗(i).
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Proof.

(a) Fix k ∈ {0, . . . , r}. Clearly π∗k(0) > 0, so we begin by showing that π∗k(i) > 0 for

i = 1, . . . , k. Since 1 − ρi > 0, we’ll do this by showing that each factor in the product∏
j 6=i in (2.3.2) is strictly positive. Indeed, if j > i this is clear because 0 < ρj < 1. If

j < i, then we use

1− γj − ρj(1− γi)
γi − γj

=
ρj(1− γi)− (1− γj)

γj − γi
>

(
1−γj
1−γi

)
(1− γi)− (1− γj)

γj − γi
= 0,

where the inequality holds because λj > γi by the interlacing condition. To show
∑k

i=1 π
∗
k(i) =

1, we repeat the argument in the proof of Lemma 2.1 in [9] and include it for completeness.

Define

ψ(s) :=
k∏
i=1

1− γi + ρis

1− γi + s
. (2.3.3)

Then ψ(0) = 1, and we will show

ψ(s) = π∗k(0) +
k∑
i=1

π∗k(i)
1− γi

1− γi + s
for general s (2.3.4)

=
k∑
i=0

π∗k(i) at s = 0,

which will complete the argument. To show (2.3.4), first set

f(s) :=
k∏
j=1

(1− γj + ρjs), g(s) :=
k∏
j=1

(1− γj + s), f̃(s) := f(s)−

(
k∏
j=1

ρj

)
g(s).

Note that f̃(s) is a polynomial of degree ≤ k − 1 and that

f̃(−1 + γi) = f(−1 + γi), i = 1, . . . , k.
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Define

h(s) :=
k∑
i=1

(
π∗k(i)(1− γi)

∏
j 6=i:1≤j≤k

(1− γj + s)

)
.

A brief calculation yields

π∗k(i)(1− γi) =
f(γi − 1)

g′(γi − 1)
,

and we see that

h(γi − 1) = f(γi − 1) = f̃(γi − 1), i = 1, . . . , k.

But h(s), like f̃(s), is a polynomial of degree≤ k−1, and so h(s) = f̃(s) for all s. Finally,

we see

ψ(s) =
f(s)

g(s)
=

1

g(s)

[(
k∏
i=1

ρi

)
g(s) + f̃(s)

]
=

k∏
i=1

ρi +
h(s)

g(s)

= π∗k(0) +
k∑
i=1

π∗k(i)
1− γi

1− γi + s
,

establishing (2.3.4) and completing the proof of part (a).

(b) Clearly, P ∗~1T = ~1T . To show that P ∗ is stochastic, we need only show that P ∗ ≥ 0

entrywise. This is clear except perhaps for the entry P ∗(0, 0). To see P ∗(0, 0) > 0, we

first note that P ∗(0, 0) = trP ∗ − trP ∗0 ; Lemma 2.6 in [9] then gives trP ∗ − trP ∗0 =∑r
i=0 λi −

∑r
i=1 γi =

∑r−1
i=0 (λi − γi+1) + λr > 0. Part (a) establishes that π∗ = π∗r is a

distribution, and one sees immediately that π∗ satisfies the detailed balance equations for

the transition matrix P ∗.

Remark 2.3.5. It would seem natural to define a k-spokes star chain with transition matrix

P ∗(k) and stationary distribution π∗k for general k just as is done for k = r in Lemma 2.3.4.
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However, it is then not clear whether P ∗(k)(0, 0) ≥ 0. Moreover, in our construction we

use only the P ∗ of Lemma 2.3.4(b) (with k = r).

Define P ∗abs to be the chain (X∗t )t=0,1,... modified so that 0 is an absorbing state and note

that

σ(P ∗abs) = {1, γ1, . . . , γr}.

We now begin to head towards Theorem 2.3.11, which will show thatLπ∗(T ∗0 ) = L(
∑r

i=1 Yi)

for the Yi’s described in Theorem 2.3.2. To do this, we will construct a link Λ2 between

the absorbing star chain and a dual chain (X̂t)t=0,1,... for which the hitting time for state 0

is explicitly given as an independent sum of the modified Geometric random variables Yi.

Remark 2.3.6. If the given chain is already a star chain, then the star chain of Lemma 2.3.4

is simply obtained by collapsing all leaves with the same one-step transition probability to

state 0 into a single leaf. This is established as Proposition ?? in the Appendix, where it is

also shown that the stationary probabilities collapse accordingly. For example, suppose the

given chain is the star chain with transition matrix

P =



4/9 1/9 1/9 1/9 1/9 1/9

1/6 5/6 0 0 0 0

1/6 0 5/6 0 0 0

2/9 0 0 7/9 0 0

1/3 0 0 0 2/3 0

1/3 0 0 0 0 2/3



.
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We see that π = 1
21

(6, 4, 4, 3, 2, 2) and that

σ(P ) = {1, 5/6, 0.8023, 0.7303, 2/3, 0.1896}, σ(P0) = {5/6, 5/6, 7/9, 2/3, 2/3}.

The reduced set of eigenvalues of P is {1, 0.8023, 0.7303, 0.1896} and the reduced set of

eigenvalues of P0 is {5/6, 7/9, 2/3}. The star chain constructed in Lemma 2.3.4 has three

spokes with probabilities 1/6, 2/9, 1/3 of moving to the hub in one step and respective

stationary probabilities 8/21, 3/21, 4/21 (with stationary probability 6/21 at the hub).

The key to our construction will be the following “spoke-breaking” theorem.

Theorem 2.3.7. For each i = 1, . . . , r, the distribution π∗i ∈ Rr+1 can be represented as

the mixture

π∗i = ρiπ
∗
i−1 + (1− ρi)νi (2.3.5)

of π∗i−1 and a probability distribution νi (regarded as a row vector in Rr+1) satisfying

νiP
∗ = γiνi + (1− γi)π∗i−1. (2.3.6)

Proof. Fix i. Clearly there is a unique row vector ν ≡ νi satisfying (2.3.5), and it sums

to unity because π∗i and π∗i−1 each do. We will solve for ν and see immediately that ν has

nonnegative entries; indeed, we will show that ν is given by

ν(j) =


1−γi

1−γi−ρi(1−γj)
π∗i (j) if 1 ≤ j ≤ i

0 if j = 0 or j > i.

(2.3.7)

It will then be necessary only to prove that ν satisfies (2.3.6).
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We begin by establishing (2.3.7) for j = 1, . . . , i − 1. (For t = i − 1 and t = i, the

notation
∏t

k 6=j will be shorthand for the product over values k satisfying both 1 ≤ k ≤ t

and k 6= j.) In that case,

(1− ρi)ν(j) = π∗i (j)− ρiπ∗i−1(j)

= (1− ρj)
i∏

k 6=j

1− γk − ρk(1− γj)
γj − γk

− ρi(1− ρj)
i−1∏
k 6=j

1− γk − ρk(1− γj)
γj − γk

= π∗i (j)

[
1− ρi

γj − γi
1− γi − ρi(1− γj)

]
= (1− ρi)

1− γi
1− γi − ρi(1− γj)

π∗i (j),

as desired, where the first equality follows from (2.3.5), and the second and third employ

the formula (2.3.2) both for π∗i and for π∗i−1.

For j = i we calculate

(1− ρi)ν(i) = π∗i (i)− ρiπ∗i−1(i) = π∗i (i),

i.e.,

ν(i) = (1− ρi)−1π∗i (i) =
1− γi

1− γi − ρi(1− γi)
π∗i (i),

again as desired.

For j = 0, (2.3.2) gives that

(1− ρi)ν(0) = π∗i (0)− ρiπ∗i−1(0) =
i∏

k=1

ρk − ρi
i−1∏
k=1

ρk = 0,

once again as desired. For j > i, (2.3.7) is clear because π∗i (j) = 0 = π∗i−1(j).

It remains to check that ν satisfies (2.3.6). Since both sides are vectors summing to 1

(on the left because ν is a probability distribution and P ∗ is a transition kernel, and on the
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right because both ν and π∗i−1 are probability distributions), we need only check LHS(j) =

RHS(j) for j 6= 0 (henceforth assumed). We begin by calculating the state-j entry of the

LHS assuming j ≤ i:

LHS(j) =
r∑

k=0

ν(k)P ∗(k, j) =
i∑

k=1

ν(k)P ∗(k, j)

= ν(j)P ∗(j, j) =

[
1− γi

1− γi − ρi(1− γj)
π∗i (j)

]
× (γj).

On the other hand, using (2.3.5) we calculate

RHS = π∗i−1 + γi
(
ν − π∗i−1

)
= π∗i−1 + γi

[
ν − ρ−1

i (π∗i − (1− ρi)ν)
]

= ρ−1
i (π∗i − (1− ρi)ν) +

γi
ρi

(ν − π∗i ) .

Therefore, for j ≤ i the jth entry of the RHS is

RHS(j) = ρ−1
i π∗i (j)

[
1− (1− ρi)(1− γi)

1− γi − ρi(1− γj)
+

γiρi(1− γj)
1− γi − ρi(1− γj)

]
= ρ−1

i π∗i (j)

[
(1− γi)ρiγj

1− γi − ρi(1− γj)

]
= LHS(j).

If j > i, then LHS(j) = 0 = RHS(j), finishing the proof that ν satisfies (2.3.6).

The preceding Theorem 2.3.7 suggests the form for the chain (X̂t)t=0,1,2,... on {0, 1, . . . , r},

where the times spent in state j = 0, 1, 2, . . . , r in this chain are independent and distributed

as the Yj’s in Theorem 2.3.2. Before proceeding to the construction in Lemma 2.3.10, the

next lemma provides some preliminaries.
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Lemma 2.3.8. Let 0 < k ≤ r. Let π̂k(j) := ρkρk−1 . . . ρj+1(1− ρj) for all 1 ≤ j < k, and

let π̂k(k) := 1− ρk. Then π̂k(j) ≥ 0 for 1 ≤ j ≤ k, and
∑k

j=1 π̂k(j) = 1−
∏k

i=1 ρi. If we

define π̂k(0) :=
∏k

i=1 ρi, then π̂k gives a probability distribution on 0, 1, . . . , k.

The proof of this lemma is very easy. Let us also adopt the convention π̂0 := δ0.

Remark 2.3.9. Paralleling (2.3.5) in Theorem 2.3.7, we have

π̂k = ρkπ̂k−1 + (1− ρk)δk for 1 ≤ k ≤ r.

We are now ready to construct (X̂t):

Lemma 2.3.10. Let (X̂t) be the absorbing Markov chain with state space {0, . . . , r} begun

in distribution π̂ := π̂r, with transition matrix P̂ defined by

P̂ (i, j) =



1 if 0 = j = i

γi if 0 < j = i

(1− γi) · π̂i−1(j) if j < i

0 if j > i.

Then

(a) If Zi is the time spent in state i (including time 0) by (X̂t) with initial distribution π̂

prior to hitting 0, then L(Z1, Z2, . . . , Zr) = L(Y1, Y2, . . . , Yr).

(b) If T̂0 is the hitting time of state 0 for the chain (X̂t) with initial distribution π̂, then

T̂0
L
=
∑r

i=1 Yi.
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Proof. (a) When viewed in the right light, the lemma is evident. The chain moves down-

ward through the state space {0, 1, . . . , r}, with ultimate absorption in state 0, and can be

constructed by performing a sequence of r independent Bernoulli trials Wr, . . . ,W1 with

varying success probabilities 1−ρr, . . . , 1−ρ1, respectively. IfWi = 0, then the chain does

not visit state i, whereas if Wi = 1 then the amount of time spent in state i is Geom(1− γi)

independent of the amounts of time spent in the other states.

A formal proof of part (a) is not difficult but would obscure this simple construction

and is therefore not included.

(b) This is immediate from part (a), since T̂0 =
∑r

i=1 Zi.

As the culmination of this subsection we exhibit an intertwining between (π∗, P ∗abs) and

(π̂, P̂ ).

Theorem 2.3.11. Let Λ2 be defined as follows:

Λ2(0, :) := δ0, Λ2(i, :) := νi for i = 1, . . . , r.

Then (π∗, P ∗abs) and (π̂, P̂ ) are intertwined by the link Λ2, which satisfies (2.1.2); to wit,

Λ2P
∗
abs = P̂Λ2, (2.3.8)

π∗ = π̂Λ2, (2.3.9)

Λ2δ
T
0 = δT0 . (2.3.10)

Proof. We begin by noting that Λ2 is stochastic because, as noted in Theorem 2.3.7, each

νi is a probability distribution.
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From Theorem 2.3.7 we have that π∗k = ρkπ
∗
k−1 + (1− ρk)νk for 1 ≤ k ≤ r, and from

Remark 2.3.9 we have the corresponding equations for π̂k, namely, π̂k = ρkπ̂k−1+(1−ρk)δk

for all 1 ≤ k ≤ r. One can use these results to prove π∗k = π̂kΛ2 for k = 0, 1, . . . , r by

induction on k; in particular, (2.3.9) follows by setting k = r.

To show (2.3.8), first observe (Λ2P
∗
abs)(0, :) = δ0 = (P̂Λ2)(0, :). Comparing ith rows

for 1 ≤ i ≤ r, we see

(Λ2P
∗
abs)(i, :) = νiP

∗
abs = γiνi + (1− γi)π∗i−1 (2.3.11)

by (2.3.6) and the fact that νi(0) = 0 for all i. Iterating Theorem 2.3.7, we see for i =

1, . . . , r that

π∗i = (1− ρi)νi + ρiπ
∗
i−1

= (1− ρi)νi + ρi
[
(1− ρi−1)νi−1 + ρi−1π

∗
i−2

]
= (1− ρi)νi + ρi(1− ρi−1)νi−1 + ρiρi−1π

∗
i−2

= · · · = π̂i(i)νi + π̂i(i− 1)νi−1 + · · ·+ π̂i(1)ν1 + π̂i(0)δ0.

So π∗i =
∑i

j=1 π̂i(j)νj + π̂i(0)δ0 for i = 1, . . . , r, and the same equation holds for i = 0

because π∗0 = δ0 = π̂0. Applying this to equation (2.3.11) we find for i = 1, . . . , r that

(Λ2P
∗
abs)(i, :) = γiνi +

i−1∑
j=1

(1− γi)π̂i−1(j)νj + (1− γi)π̂i−1(0)δ0

= (P̂Λ2)(i, :),

as desired, where at the last equality we have recalled Λ2(0, :) = δ0.
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Finally, (2.3.10) asserts that the 0th column of Λ2 is δT0 . This follows from the definition

of Λ2, since it has already been noted at (2.3.7) that νi(0) = 0 for i = 1, . . . , r.

2.3.3 Quasi-link to the star chain

The main result of this subsection is Theorem 2.3.13, which provides a quasi-link be-

tween the absorbing transition matrices Pabs and P ∗abs corresponding to the given chain and

the star chain, respectively. We begin with a linear-algebraic lemma.

Lemma 2.3.12. The matrix Pabs has n+ 1 linearly independent left eigenvectors. Its mul-

tiset of n+ 1 eigenvalues is {1, η1, . . . , ηn}.

Proof. Recall that σ(P0) = {η1, . . . , ηn}. Recall also that D0 = diag(π1, . . . , πn) and that

S0 = D
1/2
0 P0D

−1/2
0 is a symmetric matrix. Let Ũ be an n-by-n orthogonal matrix whose

rows are orthonormal left eigenvectors of S0, so that ŨS0Ũ
T = diag(η1, η2, . . . , ηn). Then

the rows (denoted u1, . . . , un) of the n-by-n matrix U := ŨD
1/2
0 are left eigenvectors of P0

with respective eigenvalues η1, . . . , ηn. For i = 1, . . . , n, define the scalar

wi :=
(0|ui)P (:, 0)

ηi − 1
;

then (wi|ui)Pabs = ηi(wi|ui) and ηi ∈ σ(Pabs). Finally, δ0Pabs = δ0. The n+ 1 eigenvectors

δ0 and (wi|ui) for i = 1, . . . , n are clearly linearly independent, and our proof is complete.

Note that

(wi|ui)~1T = (wi|ui)Pabs~1
T = ηi(wi|ui)~1T
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and ηi < 1, implying that (wi|ui)~1T = 0 and wi = −ui~1T .

Let ni denote the algebraic (also geometric) multiplicity of the eigenvalue γi as an

eigenvalue of P0 (here we are working with the reduced set of eigenvalues again). Re-

label the eigenvectors corresponding to γi by ui1, . . . , u
i
ni

. Note that, when viewed as an

eigenvalue of Pabs, γi has algebraic (also geometric) multiplicity ni, with corresponding

eigenvectors (−ui1~1T |ui1), . . . , (−uini
~1T |uini

). In the next theorem we construct our (r+ 1)-

by-(n+ 1) quasi-link Λ1 between (π, Pabs) and (π∗, P ∗abs).

Theorem 2.3.13. There exists a quasi-link Λ1 providing a quasi-intertwining between

(π, Pabs) and (π∗, P ∗abs) and satisfying (2.1.2), i.e., a matrix Λ1 with rows summing to 1

such that

π = π∗Λ1, (2.3.12)

Λ1Pabs = P ∗absΛ1, (2.3.13)

Λ1δ
T
0 = δT0 . (2.3.14)

Proof. If row i of Λ1 is denoted by xi for i = 0, ..., r, then for (2.3.13) we require

x0Pabs = x0; xiPabs = (1− γi)x0 + γixi i = 1, . . . , r.

This forces x0 = δ0 and

xi(Pabs − γiI) = (1− γi)δ0, i = 1, . . . , r.

Therefore, for Λ1Pabs = P ∗absΛ1 to hold, we necessarily set

xi = δ0 +

ni∑
j=1

cij (−uij~1T |uij), i = 1 . . . , r
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where the cij’s are soon-to-be-determined real constants.

For any choices of cij’s above we have that the rows of Λ1 sum to unity and Λ1Pabs =

P ∗absΛ1, but it remains to be shown that we can define cij’s so that (2.3.12) holds. The dif-

ficulty is that there may exist values ηi ∈ σ(P0) such that ηi 6= γj for any j = 1, . . . , r.

However, we will show in the next lemma that π is in the span of the eigenvectors corre-

sponding to the remaining eigenvalues, and that will complete our proof of (2.3.12).

To prove (2.3.14), we use (2.3.12)–(2.3.13) to get πP t
abs = π∗Λ1P

t
abs = π∗P ∗tabsΛ1; we

find [using Λ1(0, 0) = 1] that the 0th entry of this vector is

Pπ(T0 ≤ t) =
∑
i

π∗(i)
∑
j

P ∗tabs(i, j)Λ1(j, 0)

= π∗(0) +
∑
i 6=0

π∗(i)[P ∗tabs(i, 0) + P ∗tabs(i, i)Λ1(i, 0)]

= π∗(0) +
∑
i 6=0

π∗(i)[1 + P ∗tabs(i, i)(Λ1(i, 0)− 1)]

= π∗(0) +
∑
i 6=0

π∗(i)[1 + γti(Λ1(i, 0)− 1)]

= 1 +
r∑
i=1

π∗(i)γti(Λ1(i, 0)− 1).

We also have from (2.3.15) in the proof of the next lemma that Pπ(T0 ≤ t) = 1 −∑r
i=1 π

∗(i)γti . Therefore Λ1(i, 0) = 0 for i > 0, and (2.3.14) follows.

Lemma 2.3.14. There exist real constants cij such that π = π∗Λ1.

Proof. We will make use of the fact that

Pπ(T0 > t) =
r∑
j=1

π∗(j)γtj, t = 0, 1, . . . , (2.3.15)
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which follows from its continuous-time analogue, equation (1.1) in [9], using Lemma 2.3.3.

[That analogue is established using the fact that the function ψ in our equations (2.3.3)–

(2.3.4) is the Laplace transform of T0 for the stationary continuized chain; see [9] for further

details.] Define

π−0 := (π(1), . . . , π(n)) ∈ Rn;

we would use the notation π0 to indicate this deletion of the 0th entry from π except that it

conflicts with our notation for the initial distribution of the given chain. We then have that

Pπ(T0 > t) = π−0P
t
0
~1T . Using the spectral representation of P0 we find for t ≥ 0 that

Pπ(T0 > t) =
n∑
i=1

n∑
j=1

n∑
k=1

√
π(i)π(j)Ũ(k, i)Ũ(k, j)ηtk =

n∑
k=1

qkη
t
k. (2.3.16)

Here q = (q1, . . . , qn) = (π
1/2
−0 Ũ

T )2, where both the nonnegative square root and the square

are in the Hadamard sense. In particular, qk ≥ 0 for all k = 1, . . . , n. Comparing (2.3.15)

and (2.3.16), it is clear that if ηi 6= γj for every j = 1, . . . , r, then qi = 0. Again comparing

(2.3.15) and (2.3.16), for each γj there is an ηk = γj such that the coefficient of ηtk in

(2.3.16), namely qk, is strictly positive. Now q = (π
1/2
−0 Ũ

T )2 equals the Hadamard square

(π−0D
−1/2
0 ŨT )2. We can therefore chooseR, a diagonal matrix with±1 along the diagonal,

such that π−0 = q1/2R(ŨD
1/2
0 ) = q1/2RU ; here q1/2 is the Hadamard nonnegative square

root of q. Relabel the entries of the vector q (and of R) so that

π−0 =
r∑
i=1

ni∑
j=1

rij(q
i
j)

1/2uij.

Letting cij = rij(q
i
j)

1/2/π∗(i) yields

π−0 =
r∑
i=1

ni∑
j=1

π∗(i) cij u
i
j.
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It remains only to show that for this choice of cij’s we have

π(0) = 1 +
r∑
i=1

ni∑
j=1

π∗(i)cij(−uij~1T ).

This is immediate from

1− π(0) = π−0
~1T = q1/2RU~1T =

r∑
i=1

ni∑
j=1

rij(q
i
j)

1/2(uij ~1
T ).

Our construction of Λ1 uses the eigenvectors of Pabs; the entries of these eigenvectors

are not all nonnegative, and as a result neither (in general) are the entries of Λ1. In the

special case that the given chain is a star chain, the quasi-link Λ1 is a bona fide link. For

example, for the chain considered in Remark 2.3.6 the quasi-link Λ1 is easily seen to be the

link

Λ1 =



1 0 0 0 0 0

0 1/2 1/2 0 0 0

0 0 0 1 0 0

0 0 0 0 1/2 1/2


.

Remark 2.3.15. If r = n (i.e., the reduced spectra are the same as the unreduced spectra),

then it is not hard to show that the quasi-link Λ1 of Theorem 2.3.13 is uniquely determined.

2.3.4 The big link Λ

Combining the quasi-link Λ1 of Theorem 2.3.13 between (π, Pabs) and (π∗, P ∗abs) and

the link Λ2 of Theorem 2.3.11 between (π∗, P ∗abs) and (π̂, P̂ ), we obtain the desired quasi-

link Λ = Λ2Λ1 between (π, Pabs) and (π̂, P̂ ).
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Theorem 2.3.16. Let Λ := Λ2Λ1. Then Λ is a quasi-link providing a quasi-intertwining of

(π, Pabs) and (π̂, P̂ ), and therefore LπT0 = Lπ̂T̂0.

Proof. This follows from Remark 2.1.2 and the discussion in Section 2.1.3.

If Λ is stochastic, then we have a link between Pabs and P̂ and we can use the discussion

following Definition 2.1.1 to construct a sample path of (X̂t) given a realization of (Xt).

However, it’s easy to find examples showing that Λ is not nonnegative in general.

The discussion preceding Remark 2.3.15 shows that Λ is a link if the given chain X is

a star chain. More generally, Λ is a link if the given chain is a “block star chain”, defined

as follows: Choose positive numbers b0, . . . , bk summing to unity and 0 < π0 ≤ 1. For

i = 1, . . . , k, let ci := π0bi and let Qi be an ergodic and reversible Markov kernel with

stationary probability mass function πi. Let P be the following special case of (2.2.1):

P =



b0 b1π1 b2π2 . . . bkπk

c1
~1T (1− c1)Q1 0 . . . 0

c2
~1T 0 (1− c2)Q2 . . . 0

...
...

... . . . ...

ck~1
T 0 0 . . . (1− ck)Qk


;

it is easily checked that P is ergodic and reversible with stationary distribution equal to

the concatenated row vector (π0 + k)−1(π0|π1| · · · |πk), and that the reduction of spectra

described in Section 2.3.1 results in {γ1, . . . , γr} being some subset of distinct elements

from {1 − c1, . . . , 1 − ck}. If, for example, r = k, then Λ1 is the matrix (2.2.2), where

µ0 = (1) is 1-by-1 and we recall for 1 ≤ j ≤ k that µj (= πj) is the quasi-stationary
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distribution for the jth diagonal block (1− cj)Qj of P ; hence Λ1 is a link (and so, then, is

Λ = Λ1Λ2). We are not aware of other interesting cases where Λ is guaranteed to be a link,

but the key is to arrange, as for block star chains, for P0 to have nonnegative eigenvectors

corresponding to eigenvalues γ1 . . . , γr.

Remark 2.3.17. Is there a unique quasi-link Λ which, like the one constructed in Theo-

rem 2.3.16, satisfies ΛδT0 = δT0 and provides a quasi-intertwining of (π, Pabs) and (π̂, P̂ )?

We do not know the answer in general, but if r = n, then the answer is affirmative by

Remark 2.3.15 and the invertibility of Λ2.

2.4 Another representation for hitting times from

stationarity

Our final application of the strategy outlined in Section 2.1.2 will provide a stochastic

construction for an alternative characterization of the hitting-time distribution from station-

arity first proved by Mark Brown [personal communication] in an unpublished technical

report. A published version of a special case can be found in [8]. Our construction here is

notable in that it will provide a generalization (to not necessarily reversible chains) of the

discrete-time analogue of Brown’s original result, and it is by applying our strategy that we

discovered the generalization.

Brown’s original theorem is the following, in which 0 is an arbitrary fixed state.
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Theorem 2.4.1 (Mark Brown). Consider an ergodic time-reversible finite-state continu-

ous-time Markov chain with stationary distribution π. Let V be a random variable with

P(V > t) =
P00(t)− π(0)

1− π(0)
, 0 ≤ t <∞.

Let V1, V2, . . . be iid copies of V , and letN be independent of the sequence (Vi) withN+1

distributed Geometric with success probability π(0):

P(N = k) = π(0)[1− π(0)]k, k = 0, 1, . . . .

Then the distribution LπT0 of the nonnegative hitting time T0 of 0 from a stationary start is

the distribution of
∑N

i=1 Vi.

We will focus on the following discrete-time analogue. As in Section 2.3, analogues

of all of our results can be established in the continuous-time setting as well, but we have

chosen discrete time for convenience and ease of understanding.

Theorem 2.4.2. Consider an ergodic time-reversible finite-state discrete-time Markov chain

with stationary distribution π. Assume that P t(0, 0) is nonincreasing in t. Let V be a ran-

dom variable with

P(V > t) =
P t(0, 0)− π(0)

1− π(0)
, t = 0, 1, . . . .

Let V1, V2, . . . be iid copies of V , and letN be independent of the sequence (Vi) withN+1

distributed Geometric with success probability π(0):

P(N = k) = π(0)[1− π(0)]k, k = 0, 1, . . . .
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Then the distribution LπT0 of the nonnegative hitting time T0 of 0 from a stationary start is

the distribution of
∑N

i=1 Vi.

The assumption in Theorem 2.4.2 that P t(0, 0) is nonincreasing in t is met, for example,

if the chain is time-reversible and all the eigenvalues of the one-step transition matrix P

are nonnegative. However, we do not need to assume reversibility to follow our ap-

proach, so Theorem 2.4.2 (and likewise Theorem 2.4.1) is true without that assumption.

For a non-reversible scenario in which the nonincreasingness assumption is satisfied, see

Remark 2.4.7 and the paragraph preceding it.

Following our strategy, we aim to provide a sample-path intertwining of the given

chain X in Theorem 2.4.2 with a chain X̂ (with, say, initial distribution π̂0 and transition

matrix P̂ ) for which the hitting time T̂0 has (for each sample path) a clear decomposition∑N
i=1 Vi as in the theorem. As in our earlier application, we can treat 0 as an absorbing state

for the given chain, whose one-step transition matrix we then denote by Pabs. We thus wish

to find (π̂0, P̂ ) and a link (or at least quasi-link) Λ such that π = π̂0Λ and ΛPabs = P̂Λ. The

chain X̂ we will construct has state space {0, 1, . . . }. Although the state space is infinite,

this gives no difficulties as the needed intertwining results from [12] apply just as readily

to Markov chains with countably infinite state spaces. First we construct our Λ.

Suppose the given chain has state space {0, 1, . . . , n}. We adopt notation that highlights

the special role of state 0. Let π = (π(0)|π−0) ∈ Rn+1 with π−0 ∈ Rn, and similarly let
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P i−1(0, :) = (P i−1(0, 0) |P i−1(0, :)−0) ∈ Rn+1. For i = 1, 2, 3, . . ., define

µi :=

(
0

∣∣∣∣P i−1(0, 0)π−0 − π(0)P i−1(0, :)−0

P i−1(0, 0)− π(0)

)
∈ Rn+1.

Lemma 2.4.3. With µi defined above, we have for i > 0 that

µiP = qiπ + (1− qi)µi+1,

where

qi :=
P i−1(0, 0)− P i(0, 0)

P i−1(0, 0)− π(0)
∈ [0, 1).

Proof. First note

µiP =
P i−1(0, 0)(0|π−0)P − π(0)(0|P i−1(0, :)−0)P

P i−1(0, 0)− π(0)
.

Now (0|π−0)P = π − π(0)P (0, :), and similarly

(0|P i−1(0, :)−0)P = P i−1(0, :)P − P i−1(0, 0)P (0, :)

= P i(0, :)− P i−1(0, 0)P (0, :);

hence

P i−1(0, 0)(0|π−0)P − π(0)(0|P i−1(0, :)−0)P

= P i−1(0, 0)π − π(0)P i(0, :)

= P i−1(0, 0)π − (P i(0, 0)π(0)|0)− (0|π(0)P i(0, :)−0)

= P i−1(0, 0)π − P i(0, 0)π + P i(0, 0)(0|π−0)− (0|π(0)P i(0, :)−0)

= [P i−1(0, 0)− P i(0, 0)]π + (0|P i(0, 0)π−0 − π(0)P i(0, :)−0).
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Letting

qi :=
P i−1(0, 0)− P i(0, 0)

P i−1(0, 0)− π(0)
,

it follows that µiP = qiπ + (1− qi)µi+1, as desired.

This lemma suggests the form for P̂ and Λ. Let X̂ have state space {0, 1, 2, . . .}. Define

the transition kernel P̂ by setting P̂ (0, 0) := 1 and, for i > 0,

P̂ (i, 0) := π(0)qi, P̂ (i, 1) := [1− π(0)]qi, P̂ (i, i+ 1) := 1− qi;

we set P̂ (i, j) := 0 for all other pairs (i, j). As the following lemma shows, the hitting

time T̂0 for this chain X̂ has a simple decomposition as a sum of Geometrically many iid

copies of V .

Lemma 2.4.4. Let X̂ have initial distribution π̂0 := π(0)δ0 + [1 − π(0)]δ1 and one-step

transition matrix P̂ . Then there exist random variables N and V1, V2, . . . with joint distri-

bution as in Theorem 2.4.2 such that (for every sample path) T̂0 =
∑N

i=1 Vi.

Proof. LetN ≥ 0 denote the number of visits to state 1; and for i = 1, . . . , N , let Vi denote

the highest state reached in the time interval [τi, τi+1), where τi denotes the epoch of ith

visit to state 1. Then all of the assertions of the lemma are clear; it is perhaps worth noting

only that for t = 0, 1, . . . we have

P(V1 > t) =
t∏
i=1

(1− qi) =
P t(0, 0)− π(0)

1− π(0)
.
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Define Λ by setting Λ(0, :) := δ0 and Λ(i, :) := µi for i > 0. Note that Λ has infinitely

many rows, each of which is in Rn+1. We then have the following theorem whose proof is

almost immediate from the definitions and Lemma 2.4.3.

Theorem 2.4.5. The quasi-link Λ provides a quasi-intertwining of (π, Pabs) and (π̂0, P̂ )

and satisfies (2.1.2), and therefore LπT0 = Lπ̂0T̂0.

Proof. It is easily checked that each row of Λ sums to unity. Further, for i > 0 using the

observations that µi(0) ≡ 0 and µ1 =
(

0
∣∣∣ π−0

1−π(0)

)
, one finds readily that the ith row of

ΛPabs is µiP = qiπ+(1−qi)µi+1, which is the ith row of P̂Λ. The 0th rows are both δ0, so

we conclude ΛPabs = P̂Λ. Similarly, π = π̂0Λ. Finally, since µ0(0) = 1 and µi(0) = 0 for

i > 0, we have ΛδT0 = δT0 , which is (2.1.2). The equality of hitting-time laws then follows

from the discussion in Section 2.1.3.

Note that Λ is a link (in which case sample-path linking is possible) if and only if for

every t ≥ 0 the t-step transition probability P̃ t(i, 0) is maximized when i = 0; here P̃ is

the time-reversed transition matrix P̃ (i, j) := π(j)P (j, i)/π(i). A sufficient condition for

this is that the state space is partially ordered, 0 is either a top element or a bottom element,

and P̃ is stochastically monotone.

Remark 2.4.6. The intertwining constructed in Lemma 2.4.3 and Theorem 2.4.5 can be

related to the fastest strong stationary time construction of [3] and the corresponding strong

stationary dual constructed in Example 2.6 of [12]. In the interest of brevity, we omit an

explanation of the connection.
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Remark 2.4.7. We claim that if P is such that P̃ t(i, 0) is maximized for every t when

i = 0, then P automatically satisfies the assumption in Theorem 2.4.2 that P t(0, 0) is

nonincreasing in t. To see this, consider the chain X with transition matrix P started in

distribution µ1 = [1− π(0)]−1[π − π(0)δ0]. Then, for any state i,

P(Xt = i)

π(i)
=
π(i)− π(0)P t(0, i)

π(i)[1− π(0)]
=

1− P̃ t(i, 0)

1− π(0)
.

If s(t) is the separation of the chain at time t, then 1 − s(t) equals the minimum of this

ratio over i, namely, [1 − P t(0, 0)]/[1 − π(0)]. It is well known (e.g., [4, Chapter 9]) that

separation is nonincreasing in t, so P t(0, 0) is nonincreasing.
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Chapter 3

Strong Stationary Duality for Diffusion

Processes

In this chapter, we systematically develop the theory of strong stationary duality for

diffusion processes on finite intervals. In Section 3.2.1 we define the strong stationary dual

in the diffusion setting and in Section 3.2.2 we analytically derive the form of the dual

diffusion’s generator; in the process we explicitly derive the boundary behavior of the dual

diffusion. In Section 3.3, we show that a suitably defined sequence of Markov chains and

their strong stationary duals converge respectively to our primal diffusion and its strong

stationary dual. In Section 3.4, we recover a central tenet of the classical theory by proving

that the separation mixing time in the primal diffusion is equal in law to the absorption time

in the dual diffusion. We exploit this connection in Section 3.5 to derive the analogue to

the birth-and-death cut-off phenomenon theory of [14] in the present diffusion setting.
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3.1 Background

A one-dimensional diffusion process X defined on the (possibly infinite) real interval I

is a Markov process with sample paths in CI [0,∞), where CI [0,∞) is the space of con-

tinuous functions x : [0,∞)→ I . In the sequel, we will consider only time-homogeneous

diffusion processes. For a gentle (though occasionally non-rigorous) treatment of classical

one-dimensional diffusion theory see [29, Chapter 15]. For a higher-level treatment see for

example [27] or [35]. The generator of the diffusion is of the form

A =
1

2
b(x)

d2

dx2
+ a(x)

d

dx
(3.1.1)

where the infinitesimal drift a(x) at a state x satisfies

lim
h↓0

1

h
E(Xt+h −Xt|Xt) = a(Xt) for all t,

and the infinitesimal variance b(x) satisfies

lim
h↓0

1

h
E[(Xt+h −Xt)

2|Xt] = b(Xt) for all t.

Denoting the closure of I by Ī and the interior of I by I◦, to avoid pathologies, we shall

assume throughout that a(·), b(·) ∈ C(I◦) and b > 0 on I◦.

We say that a diffusion X is regular if for all x ∈ I◦ and y ∈ I we have Px(Ty <∞) >

0, and we can then define a scale function of X to be a strictly increasing positive function

S : I → R such that for all x < y < z we have

Py(Tz < Tx) =
S(y)− S(x)

S(z)− S(x)
.
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If S(x) = x is a scale function for X , then we say X is in natural scale. Note that S being

a scale function for X implies αS + β is a scale function for X for any α > 0 and β real,

and it is easy to see that S is uniquely defined up to this affine transformation. We can find

a scale function in terms of a(·) and b(·) via

S ′(x) := s(x) = exp

{
−
∫ x 2a(y)

b(y)
dy

}
.

For a fixed but arbitrary c ∈ I◦, define the speed function M : I◦ → R of a diffusion

via

M(x) =

∫ x

y=c

1

s(y)b(y)
dy

and define the speed measure (also denoted M ) via M(x, y] = M(y) −M(x) to be the

nonnegative measure on I◦ with density m(x) := [s(x)b(x)]−1. Note that the speed mea-

sure is independent of our choice of c in the speed function. The speed measure derives its

name from the following: Let X be in natural scale, and for x ∈ I◦ let Tx(ε) be the first

time the diffusion started in x exits (x− ε, x+ ε). Then

lim
ε↓0

1

ε2
ExT (ε) = m(x).

In words, m(x)ε2 is the lead-order of the expected time to exit (x − ε, x + ε) started in x.

The speed measure M on I◦ can be extended to a measure on Ī by specifying arbitrary

nonnegative (possibly infinite) mass at each boundary point of Ī \ I◦.

For a diffusionX on I [with I◦ = (l, r)] where l ∈ I , we classify the boundary behavior

of X at l using the standard Feller boundary classification for one-dimensional diffusions

(see [18, Section 8.1] for more details). Feller classified the boundary behavior of X at l
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(analogous results holding at r if r ∈ I) by looking at the behavior of

N(l) :=

∫
(l,x]

[S(x)− S(η)] M(dη), Σ(l) :=

∫
(l,x]

[M(x)−M(η)] dS(η)

for a fixed x ∈ I◦ and by calculating boundary conditions satisfied by elements of the

domain of A, which we shall call DA. In classifying the boundary behavior of X , we are

only concerned with the finiteness of N(·) and Σ(·), which is independent of x, and so

the dependence of N(·) and Σ(·) on x has been supressed. The boundary l is said to be

an entrance boundary if the diffusion cannot reach l from I◦ but can start in l and then

immediately move to the interior of the state space. Entrance boundaries are characterized

by

N(l) <∞, Σ(l) =∞.

Note that [29, Section 15.6] implies that to show l is entrance, it suffices to show that

N(l) < ∞ and S(l, x] = limy↓l[S(x) − S(y)] = ∞. The boundary is said to be an exit

boundary if it can be reached from the interior of the state space, but starting in l cannot

reach I◦. This behavior is characterized by

N(l) =∞, Σ(l) <∞.

Natural boundaries cannot be reached from I◦ and the diffusion cannot begin in a natural

boundary. This behavior is characterized by N(l) = ∞ and Σ(l) = ∞. The boundary is

regular if it can be reached from the interior of the state space and there exists a diffusion

X with generator A (acting on a specified DA) that can enter I◦ starting at l. Regular
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boundaries are characterized by

N(l) <∞, Σ(l) <∞.

The behavior of the diffusion at a regular boundary will be characterized by boundary

conditions satisfied by elements f ∈ DA. In particular, we say that l is instantaneously

reflecting if f ∈ DA implies that

df

dS

+

(l) = lim
x↓l

df

dS
(x) = lim

x↓l

f ′(x)

s(x)
= 0.

We say l is absorbing if f ∈ DA implies that (Af)(l) = 0. Instantaneously reflecting

boundaries instantly reflect the diffusion back into the interior of the state space, while

once a diffusion reaches an absorbing boundary, it remains at the boundary thereafter.

Presently and in the sequel, let X be a regular diffusion process on a finite closed

interval I (= [0, 1], without loss of generality) with initial distribution π0 and generator A.

Assume that 0 and 1 are instantaneously reflecting boundaries X . The boundary behavior

of X guarantees that M is a finite measure on I◦, and normalizing M(dx) to a probability

measure gives the unique invariant distribution of X , which we will denote by Π(dx). As

with M , for arbitrary c ∈ I◦, let us adopt the shorthand Π(x) :=
∫ x
y=c

π(y) dy, where

π is the density for Π with respect to Lebesgue measure, and note that regularity of X

guarantees π > 0 on I◦. The reflecting behavior at 0 guarantees limc↓0
∫ x
y=c

π(y) dy exists

and is finite for all x ∈ I◦, and so to ease notation we may let Π(x) =
∫ x
y=0

π(y) dy defined

as an improper integral. Lastly, let (Pt)
∞
t=0 be the Markov transition function associated

withX and denote the corresponding transition densities with respect to Lebesgue measure
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by (pt)
∞
t=0.

Based on the boundary behavior of X , we can completely specify the domain of A as

DA =

{
f ∈ C(I) ∩ C2(I◦) | Af ∈ C(I),

df

dS

+

(0) =
df

dS

−
(1) = 0

}
(3.1.2)

(see [18, Section 8.1], especially (1.11) there, with q0 = 0 = q1 because both boundaries

are instantaneously reflecting), where as above

df

dS

+

(0) = lim
x↓0

df

dS
(x) = lim

x↓0

f ′(x)

s(x)
,

and

df

dS

−
(1) = lim

x↑1

df

dS
(x) = lim

x↑1

f ′(x)

s(x)
.

Let F [0, 1] be the space of bounded real valued measurable functions on [0, 1] equipped

with its usual Borel σ-field B. Let M [0, 1] be the space of signed measures on ([0, 1],B).

As in [36, Section 7.1], we note the natural bilinear functional on F [0, 1]×M [0, 1] defined

by (µ, f) =
∫ 1

0
f(x)µ(dx). We denote the adjoint of the operator Tt (with respect to this

functional) by Ut, where (Tt)
∞
t=0 is the one parameter Markov semigroup associated with

(Pt)
∞
t=0.

Note that a(·), b(·), M(·), and π(·) are defined only on I◦. For notational convenience,

any expressions involving these functions and ∂I are to be interpreted as the corresponding

limiting expression (when such a limit exists!). For example, for 0 < x < 1 we shall write

the improper integral
∫ x

0
f(y)π(y) dy rather than the equivalent limz↓0

∫ x
z
f(y)π(y) dy.
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3.2 Strong stationary duality for diffusions

3.2.1 Definition of the strong stationary dual

Let X∗ be a second (Feller) diffusion process on I with initial distribution π∗0 and gen-

erator A∗. As in the continuous-time discrete-state Markov chain setting (see [19]), we

define the notion of algebraic duality between X and X∗:

Definition 3.2.1. Consider the integral operator Λ acting on F [0, 1] defined by

(Λf)(x) :=


∫ x

0
π(x)(y)f(y) dy if x > 0,

f(0) if x = 0,

where we define the kernel

π(x)(y) :=
π(y)

Π(x)
0 < y ≤ x < 1, and π(1) ≡ π.

We say that X∗ is a strong stationary dual of X if

Λ maps DA into DA∗ (3.2.1)

and

ΛA = A∗Λ as operators defined on DA (3.2.2)

and

(π0, f) = (π∗0,Λf) for all f ∈ F [0, 1]. (3.2.3)
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Remark 3.2.2. If f ∈ C(I), then Λf ∈ C(I) as well. To show this, first note that π ∈

C(I◦), Π ∈ C(I), and for x > 0 we have Π(x) > 0. Clearly, then,

Λf(x) =

∫ x
0
π(y)f(y) dy

Π(x)

is continuous at all x > 0. Continuity at zero is immediate as for any ε > 0, we can choose

x such that |f(y)− f(0)| < ε for all y ≤ x, and so

|Λf(0)− Λf(x)| =
∣∣∣∣∫ x

0

(f(0)− f(y))π(x)(y) dy

∣∣∣∣ ≤ ε.

Remark 3.2.3. For x < 1, let Π(x) be the distribution Π conditioned to (0, x], so that Π(x)

has density π(x) when x > 0, and let Π(0) := δ0 and Π(1) := Π. If π0 = Π(x) for some

x ∈ [0, 1), then (3.2.3) is uniquely satisfied by π∗0 = δx. For x ∈ (0, 1), this is easily seen

via ∫
I

f(y) π(x)(y) dy = (π0, f)

= (π∗0,Λf) =

∫
I

∫
y∈(0,z]

π(z)(y)f(y) dy π∗0(dz)

=

∫
I

∫
z∈[y,1]

π(z)(y)π∗0(dz) f(y) dy.

(3.2.4)

Letting f(y) = 1(y > x) we see π∗0 must be concentrated on (0, x]. It also follows that for

almost every y satisfying 0 < y ≤ x we have

π(x)(y) =

∫
z∈[y,1]

π(z)(y)π∗0(dz) =

∫
z∈[y,x]

π(z)(y)π∗0(dz),

or, equivalently,

1

Π(x)
=

∫
z∈[y,x]

π∗0(dz)

Π(z)
.
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Letting y ↑ x through such values, it follows that π∗0 = δx is the only possible initial

distribution for X∗. To show that π∗0 = δx satisfies (3.2.3), note

(δx,Λf) = Λf(x) =

∫ x

0

π(x)(y)f(y) dy = (Π(x), f),

as desired. For x = 0, the argument goes as follows. For uniqueness, if π0 = δ0, then

letting f(y) = 1(y ∈ (0, 1]), the left side of (3.2.3) equals f(0) = 0, and the right side is

strictly positive unless π∗0 = δ0. To see that π∗0 = δ0 satisfies (3.2.3) when π0 = Π(0) = δ0,

we compute (δ0,Λf) = Λf(0) = f(0) = (δ0, f).

3.2.2 The dual generator

From the definition of strong stationary duality, we derive the form of the dual genera-

tor:

Theorem 3.2.4. With X as above, assume further that b ∈ C1(I◦). If X∗ is a strong

stationary dual of X , then the generator A∗ of X∗ has the form

(A∗f)(x) =

(
1

2
b′(x)− a(x) + b(x)

π(x)

Π(x)

)
f ′(x) +

1

2
b(x)f ′′(x)

for x ∈ I◦ and f ∈ DA∗ . Also 0 is an entrance boundary for X∗ and 1 is a regular

absorbing boundary of X∗.

Proof. Let f ∈ DA. Then Af ∈ C(I) and for x > 0 we have

(ΛAf)(x) =

∫ x

0

a(y)f ′(y)π(x)(y) dy +

∫ x

0

1
2
b(y)f ′′(y)π(x)(y) dy

=
1

Π(x)

(∫ x

0

a(y)f ′(y)π(y) dy +

∫ x

0

1
2
b(y)f ′′(y)π(y) dy

)
.
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We know that there exists a nonzero constant C such that C · π(x) = m(x), so that π(x) =

1
Cb(x)s(x)

. Also, d
dx

1
s(x)

= 1
s(x)

2a(x)
b(x)

. The first term in (ΛAf)(x) is then equal to

1

Π(x)

∫ x

0

1

2C

2a(y)

b(y)

1

s(y)
f ′(y) dy,

which by integration by parts equals

1

Π(x)

1

2C

[
df

dS
(x)− df

dS

+

(0)−
∫ x

0

1

s(y)
f ′′(y) dy

]
.

The second term in (ΛAf)(x) is equal to

1

Π(x)

1

2C

∫ x

0

1

s(y)
f ′′(y) dy,

and so

(ΛAf)(x) =
1

Π(x)

1

2C

[
df

dS
(x)− df

dS

+

(0)

]
=

1

2

b(x)π(x)

Π(x)
f ′(x)− 1

Π(x)

1

2C

df

dS

+

(0).

Since 0 is a reflecting boundary of X and f ∈ DA, we have df
dS

+
(0) = 0 and thus

(ΛAf)(x) =
1

2

b(x)π(x)

Π(x)
f ′(x).

Let g ∈ DA∗ . For x ∈ (0, 1), from equation (3.1.1) for A∗ we can write

(A∗g)(x) = a∗(x)g′(x) + 1
2
b∗(x)g′′(x).

for some a∗, b∗ ∈ C(I◦). If f ∈ DA then by (3.2.1) we have Λf ∈ DA∗ , and so for

x ∈ (0, 1) we know (A∗Λf)(x) = a∗(x)(Λf)′(x)+ 1
2
b∗(x)(Λf)′′(x). Note that Af ∈ C(I)
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by assumption and so ΛAf = A∗Λf ∈ C(I) from Remark 3.2.2. Now

(Λf)′(x) =
Π(x)π(x)f(x)− π(x)

∫ x
0
π(y)f(y) dy

Π(x)2

=
π(x)

Π(x)
[f(x)− (Λf)(x)]

and so

(Λf)′′(x) =
Π(x)π′(x)− π(x)2

Π(x)2
[f(x)− (Λf)(x)] +

π(x)

Π(x)

{
f ′(x)− π(x)

Π(x)
[f(x)− (Λf)(x)]

}
=

[
π′(x)

Π(x)
− 2π(x)2

Π(x)2

]
[f(x)− (Λf)x)] +

π(x)

Π(x)
f ′(x).

Now by (3.2.2), ΛA = A∗Λ as operators on DA, which implies that for any x ∈ (0, 1) and

f ∈ DA we have

1

2

b(x)π(x)

Π(x)
f ′(x) =

(
a∗(x)

π(x)

Π(x)
+

1

2
b∗(x)

[
π′(x)

Π(x)
− 2π(x)2

Π(x)2

])
[f(x)− (Λf)(x)]

+
1

2
b∗(x)

π(x)

Π(x)
f ′(x). (3.2.5)

For any fixed x ∈ I◦, we can choose f ∈ DA so that f ′(x) = 0 and f(x) 6= (Λf)(x)

[e.g., let f be a suitably smooth approximation of 1(x/3, x/2)], and for any such f , equa-

tion (3.2.5) yields

a∗(x)
π(x)

Π(x)
+

1

2
b∗(x)

[
π′(x)

Π(x)
− 2π(x)2

Π(x)2

]
= 0. (3.2.6)

We then find for f ∈ DA and x ∈ (0, 1) that (A∗Λf)(x) = 1
2
b∗(x)π(x)

Π(x)
f ′(x), and by (3.2.2)

this equals (ΛAf)(x) = 1
2
b(x)π(x)

Π(x)
f ′(x). For each x in (0, 1), we can choose an f ∈ DA

such that f ′(x) 6= 0, and using any such f we find that b∗(x) = b(x).
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Next, we have from π(x) = 1
Cb(x)s(x)

that

π′(x) =
−b′(x)s(x)− b(x)s′(x)

Cb(x)2s(x)2
.

Equation (3.2.6) and b∗ ≡ b then yields

π(x)

Π(x)
a∗(x) =

1

2
b(x)

[
b′(x)s(x) + b(x)s′(x)

CΠ(x)b(x)2s(x)2
+

2π(x)2

Π(x)2

]
=

1

2CΠ(x)

[
b′(x)

b(x)s(x)
+
s′(x)

s(x)2

]
+ b(x)

π(x)2

Π(x)2

=
1

2CΠ(x)

[
Cb′(x)π(x)− 2a(x)

s(x)b(x)

]
+ b(x)

π(x)2

Π(x)2

=
1

2
b′(x)

π(x)

Π(x)
− a(x)

π(x)

Π(x)
+ b(x)

π(x)2

Π(x)2
,

so that a∗(x) = 1
2
b′(x)− a(x) + b(x) π(x)

Π(x)
on I◦, as desired.

To find the boundary behavior of the dual diffusion at 0 and at 1, we calculate the dual

scale function and the dual speed measure. First, note that

s∗(x) = exp

[
−
∫ x2a∗(y)

b∗(y)
dy

]
= exp

[
−
∫ x b′(y)

b(y)
dy +

∫ x2a(y)

b(y)
dy −

∫ x2m(y)

M(y)
dy

]
=

1

b(x)

1

s(x)

1

M(x)2

=
m(x)

M(x)2
, (3.2.7)

and a scale function for X∗ is

S∗(x) =
−1

M(x)
. (3.2.8)

Next, note

m∗(x) =
1

b∗(x)s∗(x)
=

M(x)2

m(x)b(x)
= M(x)2s(x). (3.2.9)
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Now M(x) is continuous on I and M(0) = 0, so there is a y such that M(ζ) ≤ 1 for all

ζ ≤ y. For the dual scale measure S∗ we then have

S∗(0, y]) =

∫
(0,y]

s∗(ζ) dζ

= lim
z↓0

∫ y

z

m(ζ)

M(ζ)2
dζ

≥ lim
z↓0

∫ y

z

m(ζ)

M(ζ)
dζ

= lim
z↓0

[
logM(y)− logM(z)

]
=∞.

To show that 0 is an entrance boundary for X∗, it now suffices to show that N∗(0) < ∞.

This is shown via

N∗(0) = lim
z↓0

∫ x

z

S∗[y, x] dM∗(y)

= lim
z↓0

∫ x

z

[S∗(x)− S∗(y)]m∗(y) dy

= lim
z↓0

∫ x

z

[
−1

M(x)
− −1

M(y)

]
M(y)2 s(y) dy

≤ −1

M(x)
lim inf
z↓0

∫ x

z

M(y)2 s(y) dy + lim sup
z↓0

∫ x

z

M(y) s(y) dy.

It now clearly suffices to prove
∫ x

0
M(y) s(y) dy < ∞, which follows from the following

calculation:

∫ x

0

M(y) s(y) dy =

∫ x

0

M(y) dS(y) =

∫ x

0

S[y, x] dM(y) =: N(0) <∞,

where we used the fact that 0 is a reflecting boundary for X to derive the final inequality.

To prove that 1 is a regular absorbing boundary for X∗, we use Proposition 3.2.5 be-

low. From that proposition, for any f ∈ C[0, 1] and x ∈ [0, 1], we have (ΛTtf)(x) =
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(T ∗t Λf)(x). When x > 0, we then have

∫ 1

0

[∫ x

0

π(x)(y)pt(y, z) dy

]
f(z) dz =

∫
[0,1]

∫ y

0

π(y)(z)f(z) dz P ∗x (X∗t ∈ dy)

=

∫ 1

0

[∫
[z,1]

π(y)(z)P ∗x (X∗t ∈ dy)

]
f(z) dz.

In particular, letting x = 1 we find

∫ 1

0

π(z) f(z) dz =

∫ 1

0

[∫
[z,1]

π(y)(z)P ∗1 (X∗t ∈ dy)

]
f(z) dz.

Since this holds for all f ∈ C[0, 1], and since both π(z) and the expression in square

brackets on the right are continuous functions of z ∈ (0, 1], it follows, for all z ∈ (0, 1],

that

π(z) =

∫
[z,1]

π(z)

Π(y)
P ∗1 (X∗t ∈ dy),

and hence
∫

[z,1]
1

Π(y)
P ∗1 (X∗t ∈ dy) = 1. It now follows that P ∗1 (X∗t = 1) = 1 and hence that

the boundary 1 is either regular absorbing or exit. To show that the boundary is absorbing, it

suffices to show that N∗(1) <∞. Indeed, for fixed x in I◦ we have [using (3.2.8)–(3.2.9)]

that

N∗(1) =

∫
[x,1)

[S∗(y)− S∗(x)]m∗(y) dy =

∫
[x,1)

[
1

M(x)
− 1

M(y)

]
s(y)M2(y) dy

=

∫
[x,1)

s(y)
M2(y)

M(x)
dy −

∫
[x,1)

s(y)M(y) dy

≤ M(1)

M(x)

∫
[x,1)

s(y)M(y) dy −
∫

[x,1)

s(y)M(y) dy <∞

where the finiteness holds since 1 is reflecting for X [hence Σ(1) < ∞] and M(·) is

increasing and bounded on I◦.
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Proposition 3.2.5. Let X∗ be a strong stationary dual of X , and let the one-parameter

Markov semigroups of operators for X∗ and X be (T ∗t ) and (Tt) respectively. Then for

all t we have ΛTt = T ∗t Λ as operators on C[0, 1].

Proof. For all λ we have Λ(λI − A) = (λI − A∗)Λ and so the resolvent operators satisfy

ΛRλ = R∗λΛ. For f ∈ C[0, 1] and x ∈ [0, 1], note that

(R∗λΛf)(x) =

∫ ∞
0

e−λt(T ∗t Λf)(x) dt

and that

(ΛRλf)(x) =

∫ x

0

π(x)(y) (Rλf)(y) dy

=

∫ x

0

∫ ∞
0

π(x)(y) e−λt (Ttf)(y) dt dy

=

∫ ∞
0

e−λt (ΛTtf)(x) dt.

Now, by the uniqueness of Laplace transforms of real valued functions, we have (ΛTtf)(x) =

(T ∗t Λf)(x) for all t, as desired.

Remark 3.2.6. From Proposition 3.2.5, we have that ΛTt = T ∗t Λ as operators on C[0, 1]

which implies that the equality also holds as operators on F [0, 1].

The choice of 0 and 1 as instantaneously reflecting boundaries was done to stream-

line exposition. However, we can establish analogues of Theorem 3.2.4 for more general

boundary behaviors of X . If 0 and 1 are entrance boundaries for X , then the domain of A

is

DA = {f ∈ C(I) ∩ C2(I◦) | Af ∈ C(I)}.
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If 0 (resp., 1) is made reflecting then we impose the extra condition that df
dS

+
(0) = 0 [resp.,

df
dS

−
(1) = 0] for functions f ∈ DA. In the proof of Theorem 3.2.4, only the following

properties of the boundary at 0 were needed:

df

dS

+

(0) = 0 for f ∈ C(I), N(0) <∞,

and these properties also hold if 0 is an entrance boundary. Absorption of X∗ at 1 is proven

completely analogously to the reflecting case. If 1 is an entrance boundary for X , then 1 is

an exit boundary for X∗ since

N∗(1) =

∫
[x,1)

[S∗(y)− S∗(x)]m∗(y) dy =

∫
[x,1)

[
1

M(x)
− 1

M(y)

]
s(y)M2(y) dy

=

∫
[x,1)

s(y)

[
M2(y)

M(x)
−M(y)

]
dy

≥
∫ 1

x

s(y)[M(y)−M(x)] dy = Σ(1) =∞

and (twice utilizing integration by parts)

Σ∗(1) =

∫ 1

x

[S∗(1)− S∗(y)]m∗(y) dy =

∫ 1

x

[
1

M(y)
− 1

M(1)

]
s(y)M2(y) dy

=

∫ 1

x

s(y)

[
M(y)− M2(y)

M(1)

]
dy

≤
∫ 1

x

s(y)[M(1)−M(y)] dy = N(1) <∞.

We thus arrive at the following generalization of Theorem 3.2.4.

Theorem 3.2.7. Let X be a regular diffusion on I , and assume that each of the boundary

points of I is either reflecting or entrance. Assume further that b ∈ C1(I◦). If X∗ is a
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strong stationary dual of X , then the generator A∗ of X∗ has the form

(A∗f)(x) =

(
1

2
b′(x)− a(x) + b(x)

π(x)

Π(x)

)
f ′(x) +

1

2
b(x)f ′′(x)

for x ∈ I◦ and f ∈ DA∗ . Also 0 is an entrance boundary for X∗. If 1 is a reflecting

boundary ofX , then 1 is a regular absorbing boundary ofX∗. If 1 is an entrance boundary

of X , then 1 is an exit boundary of X∗.

Example 3.2.8. For α ≥ 0, a diffusion X on [0, 1] is said to be a Bessel process with

parameter α [written Bes(α)], reflected at 1, if the generator of X has the form

A =
1

2

d2

dx2
+
α− 1

2x

d

dx
,

and if for f ∈ DA we have df
dS

−
(1) = 0. The behavior at the boundary 0 is determined

by the value of α. For 0 < α < 2, the boundary 0 is a regular reflecting boundary,

and for α ≥ 2 the boundary 0 is an entrance boundary. For our discussion of duality,

we do not consider the case α = 0, for which 0 is an absorbing boundary. For α > 0,

a simple application of Theorem 3.2.7 gives that if X is a Bes(α) process on [0, 1] with

instantaneously reflecting behavior at 1 begun in π(x), thenX∗ is a Bes(α+2) process begun

in δx absorbed at 1. In particular, the dual of reflecting Brownian motion, i.e., the Bes(1)

process reflected at 1, is the Bes(3) process reflected at 1. For an extensive background

treatment of Bessel processes, see [34, Chapter4.3] or [42, Chapter V–VI].

Example 3.2.9. For a second example, we turn to the Wright–Fisher gene frequency

model from population genetics. The Wright–Fisher diffusion X is a diffusion on [0, 1]
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with generator of the form

A =
1

2
x(1− x)

d2

dx2
+ [α(1− x)− βx]

d

dx
.

The behavior at the boundaries is determined by the values of α and β. We have that

0 is a(n)



entrance boundary if α ≥ 1/2,

reflecting regular boundary if 0 < α < 1/2,

exit boundary if α = 0,

and

1 is a(n)



entrance boundary if β ≥ 1/2,

reflecting regular boundary if 0 < β < 1/2,

exit boundary if β = 0.

If X is a Wright–Fisher diffusion with α = 1/2 and β > 0, then from Theorem 3.2.7 we

have that the strong stationary dual of X is a Wright–Fisher diffusion with α∗ = α+ (1/2)

and β∗ = 0. For an extensive background on the Wright–Fisher model and its many

applications, see [29, Section 15.8] or [18, Chapter 10].

Not surprisingly, we can also recover a partial converse to Proposition 3.2.5.

Lemma 3.2.10. Let X and X∗ be diffusions on [0, 1] and let 0 and 1 be either instanta-

neously reflecting or entrance boundaries for X . Then an intertwining

ΛTt = T ∗t Λ (for all t ≥ 0) (3.2.10)
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of the one-parameter semigroups by the link Λ together with the initial condition (3.2.3)

implies that X∗ is a strong stationary dual of X .

Proof. Let f ∈ DA. Then by definition (Af)(x) = limt↓0
Ttf(x)−f(x)

t
. We have that

(Af)(x) = 1
2
b(x)f ′′(x)+a(x)f ′(x) is continuous in x and so the convergence of Ttf(x)−f(x)

t

to (Af)(x) is uniform (Theorem 7.7.3 in [36]). Now

(ΛAf)(x) =

∫ x

0

π(x)(y)

[
lim
t↓0

Ttf(y)− f(y)

t

]
dy

= lim
t↓0

∫ x

0

π(x)(y)
Ttf(y)− f(y)

t
dy

= lim
t↓0

(ΛTtf)(x)− (Λf)(x)

t

= lim
t↓0

(T ∗t Λf)(x)− (Λf)(x)

t

= (A∗Λf)(x),

where the last limit’s existence is guaranteed by that of the first. This gives both that

Λ|DA
⊂ DA∗ , and that on DA we have ΛA = A∗Λ as desired.

Remark 3.2.11. Intertwinings of Markov semigroups have been well studied, appearing

for example in [16], [41], etc. In the context of (3.2.10), the transition operator Λ is the

following Markov kernel from [0, 1] to [0, 1]: For x ∈ [0, 1] and A ∈ B we have

Λ(x,A) = Π(x)(A).

Remark 3.2.12. If (3.2.10) holds, then

(Utπ0, f) = (π0, Ttf) = (π∗0,ΛTtf) = (π∗0, T
∗
t Λf) = (U∗t π

∗
0,Λf),
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mirroring the corresponding result that algebraic duality via link L of Markov chains yields

πt = π∗tL.

3.3 Approximating duality via Markov chains

The purpose of the present section is twofold. Presently suppressing all details (which

will be spelled out in full detail later in the section), we will show that a suitably defined

sequence of Markov chains X∆ and their corresponding strong stationary duals X̂∆, as de-

fined in [12], converge respectively to our primal diffusion Y = S(X) (in natural scale) and

its strong stationary dual Y ∗. By establishing the newly defined diffusion strong station-

ary dual as a limit of an appropriately defined sequence of classical Markov chain strong

stationary duals, we ground our definition and our present work in the classical theory.

In addition to tethering our duality to the classical theory, this has a number of interest-

ing consequences. For example, we believe one of the great triumphs of strong stationary

duality was its application in the perfect sampling algorithms of [20] and [23]. Via the work

in the present section, for our primal diffusion Y we could approximately sample perfectly

from ΠY by using the theory of [20] to perfectly sample from the stationary distributions

of the approximating sequence of chains. We could also use our approximating sequence

of chains to study cut-off type behaviors of the dual hitting times of state S(1), and hence

of the primal diffusion’s separation distance from stationarity. We are also able to recover

the dual-hitting-time/primal-mixing-time duality of the classical Markov chain theory in
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the diffusion setting by passing to appropriate limits; see Section 3.4 for full details.

This section is laid out as follows: First assuming instantaneously reflecting bound-

aries for our primal diffusion Y , in Sections 3.3.1–3.3.2 we explicitly spell out the one-

dimensional convergence of our primal and dual sequences of Markov chains to the corre-

sponding primal and dual diffusions. In Section 3.3.3, we prove the corresponding conver-

gence theorems in the case when our primal diffusion has entrance boundaries at 0 and/or 1.

3.3.1 Primal convergence

Let DI [0,∞) be the space of cadlag functions from [0,∞) into I . We can equip

DI [0,∞) with a metric d defined by

d(x, y) = inf
λ∈B

[(
sup
s>t≥0

∣∣∣∣ log
λ(s)− λ(t)

s− t

∣∣∣∣) ∨ ∫ ∞
0

e−ud(x, y, λ, u) du

]

where B is the set of strictly increasing Lipschitz continuous functions from [0,∞) to

[0,∞) with the additional property that

λ ∈ B implies sup
s>t≥0

∣∣∣∣ log
λ(s)− λ(t)

s− t

∣∣∣∣ <∞,
and

d(x, y, λ, u) := sup
t≥0

(|x(t ∧ u)− y(λ(t) ∧ u)| ∧ 1) .

The topology induced by d is known as the Skorohod topology, and under this topology

DI [0,∞) is both complete and separable (as I is both complete and separable). For more

background on DI [0,∞), see [18, Sections 3.5–3.10] or [7, Chapters 2–3].
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We will consider stochastic processes with sample paths in DI [0,∞) as DI [0,∞)-

valued random variables and we will say thatXn ⇒ X if we have convergence in law of the

correspondingDI [0,∞)-valued random variables. Note thatXn ⇒ X implies convergence

of the associated finite-dimensional distributions of Xn to those of X (see [18, Theorem

3.7.8]), i.e., for all {t1, . . . , tm} ⊂ {t ≥ 0 |P(X(t) = X(t−)) = 1} we have

(Xn(t1), . . . , Xn(tm))⇒ (X(t1), . . . , X(tm)).

As in Section 3.1, let X be a regular diffusion on I with instantaneous reflection at

the boundaries of I and scale function S ≡ SX . To ease exposition, we will consider

Y = SX(X), a regular diffusion in natural scale on S = [SX(0), SX(1)], and assume SY

has been scaled to make sY ≡ 1. The speed function of Y is MY = MX ◦ S−1
X : S◦ → R

(where MX is the speed function of X). As with X , define the speed measure of Y as the

nonnegative measure on S◦, denoted MY (·), defined via MY (x, y] = MY (y)−MY (x).

As X is regular and Px(Xt = 0) = 0 for all t > 0 and x ∈ I , it follows that Y is regular

and Px(Xt = 0) = PS(x)(Yt = S(0)) = 0 for all t > 0 and S(x) ∈ S. Therefore S(0) is an

instantaneously reflecting reflecting boundary for Y . Analogous results hold at S(1), and

it follows that S(1) is an instantaneously reflecting boundary for Y and MY ({S(1)}) = 0.

The generator of Y can be expressed as (AY f)(y) = 1
2
bY (y)f ′′(y) with bY (y) =

bX(x)s2
X(x) where y = SX(x). Note that MY (S◦) = MX(I◦) < ∞ and so there exists a
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unique invariant measure for Y which we will denote ΠY . Observe

MY ((c, d]) = MY (d)−MY (c) = MX(S−1(d))−MX(S−1(c))

=

∫ S−1(d)

S−1(c)

mX(z) dz =

∫ d

c

mX(S−1
X (w))

sX(S−1
X (w))

dw

so that MY (resp., ΠY ) has density mY (y) = mX(S−1
X (y))/sX(S−1

X (y)) (resp., density

πY = αmY for some constant α). On S◦ we have mY = b−1
Y and so πY bY is constant on

S◦. Assume that bY can be extended to a function in C(S), so that bY (S(0)) and bY (S(1))

are well defined, and assume that limy→z πY (y)bY (y) = α for z ∈ {S(0), S(1)}.

For the remainder of the section, we shall be working with the diffusion Y rather than

X , and so we will drop the Y subscript from bY , πY , ΠY , etc.

Let ∆ > 0 be such that S(1)−S(0) = n∆∆ for some integer n∆. As in [5, Chapter 6],

define a birth-and-death transition matrix P∆ on state space

S∆ := {S(0), S(0) + ∆, S(0) + 2∆, . . . , S(1)−∆, S(1)}

by setting (for ease of notation, we write i for S(0) + i∆ here):

P∆(i, i+ 1) = P∆(i, i− 1) :=
b(i)h

2∆2
for 0 < i < n∆ and

P∆(0, 1) :=
b(0)h

∆2
, P∆(n∆, n∆ − 1) :=

b(n∆)h

∆2
;

here

h ≡ h∆ :=
∆2

2 supy b(y)
(3.3.1)

is chosen to make P∆ monotone.
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Note that for i ∈ {1, . . . , n∆ − 1} we have

π(i)P∆(i, i+ 1) = π(i+ 1)P∆(i+ 1, i),

and at the boundaries we have

π(0)P∆(0, 1) = 2π(1)P∆(1, 0), π(n∆)P∆(n∆, n∆ − 1) = 2π(n∆ − 1)P∆(n∆ − 1, n∆).

It follows that there exists a constant C∆ such that

π∆(i) =


C∆π(i), i = 1, . . . , n∆ − 1;

C∆π(i)/2, i = 0, n∆

(3.3.2)

is the unique invariant probability distribution for P∆.

Let π∆
0 be a probability measure on S∆, and let P∆ be the transition matrix for a

discrete-time birth-and-death chain X∆, begun in π∆
0 , on state space S∆ [we write X∆ ∼

(π∆
0 , P

∆) as shorthand].

Theorem 3.3.1. Assume there exists a constant δ > 0 such that b ≥ δ everywhere and

that we can continuously extend b to the boundaries of S. Consider a sequence of values

∆ ↓ 0 such that for each ∆ we have S(1)− S(0) = n∆∆ for some integer n∆. Define the

continuous-time stochastic process Y ∆ by setting Y ∆
t := X∆

bt/hc for t ≥ 0. If Y ∆
0 ⇒ Y0,

then Y ∆ ⇒ Y .

Our main proof tool will be the following theorem, adapted from [18, Corollary 4.8.9

and Theorem 1.6.5]:
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Theorem 3.3.2. LetA be the generator of a regular diffusion process Y with state space S.

Assume h∆ > 0 converges to 0 as ∆ ↓ 0. Let Y ∆
t := X∆

bt/h∆c where X∆ ∼ (π∆
0 , P

∆) is

a Markov chain with some metric state space S∆ ⊂ S , and assume Y ∆
0 ⇒ Y0. Define

T∆ : B(S∆)→ B(S∆) via

T∆f(x) = Exf(X∆
1 )

for f in the space B(S∆) of real-valued bounded measurable functions on S∆. Define

A∆ := h−1
∆ (T∆ − I). Suppose that C(S) is convergence determining and that there is an

algebra B ⊂ C(S) that strongly separates points. Let ρ∆ : C(S)→ B(S∆) be defined via

ρ∆f(·) = f |S∆(·). If

lim
∆→0

sup
y∈S∆

∣∣(A∆ρ∆f)(y)− (Af)(y)
∣∣ = 0 (3.3.3)

for all f ∈ DA, then Y ∆ ⇒ Y .

The adaptation of Theorem 3.3.2 from [18, Corollary 4.8.9 and Theorem 1.6.5] is

spelled out explicitly in Appendix B, as the notation between [18] and the present section

differs considerably.

Proof of Theorem 3.3.1. Clearly C(S) is convergence determining, and by considering

suitably smooth uniform approximations to the indicator function of {x} in DA for each

x ∈ S, it follows thatDA ⊂ C(S) is an algebra that strongly separates points. Let f ∈ DA,

so that (Af)(y) = 1
2
b(y)f ′′(y). Using

DA = {f ∈ C(S) ∩ C2(S◦) | Af ∈ C(S), f ′(S(0)+) = f ′(S(1)−) = 0},
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we find that bf ′′ ∈ C(S). As b(y) ≥ δ > 0 for all y ∈ S , we have 1/b ∈ C(S) and

therefore f ′′ ∈ C(S). It follows that as ∆ ↓ 0, uniformly for y ∈ S∆ \ {S(0), S(1)} we

have

h−1((T∆ − I)f)(y) =
1

2
b(y)

f(y + ∆)− 2f(y) + f(y −∆)

∆2
→ 1

2
b(y)f ′′(y).

Likewise,

h−1((T∆ − I)f)(S(0)) = b(S(0))
f(S(0) + ∆)− f(S(0))

∆2
→ 1

2
b(S(0))f ′′(S(0)),

h−1((T∆ − I)f)(S(1)) = b(S(1))
f(S(1)−∆)− f(S(1))

∆2
→ 1

2
b(S(1))f ′′(S(1)).

Therefore

sup
y∈S∆

∣∣(A∆ρ∆f)(y)− (Af)(y)
∣∣→ 0,

establishing (B.1). The result follows.

Remark 3.3.3. For x ∈ (S(0), S(1)), let i∆,x := b[x− S(0)]/∆c, and denote the invariant

measure π∆ truncated to {S(0), S(0) + ∆, . . . , S(0) + i∆,x∆} by π∆,i∆,x . If Y is begun

with density π(x), then for y ∈ (S(0) + k∆, S(0) + (k + 1)∆) with 0 ≤ k < i∆,x we have

P∆(Y ∆
0 ≤ y) =

∆
∑k

j=0 π
∆(S(0) + j∆)

∆
∑i∆,x

j=0 π
∆(S(0) + j∆)

→

∫ y
S(0)

π(z) dz∫ x
S(0)

π(z) dz
= P(Y0 ≤ y).

If X∆ is begun in π∆,i∆,x , it follows that X∆
0 = Y ∆

0 ⇒ Y0. If instead Y is begun determin-

istically at S(0), then letting X∆
0 = S(0) for all ∆ again gives X∆

0 = Y ∆
0 ⇒ Y0.

Remark 3.3.4. For the sequence of birth-and-death chains (π∆
0 , P

∆), where either π∆
0 =

δS(0) for each ∆ or x ∈ (S(0), S(1)) is given and π∆
0 = π∆,i∆,x for each ∆, we are guaran-

teed the existence of a sequence of birth-and-death strong stationary dual chains by [12, eqs.

(4.16a)–(4.16b)] because of the following two observations.
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(a) P∆ is monotone. Indeed, for i = 0, . . . , n∆ − 1 we easily see

P∆(i, i+ 1) + P∆(i+ 1, i) ≤ 1.

(b) The ratio π∆
0 /π

∆ of probability mass functions (initial to stationary) is non-increasing.

3.3.2 Dual convergence

As in [12], construct on the same probability space as for X∆ a strong stationary dual

X̂∆ ∼ (π̂0
∆, P̂∆) of X∆ using the link Λ of truncated stationary distributions [here, for

ease of notation, i is again used as shorthand for S(0) + i∆]:

Λ∆(i, j) := 1{j ≤ i} π
∆(j)

H∆(i)
;

we have used the shorthand H∆(i) :=
∑i

j=0 π
∆(j). Note that X̂∆ is also a birth-and-death

chain on S∆. Assume either that X∆
0 = S(0) for every ∆ so that X̂∆

0 = S(0) for every ∆

as well, or that X∆
0 ∼ π∆,i∆,x for every ∆ so that X̂∆

0 = S(0) + i∆,x∆. The one-step

transition matrix P̂∆ for X̂∆ is given by

P̂∆(i, i− 1) =
H∆(i− 1)

H∆(i)

b(i)h

2∆2
=
b(i)h

2∆2
− h · α · C∆

H∆(i)2∆2
for 0 < i < n∆, (3.3.4)

P̂∆(i, i+1) =
H∆(i+ 1)

H∆(i)

b(i+ 1)h

2∆2
=

h · α · C∆

H∆(i)2∆2
+
b(i+ 1)h

2∆2
for 0 < i < n∆, (3.3.5)

P̂∆(0, 1) =
H∆(1)

H∆(0)

b(1)h

∆2
, (3.3.6)

P̂∆(n∆, n∆) = 1, (3.3.7)

with P̂∆(i, i) having values for 0 ≤ i < n∆ so that the rows of P̂∆ sum to unity. We next

show the following theorem:
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Theorem 3.3.5. Assume that b ∈ C2(S(0), S(1)], and π > 0 on S. Define the continuous-

time processes (Ŷ ∆
t ) := (X̂∆

bt/hc), and assume Ŷ ∆
0 ⇒ Y ∗0 . Then

Ŷ ∆ ⇒ Y ∗,

where Y ∗ is a SSD of Y in the sense of Definition 3.2.1.

We will prove Theorem 3.3.5 after a series of preliminary results. We begin by putting

Y ∗ into natural scale, i.e., consider the diffusion Z∗ = S∗(Y ∗) = −1/M(Y ∗) on state

space S∗ = (S∗(S(0)), S∗(S(1))]. Note that the infinitesimal parameters of Z∗ are given

on (−∞, S∗(S(1))) [recalling (3.2.7)] by

aZ∗ ≡ 0, bZ∗(S∗(y)) = b(y)s∗(y)2 =
b(y)m2(y)

M4(y)
= α2 b(y)π2(y)

Π4(y)

(recall α is the constant such that π = α · m = α/b). Note also that under the as-

sumptions of Theorem 3.3.5, we have b ∈ C2(S(0), S(1)] [and so π(·) ∝ b(·) implies

π ∈ C2(S(0), S(1)]], π > 0 on S. Note also that

(S∗)′(i) = α
π(i)

Π2(i)
,

(S∗)′′(i) = α
Π2(i)π′(i)− 2π2(i)Π(i)

Π4(i)
,

(S∗)′′′(i) = α
Π2(i)π′′(i)− 2π′(i)Π(i)π(i)

Π4(i)
− α4Π3(i)π(i)π′(i)− 6π3(i)Π2(i)

Π6(i)
,

which implies that S∗ ∈ C3[−S(0) + i0∆, S(1)] for any i0 > 0.

Define

Ẑ∆
t := S∗

(
X̂∆
t

)
,
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and note that this is a birth and death chain on state space

S∗,∆ := {S∗(S(0)), S∗(S(0) + ∆), . . . , S∗(S(1)−∆), S∗(S(1))}.

Define

aẐ∆(x) :=
1

h∆

Ex
(
Ẑ∆

1 − x
)
, (3.3.8)

where we require that x = S∗(S(0) + i∆) for some nonnegative integer i.

Proposition 3.3.6. With the assumptions of Theorem 3.3.5, letting R < ∞ be fixed, it

follows that

lim
∆↓0

sup
|x|<R

|aẐ∆(x)| = 0.

Proof. Abbreviate S(0) + i∆ as i, and then x is of the form x = S∗(i). Let

A :=
S∗(i+ 1)− 2S∗(i) + S∗(i− 1)

∆2

b(i)

2
; B :=

S∗(i+ 1)− S∗(i)
∆

b(i+ 1)− b(i)
2∆

;

C :=
α · C∆

∆H∆(i)

S∗(i+ 1)− S∗(i− 1)

2∆
.

Then (3.3.4)–(3.3.5) allow us to rewrite (3.3.8) as

aẐ∆(x) = A + B + C

for x 6= S∗(S(1)). For all |x| = S∗(i) < R we have 0 < δ < i∆ < γ <∞ uniformly in ∆

for some γ and δ. A Taylor expansion of S∗(·) combined with S∗ ∈ C3[δ, S(1)] gives

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣A− αΠ2(i)π′(i)− 2π2(i)Π(i)

Π4(i)

b(i)

2

∣∣∣∣ = 0,

or equivalently

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣A− α2

2

(
π′(i)

π(i)Π2(i)
− 2π(i)

Π3(i)

) ∣∣∣∣ = 0;
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and

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣B− α π(i)

Π2(i)

b′(i)

2

∣∣∣∣ = 0,

or equivalently

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣B + α2 π′(i)

2Π2(i)π(i)

∣∣∣∣ = 0.

Next, for C note that (C∆)−1∆H∆(i) > 0 if i∆ > δ (which is satisfied uniformly by

all |x| < R). The function π ◦ S∗(·) is uniformly continuous on [−R,R], and, since the

Riemann sum of a uniformly continuous function converges uniformly to the corresponding

Riemann integral, we have for the sup-norm ‖ · ‖∞ on [−R,R] that

lim
∆↓0
||(C∆)−1∆H∆ − Π||∞ = 0.

By regularity of the primal diffusion Y , we have Π(i) > 0 for i∆ > δ > 0, and therefore

for such i we have (C∆)−1∆H∆(i)Π(i) > 0. Note that (C∆)−1∆H∆(·)Π(·) is a bounded

increasing function in i. All of this leads to

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣ C∆

∆H∆(i)
− 1

Π(i)

∣∣∣∣ =

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣ C∆

∆H∆(i)Π(i)

∣∣∣∣ · ∣∣∣∣Π(i)− ∆H∆(i)

C∆

∣∣∣∣ = 0.

Therefore

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣C− α2π(i)

Π(i)3

∣∣∣∣ = 0.

Combining our results for A, B, and C with the observations that aẐ∆(S∗(S(1))) = 0, we

find

lim
∆↓0

sup
|x|<R

|aẐ∆(x)| = 0,
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as desired.

Next, define

bẐ∆(x) :=
1

h∆

Ex
(
Ẑ∆

1 − x
)2

, (3.3.9)

where again we require that x = S∗(S(0) + i∆) for some nonnegative integer i.

Proposition 3.3.7. With the assumptions of Theorem 3.3.5, letting R < ∞ be fixed, we

have

lim
∆↓0

sup
|x|<R

∣∣∣∣bẐ∆(x)− bZ∗(x)

∣∣∣∣ = 0,

where bZ∗(S∗(S(1))) = 0 by the absorbing behavior of the boundary at S∗(S(1)).

Proof. We have

bZ∗(x) = α2 π
2((S∗)−1(x))

Π4((S∗)−1(x))
b((S∗)−1(x))

for x 6= S∗(S(1)). There exists a constant δ > 0 such that for all ∆ and all x satisfying

|x| < R, if we write x = S∗(S(0) + i∆) then then i∆ ≥ δ. Let

A := (S∗(i+ 1)− S∗(i))2 α · C∆

2∆2H∆(i)
; B :=

(S∗(i+ 1)− S∗(i))2

∆2

b(i+ 1)

2
;

and

C :=
(S∗(i− 1)− S∗(i))2

∆2

b(i)

2
; D := −(S∗(i− 1)− S∗(i))2 α · C∆

2∆2H∆(i)
.

Note that bẐ∆(x) = A + B + C + D for x 6= S∗(S(1)).

As in the proof of Proposition 3.3.6,

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

∣∣∣∣B− α2 π
2(i)

2Π4(i)
b(i)

∣∣∣∣ = 0;
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lim
∆↓0

sup
|x|<R x 6=S∗(S(1))

∣∣∣∣C− α2 π
2(i)

2Π4(i)
b(i)

∣∣∣∣ = 0.

Rewrite A (with analogous results holding for D) as

A = (S∗(i+ 1)− S∗(i))S
∗(i+ 1)− S∗(i)

∆

α · C∆

2∆H∆(i)
.

From the uniform continuity of (S∗)′′(·) on bounded intervals, S
∗(i+1)−S∗(i)

∆
converges uni-

formly for |x| = |S∗(i)| < R to (S∗)′(i), which is uniformly bounded for |x| = |S∗(i)| <

R. Also, (C∆)−12∆H∆(i) is bounded away from 0 for |x| = |S∗(i)| < R, and S∗(·) is

uniformly continuous for |x| = |S∗(i)| < R. Hence

lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

|A| = 0; lim
∆↓0

sup
|x|<R, x 6=S∗(S(1))

|D| = 0.

Lastly, note that bẐ∆(S∗(S(1))) = 0, which finishes the proof.

We are now ready to prove Theorem 3.3.5:

Proof of Theorem 3.3.5. With x fixed so that P(Z∗)−1 = δS∗(x), letR be such that |S∗(x)| <

R and |S∗(S(1))| < R, and define

τR := inf{t ≥ 0 : |Z∗t | = R}.

It follows that Z∗(· ∧ τR) is equal in distribution to the diffusion process with state space

S∗R := [−R, S∗(S(1))] and generator

A∗R :=
1

2
bZ∗(·) ∂

2

∂x2

operating on the domain

DR :=
{
f ∈ C(S∗R) ∩ C2[(S∗R)◦]

∣∣A∗Rf ∈ C(S∗R), A∗Rf(−R) = A∗Rf(S∗(S(1))) = 0
}
.
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Since bZ∗ > 0 on S∗, it follows that if f ∈ DR then f ∈ C2(S∗R). Let

τ∆
R := inf{t ≥ 0 : |Ẑ∆

t | ≥ R},

and define the sequence of absorbing Markov chains V̂ ∆(·) := Ẑ∆(·∧ τ∆
R ) with state space

S∗,∆R := {x ∈ S∗,∆ : x ≤ dRe∆}

where dye∆ “rounds” y to the smallest element ≥ y in the grid {S∗(S(0)), S∗(S(0) +

∆), . . . , S∗(S(1)−∆), S∗(S(1))}. Lastly define V ∗,∆(t) := V̂ ∆(bt/hc).

From [18, Corollary 4.8.9], to prove that V ∗,∆ converges (as ∆ ↓ 0) to Z∗(· ∧ τR), it

suffices to show that for each fixed f ∈ DR we have

lim
∆→0

sup
x∈S∗,∆R

|ρ∆f(x)− f(x)| = 0 = lim
∆→0

sup
x∈S∗,∆R

|ρ∆A
∗
Rf(x)− Â∆f(x)| (3.3.10)

where Â∆f(x) := h−1
∆ [Exf(V̂ ∆

1 )− f(x)]. The first equality in (3.3.10) is trivial. Consider

the second equality. At x = −R or x = S∗(S(1)), we have

|ρ∆A
∗
Rf(x)− Â∆f(x)| = 0,

since both ρ∆A
∗
Rf(x) and Â∆f(x) equal 0 for x = −R or x = S∗(S(1)). For x in the

interior of S∗,∆R , from a Taylor expansion of f with remainder in intermediate-point form

we find ∣∣∣∣Â∆f(x)−
[
f ′(x)aẐ∆(x) +

f ′′(x)

2
bẐ∆(x)

]∣∣∣∣ ≤ c

2
bẐ∆(x), (3.3.11)

where, with x = S∗(S(0) + i∆), we take

c = max{|f ′′(S∗(S(0) + (i− 1)∆))− f ′′(x)|, |f ′′(S∗(S(0) + (i+ 1)∆)− f ′′(x)|}.
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From (3.3.11), Proposition 3.3.6, Proposition 3.3.7, and the fact that f ∈ C2(S∗R), we have

that Â∆f(x) converges uniformly to A∗Rf(x), and so (3.3.10) is proven.

We have now established that V ∗,∆ converges in distribution to Z∗(· ∧ τR). The relative

compactness of V ∗,∆ follows as in the proof of [18, Theorem 7.4.1], and therefore [45,

Theorem 11.1.1] implies Z∗,∆ ⇒ Z∗. Lastly, noting that (S∗)−1(·) is well-defined and

measurable (indeed it is continuous!) we have that

Ŷ ∆ = (S∗)−1(Z∗,∆)⇒ (S∗)−1(Z∗) = Y ∗

by [18, Theorem 3.10.2].

3.3.3 Convergence extended to entrance boundary cases

For 0 an entrance boundary of X and 1 reflecting, again consider Y = S(X), a regular

diffusion in natural scale on S = [−∞, S(1)] begun in π0 = π(x), the stationary mea-

sure for Y truncated (conditioned) to (−∞, x) for some x ∈ S. If b(·) is bounded away

from both 0 and ∞ on S , then the constructions of the approximating primal and dual

chains are identical to the case where 0 is reflecting, and details are omitted. However,

if limx→−∞ b(x) = ∞, then the approximating sequences of Markov chains need to be

defined differently.

To this end, on S∆ := {S(1) − i∆∆, . . . , S(1) − ∆, S(1)}, with i∆ chosen so that

i∆∆ → ∞, define a birth-and-death transition matrix P∆ via (here using the shorthand i
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for S(1)− i∆)

P∆(i, i+ 1) = P∆(i, i− 1) :=
b(i)h∆

2∆2
for 0 < i < i∆

P∆(i∆, i∆ − 1) :=
b(i∆)h∆

∆2
,

P∆(0, 1) :=
b(0)h∆

∆2
,

with P∆(i, i) chosen to make the row sums of P∆ equal to 1, and

h∆ :=
∆2

4 · supi≤i∆ b(i)

chosen again to ensure monotonicity. For an initial probability distribution π∆
0 on S∆,

consider a birth-and-death Markov chain X∆ ∼ (π∆
0 , P

∆). Let the stationary distribution

of X∆ be denoted π∆. Let

i∆,x := b[S(1)− x]/∆c,

and assume that π∆
0 := π∆,i∆,x is π∆ truncated (conditioned) to {S(1)− i∆∆, . . . , S(1)−

i∆,x∆}. Again note that π∆
0 ⇒ π(x).

The following theorem is proven in a similar fashion to Theorem 3.3.1, and so the proof

will be sketched with some detail omitted (see Appendix B for notation).

Theorem 3.3.8. Assume b(·) is continuous and bounded away from 0 over (−∞, S(1)].

Let PY ∗(0)−1 = π(x) and, as above, let X∆ ∼ (π∆
0 , P

∆) with π∆
0 equal to π∆ truncated

(conditioned) to {S(1) − i∆∆, . . . , S(1) − i∆,x∆}. Define the continuous-time stochastic

process Y ∆ by setting Y ∆
t := X∆

bt/h∆c for t ≥ 0. Then Y ∆ ⇒ Y .
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Proof. Fix R such that S(1) < R <∞. With

τ∆
R := inf{t ≥ 0 : |Y ∆

t | ≥ R},

consider

Z∆(·) := Y ∆(· ∧ τ∆
R ) = X∆

(⌊
· ∧ τ∆

R

h∆

⌋)
.

With

τR := inf{t ≥ 0 : |Yt| = R},

let Z(·) := Y (·∧τR). Denote the generator of Z byAZ , with domainD(AZ). Writing (T∆
R )

for the transition semigroup associated with the Markov chain X∆ absorbed at absolute

value R, let A∆
R := h−1

∆ (T∆
R − I). Just as we showed (B.1) in the proof of Theorem 3.3.1,

here we can show that

lim
∆→∞

sup
x∈[−R,S(1)]

∣∣(A∆
Rρ∆f)(x)− (AZf)(x)

∣∣ = 0 (3.3.12)

for all f ∈ D(AZ).

By [18, Corollary 4.8.9], we have (see Appendix B) that Z∆ ⇒ Z. The proof is finished

by applying [45, Theorem 11.1.1] to see that Y ∆ ⇒ Y as desired.

Let Y ∗ be a SSD of Y , and let Z∗ be Y ∗ put into natural scale. Form the dual Markov

chain to X∆, and denote the dual by X̂∆ ∼ (δx, P̂
∆). The following proposition gives the

dual-convergence theorem analogous to Theorem 3.3.5.

Theorem 3.3.9. With the same assumptions as in Theorem 3.3.8, further assume b(·) ∈

C2(−∞, S(1)] and

inf
y∈S

y4m(M−1(−1/y)) > 0. (3.3.13)
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For t ≥ 0, define Ŷ ∆(t) := X̂∆(bt/h∆c). Then Ŷ ∆ ⇒ Y ∗.

Proof. The proof follows along the same path as the proof of Theorem 3.3.5 and so de-

tails are omitted. The only wrinkle here is the assumption (3.3.13), which is a technical

condition needed to make the infinitesimal variance of the dual diffusion in natural scale

bounded away from 0, which we exploited in the proof of Theorem 3.3.5.

Remark 3.3.10. Under some mild assumptions, the above theory can easily be extended to

the case where both 0 and 1 are entrance boundaries for X . For example, if X is in natural

scale, it is sufficient that bX is bounded away from 0 and twice continuously differentiable

on R. The analogues of Theorem 3.3.1 and Theorem 3.3.5 can be easily recovered. Details

are omitted.

3.4 Separation and hitting times

In the Markov chain setting, strong stationary duality gives that the separation mixing

time in the primal chain is equal in law to a suitable absorption time in the dual chain. By

studying and bounding the absorption time, which is sometimes more tractable than direct

consideration of the mixing time, we can tightly bound the separation mixing time in our

primal chain. See [12] for further detail. Spelling this out more fully, if X ∼ (π0, P ) is an

ergodic discrete-time Markov chain with state space S, stationary distribution π, and with

SSD (as defined in [12]) X∗ ∼ (π∗0, P
∗) absorbing in m, then for every t we have

sep(t) := sup
i∈S

(
1− πt(i)

π(i)

)
≤ Pπ∗

0
(T ∗m > t). (3.4.1)
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Under some monotonicity conditions, for example if the primal is a MLR chain on a lin-

early ordered state space, the inequality in (3.4.1) can be made to be an equality for every t

by a suitable formation of the dual chain.

In our present diffusion setting, withX a regular diffusion on [0, 1] with either reflecting

or entrance behavior at the boundaries, we would like to recover a result similar to (3.4.1).

Let Π be the invariant distribution for X , let X0 ∼ Π0, and, given t > 0, let Πt be the

corresponding distribution of Xt. If Πt � Π, define

a(t) := ess inf Rt = sup
{
r
∣∣Π(Rt < r) = 0

}
to be the essential infimum (with respect to Π) of (any version of) the Radon–Nikodym

derivative Rt := dΠt/dΠ. We define the separation of the diffusion from Π at time t as

follows:

sep(πt, π) := 1− a(t). (3.4.2)

To simplify the notation, we shall write sep(t) for sep(πt, π) unless the full notation is

needed to avoid confusion.

Claim 3.4.1. Let sep(t) = sep(πt, π) be defined as above. Then

(a) We have 0 ≤ sep(t) ≤ 1.

(b) For each t we have sep(t) = 0 if and only if Πt = Π.

(c) For any Π0 we have Πt � Π for all t > 0.

(d) The separation sep(t) is non-increasing in t.
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Proof. For (a), we show equivalently that 0 ≤ a(t) ≤ 1. To this end, let Rt be (any version

of) the Radon–Nikodym derivative dΠt/dΠ. Since Rt(y) ≥ 0 for all y, we have a(t) ≥ 0.

But also

1 =

∫ 1

0

Πt(dy) =

∫ 1

0

Rt(y) Π(dy) ≥ a(t)

∫ 1

0

Π(dy) = a(t), (3.4.3)

finishing the proof.

For (b), note that if Πt = Π, we can take Rt ≡ 1 as a version of the Radon–Nikodym

derivative dΠt/dΠ, and thence sep(t) = 0. Conversely, if sep(t) = 0, then a(t) = 1 and

(3.4.3) is an equality; therefore Rt = 1 almost surely with respect to Π, and so Πt = Π.

For (c), let x ∈ (0, 1). When Π0 = δx, regularity of X guarantees the existence of a

density for Πt with respect to Π, call it fx(·). For any Π0, it follows that the Π0-mixture of

the densities fx(·) is a density for Πt with respect to Π [and so sep(t) is well defined].

For (d), for each s > 0 let Rs = dΠs/dΠ. Let 0 < t < u and note for any A ∈ B, the

Borel σ-field of [0, 1], that

∫
A

Ru(y) Π(dy) = Πu(A) =

∫ 1

0

Pu−t(x,A) Πt(dx) =

∫ 1

0

Rt(x)Pu−t(x,A) Π(dx)

≥ a(t)

∫ 1

0

Pu−t(x,A) Π(dx) = a(t) Π(A) =

∫
A

a(t) Π(dy).

Hence Ru ≥ a(t) almost surely with respect to Π. Hence a(u) ≥ a(t), and therefore

sep(u) ≤ sep(t), as desired.

As in the discrete setting, we are able to bound sep(t) in our primal diffusion X using

the absorption time in state 1 of our dual diffusion. In the diffusion setting, by virtue of

diffusions being stochastically monotone, the inequality in (3.4.1) is an equality without
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needing further assumptions. Spelling this out:

Lemma 3.4.2. Let X be a regular diffusion on [0, 1] begun in Π0, let X have either reflect-

ing or entrance behavior at the boundaries, and let Π be the stationary measure for X . Let

T ∗1 be the hitting time of state 1 in the SSD diffusion X∗t (as defined in Definition 3.2.1)

begun in Π∗0 satisfying (3.2.3). Then

sep(t) = PΠ∗
0
(T ∗1 > t) = 1− PΠ∗

0
(X∗t = 1).

Proof. Let f ∈ F [0, 1]. By Remark 3.2.12, we have for all t > 0 that (Πt, f) = (Π∗t ,Λf).

Therefore, writing Rt = dΠt/dΠ as usual, we have∫
[0,1]

π(x)Rt(x)f(x) dx =

∫
[0,1]

Π(dx)Rt(x)f(x)

=

∫
[0,1]

Πt(dx) f(x)

=

∫
[0,1]

Π∗t (dx)

∫
[0,x]

π(x)(y)f(y) dy

=

∫
[0,1]

∫
[y,1]

Π∗t (dx) π(x)(y)f(y) dy.

This holds for all f ∈ F [0, 1], and so

Rt(y) =

∫
[y,1]

Π∗t (dx)

Π(x)
(3.4.4)

for Lebesgue-a.e. (i.e., for Π-a.e.) y. Thus Π(Rt < r) = 0 if and only if the right side

of (3.4.4) is at least r for Π-a.e. y, or, equivalently, Π∗t ({1})/Π(1) = Π∗t ({1}) ≥ r. There-

fore a(t) = Π∗t ({1}) = PΠ∗
0
(X∗t = 1) and so sep(t) = 1− PΠ∗

0
(X∗t = 1).

Remark 3.4.3. We can also prove Lemma 3.4.2 by passing to the limit the corresponding

discrete-time results for the Markov chains in Section 3.3. First, suppose that Y0 ∼ Π(x)
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for some x > 0 and hence Π∗0 = δx (see Remark 3.2.3). Adopting the notation of Section

3.3, the primal birth-and-death Markov chain X∆ ∼ (π∆
0 , P

∆) has

sep∆(t) = sup
i

(
1−

∑
j π

∆
0 (j)P∆

t (j, i)

π∆(i)

)
.

Now ∑
j π

∆
0 (j)P∆

t (j, i)

π∆(i)
=

1

H∆(i∆,x)

∑
j≤i∆,x

π∆(j)P∆
t (j, i)

π∆(i)

=
1

H∆(i∆,x)
Pi(X∆

t ≤ i∆,x).

The monotonicity conditions outlined in Remark 3.3.4 and [12, Remark 4.15] imply that

this last expression is minimized (for each t = 0, 1, . . .) when i = n∆, and that the mini-

mum value is

1

H∆(i∆,x)
Pn∆(X∆

t ≤ i∆,x) = 1− sep∆(t) = Pi∆,x
(T̂n∆ ≤ t), (3.4.5)

where X̂∆ is the strong stationary dual of X∆ as defined at (3.3.4)–(3.3.7), with absorption

time T̂n∆ in its largest state n∆. We now substitute bt/hc for t, and recall that h ≡ h∆ is a

function of ∆ and that Y ∆
t := X∆

bt/hc (and analogously for Ŷ ∆
t ), to find for real t ≥ 0 that

1

H∆(i∆,x)
PS(1)(Y

∆
t ≤ S(0) + i∆,x∆) = 1− sep∆(t) = Pi∆,x

(
Ŷ ∆
t = S(1)

)
, (3.4.6)

where i∆,x is short for S(0) + i∆,x∆.

By Theorem 3.3.1, the left side of (3.4.6) converges to 1
Π(x)

PS(1)(Yt ≤ x) [where we

note that the hypothesis of Theorem 3.3.1 is met for the deterministic initial conditions

Y ∆
0 = Y0 = S(1)]. Theorem 3.3.5 implies that

lim
∆↓0

Pi∆,x
(Ŷ ∆

t > S(1)− ε) = Px(Y ∗t > S(1)− ε). (3.4.7)
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Let X̌∆ be the Siegmund dual of (the time-reversal of) X∆; by definition, X̌∆ is a Markov

chain satisfying

Py(X∆
t ≤ z) = Pz(y ≤ X̌∆

t )

for all y, z ∈ S∆ and t = 0, 1, 2, . . .. Equation (5.3) in [12] gives, with h = h∆ and with

dxe∆ (respectively, bxc∆) being the smallest element ≥ x (resp., the largest element ≤ x)

in the grid {S∗(S(0)), S∗(S(0) + ∆), . . . , S∗(S(1)−∆), S∗(S(1))}, that

Pi∆,x
(Ŷ ∆

t > S(1)− ε) = Pi∆,x
(X̂∆
bt/hc > S(1)− ε)

=
∑

j>S(1)−ε

H∆(j)

H∆(i∆,x)
Pi∆,x

(X̌∆
bt/hc = j)

≥ H∆(bS(1)− εc∆)

H∆(i∆,x)
Pi∆,x

(X̌∆
bt/hc > dS(1)− εe∆)

≥ H∆(bS(1)− εc∆)

H∆(i∆,x)
Pi∆,x

(X̌∆
bt/hc ≥ dS(1)− 2εe∆)

=
H∆(bS(1)− εc∆)

H∆(i∆,x)
PdS(1)−2εe∆(X∆

bt/hc ≤ i∆,x)

→ Π(S(1)− ε)
Π(x)

PS(1)−2ε(Yt ≤ x) as ∆ ↓ 0,

and this last expression converges to 1
Π(x)

PS(1)(Yt ≤ x) as ε ↓ 0. We can also get an upper

bound on Pi∆,x
(Ŷ ∆

t > S(1)− ε) using

∑
j>S(1)−ε

H∆(j)

H∆(i∆,x)
Pi∆,x

(X̌∆
bt/hc = j) ≤ 1

H∆(i∆,x)
Pi∆,x

(X̌∆
bt/hc ≥ bS(1)− εc∆)

=
1

H∆(i∆,x)
PbS(1)−εc∆(X∆

bt/hc ≤ i∆,x)

→ 1

Π(x)
PbS(1)−εc∆(Yt ≤ x) as ∆ ↓ 0,

and this last expression converges to 1
Π(x)

PS(1)(Yt ≤ x) as ε ↓ 0. Letting ε ↓ 0 in (3.4.7)
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gives

1

Π(x)
PS(1)(Yt ≤ x) = Px(T ∗S(1) ≤ t).

Now Πt � Π for all t > 0; let Rt = dΠt/dΠ, so that for any A = [S(0), s) with s ∈ S

we have

PΠ(x)(Yt ∈ A) =

∫
A

Rt(y) Π(dy),

and also

PΠ(x)(Yt ∈ A) =

∫
[S(0),x]

Π(dy)

Π(x)
Pt(y, A)

=

∫
[S(0),x]

1

Π(x)
π(y)

∫
A

pt(y, z) dz dy.

We will now appeal to the reversibility of Y . A diffusion process X with generator A and

state space I is reversible with respect to the distribution µ if for all f, g ∈ DA we have

∫
f(y) (Ag)(y)µ(dy) =

∫
(Af)(y) g(y)µ(dy). (3.4.8)

If Y satisfies the assumptions of Lemma 3.4.2, noting that f , g ∈ DA implies that the

derivatives of each function vanish at the boundary of the state space, integration by parts

yields that (3.4.8) holds for µ = Π, the stationary distribution of Y , and the primal diffusion

is reversible with respect to Π. Also note that (3.4.8) is equivalent to the following (see [37,

Section II.5]): for all f, g ∈ C(S), and for all t > 0 we have

∫
f(y) (Ttg)(y) Π(dy) =

∫
(Ttf)(y) g(y) Π(dy), (3.4.9)

where (Tt) is the one parameter semigroup associated with Y .
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Letting f and g be suitably continuous approximations of 1([S(0), x]) and 1(A), and

appealing to (3.4.9), we have

∫
[S(0),x]

1

Π(x)
π(y)

∫
A

pt(y, z) dz dy =

∫
[S(0),x]

1

Π(x)

∫
A

pt(z, y)π(z) dz dy

=

∫
A

1

Π(x)
Pz(Yt ≤ x) Π(dz),

and so 1
Π(x)

Pz(Yt ≤ x) is a version of Rt(z). By monotonicity of Y , we have that

1
Π(x)

Pz(Yt ≤ x) is minimized when z = S(1), and hence for Y we have

a(t) = 1− sep(t) =
1

Π(x)
PS(1)(Yt ≤ x) = Px(T ∗S(1) ≤ t),

establishing Lemma 3.4.2 for Y .

Remark 3.4.4. In the Markov chain setting of [12] and [19], the authors were able to jus-

tify their “strong stationary duality” nomenclature by tying their then-new notion of duality

to the more classical notions of duality in the stochastic process literature. Specifically, let

X ∼ (π0, P ) be an ergodic Markov chain with stationary distribution π. If X satisfies spe-

cific monotnicity conditions, namely, that the time reversal P̃ is monotone and π0(x)/π(x)

decreases in x, then with H be cumulative of π, they show that the SSD X∗ of X is the

Doob H-transform of the Siegmund dual of the time-reversal of X .

For a Markov process Y with transition operator Pt(x, dy), the Doob H-transform of Y

is the right-continuous Markov process with transition operator

Qt(x, dy) :=
H(y)

H(x)
Pt(x, dy).
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It has played a central role in Markov process duality theory, especially in the context of

processes conditioned to die in a given set or point. See [43, Chapter VII] for further detail.

The Siegmund dual of a Markov process Y with state space S is a Markov process Z on S

satisfying:

Py(Yt ≤ z) = Pz(y ≤ Zt) for all y, z ∈ S.

It has played a prominent role in the study of birth-and-death chains and diffusion theory

and in the study of interacting particle systems (see [37, Section II.3] for extensive back-

ground).

To justify the nomenclature in the present diffusion setting, consider the diffusion X

as defined in Section 3.1, and let X∗ be the strong stationary dual of X specified in

Definition 3.2.1. Then, recalling from Remark 3.2.6 that for all f ∈ F [0, 1] we have

ΛTtf = T ∗t Λf , a simple calculation yields

∫
[0,x]

pt(z, y) dy =

∫
[z,1]

Π(x)

Π(y)
P ∗x (X∗t ∈ dy),

giving us immediately that X∗ is the Doob H-transform of the Siegmund dual of (the time

reversal of) X , where H here is the cumulative stationary distribution Π.

A functional definition of duality generalizing Siegmund’s definition was introduced

in [25]. For extensive background see again [37, Section II.3]. Briefly, let X and Y be two

Markov processes with state spaces S and S ′ and let f be a bounded measurable function

on S × S ′. We define Y to be the dual of X with respect to the function f if

Exf(Xt, y) = Eyf(x, Yt), for all x ∈ S, y ∈ S ′.
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As in [12, Theorem 5.12], a simple calculation yields that, in the diffusion setting, X and

its SSD X∗ are dual with respect to the function

f(x, x∗) :=


1/Π(x∗), if x ≤ x∗

0, otherwise,

on I × I , further justifying the duality name for X∗.

With [12, Definition 5.16], the authors generalized the classical notion of functional

duality. Adapted to the present setting, letX and Y be two diffusions defined on a common

probability space with state spaces S and S ′. We say Y is dual to X with respect to a

function f : S × S ′ → R and distribution µ on S × S ′ if

Eµf(Xt, Y0) = Eµf(X0, Yt).

In [12, Theorem 5.19], the authors were able to show that the strong stationary dual of an

ergodic Markov chain X ∼ (π0, P ) with stationary distribution π, and with the additional

properties that the time reversal P̃ is monotone and π0(x)/π(x) decreases in x, is dual to the

primal chain with respect to this new functional definition, for suitable choices of f and µ.

We are able to recover the analogue of their Theorem 5.19 here, as it is easy to see that X∗

(the strong stationary dual of X) and X are dual with respect to the function f(x∗, x) =

1(x ≤ x∗)π(x)/Π(x∗) and µ equal to any mixture of the distributions δx∗ × Π(x∗) with

x∗ ∈ [0, 1].
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3.5 Hitting times and eigenvalues

In the continuous-time birth-and-death chain setting, a famous theorem due to Karlin

and MacGregor [28] asserts that the hitting time of state n for a birth-and-death chain X on

{0, 1, . . . , n} started in state 0 is distributed as the sum of independent exponential random

variables with parameters relating to the eigenvalues of the generator of X . Fill [19] used

strong stationary duality to exploit Karlin and MacGregor’s result to prove that the sep-

aration from stationarity for an ergodic continuous-time birth-and-death chain X at time

t is equal to P(Y > t) where Y is a sum of independent exponential random variables

with parameters depending on the eigenvalues of the generator of X . In [14], Diaconis

and Saloff-Coste used Fill’s result and tight concentration bounds on the tail probabilities

of Y to prove the existence of a separation cutoff for a sequence (Xn) of birth-and-death

chains under certain conditions on the eigenvalues of the generators of the chains Xn. In

this section, we outline and recover the analogous theory in the diffusion setting.

To this effect, consider again a diffusion X on [0, 1] with generator A, and with re-

flecting or entrance boundary behavior at each boundary, satisfying the assumptions of

Theorem 3.2.4. Let X∗ be a strong stationary dual of X according to Definition 3.2.1. For

fixed λ, let vλ(x) be the solution to the eigenvalue problem associated with A (respectively,

A∗):

Av + λv = 0 (A∗v + λv = 0) (3.5.1)
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with boundary condition

B0(v) = 0 (3.5.2)

where B0 represents the following boundary condition:

B0(v) :=


v(0), if 0 is absorbing or exit;

dv
dS

+
(0), if 0 is instantaneously reflecting or entrance.

Let Tx,y be the hitting time of y for X begun in x. From [27, Section 4.6], we have that

vλ(x) is unique up to multiplicative constant and that the moment generating function of

Tx,y, call it ψx,y, can be expressed as

ψx,y(λ) = vλ(x)/vλ(y). (3.5.3)

A completely analogous set of results hold for A∗.

If we further add the relevant boundary condition at 1, namely thatB1(v) = 0 (whereB1

is defined analogously to B0), then we have from Sturm–Liouville theory (see for example

[30, Theorem 4.1]) that the eigenvalues of A∗ (resp., nonzero eigenvalues of A) satisfying

(3.5.1) with the two boundary conditions are countable, real, positive, and simple and can

be ordered such that

0 < λ1 < λ2 < · · · ↑ ∞;

further, they satisfy
∑∞

k=1 λ
−1
k < ∞. For extensive background on the relevant Sturm–

Liouville theory, see for example [46]. The eigenfunctions and eigenvalues of A and A∗

are connected by the following simple relationship:
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Proposition 3.5.1. Adopt the same assumptions as Theorem 3.2.4, and further assume that

b(·) > 0 on (0, 1) and that 1 is a reflecting boundary for X and 0 is either a reflecting or

entrance boundary for X . Fix λ > 0.

(a) Suppose that v = f is a solution of (3.5.1) for generator A with boundary condi-

tions B0(v) = B1(v) = 0. Then v = Λf is a solution of (3.5.1) for generator A∗ with

boundary conditions B∗0(v) = B∗1(v) = 0 (and the same λ).

(b) Suppose that v = g is a solution of (3.5.1) for generator A∗ with boundary con-

ditions B∗0(v) = B∗1(v) = 0. Then f(·) = g(·) + Π(·)
π(·) g

′(·) is a solution of (3.5.1) for

generator A with boundary conditions B0(v) = B1(v) = 0 (and the same λ).

Proof. (a) If f(·) satisfies (3.5.1) for A and the boundary conditions B0(f) = B1(f) = 0,

then f ∈ DA and

df

dS

+

(0) =

(
f ′

s

)+

(0) = 0 =
df

dS

−
(1) =

(
f ′

s

)−
(1).

From (3.2.1) we have Λf ∈ DA∗ , and from (3.2.2) we have

A∗Λf(·) = ΛAf(·) = Λ(−λf)(·) = −λΛf(·) (3.5.4)

on I . Therefore, Λf(·) satisfies (3.5.1) for A∗. Also B∗0(Λf) = 0 as 0 is an entrance

boundary for the dual and Λf ∈ DA∗ , and similarly B∗1(Λf) = 0.

(b) Note that if g(·) satisfies (3.5.1) for A∗, then g ∈ DA∗ , and hence g ∈ C[0, 1], and

93



CHAPTER 3. STRONG STATIONARY DUALITY FOR DIFFUSION PROCESSES

g(1) = 0. Next, on (0, 1) note

f ′ = g′ +
π2 − Ππ′

π2
g′ +

Π

π
g′′ = 2g′ − Ππ′

π2
g′ +

Π

π
g′′

= 2g′ +
Π

π

(
g′′ +

b′

b
g′ − 2a

b
g′
)

= 2g′ +
Π

π

(
−2λg

b
− 2π

Π
g′
)

= −2λg
Π

π

1

b
= −2λgMs

where the fourth equality follows from (3.5.1). We have that M+(0) = 0 = g(1) and

M−(1) <∞, and hence (
f ′

s

)+

(0) = 0 =

(
f ′

s

)−
(1),

and therefore B0(f) = B1(f) = 0. Next, on (0, 1) note

f ′′ =
−2λ

b

(
Π

π
g′ + g

π2 − Ππ′

π2
− gΠb′

πb

)
=
−2λ

b

(
Π

π
g′ + g +

Π

π
g
s′

s

)
∈ C(0, 1),

and hence f ∈ C2(0, 1). Combining the above, on (0, 1) we have

af ′ +
1

2
bf ′′ = λg

Π

π

s′

s
− λ
(

Π

π
g′ + g +

Π

π
g
s′

s

)
= −λ

(
Π

π
g′ + g

)
= −λf.

To show that f ∈ DA and that f satisfies (3.5.1) forAwith the relevant boundary conditions

it remains only to show that f ∈ C[0, 1]. We have (by Theorem 3.2.4) that 0 is an entrance

boundary for X∗, and hence for any fixed ξ ∈ (0, 1) we have that N(0) <∞ and hence

−
∫

(0,ξ]

S∗(η)M∗(dη) =

∫
(0,ξ]

1

M(η)
s(η)M2(η) dη =

∫
(0,ξ]

s(η)M(η) dη <∞,
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where the first equality holds by (3.2.8)–(3.2.9). Since g ∈ C[0, 1], it follows that

∫
(0,ξ]

| − 2λg(η)s(η)M(η)| dη =

∫
(0,ξ]

|f ′(η)| dη <∞.

Hence, by the dominated convergence theorem,

∫
(ω,ξ]

f ′(η) dη = f(ξ)− f(ω)

has a finite limit as ω ↓ 0. We conclude that f ∈ C[0, 1). We have by assumption that 1 is

a reflecting boundary for X and hence for any fixed ξ ∈ (0, 1) we have that Σ(1) <∞ and

hence ∫
[ξ,1)

s(η)M(η) dη <∞.

By the same argument that showed that f is continuous at 0, we find that f is also continu-

ous at 1. The proof is finished, as we have established that f ∈ C[0, 1].

In the diffusions setting, we have an analogue (namely [30, Theorem 5.1]) of Karlin and

MacGregor’s famous result on the eigenvalue expansion on birth-and-death hitting times.

Adapted to the present setting, we state the analogue as follows:

Theorem 3.5.2. Let X be a regular diffusion process on [0, 1] and assume 0 is either

instantaneously reflecting or entrance. Then

lim
x→0

ψx,1(λ) =
∞∏
k=1

(
1− λ

λk

)−1

, (3.5.5)

which is the moment generating function of an infinite sum of independent exponential

random variables with parameters λk.
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Combining this with Proposition 3.5.1 and Lemma 3.4.2, we arrive at

Theorem 3.5.3. Let X be a diffusion on [0, 1] with X0 = 0, with generator A, and with ei-

ther reflecting or entrance behavior at the bounday 0 and reflecting behavior at the bound-

ary 1. Let the eigenpairs (λi, vλi), i = 1, 2, . . . , of A with λi > 0 satisfying (3.5.1) and

boundary conditionsB0(vλi) = 0 = B1(vλi) be labeled so that 0 < λ1 < λ2 < · · · . LetX∗

be a strong stationary dual ofX with generatorA∗, and note thatX∗0 = 0 by Remark 3.2.3.

Let W1,W2, . . . be independent random variables with Wi ∼ Exp(λi). Then

sep(t) = P0(T ∗1 > t) = P(W > t) where W
L
=
∞∑
i=1

Wi.

This mirrors the corresponding result for birth-and-death Markov chains given by [12, The-

orem 4.20] in discrete time and by [19, Theorem 5] in continuous time.

In [14], the authors used [12, Theorem 4.20] to determine conditions for a separation

cut-off to occur in a sequence of birth-and-death Markov chains. We shall presently derive

analogous results for diffusions using Theorem 3.5.3. Consider now a sequence of diffusion

generators (An)∞n=1 defining a sequence of diffusions (Xn)∞n=1 with Xn
0 ∼ νn, on finite

intervals [l1, r1] = I1, [l2, r2] = I2, . . . where all left boundary points, ln are assumed to

be reflecting or entrance and all right boundary points rn are assumed to be reflecting. Note

that without loss of generality we can take In = [0, rn] for all n ≥ 1. We write πn for the

stationary distribution for Xn, and we write νnt for the distribution of Xn at time t. This

sequence of diffusions exhibits a separation cut-off at (tn) if the sequence (tn) is such that
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for any ε ∈ (0, 1) we have

(i) lim
n→∞

sep(νn(1+ε)tn , π
n) = 0, and

(ii) lim
n→∞

sep(νn(1−ε)tn , π
n) = 1.

To apply Theorem 3.5.3 here, let the nonzero eigenvalues of An be labeled 0 < λn,1 <

λn,2 < · · · , and let νn = δ0 for all n ≥ 1. We further assume that each An satisfies

the assumptions of Theorem 3.2.4, and let (A∗n)∞n=1 be the sequence of generators of the

strong stationary duals of (Xn)∞n=1 as defined by Definition 3.2.1 For each n ≥ 1, let

Wn,j ∼ Exp(λn,j) be independent random variables, and let Wn
L
=
∑∞

j=1Wn,j . From

Theorem 3.5.3, we have sepn(t) = P(Wn > t). We can therefore get sharp bounds on

separation by deriving sharp bounds for the tail probabilities of Wn. To this end, note that

we have

EWn =
∞∑
j=1

λ−1
n,j <∞, VarWn =

∞∑
j=1

λ−2
n,j <∞.

An application of the one-sided Chebyshev’s inequality gives the analogue to the separation

cut-off result [14, Theorem 5.1]:

Theorem 3.5.4. Let (An)∞n=1 be a sequence of diffusion generators defining diffusions

(Xn)∞n=1, with Xn
0 ∼ νn, on finite intervals [0, r1] = I1, [0, r2] = I2, . . . , where 0 is as-

sumed to be reflecting or entrance for all n, and all right boundary points rn are assumed

to be reflecting. With the eigenvalues λn,i defined as above, this sequence of diffusions

exhibits a separation cut-off if and only if

lim
n→∞

λn,1 EWn =∞,

97



CHAPTER 3. STRONG STATIONARY DUALITY FOR DIFFUSION PROCESSES

in which case there is a separation cut-off at (tn) with tn := EWn. Further, for any c > 0

the following separation bounds hold for any sequence (tn), where we restrict to c ≤ 1 in

the second bound:

sep(νn(1+c)tn , π
n) ≤ 1

1 + c2λn,1tn
, sep(νn(1−c)tn , π

n) ≥ 1− 1

1 + c2λn,1tn
.

The proof is completely analogous to the proof of Theorem 5.1 in [14], and so is omitted.

Example 3.5.5. Let 0 < 1 = r1 ≤ r2 ≤ r3 ≤ · · · be an arbitrary increasing sequence

of positive real numbers, and let An be the generator of reflecting Brownian motion on

In = [0, rn]. Then (see [30, Section 6]), we know that

λn,k =
j2
k

2r2
n

where (jk)
∞
k=1 are the positive zeros of the usual Bessel function J1/2. Note

λn,1EWn =
∞∑
k=1

j2
1

j2
k

is constant in n, and therefore there is no separation cut-off.

Example 3.5.6. Let (ηn) be a sequence of positive real numbers diverging monotonically

to infinity. Let An be the generator for a Bes(2ηn+2) process on [0, 1] with 1 a reflecting

boundary. Again from [30, Section 6], we have that

λn,k =
j2
n,k

2

where (jn,k)
∞
k=1 are the positive zeros of the Bessel function Jηn+1. Then

λn,1EWn =
∞∑
k=1

j2
n,1

j2
n,k

.
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It is well known (see for instance [44, equations (1) and (40)]) that

∞∑
k=1

1

j2
n,k

=
1

4(ηn + 2)

and (see [1, pg. 371]) that

j2
n,1 =

[
ηi + 1 +O

(
η

1/3
i

)]2

;

so there is a separation cut-off for this sequence of diffusions at (tn), with tn = 2
∑∞

k=1 j
−2
n,k =

(2ηn + 4)−1.

This is, perhaps, not a surprising result in light of the interpretation of the Bes(m)

process as the radial part of m-dimensional Brownian motion for integer m. As the strong

stationary dual of a Bes(α) process is a Bes(α + 2) process (recall Example 3.2.8), for

integer sequences ηn = mn, a separation cut-off is equivalent to a sharp concentration in

the hitting time of 1 of the dual Bes(2mn + 4) sequence, i.e., a sharp concentration in the

hitting time of the unit sphere for (2mn + 4)-dimensional Brownian motion started in ~0.

For large mn, at time t the ratio of the square of the radial part of (2mn + 4)-dimensional

Brownian motion to t has a distribution which doesn’t depend on t and (by the central

limit theorem) is approximately normal with mean 2mn + 4 and variance 2(2mn + 4).

We therefore expect to have a sharp concentration of the hitting time of the unit sphere at

t = (2mn + 4)−1, and indeed we found that the cut-off occurs there.
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Appendix A

P ∗ when P is a star chain

In Remark 2.3.6 it is claimed that if the given chain P is a star chain, then the star chain

of Lemma 2.3.4 is simply obtained by collapsing all leaves with the same one-step tran-

sition probability to state 0 into a single leaf. More precisely, we establish the following:

Proposition A.1 Let P be the transition matrix of an ergodic star chain with hub at 0. If

for each γi in the reduced set of eigenvalues of P0 we define

m(i) := {j ∈ [n] : ηj = γi},

then P ∗(0, i) =
∑

j∈m(i) P (0, j).

Proof. Define H := diag(η1, . . . , ηn) and

x := (P (0, 1), . . . , P (0, n)),

y := (1− η1, . . . , 1− ηn),
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so that

P =

 P (0, 0) x

yT H

 .

By the standard formula for the determinant of a partitioned matrix (e.g., [26, Section 0.8.5]),

if t is not in the spectrum {η1, . . . , ηn} of H then we find

det(tI − P ) = [t− P (0, 0)− x(tI −H)−1yT ] det(tI −H) (A.1)

for the characteristic polynomial of P . Analogously, define Γ := diag(γ1, . . . , γr) and

x∗ := (P ∗(0, 1), . . . , P ∗(0, r)),

y∗ := (1− γ1, . . . , 1− γr);

if t is not in the spectrum {γ1, . . . , γr} of Γ, then we find

det(tI − P ∗) = [t− P ∗(0, 0)− x∗(tI − Γ)−1y∗T ] det(tI − Γ) (A.2)

for the characteristic polynomial of P ∗.

Note that

P (0, 0) = trP − trH =
n∑
i=0

θi −
n∑
i=1

ηi

=
r∑
i=0

λi −
r∑
i=1

γi = trP ∗ − tr Γ = P ∗(0, 0), (A.3)

where the third equality is a result of the eigenvalue reduction procedure discussed in

Section 2.3.1 and the fourth equality is from Lemma 2.6 in [9]. Similarly, for all t /∈

{η1, . . . , ηn} we have

det(tI − P )

det(tI −H)
=

det(tI − P ∗)
det(tI − Γ)

. (A.4)
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Therefore, for all t /∈ {η1, . . . , ηn} we have

n∑
i=1

P (0, i)
1− ηi
t− ηi

=
r∑
i=1

P ∗(0, i)
1− γi
t− γi

, (A.5)

because using definitions of H, x, y,Γ, x∗, y∗ and equations (A.1)–(A.4) we find

n∑
i=1

P (0, i)
1− ηi
t− ηi

= x(tI −H)−1yT = t− P (0, 0)− det(tI − P )

det(tI −H)

= t− P ∗(0, 0)− det(tI − P ∗)
det(tI − Γ)

= x∗(tI − Γ)−1y∗T =
r∑
i=1

P ∗(0, i)
1− γi
t− γi

.

Rewrite (A.5) as

r∑
i=1

P ∗(0, i)
1− γi
t− γi

=
r∑
i=1

 ∑
j∈m(i)

P (0, j)

 1− γi
t− γi

.

Since γ1, . . . , γr are distinct, it follow easily that P ∗(0, i) =
∑

j∈m(i) P (0, j) for i =

1, . . . , r, as desired.

Let π be the stationary distribution for P . Using the formula for P ∗(0, i) provided

by Proposition A.1, it is a simple matter to check that the probability mass function π∗

defined by π∗(0) := π(0) and π∗(i) =
∑

j∈m(i) π(j) for i 6= 0 satisfies the detailed balance

condition and is therefore the stationary distribution for P ∗; indeed, using the reversibility

of P with respect to π we have

π∗(0)P ∗(0, i) = π(0)
∑
j∈m(i)

P (0, j) =
∑
j∈m(i)

π(j)P (j, 0)

=
∑
j∈m(i)

π(j)(1− γi) = π∗(i)P ∗(i, 0).
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Details of Theorem 3.3.2

In proving Theorem 3.3.1, we made use of Theorem 3.3.2 adapted from [18, Theorems

4.8.2 and 1.6.5 and Corollary 4.8.9]]. We restate the theorem here:

Theorem 3.3.2 Let A be the generator of a regular diffusion process Y with state space S.

Assume h∆ > 0 converges to 0 as ∆ ↓ 0. Let Y ∆
t := X∆

bt/h∆c where X∆ ∼ (π∆
0 , P

∆)

is a Markov chain with some metric state space S∆ ⊂ S , and assume Y ∆
0 ⇒ Y0. Define

T∆ : B(S∆)→ B(S∆) via

T∆f(x) = Exf(X∆
1 )

for f in the space B(S∆) of real-valued bounded measurable functions on S∆. Define

A∆ := h−1
∆ (T∆ − I). Suppose that C(S) is convergence determining and that there is an

algebra B ⊂ C(S) that strongly separates points. Let ρ∆ : C(S)→ B(S∆) be defined via

103



APPENDIX B. DETAILS OF THEOREM 3.3.2

ρ∆f(·) = f |S∆(·). If

lim
∆→0

sup
y∈S∆

∣∣(A∆ρ∆f)(y)− (Af)(y)
∣∣ = 0 (B.1)

for all f ∈ DA, then Y ∆ ⇒ Y .

The purpose of this appendix is to carefully spell out the proof of the above theorem, as

the notation in [18] differs considerably from the notation we have adopted. The following

chart gives the notational equivalences between the present work and [18]; in connection

with µn(x, ·), see Corollary 4.8.5 in [18].

Notation in present work: Notation in [18]:

S = [S(0), S(1)] with the Euclidean metric (E, r)

S∆, A∆, T∆ En, An, Tn

P∆(x, ·) µn(x, ·)

{(f, Af) | f ∈ DA} A

DA DA

C(S) L

1/h∆ αn

id ηn

ρ∆ πn

Here ρ∆ : C(S) → B(S∆) is defined via ρ∆f(·) = f |S∆(·), and id : S∆ → S is the

inclusion function embedding S∆ into S.

Proof of Theorem 3.3.2. As in [18, Section 3.4], define a set B ⊂ C(S) to be convergence
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determining if

lim
n→∞

∫
f dPn =

∫
f dP for all f ∈ B

implies Pn ⇒ P. We say that B ⊂ C(S) strongly separates points if for every y ∈ S and

ε > 0 there exists a finite set {f1, . . . , fk} ⊂ B such that

inf
z:|z−y|≥ε

max
1≤i≤k

|fi(z)− fi(y)| > 0.

Clearly C(S) is convergence determining, and by considering suitably smooth uniform

approximations in DA to the indicator function of {x} for each x ∈ S, it follows that

DA ⊂ C(S) is an algebra that strongly separates points. In the notation of [18, Corollary

4.8.9], we have Gn = En = S∆ , and so to prove Y ∆ ⇒ Y , it suffices to prove that for

each T > 0 and f ∈ C(S) we have

lim
∆→0

sup
y∈S∆

∣∣(T∆)bt/hcρ∆f(y)− ρ∆Ttf(y)
∣∣ , 0 ≤ t ≤ T. (B.2)

From [18, Theorem 1.6.5], to prove (B.2) it suffices to establish that for all f ∈ DA we

have that ρ∆f ∈ B(S∆)(= Ln in the notation of [18, Theorem 1.6.5]) satisfies

lim
∆→0

sup
y∈S∆

|ρ∆f(y)− f(y)| = 0 (B.3)

and

lim
∆→0

sup
y∈S∆

∣∣(A∆ρ∆f)(y)− (Af)(y)
∣∣ = 0. (B.4)

But (B.3) is clearly true, and (B.4) is assumed (for all f ∈ DA) in the statement of Theo-

rem 3.3.2.
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Probabilités, XXIX, volume 1613 of Lecture Notes in Math., pages 30–36. Springer,

Berlin, 1995.

[7] P. Billingsley. Convergence of probability measures. Wiley Series in Probability

and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second

edition, 1999. A Wiley-Interscience Publication.

[8] M. Brown. The first passage time distribution for a parallel exponential system with

repair. In Reliability and fault tree analysis (Conf., Univ. California, Berkeley, Calif.,

1974), pages 365–396. Soc. Indust. Appl. Math., Philadelphia, Pa., 1975.

[9] M. Brown. Interlacing eigenvalues in time reversible Markov chains. Math. Oper.

Res., 24(4):847–864, 1999.

[10] M. Brown and Y. S. Shao. Identifying coefficients in the spectral representation for

first passage time distributions. Probab. Engrg. Inform. Sci., 1:69–74, 1987.

[11] P. Carmona, F. Petit, and M. Yor. Beta-gamma random variables and intertwining

relations between certain Markov processes. Rev. Mat. Iberoamericana, 14(2):311–

367, 1998.

[12] P. Diaconis and J. A. Fill. Strong stationary times via a new form of duality. Ann.

Probab., 18(4):1483–1522, 1990.

107



BIBLIOGRAPHY

[13] P. Diaconis and L. Miclo. On times to quasi-stationarity for birth and death processes.

J. Theoret. Probab., 22(3):558–586, 2009.

[14] P. Diaconis and L. Saloff-Coste. Separation cut-offs for birth and death chains. Ann.

Appl. Probab., 16(4):2098–2122, 2006.

[15] R. Durrett. Probability models for DNA sequence evolution. Probability and its Ap-

plications (New York). Springer, New York, second edition, 2008.

[16] E. B. Dynkin. Markov processes. Vols. I, II, volume 122 of Translated with the autho-

rization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Ma-

jone. Die Grundlehren der Mathematischen Wissenschaften, Bände 121. Academic

Press Inc., Publishers, New York, 1965.

[17] A. Etheridge. Some mathematical models from population genetics, volume 2012 of

Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Lectures from the 39th

Probability Summer School held in Saint-Flour, 2009.

[18] S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and

Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons

Inc., New York, 1986. Characterization and convergence.

[19] J. A. Fill. Strong stationary duality for continuous-time Markov chains. Part I: Theory.

Journal of Theoretical Probability, 5:45–70, 1992. 10.1007/BF01046778.

108



BIBLIOGRAPHY

[20] J. A. Fill. An interruptible algorithm for perfect sampling via Markov chains. Ann.

Appl. Probab., 8(1):131–162, 1998.

[21] J. A. Fill. On hitting times and fastest strong stationary times for skip-free and more

general chains. J. Theoret. Probab., 22(3):587–600, 2009.

[22] J. A. Fill. The passage time distribution for a birth-and-death chain: strong stationary

duality gives a first stochastic proof. J. Theoret. Probab., 22(3):543–557, 2009.

[23] J. A. Fill, M. Machida, D. J. Murdoch, and J. S. Rosenthal. Extension of Fill’s perfect

rejection sampling algorithm to general chains. Random Structures Algorithms, 17(3-

4):290–316, 2000. Special issue: Proceedings of the Ninth International Conference

“Random Structures and Algorithms” (Poznan, 1999).

[24] JamesAllen Fill and Vince Lyzinski. Hitting times and interlacing eigenvalues: A

stochastic approach using intertwinings. Journal of Theoretical Probability, pages

1–28, 2012.

[25] R. Holley and D. Stroock. Dual processes and their application to infinite interacting

systems. Adv. in Math., 32(2):149–174, 1979.

[26] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cam-

bridge, 1985.
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