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Compact components of planar surface
group representations

William M. Goldman

Abstract. Recently Deroin, Tholozan and Toulisse found connected com-
ponents of relative character varieties of surface group representations in a
Hermitian Lie group G with remarkable properties. For example, although

the Lie groups are never compact, these components are compact. In this
way they behave more like relative character varieties for compact Lie groups.
(A relative character variety comprises equivalence classes of homomorphisms
of the fundamental group of a surface S, where the holonomy around each
boundary component of S is constrained to a fixed conjugacy class in G.)

The first examples were found by Robert Benedetto and myself in an REU
in summer 1992. Here S is the 4-holed sphere and G = SL(2,R). Although
computer visualization played an important role in the discovery of these un-
expected compact components, computation was invisible in the final proof,
and its subsequent extensions.
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Figure 1. A relative character variety over R with four un-
bounded components and one compact component.

Figure 2. Another view of a relative character variety over R with
four unbounded components and one compact component.
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1. Relative character varieties of surfaces

Let Σ be a compact oriented surface with boundary ∂Σ = ∂1 � · · · � ∂n and
fundamental group π = π1(Σ). The peripheral structure consists of the conjugacy
classes of subgroups π1(∂i) ↪→ π, i = 1, . . . , n corresponding to the components of
∂Σ. For a compact orientable surface-with-boundary of genus g and n boundary
components we shall write Σg,n.

Let G be a reductive linear algebraic group over k (either R or C). Then
Hom(π,G) is an affine algebraic set with algebraic Inn(G)-action. Let

X(Σ, G) := Hom(π,G)//Inn(G)

be its categorical quotient. Restriction to π1(∂i) defines family

X(Σ, G) −→ X(∂1, G)× · · · × X(∂n, G)

of relative character varieties. The character variety has a natural Poisson struc-
ture, for which the relative character varieties are symplectic leaves. The restriction
maps are Casimirs for the Poisson structure. In this paper we always work in the
classical topology, not the Zariski topology. For background on character varieties,
we recommend Sikora [15].

In the cases of interest here, this has a very explicit structure, due to the Vogt-
Fricke theorem which describes the SL(2,C)-character variety of the two-generator
free group F2. Suppose F2 = 〈X,Y 〉 be a two-generator free group. Then

Hom
(
F2, SL(2,C)

) ∼= SL(2,C)× SL(2,C)

and X(F2, SL(2,C)) is its Geometric Invariant Theory quotient under the group
Inn

(
SL(2,C)

) ∼= PSL(2,C). The set of C-points of X(F2, SL(2,C)) is the quotient

space of Hom
(
F2, SL(2,C)

)
by the equivalence relation where two points are equiv-

alent if and only if their orbit closures contain the same closed1 orbit. Equivalently
it is the maximal Hausdorff quotient of Hom

(
F2, SL(2,C)

)
by Inn

(
SL(2,C)

)
. See [7]

for a modern elementary treatment.
Write Z = (XY )−1 so that XY Z = I. The Inn

(
SL(2,C)

)
-invariant mapping

Hom
(
F2, SL(2,C)

) χ−−→ C3

ρ �−→

⎡
⎣x := Tr

(
ρ(X)

)
y := Tr

(
ρ(Y )

)
z := Tr

(
ρ(Z)

)
⎤
⎦

defines an isomorphism

X(F2, SL(2,C))
∼=−−−→ C3.

This means that every regular function Hom
(
F2, SL(2,C)

) f−−→ C which is invariant

under Inn
(
SL(2,C)

)
factors as χ ◦ F for some polynomial F ∈ C[x, y, z]. The map

χ is constant on closures of Inn
(
SL(2,C)

)
-orbits. A point has a closed orbit if

and only if it is either irreducible or is a direct sum of a pair of 1-dimensional
representations in SL(2,C); in the latter case, ρ is equivalent to a representation by

1“Closed” refers to the classical topology.
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diagonal matrices:

ρ(X) =

[
ξ 0
0 ξ−1

]

ρ(Y ) =

[
η 0
0 η−1

]

ρ(Z) =

[
ζ 0
0 ζ−1

]
where ξηζ = 1, and

x = ξ + ξ−1

y = η + η−1

z = ξη + (ξη)−1.

An example of such a representation is given in (2.3). The commutator trace

Hom
(
π, SL(2,C)

)
−→ C

ρ �−→ Tr[ρ(X), ρ(Y )]

descends to the polynomial κ ∈ C[x, y, z] defined by:

κ(x, y, z) := x2 + y2 + z2 − xyz − 2

Then ρ is irreducible if and only if κ(x, y, z) 
= 2. This condition is equivalent to
the Inn

(
SL(2,C))

)
-orbit being closed and having trivial stabilizer group.2

The level set κ(x, y, z) = 2 corresponds to reducible representations, but the
character variety cannot distinguish between a representation and its semisimplifi-
cation. Namely, if ρ is reducible, presrving a linear subspace L ⊂ C2, then ρ induces
a representation ρss on L ⊕ C2/L, which we call its semisimplification. Unless ρ
is completely reducible (that is, reductive) it is not conjugate as a representation
to ρss although it has the same character. The level set κ−1(2) is the Cayley
cubic, discussed in §2 and admits a rational parametrization (2.2). As discussed
below, the diagonal matrices are precisely the ones preserving the decomposition
C2 ∼= L⊕ C2/L; compare (2.3).

The two R-forms of SL(2,C) are SU(2) and SL(2,R). Real characters, that is
(x, y, z) ∈ R3 ⊂ C3, correspond to equivalence classes of representations into SU(2)
or SL(2,R). (The common case occurs, namely for representations into the group
SO(2) = SU(2) ∩ SL(2,R). )

Once again this is detected by the polynomial κ. Suppose that a representation
ρ has real trace, that is, (x, y, z) ∈ R3. If ρ is equivalent to an SU(2)-representation,
then −2 ≤ x, y, z ≤ 2. Furthermore, ρ[X,Y ] = [ρ(X), ρ(Y )] also has trace in [−2, 2].
In particular κ(x, y, z) ≤ 2. Conversely every

(x, y, z) ∈ [−2, 2]3 ∩ κ−1(−∞, 2]

arises as a character of a representation of F2 into SU(2).
In [7], this is proved by identifying SU(2) as the universal covering of the

orthogonal group SO(3) which is conjugate to the isometry group of a positive

2In other words, the orbit is a closed subset and the action of the group is free.
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definite quadratic form on R3. The corresponding symmetric bilinear form is defined
by the symmetric 3× 3 matrix

B :=

⎡
⎣2 z y
z 2 x
y x 2

⎤
⎦

which has determinant 4− 2κ(x, y, z). The 2× 2-minors of B are positive definite
if and only if −2 < x, y, z < 2. Furthermore B itself is positive definite if and only
if −2 < x, y, z < 2 and det(B) > 0. Compare [7] for further details.

2. The one-holed torus

The fundamental group of Σ1,1 is a two-generator free group 〈X,Y 〉 with re-
dundant geometric presentation

π := 〈X,Y,K | K = XYX−1Y −1〉

wit peripheral generator K.

Figure 3. Three loops on Σ1,1.

The boundary trace is defined as follows. The commutator trace function
corresponds to the peripheral structure ∂1 = K = [X,Y ] = XYX−1Y −1:

X(F2, SL(2,C)) ∼= C3 κ−−→ C

(x, y, z) �−→ x2 + y2 + z2 − xyz − 2

= Tr[ρ(X), ρ(Y )](2.1)

where x = Tr
(
ρ(X)

)
, y = Tr

(
ρ(Y )

)
, z = Tr

(
ρ(XY )

)
. Denote the set of R-points of

κ−1(k) by:

Sk := κ−1(k) ∩ R3
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Real level sets of κ are relative character varieties:

• For k < −2, level set Sk has four components, each component parametriz-
ing convex hyperbolic structures with totally geodesic boundary whose
length l relates to k by:

k = −2 cosh(l/2)

These convex hyperbolic structures extend uniquely to complete hyper-
bolic structures with ideal boundary parallel to a unique closed geodesic
of length l. Each component is homeomorphic to a disc and the various
components are parametrized by spin structures on Σ.

• For k = −2, the level set S−2 is the Markoff surface, with five components.
One component is {o} where o is the origin (0, 0, 0), the unique SU(2)-
character with κ = −2. It is an isolated point in the real level set S−2,
although it is a node in the complexification κ−1(−2). The origin is the
character of the representation given by the Pauli spin matrices:

ρ(X) =

[
0 −1
1 0

]
, ρ(Y ) =

[
i 0
0 −i

]
, ρ(Z) =

[
0 −i
−i 0

]
.

The other four components correspond to complete finite area hyperbolic
structures on Σ1,1 with spin structures. TheMarkoff triples form the orbit
of (3, 3, 3) under the mapping class group Mod(Σ1,1) ∼= GL(2,Z). These
correspond to hyperbolic structures on Σ1,1 with triple symmetry. o is a
singular point in κ−1(−2) (an ordinary double point) and is isolated in

S−2 = κ−1(−2) ∩ R3.

• For −2 < k < 2, the level set has five components, one of which is a com-
pact component corresponding to SU(2)-representations (see Figure 5).
The four noncompact level sets for −2 < k < 2 correspond to hyperbolic
structures on torus with an isolated singularity of cone angle θ, where
k = −2 cos(θ/2).

• The level set κ−1(+2) corresponds to reducible characters and forms the
Cayley cubic

x2 + y2 + z2 − xyz = 4.

(Compare Figure 6.) This is the one case when a level set of κ admits a
rational parametrization:

C∗ × C∗ −→ κ−1(2) ⊂ C3

(ξ, η) �−→

⎡
⎣ ξ + ξ−1

η + η−1

ξη + (ξη)−1

⎤
⎦(2.2)

which is a quotient map by the involution

(ξ, η) �−→ (ξ−1, η−1).

The corresponding reducible representation is:

X
ρ�−−→

[
ξ ∗
0 ξ−1

]

Y
ρ�−−→

[
η ∗
0 η−1

]
(2.3)
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• For k ≥ 2, the level set is homeomorphic to Σ0,4. In particular it is
connected and noncompact.

Other famous cubic surfaces (or rather their complex projectivizations) occur in this
family: the Fermat cubic defined by A3+B3+C3+D3 = 0 arises for k = −10/3 and
the Clebsch diagonal cubic defined by A3+B3+C3+D3+E3 = A+B+C+D+E = 0
arises for k = 18.

Figure 4. The Markoff cubic surface, with the origin and four
components corresponding to the Fricke-Teichmüller space of Σ1,1
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Figure 5. A compact component, corresponding to SU(2)-
representations of F2

Figure 6. The Cayley cubic surface, corresponding to reducible
representations. Its four nodes correspond to the (central) {±1}-
representations and form the vertices of a curvilinear tetrahedron.
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3. The four-holed sphere

The fundamental group of Σ0,4 is a three-generator free group 〈A,B,C〉 given
by redundant geometric presentation

π := 〈A,B,C,D | ABCD = I〉
with peripheral generators A,B,C,D. For a SL(2,C)-representation ρ, we denote
the boundary traces by a, b, c, d ∈ C. The traces3 of the interior curves are:

Figure 7. Some loops on Σ0,4.

x := −Tr
(
ρ(AB)

)
, y := −Tr

(
ρ(BC)

)
, z := −Tr

(
ρ(CA)

)
.

These seven functions are related by the defining equation

x2 + y2 + z2 − xyz+

(ab+ cd)x+ (bc+ ad)y + (ca+ bd)z

= 4− (a2 + b2 + c2 + d2 + abcd)(3.1)

which we write as

x2 + y2 + z2 − xyz + px+ qy + rz = s

where the linear and constant terms are defined as:

p = ab+ cd,(3.2)

q = bc+ ad,(3.3)

r = ca+ bd,(3.4)

s = 4− (a2 + b2 + c2 + d2 + abcd),(3.5)

Then (3.1) defines a quartric hypersurface V ⊂ C7, which we regard as the total
space of a family of cubic surfaces with coordinates (x, y, z) ∈ C3. This family lives
over C4 with parameters the boundary traces (a, b, c, d) ∈ C4. To describe this
family of surfaces explicitly, denote the coordinate projection C7 → C3 by ΠXY Z .
Then the relative character varieties

Va,b,c,d := ΠXY Z

(
V ∩

(
{(a, b, c, d)} × C3

))

3This convention departs from some previous works ([1,3,4,7,8]). The minus sign is intro-
duced to make the defining equation (3.1) more compatible with the defining equation (2.1); in
particular the higher order terms in both are x2 + y2 + z2 − xyz, not x2 + y2 + z2 + xyz.
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form a family of cubic surfaces in C3 with coordinates (x, y, z) parametrized by
(a, b, c, d) ∈ C4. Cantat and Loray [3,4] prove that the mapping

C4 −→ C4

(a, b, c, d) �−→ (p, q, r, s)

defined by (3.2),(3.3),(3.4),(3.5) has degree 24, and in particular is surjective. (Com-
pare also Goldman-Toledo [10] for a proof of surjectivity.)

When (a, b, c, d) ∈ R4 (so p, q, r ∈ R as well), the real solutions of (3.1) are
either SL(2,R)-characters or SU(2)-characters (or both). In analogy with the case
of the one-holed torus, −2 ≤ a, b, c, d ≤ 2 and

κ(a, b, x), κ(c, d, x), κ(b, c, y), κ(a, d, y), κ(c, a, z), κ(b, d, z)< 2

are necessary conditions for a relative character (a, b, c, d;x, y, z) to correspond to
an SU(2)-representation. We conjecture that these inequalities are also sufficient .

Denote the set of real solutions by

Sa,b,c,d := Va,b,c,d ∩ R3.

In 1992, Benedetto and Goldman [1] proved that, for certain (a, b, c, d) ∈
[−2, 2]4, the real algebraic set S(a,b,c,d) has a connected component of SL(2,R)-
characters which is compact. This markedly contrasts the case of relative character
varieties of Σ1,1, when the compact components of κ−1(k)∩R3 correspond to exactly
to SU(2)-representations and not SL(2,R)-representations. (These components ex-
ist only if −2 ≤ k < 2.)

In §9.3 of [3], Cantat and Loray show that even if Va,b,c,d admits a compact com-
ponent corresponding to SL(2,R)-representations, then by changing (a, b, c, d) but
keeping (p, q, r, s) fixed, the compact component corresponds to SU(2)-representations.

The surfaces Σ0,4 and Σ1,1 closely relate. When the linear coefficients p, q, r =
0, then the defining equation for relative character varieties of Σ1,1 agrees with that
of Σ0,4 where k = s− 2. (Compare [10, Theorem 6 and Lemma 7].)

Lemma 3.1. Suppose p, q, r = 0. Then one of two (not exclusive) possibilities
occur:

• At least three of a, b, c, d vanish;
• Three of a, b, c, d are equal and the fourth equals their negative.

Both possibilties occur when a = b = c = d = 0.

When a = b = c = d = 0, we call the character bi-dihedral.4 The corresponding
representation sends A,B,C,D to involutions in geodesics in H3 which admit a
common orthogonal geodesic. Such a reprensentation is a double extension of a
reducitble representation into C× < SL(2,C). Here is an example of a bi-dihedral

4Apologies for the linguistic impurity.
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representation:

A �−→
[
0 1
−1 0

]

B �−→
[

0 ξ
−ξ−1 0

]

C �−→
[

0 ξη
−ξ−1η−1 0

]

D �−→
[

0 η
−η−1 0

]
It contains the reducible representation (2.3), when the matices are diagonal, with
index two.

Proof of Lemma 3.1. Suppose that d = 0 but a, b 
= 0. Then (3.2) implies
that

0 
= ab = ab+ cd = p = 0,

a contradiction. Thus one of a, b must vanish. If, for example, a = 0 and b, c 
= 0,
then (3.3) implies

0 
= bc = bc+ da = q = 0,

a contradiction. Thus if one of a, b, c, d vanish, then at least three of them vanish,
as claimed.

When a = b = c = d = 0, the character is bi-dihedral, as discussed above.
Therefore we assume that all a, b, c, d 
= 0, and show that three of them are equal
and the fourth is their negative.

Definitions (3.3) and (3.4) and q = r = 0 imply

(3.6)
a

b
= − c

d
,

c

d
= − b

a
,

and (a/b)2 = 1. Thus a = ±b. Suppose first that a = b. Then (3.6) implies
d = −c. Now apply (3.2) with p = 0 to similarly conclude that c = ±b. Suppose
first that c = b. Then c = b = a = −d as desired. Similarly c = −b implies
c = −b = −d = −a as desired. The case that a = −b is completely analogous. �

The first case, when the peripheral traces are (0, 0, 0, d), has been treated by
§6.3 of Goldman [6], and §2.4 of Cantat-Loray [3]. In that case the Σ0,4-character
corresponds to a representation ρ where ρ(A), ρ(B), ρ(C) are lifts to SL(2,C) of
involutions in PSL(2,C) and

ρ(D) = ρ(C)ρ(B)ρ(A)

is (essentially) their product. The representation thus descends from π1(Σ0,4) ∼= F3

to the fundamental group of an orbifold-with-boundary O whose underlying surface
is a disc and has three branch points of order two. The (hyper-) elliptic involu-
tion on Σ1,1 defines an orbifold-covering space Σ1,1 → O and the corresponding
Σ1,1-character corresponds to the restriction of the representaion to the induced
monomorphism

π1(Σ1,1) ↪→ π1(O)

X �−→ A′B′

Y �−→ B′C ′
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where

π1(O) = 〈A′, B′, C ′, D′ | (A′)2 = (B′)2 = (C ′)2 = A′B′C ′D′ = e〉
in the notation of [6, §6.3], to which we refer for details. A similar interpretation
for the relative characters for (a, a, a,−a) for a 
= 0 would be interesting.

4. Recent developments

Recently Deroin-Tholozan [5] found compact components of PSL(2,R)-charac-
ters in X

(
Σ0,n,PSL(2,R)

)
for all n ≥ 3. They called these representations supra-

maximal since their relative Euler class “exceeded” the presumed maximum value
in the Milnor-Wood inequality. Namely, for a surface with nonempty boundary, to
define the Toledo invariant (which agrees with the Euler class when G = PSL(2,R)),
one requires some boundary conditions. As in [2], one must correct the definition
of the Toledo invariant when the holonomy around a boundary component c is
elliptic. The correction term is the rotation number. Denote the subset of PSL(2,R)
consisting of elliptic elements by Ell, and the subset of hyperbolic elements by Hyp.

The rotation angle mapping Ell
θ−−→ (0, 2π) is Inn

(
PSL(2,R)

)
-invariant and assigns

to [
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
the parameter θ.5 Although it is continuous on Ell, it does not extend continuously
to PSL(2,R). Deroin and Tholozan extend θ to an invariant upper-semicontinuous
function which vanishes on Hyp and takes the identity element 1 ∈ PSL(2,R) to
2π. (θ = 0 on the positive parabolic elements and θ = 2π on the negative par-
abolic elements.6) Then the corrected relative Euler number e(ρ) of a PSL(2,R)-
representation ρ is obtained by lifting the interior generators of π1(Σ) to the uni-

versal covering ˜SL(2,R) and correcting by contributions of θ for each boundary
component. Specifically, in terms of the standard presentation

π1(Σ) = 〈A1, B1, . . . , Ag, Bg, C1, . . . Cn | [A1, B1] . . . [Ag, Bg]C1 . . . Cn = I〉
and a representation ρ, the expression

[ρ̃(A1), ρ̃(B1)] . . . [ρ̃(Ag), ρ̃(Bg)] ρ̃(C1) . . . ρ̃(Cn)

lies in

π1

(
PSL(2,R)

)
= Ker

(
˜SL(2,R) −→ PSL(2,R)

) ∼= Z,

where X̃ denotes the lift of X ∈ PSL(2,R) which is compatible with the above
choice of θ. This is the relative Euler number e(ρ).

Using the theory of the Toledo invariant and maximal representations developed
by Burger-Iozzi-Wienhard [2], Deroin and Tholozan find compact components of
relative SL(2,R)-characters exist only for planar surfaces, that is, when Σ has genus
0. They show that for planar surfaces, their invariant may exceed the Milnor-
Wood bound |χ(Σ)| = n − 2, but is no greater than n. The case of n only occurs
for the trivial representation, and n − 1 for the Deroin-Tholozan representations.

5A. Maret has pointed out that this parameter θ is not completely well-defined until one
requires, for example, that θ < π for elliptic elements close to 1 in the positive segment of an
elliptic one-parameter subgroup.

6A positive parabolic element is one PSL(2,R)-conjugate to
[
1 0
t 1

]
for t > 0 and negative

parabolic for t > 0. This distinction disappears for PGL(2,R)-conjugacy.
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Furthermore they show that if e(ρ) > n− 2, then the surface is planar (g = 0) and
compact components arise.

For every choice of boundary traces, each compact component of X(Σ0,n, SL(2,R))
is symplectomorphic to CPn−3 with its standard Fubini-Study symplectic structure,
at least up to scale. Using Delzant’s theory of moment polytopes, they compute
the symplectic volume in terms of the boundary parameters. Arnaud Maret [13]
found action-angle coordinates for the Hamiltonian twist flows on Deroin-Tholozan
components.

Unlike components of Fuchsian characters, ρ(x) is elliptic for every x ∈ π
corresponding to a simple closed curve. This is easy to see because otherwise the
Hamiltonian twist flow would be unbounded, contradicting compactness. They
also showed that Mod(Σ)-orbit of [ρ] is bounded. Maret [12] showed that the the
Mod(Σ)-action is ergodic with respect to the symplectic measure.

Following suggestions of Olivier Biquard, Gabriele Mondello [14] interpreted
these results in terms of parabolic Higgs bundles. This is closely related to the fact
(see [5]: For every complex structure on Σ0,n, ∃ ρ-equivariant holomorphic map

Σ̃0,n −→ G/K. This is analogous to constant map whenG is compact. Furthermore
it contrasts the situation in higher Teichmüller theory that for many classes of
surface group representations (for example Hitchin representations into low rank
simple real forms), that there is a unique conformal structure giving an equivariant
holomorphic metric (Labourie [11]). This gives a holomorphic identification of the
symplectic leaves as above.

Finally we mention that the PSL(2,R)-theory extends to higher rank Lie groups.
Tholozan-Toulisse [16] have found compact components of representations in higher
rank Hermitian Lie groups:

U(p, q), PSp(2m,R), SO∗(2m)

and many of the results proved in [5] generalize to these groups.
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