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Introduction 

The superrigidity theorem of Margulis, see Zimmer [17], classifies finite dimen- 
sional representations of lattices in semi-simple Lie groups of real rank strictly 
larger than 1. It is a fundamental problem to obtain the classification of finite 
dimensional representations of lattices in rank I semi-simple Lie groups. That 
this problem will be considerably harder than the previous one is suggested by 
the existence of continuous families of inequivalent representations or, in other 
words, the existence of non-trivial deformations. In Johnson-Millson [6] and 
Kourouniotis [8] such deformations were constructed for certain represen- 
tations of lattices in SO(n, 1) based on a construction of Thurston called 
bending. The deformation space of the representation of a lattice F=SO(n, 1) 
obtained by restricting an inclusion SO(n, 1)-,SO(n+ l, 1) to F is of particular 
interest. If n > 2  the space of infinitesimal deformations is Hi(F, R "+1) where F 
acts on R "+1 by the restriction of the standard action of SO(n, 1). The space of 
infinitesimal deformations is non-zero for the standard arithmetic examples 
and the main point of the papers cited above was to establish that some of 
these infinitesimal deformations are integrable (in [6] it is also shown that 
some are not). 

In this paper, we study the complex analogue of the above example. We let 
F be a cocompact torsion free lattice in SU(n, 1) and consider the deformation 
space of the representation of F obtained by restricting an inclusion 
SU(n, 1)--*SU(n+I, 1). If n > l  the space of infinitesimal deformations is 
H~(F, R)@H~(F, C,+ 1). In the first summand F acts trivially and the infinitesi- 
mal deformations are tangent to the obvious deformations obtained by de- 
forming F in U(n, 1) by a curve of homomorphisms into the center of U(n, 1) 
(observe that the above inclusion factors as SU(n, 1)~U(n ,  1)~SU(n+I,  1)). 
In the second summand F acts by the restriction of the standard action of 
SU(n, 1). This summand is non-zero for the standard arithmetic examples, 
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Borel-Wallach [1], 5.9 and is the complex analogue of the space of infinitesi- 
mal deformations in the real case considered above. Thus, it is rather surpris- 
ing that none of these latter infinitesimal deformations are integrable (Theorem 
4.2 of this paper). This fact is the main technical result behind our main 
theorem. We now give two statements of our main theorem; the first one 
geometric, the second one group-theoretic. 

Let D "+1 be the unit ball in C "+1 equipped with the metric of constant 
holomorphic sectional curvature-1 (complex hyperbolic space). 

Theorem 1. Let F be a torsion free group acting isometrically and properly 
discontinuously on D "+1 in such a way as to stabilize a totally geodesic n-ball D n. 
Assume the quotient F \D"  is compact. Then all nearby isometric actions of F on 
D "+1 also stabilize a totally geodesic n-ball. 

We now give the group-theoretic version of our theorem. We define a 
representation p from F into SU(n+I ,  1), see Sect. 1 for notation, to be 
Fuchsian if it is discrete and faithful and leaves invariant a line in C "+2 
containing a vector of positive length for the hermitian form of signature (n 
+ 1, l). Equivalently, p is Fuchsian if it leaves invariant a totally geodesic n- 
ball contained in the n + 1-ball. We can now state our main theorem. 

Theorem 2. The set of Fuchsian representations is a connected component in the 
strong (or classical) topology on Hom(F,  SU(n+ 1, 1)). 

In fact we give a complete description of the component.  It is a locally 
algebraic subset diffeomorphic to the smooth manifold (SU(n+I ,  1)/S1)x T 
where T is the torus H o m ( F , S  1) and S ~ is embedded as the center Z of the 
subgroup (isomorphic to U(n, 1)) of SU(n+ 1, 1) stabilizing the first standard 
basis vector. In particular, we observe that if Pt is any curve in Hom(F, SU(n 
+1,  1)) containing a Fuchsian representation p then there exist g, in SU(n 
+1, 1) and Z, in Horn(F, Z) such that pt=Adgto(p)O.  

We now sketch the proof  of our theorem. We let N0 denote the set of 
Fuchsian representations. In the first section we assume No is not open and 
use the Curve Selection Lemma of F. Bruhat and H. Caftan, see Milnor [11], 
to find a curve of representations p, intersecting ~ o  at a single point p. We 
also prove that ~0  is closed in Hom(F,  SU(n+ 1, 1)). 

In Sect. 2 we construct a quadratic form Q on H~(F,C"+I).  Here C "+1 is 
identified with the orthogonal complement in C "+2 of the invariant line L of p 
and F operates by the action induced by p twisted by a unitary character. The 
form Q is defined as follows. The given Hermitian form on C "+1 induces a 
form of signature (n, 1) on the orthogonal complement  of L. Using the imag- 
inary par t  of this form we construct a symmetric bilinear form A ( ' , ' )  on 
Hi(F, C "+1) with values in H2(/", R). But H2(F, R) contains a canonical class Z, 
the ( n -  1)-fold self-intersection of the hyperplane section class. We define Q(c), 
for c6HI(F, C"+1), to be the Kronecker index of A(c, c) and Z. In Sect. 2 we 
prove by examining the Taylor expansion of Pt around p that the assumption 
that N o is not open implies that Q is isotropic. 

In the last two sections we prove that Q is in fact positive definite con- 
tradicting the assumption that ~o  was not open. The  fact tha t  Q is positive 
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definite turns out to be equivalent to a special case of a general vanishing 
theorem of Matsush ima-Murakami  [9]. In the case n =  1, it was proved in 
Go ldman  [5] by a different method that  Q was positive definite. Also Theo- 
rem 2 was proved in [51 again by a different method for the case n =  1. For  
this reason we may make  the assumption in this paper  that n > 2. 

As remarked at the end of this paper, our  results generalize to the case of a 
torsion-free group acting isometrically and properly discontinuously on D "+k 
stabilizing a totally geodesic D" such that F\D" is compact.  We again call such 
an action of F Fuchsian. It seems reasonable to look for a "s trong rigidity" 
theorem corresponding to our "local rigidity" results. However, it is important  
to observe that  there is an invariant (under conjugation by SU(n+k, l)) of  
isometric actions of F on D "+k obtained as follows. The Kahler form uJ on 
D n+k (properly normalized) corresponds,  by the van Est Theorem, to a con- 
t inuous Ei lenberg-MacLane cohomology  class co~H2(SU(n+k, I) ,R) which is 
the image of  an integral class. Taking exterior powers we get a class 
o~"~H2"(SU(n+k, 1), R). If p is a representation of  F in SU(n+k, 1) we can pull 
back c0" by p to obtain a class p* co" in H2"(F, R). Evaluating p* eJ" on the 
fundamental  class in H z n ( F  , Z) we obtain an integer which we denote v(p) - in 
the case p is Fuchsian v(p) is the volume of F\D". We observe that v is 
constant  on each component  of  Horn(F, SU(n+k, 1)). 

We now conjecture that if p~Hom(F ,  SU(n+k, 1)) satisfies v(p)=vol(F\D") 
then p is Fuchsian. There is considerable evidence in addition to the main 
result of this paper tha t  this strong rigidity result should hold. The conjecture 
has been proved for the case n = 1 and all k in unpublished work of  D. Toledo. 
Also if p is a representation of  F into SU(n+k, 1) there is a F-equivariant  
smooth  map f :  D"~D "+k. Results of Faran [3] and Webster [15] show that it 
suffices to prove that f is a holomorphic  embedding. 

We thank E. Bierstone and Y.T. Siu for helpful conversations. 

1. Fuehsian representations and their deformations 

In  this section we prove that the set of Fuchsian representations is a locally 
algebraic subset of Hom(F ,  G). That is, we construct  a real algebraic subset X 
of  Horn(F, G) and a strongly open subset U of Horn(F, G) such that Xc~U is 
the set of  Fuchsian deformations.  X will consist of  the representations which 
have an invariant line and U will consist of the representations which do not  
leave invariant a null-line or a negative line (in fact U is slightly smaller than 
this). We then assume that the set of  Fuchsian representations is not  open in 
Hom(F ,  G). We apply the Curve  Selection Lemma to deduce the existence of a 
real analytic curve Pt in U meeting the space of Fuchsian representations at a 
single point. 

We now establish some notation. In what follows G will denote the Lie 
g roup  SU(n+ 1, 1) the subgroup of the unimodular  matrices consisting of the 
(unimodular)  isometries of the hermitian form F: C "+2-~R given by:  

F(z 1, ..., z,+ 2) = Izl I 2 + . - -  + [z,+ 112 - [ z , +  2 [2. 
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We let ( , )  denote the sesquilinear form associated to F. We will assume 
throughout that n = 2. We will sometimes let W denote C "+2. 

We now give a structure of a real algebraic group to the complexification G 
of G so that the associated real points are G. We note G=SL,+2(C).  It is 
sufficient to define an antilinear action of Z/2 (the Galois group of C over R) 
on G. We let r be the n+2 by n §  diagonal matrix with diagonal entries 
(1 . . . .  , i, - 1). We make the non-trivial element of Z/2 act by the anti-holomor- 
phic involution cr defined by: 

o-(g) = r(g*)- 1 r. 

Here g* is the usual adjoint of g; that is, g* =tt~ where the superscript t denotes 
transpose. We have now given a real structure to SL,+2(C ) - a polynomial 
function f on SL.+2(C ) is real if: 

f(a(g)) =f(g). 

Here f(a(g)) denotes the complex conjugate of the complex number f(a(g)). 
Clearly the set of real points of SL,+2(C ) for the above real structure is SU(n 
+1,  1). We often abuse notation by letting the same symbol denote both the 
set of complex points and the algebraic group. We may use the involution a to 
give a real structure to G N for any integer N > I .  Then if F is a group 
generated by N elements we obtain an induced real structure on Hom(F,  G). 

In what follows Go will denote the real algebraic subgroup of G consisting 
of those elements which leave invariant the line through e 1 where 
{el, e 2 . . . .  , e n + 2 }  is the standard basis for C n+2. We will denote by V the 
subvector space of C "+2 consisting of those vectors with first component  zero. 
We let G o denote the real points of Go. Then G o is isomorphic to U(n, 1) and 
the induced action of G o on V is equivalent to the standard representation of 
U(n, 1) on C "+1. We will often identify G O with U(n, 1) and V with C "+~. We 
will also use ( , )  to denote the induced sesquilinear form on V. 

Let F be a torsion-free group and Po: F--, U(n, 1) be a faithful representa- 
tion of F as a cocompact  discrete subgroup of U(n, 1). Then F operates via Po 
on the unit ball D" in C" as isometries of the Bergmann metric, see Kobayashi-  
Nomizu [7], p. 282. In [7], D", together with the Bergmann metric is called 
complex hyperbolic space. We have adopted this terminology in our title. The 
quotient space M=F\D" is a compact Kahler manifold. A suitable multiple of 
co, the imaginary part of the Bergmann metric, is the Chern form of a line 
bundle over M which is a for t ior i  positive. Hence, by the Kodaira  Embedding 
Theorem, there exists a complex analytic embedding from M into a complex 
projective space PN(C). A suitable multiple of co is the Poincare dual of the 
hyperplane section class in M, the homology class determined by the in- 
tersection of the image of M with a generic hyperplane in PN(C). We now 
investigate the connected component  of H o m  (F, U(n, 1)) containing P0. 

Since po(F) is torsion free we see that the intersection of po(F) and the 
center of U(n, 1) is {e}. Consequently po(F) projects isomorphically into the 
simple Lie group PU(n, 1). We now prove a general theorem which will imply 
that for any Lie group G the set of discrete faithful representations of F into G 
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form a closed subset of Hom(F,  G). We observe that po(F) is Zariski dense in 
PU(n, 1) by the Borel Density Theorem [12], Chap. V. 

Theorem 1.1. Let F be a torsion free subgroup of a connected semi-simple linear 
Lie group H. Assume F is Zariski dense in H. Let G be any linear Lie group. 
Then the discrete faithful representations of F into G Jorm a closed subset of 
Horn (F, G). 

The theorem is a consequence of the next two lemmas. 

Lemma 1.1. Suppose F is a torsion free group containing no non-trivial nilpotent 
normal subgroups. Let G be a linear Lie group. Then the set oj" discrete faithfid 
representations is closed in Hom(F,  G). 

Proof Choose  a ne ighbourhood U of the identity in G such that if F is any 
discrete subgroup of G then F m U  is contained in a connected nilpotent Lie 
subgroup of  G, see Raghunathan  [12], Theorem 8.16. 

Now let {p,} be a sequence of discrete faithful representations converging 
to a representation p. We first show that p is faithful. Let K = Ker p. Then K is 
normal. We claim K is nilpotent. Since p, embeds F into a linear Lie group 
and F is torsion-free, there is an upper bound  to the length of the descending 
central series and it is sufficient to show every finitely generated subgroup of K 
is nilpotent. Let {71, 72 . . . . .  7r} be a finite subset of K. Then there exists n so 
that {P,(70 . . . . .  P,(Vr)} ~ U. Consequently the image of  the subgroup K '  gener- 
ated by {9~1, 72 . . . . .  Vr} is nilpotent. Hence K '  is nilpotent and consequently K 
is also. Hence K = {e} and p is faithful. 

We now prove p is discrete. Suppose p(F) is not  discrete. Let N be the 
closure of  p(F) in G so N is a Lie group. Let N o be the connected component  
of the identity in N. Then N ~ for otherwise N would be discrete and 
consequently p(F) would also be discrete. Now N o is generated by any neigh- 
borhood  of the identity hence by N ~  Consequently Uc~F generates a 
dense subgroup of N o and N o is nilpotent. Since N o is normal  in N we see 
p- l (N~  is normal  in F. But since p is faithful p - l ( N ~  is nilpotent and 
consequently N ~  {e}, a contradiction. With this the lemma is proved. 

Lemma 1.2. Let H be a connected semi-simple linear Lie group with center Z u. 
Let F be a closed subgroup of H which is Zariski dense in H and such that 
F mZH= {e}. Then F has no non-trivial nilpotent normal subgroups. 

Proof Suppose A c F  is a nilpotent normal  subgroup of H. Let M be the 
Zariski closure of A. Then M is normalized by /2. Indeed consider the set N 
= { x e H :  y x T - l ~ M ,  VT~F}. Then N is an algebraic set containing A so M c N .  
Since F is Zariski dense in M we find that G normalizes M. But M is nilpotent 
so M is discrete hence central. Hence A c Z n so A = {e}. 

We now examine the connected component  of P0 in Horn(F, U(n, 1)) using 
the rigidity theorems of Weil and Mostow. We let {~i :  i = 0 ,  1 . . . . .  l} be the set 
of components  of Hom(F,  U(n, 1)). We number  the components  so that No is 
the connected component  of Po. 
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Theorem 1.2. The connected component of Po coincides with the set of discrete 
jaithful representations. The group PU(n, 1) •  (F, S 1) acts simply transitively 
on it. 

The theorem is a consequence of the next two lemmas.  

L e m m a  1.3. The set of discrete faithful representations of F into U(n, l) is a 
union of components. 

Proof We show that  the set of discrete faithful representat ions of F into U(n, 1) 
is open and closed in H o m ( F ,  U(n, 1)). We observe that  since po(F) is cocom-  
pact  we have Hzn(F, R ) +  {0}. Consequent ly  any discrete faithful representat ion 
of F is cocompact .  By Weil [16] the set of discrete faithful representat ions of F 
is open in the strong topology.  But by Theo rem 1.1 the set of discrete faithful 
representat ions of F into U(n, 1) is closed and the 1emma is proved. 

We observe that  we have an act ion of PU(n, 1)xHom(F,S  1) on 
Horn(F,  U(n, 1)) by: 

(g, Z)" p = A d  g~ 

Here ZP is the representat ion given by: 

ZP0)  =Z(~) P(7)- 

L e m m a  1.4. PU (n, 1) • Hom(F ,  S l) acts simply transitively on the set of discrete 
faithful representations of F in U(n, 1). 

Proof. We have a central extension S l ~  U(n, 1 ) - ~  PU(n, 1). We observe that  if 
p: F ~ U ( n ,  1) is discrete and faithful then p(F}c~Sl={e}. Hence ~ o p  is also 
discrete and faithful. But by the Mos tow Rigidity Theorem the group  PU(n, 1) 
acts transit ively on the discrete faithful representat ions of F into PU(n, 1). 
Hence  any two elements Pl, P2 in Horn(F,  U(n, i)) satisfy ~ (p l )=AdgoTz(p2)  
for some g in U(n, 1). Hence  Pl =zg~ for some character  Z. This proves that  
PU(n, 1) x H o m ( F , S  ~) acts transitively. To  prove  that  the action is free it is 
sufficient to compute  the isotropy at Po. Suppose there exist h~PU(n, 1) and 
z ~ H o m ( F ,  S l) such that:  

AdhoXPo=p o. 

Taking  determinants  we see that  Z has order  n + 1. Lett ing F' be the kernel of X 
we find that  F '  is Zariski  dense and hence h = 1. Hence  X = 1 and the l emma  is 
proved. 

Corol lary 1.4.1. The set of discrete faithJul representations of F into U(n, 1) 
consists of a single component. 

We now define an embedding  j f rom U(n, l) into SU(n+l ,  1) as follows. 
Suppose heU(n, 1) has matr ix  (hik) for l < i ,  k < n +  1. Then we define j(h)eSU(n 
+ 1, l) by the formula:  

j(h) e 1 =(de t  h) -  1 el ' 

j (h )ek=hi_ l , k_  1 e i for 2 < i ,  k<n+2.  
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That is: 

Lemma 1.5. j is a proper map. 

Proof j is clearly a homeomorphism onto its image and the image of j is 
described by the linear equations {zlk=0: 2_<k_<n+2}. Hence the image of j 
is closed and j is proper. 

We let j ,  denote the induced map 

j , :  Horn(F, U(n, l ) ) ~  Horn(F, SU(n+ 1, 1) 

defined by j , (p )=jop .  The image of j ,  is again cut out by linear equations 
and we obtain a 1emma. 

Lemma 1.6. j ,  is a proper map. 

l 

Corollary 1.6.1. The decomposition j ,  Horn(F, U(n, 1))= ~ j ,(Jli) is the decom- 
position into components, i=o 

We let Po denote also the composition jo Po. This composition gives rise to 
an action of F on the unit ball D "+1 in C "+1 leaving invariant the linearly 
embedded n-ball defined by the equation zl = 0. 

We will be concerned in this paper with the deformations of Po in 
Horn(F, G). Such deformations would be the analogues for complex hyperbolic 
space of classical quasi-Fuchsian groups in hyperbolic 3-space. 

There are certain obvious deformations of Po. First, there are the trivial 
deformations. Let g, be a curve in SU(n+ 1, 1). Then we obtain a deformation 
Pt of Po by defining pt=Adgtopo.  Such a deformation is said to be a trivial 
deformation. We may also deform Po by characters of F. Suppose that the 
dimension of H l(F, R) is greater than zero. Then we may find a curve ;(t in 
Horn(F, S ~) and we obtain a deformation p~ of Po to be denoted Po *)~ by the 
formula: 

P,(7) el = Z,(7) -("+ 1)Po(?) el, 

pt(7)ea=Zt(7)Po(Y)e j for j>_2. 

We have Po * X, =J(zt Po). 

Definition. We say a deformation p, of Po is Fuchsian if there exists a curve g 
in G and a curve Zt in Hom(F,  S 1) such that: 

Pt = Ad g, o (Po * Zt)" 

Thus the space of Fuchsian deformations of Po is just the saturation by G of 
the space j ,  Horn(F, U(n, 1)). We wish to analyse this space which will be 
denoted R(po). The following general lemma will be very useful to us. Let 
P(W) denote the projective space of complex lines in W. 

Lemma 1.7. Let X be compact subset of P(W). The subset of representations 
which have a fixed point in X is closed in Horn (F, G). 
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Proof We consider the map F: GNx X ~ X  N+I given by: 

F(ga . . . . .  gN, x) = (x, gl x . . . . .  gNX). 

If A denotes the diagonal in X N+I, the condition that p has a fixed point in X 
is that there exists x e X  (the fixed point) such that (g~ . . . . .  gN, x ) eF- I (A )  �9 Let 
Pl:GNx X--* G N denote the projection. Since the fiber of pl is compact, p~ is a 
proper and hence a closed map. Hence pl(F-I(A))  is closed and the lemma is 
proved. 

We apply the lemma in two cases. In the first case we let C denote the light 
cone in W; that is, the set described by: 

C = { x e W :  ( x , x ) = O } .  

We let X = P C ,  the image of C in P(W). 

Corollary 1.7.1. The set of peHom(F ,  G) which do not leave a point in PC  fixed 
is open. 

For our second corollary, we observe that P(W) is separated by P C  into 
the disjoint union of P(W)+, the set of positive lines in W and P(W)_,  the set 
of negative lines in W.. Here a line L in W is said to be positive (resp. negative) 
if ( , ) ] L  is positive definite (resp. negative definite). By taking X = P ( W ) _  u P C  
we obtain the following corollary. 

Corollary 1.7.2. The set of peHom(F ,G)  which do not leave a point in 
P(W)_ w P C  f ixed is open in Hom(F,  G). 

We let U' denote this open set. We need a variation on Lemma 1.7 using 
the Zariski topology. 

Lemma 1.8. Let X be the subset of Hom(F,  _G) consisting of all representations 
that f ix  a line. Then X is Zariski closed in Hom(F,  _G). Moreover X is defined 
over R. 

Proof We consider the map F: _GNx P(W)-~ P(W) N+I given by the formula: 

F(gx . . . .  , gN, x)=(x,  gx x, ..., gNx). 

Then X = p ~ F - I ( A ) .  Since p~ is proper in the Zariski topology X is Zariski 
closed. 

To see that X is defined over R we have only to check that if peHom(F ,  G) 
fixes a line then a(p) fixes a line. Suppose p fixes L. Choose g so that gL= Ce 1. 
Then A d g o p  fixes Ce 1. Hence A d g o p  has the block diagonal form an upper 
1 by 1 block with an n +  1 by n +  1 block below. But then (Adgop)  *-1 has the 
same block diagonal form and hence Adg  * -~o(p*) - I  has the same block 
diagonal form and fixes Ce 1. Consequently ( p , ) - I  fixes Cg*el .  But then a(p) 
= A d r o ( p * )  -1 fixes Crg*e  1. With this the lemma is proved. 

Notation. If Y is a subset of Hom(F,  G) we let S(Y) denote its saturation by G: 

S(Y) = {Ad goy: y~ Y, g~G}. 

The following lemma is obvious since G acts transitively on the positive lines. 
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Lemma 1.9. 
X nU'=S(Hom(F, U(n, 1))). 

We now prove the final lemma of this section. 

of S ( j , ( ~ j ~ i t  t in H o m ( F , G ) d o e s  not intersect Lemma 1.10. The closure 
R(po). i \ \ = 2 1 1  

Proof Suppose for the purpose of contradict ion that the closure of 

--(J* .--(/=Q), N / ) )  i n . .  Horn(F, G)intersects  R(po). Then there exist sequences {g.} S 

l 

in G, {p.} in U ~ and p~S(~o) such that lira A d g .  o p . = p .  By conjugating by 
i = l  n ~ o v  

a fixed element of G we may assume p has Ce~ as its fixed line. The represen- 
tation A d g .  op fixes the line L.=Cg.e~. By compactness the sequence of fixed 
lines {L.} in W has a line L of accumulation. By passing to a subsequence we 
may assume lira L.  = L. But we have Ad g. o p. L.  = L.. Passing to the limit we 

n ~ o o  

have pL=L. But p has a unique fixed line. Hence L=Ce~. Now choose a unit 
vector v.sL. for each n. The sequence {L.} is contained in a closed ball B 
inside P(W)+.  Hence the sequence {v.} is contained in a compact  set - the 
tautological circle bundle over B. By passing to a subsequence we may assume 
lim v.=ce~ with c~S ~. We redefine v. to be c -~ v. and we find a sequence of  

unit vectors {v.} such that v. is fixed by A d g .  op.  and l imv .=e~ .  We now 
n ~ o o  

construct a sequence of elements {h.} in G such that h. e 1 = v. and l imh .  =id.  

If infinitely many  of the v.'s are multiples of e~ then we are done because 
l 

~) j . ( ~ )  is closed by L e m m a  1.6. Hence we may assume that none of the v.'s 

are multiples of  e a. Let 

and 
a.=(v.,el), b.=llv.-(v. ,el)elN 

1 

Then v.=a.e~ +b.f.. Let h. be the element of G defined by: 

h.(eO=a.el +b.f., 

h.(f.)  = b-. e 1 + a . f . ,  

h.(u)=u if (u, ea)=O and ( u , f . ) = 0 .  

Then clearly {h.} satisfies the required properties. We now consider the se- 
quence {h~g.p.g~lh.}.  The elements of this sequence all fix the line Cel ,  

hence are contained in j ,  ~ i  �9 But this sequence converges to P ~ o .  This 
i 

is a contradict ion since j ,  ~ i  is closed by Lemma 1.6. 
i 
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in We now define U" to be the complement  of the closure of S j .  i 

Horn(F, G). We define U= U'~U". Then X:~U=R(po) and we have proved 
the following theorem. 

Theorem 1.3. There exists a saturated strongly open subset U of Horn(F, G) and 
a saturated real algebraic subset X of Horn(F, G) such that Xf~ U=R(po). 

The idea of studying the limiting line of the fixed lines of a sequence of 
Fuchsian representations will allow us to prove the following theorem: 

Theorem 1.4. The set of Fuchsian representations R(po) is closed in Horn (F, G). 

Proof. Suppose {p,} is a sequence of representations in R(po) converging to a 
representation p in Horn(F,  G). Then p is discrete and faithful by Theorem 1.1. 
Let {L,} to be a sequence of fixed lines as in the previous theorem and L a 
limit line. If  L is a positive line then we are done since p fixes L and p is 
discrete and faithful. We may then assume that L is a null-line, for the set of  
representations fixing a non-negative line is closed by Corol lary 1.7.2. Hence p 
is a discrete faithful embedding of F into a parabolic  subgroup P of G. But P 
is amenable  so F is amenable. But this implies F is virtually solvable by Tits 
[-14]. With this the [emma is proved. 

Thus to prove our  main theorem, Theorem 1.2 Theorem 2 of the in- 
troduction), it remains to prove that R(po) is open in U, We assume for the 
purpose of contradict ion that this is not  the case. Hence there exists a sequence 
of points {y,} in U converging to some p~R(po). By conjugating by some g~G 
we may assume p~j .  Hom(F, Go). We may now apply the Curve Selection 
L e m m a  to find a curve Pt such that:  

(i) p t ~ Y - X  for t=#0. 
(ii) Pt = P for t = 0. 

In the next section we study the Taylor  series of Pt. 
We conclude this section with a theorem concerning R(po). 

Theorem 1.5. R(Po) is diffeomorphic to (SU(n+ 1, 1)/S 1) x Horn(F, S 1) where S 1 is 
embedded in SU(n+ 1, 1) as the center of j(U(n, 1)). 

Proof If peR(po) we let Z(p) denote the isotropy subgroup of p in G. If  g~Z(p)  
then g stabilizes the invariant line of p so Z(p) is contained in a conjugate of  
j(U(n, 1)). Applying L e m m a  1.4 we obtain the theorem. 

2. Construction of a normal cocycle with bounding square 

In this section we use the curve p, constructed in the previous section to con- 
struct a cocycle c~ZI(F, ~) which is not tangent to the space of Fuchsian defor- 
mations, that  is cCBI(F,~)+ZI(F,~o), and with cup square [c,c]eB2(F,y). 
We recall [c, c] is the 2-cocycle defined by:  

[c, c](7, r/)--- [c(7), Ad P(7) ~ c(q)]. 
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We then use c to construct a zero for a certain real quadratic form on 
Hi(F, V). Here ~ denotes the Lie algebra of G and ~'1, is the orthogonal 
complement relative to the Killing form of g0, the Lie algebra of G 0, in y. If 
ceHI(F,  ~), the class of I-c, c] is the first obstruction to finding a curve p~ 
tangent to c. 

We will need to generalize the material in Johnson-Millson 1,6], Sect. 2 to 
the case in which the tangent vector of a deformation vanishes at t=0.  We will 
also need to break up the deformation into a block diagonal and off diagonal 
part and generalize the two main lemmas, Lemma 2.1 and Lemma 2.3 of [6] to 
the leading coefficient of the off diagonal part. 

We begin with an easy lemma as a bridge to the more detailed general- 
izations we will require. 

Definition. Let X be an affine variety in R" and ~ : ( - e , e ) ~ X  be a real 

analytic curve such that c~(0)=x. Let c~(t)= ~ C~k(0 ) t k be the Taylor series for c~ 
k=0 

about t = 0. We define the leading coefficient of c~ to be e, if n > 0, e, + 0 and % 
=0  for 0 < m < n .  

In other words % is the first non-zero term after the constant term. We 
observe that c~,~R m. 

Lemma 2.1. The leading coefficient % of  ~ is tangent to X at x. 

Proof  L e t f  be a polynomial function vanishing on X. Then f(~(t))=0 for all t. 
We may assume x=0 .  We expand f(c~(t)) around t = 0  and find that 
f(c~(t)) =-dfo(e,)t" mod t "+1. Hence dfo annihilates % and the lemma is proved. 

Corollary. Let G c G L ( k ,  C) be a closed subgroup. Suppose Pt is a curve in 
Horn(F, G) and p, is the leading term of  Pr Then the function c: F ~ g l ( k ,  C) 
deft'ned by: 

c(~) = p.(~) po ( ~ ) - '  

is a cocycle on F with values in y. Furthermore if  Pt is a trivial deformation then 
c is a coboundary. 

Let U be a neighborhood of O in g such that the restriction of exp: y ~ G  
to U is injective. Let F ~ F  be an arbitrary finite set. Then for sufficiently small 
e > 0  we have pt (7)Po(7) - l~exp(U)  for all 7~F and Itt<e. Thus we may write 
for ~'eF: 

Pt(7) Po(7)- x = exp u,(7) 

where ut(y ) is curve in ~ with Uo(7)=0. 
We write out the Taylor series for u,(7) with 7eF as: 

u,(~)= ~ u~(7)t ~. 
k=0 

Substituting into the power series for exp we find that uk(7)=0 for k < n  and 
u,(7)=c(7) (where P,(7) is the leading coefficient of Pt(7) and c(7)=p,(7 ) Po(7)-1) 
as above). 
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We next observe that  if F generates F then there exists k so that Uk(Y)CSy o. 
Otherwise u,(7)eYo for all t and 7 e F  and hence &(7)=exput(7)Po(7) is an 
element of  G o for all t and 7eF.  Since F generates F this is a contradiction. 

We observe that as a consequence of the identity pt(7q)=pt(7)pt(q) we 
obtain:  

exp ut(Tq) = exp u,(7 ) exp Ad Po(7) ut(tl). 

We now derive some consequences of the Campbel l -Baker-Hausdorff  for- 
mula. We have 

) exp ut(y) exp Ad Po(Y) ut(t/) = exp C,,(ut(7), Ad Po(7) ut(q)) 
n=0 

where C, is the nth Campbel l -Baker-Hausdorf f  polynomial,  Bourbaki  [-2], 
p. 55. We obtain an equality of power series: 

u,(Tq) t"= ~ u,(7) t"+ ~ adPo(Y) u,(q)t" 
n=l n=l n=l 

1 
-I- 5 ~ Z [Ui(~), Ad P(7) uj(r/)] t n 

n = t  i + j = n  

+ n=Z3 Cn i Ui(7) ti' i=1 Ad Po(7) ui(rl) tl �9 

Bringing the first two terms to the left-hand side and equating coefficients of t" 
we obtain a multilinear function N. on the Lie algebra such that:  

fun(7, q) = N,(Ul(7) . . . . .  u,_ 1 (7); Ad Po(7) ul (0) . . . .  , Ad Po(7) u,_ 1 (r/)). 

We observe that N, is a sum of monomials  which are brackets of the ui(7)'s and 
the Ad  Po(?)uj(q)'s. In particular if u; takes values in an abelian Lie algebra for 
i <  n then u, is a cocycle. 

We now observe that ~ is Z/2 graded by the decomposi t ion described 
earlier. That  is, we have a decomposi t ion p = y o O ~ l  with the bracket re- 
lations: 

(i) [~0, ~o] CYo. 
(ii) [~o, ~1] c ~ l .  

(iii) [~1, ~ l ]  C~o- 

In particular any word [ [ [ x l ,  x2], x3], . . . ,  x,]  in ~ with the xfs  in either ~0 or 
] i  will be in ~0 if an even number  of  the x]s  are in ] l  and will be in ] l  if an 
odd  number  of the x]s  are in ~1. Corresponding to the decomposi t ion of ~ we 
have a decomposi t ion of cochains u : F ~ p  as u = w + v  with w : F ~ ] o  and 
v: F ~ l .  

We also assume we have a decomposi t ion ~ f o = ~ O z o  of Yo as the direct 
sum of two ideals such that the map  H l(F, xo) ~ H i(F, ~o) is an isomorphism. 
If Xe~o we let x' denote the projection of  x on ~o. Clearly this projection is a 
Lie algebra h o m o m o r p h i s m  and commutes  with the group coboundary  6. 



Local rigidity of discrete groups acting on complex hyperbolic space 507 

We observe that this last assumption is satisfied when y is the Lie algebra 
of S U ( n + I ,  1), go is the Lie algebra of U(n, 1) and x o is the center of ~o. The 
preceding statement is a consequence of Weil's vanishing theorem, see [12], 
VII-5, recall that  we are assuming n > 2 .  However  for later applications we 
continue in the more general situation of arbitrary F and arbitrary g subject to 
the hypotheses of the previous two paragraphs. 

We define the leading coefficient m od  go of a deformation Pt to be v,, where 
u,, is the first term such that u,,(7)r o for some 7~F and u,,= w,, + v,, is the 
above decomposit ion.  Here u,, is the m-th Taylor  coefficient of the curve u t 
associated to Pt as above. 

Lemma 2.2. The leading coefJ~cient mod go is a cocycle. 

Proof  To see that v,, is a cocycle compare  .f~ parts of degree t m on the two 
sides of the equation:  

exp U~(Tt/) = exp ut(7) exp (Po (~') ut(tl) Po(7)- 1). 

We have seen that ~Su m is a sum of iterated brackets of lower order  terms. 
But these lower order terms are all in go. Hence (~(w,,+v,,) is in go and 
consequently by m =0.  With this the lemma is proved. 

We say a deformation Pt is normalized if all the coefficients u k of log(ptpo 1) 
take values in ~o for k<=m. Here m is such that v,, is the leading coefficient 
mod go. 

Lemma 2.3. I f  pt is any deformation of  Po then there exists an analytic curve h t 
in G o with h o = e  such that A dh t op t  is normalized. 

Proof  We observe that by assumption Hi(F, Xo) maps onto Hi(F, go). Hence if 
u e Z l (  F,, go) then there exists r/~Z1 (F, Zo) and bEBI(F, go) such that u = q  +b.  

We will prove the lemma by induction on the degree. We first normalize 
the leading coefficient u,. We choose q, and b, as above such that u, = q ,  + b , .  
We choose a curve h t in G o such that if x=h" then b , ( 7 ) = A d p o ( ~ t ) x - x .  Then 
the leading coefficient of  A d h , , o p ,  is the coefficient of t" in the polynomial  
( l + x t " ) ( p o + U , t " p o ) ( 1 - x t " ) ,  that is X p o - p o X + U , p  o. The corresponding co- 
cycle is q, and we have normalized the leading term. 

Let us suppose that the first k terms are normalized. We wish to normalize 
uk+ ~. By the remarks preceding this lemma we have 6Uk+~=Nk+l(u ~, . . . ,u,) .  
But ua . . . . .  u k take values in the Lie algebra Xo so Nk+ ~(u 1 . . . .  , Uk)'=0 and u~,+ 1 
is a cocycle. Hence there exist bk+ 1 and q,+~ with bk+l~Bl(F,~o)  and 
r/k+lffCl(/ ' ,Xo) such that Uk+l=tlk+l+bk+x. We now construct  a curve h t as 
before so that h~-  1 + x t k§ m c d  t k + 2 and bk+ ~ (7)= Ad p ( y ) x - x .  We claim that 
the curve P't = Ad h t o p, has its first k + 1 terms normalized. Indeed we have: 

p't=(1 + xtk + l)(exp ut) po(1 -- x t  k+ l) mod t k+ 2 

- ( e x p  ut) Po +(XPo --Po x) tk+l mod t k+ 2 
Hence:  

Pl PO 1 ~ exp u~ -- bk+ 1 tk+ 1 mod t k+ 2. 
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We see that log(p ' tPo 1) has the same coefficients as u t up to and including the 
terms of order k. The coefficient of t k+l is Uk+ ~ --bk+ 1 =tlk+~ and the lemma is 
proved. 

We are now ready to prove our main lemma. We now assume Zo is abelian, 
hence central in Po- 

Lemma 2.4. I f  pt is a normalized deformation then we have: 

6w2,~ = [vm, vm]. 

P r o o f  We examine the Campbell-Baker-Hausdorff  formula more carefully to 
obtain: 

! 2 m - 1  

6u2,,(7, r/)= i ~ [Uk()'), AdPo(7) u2,,_k(tl)] 
k = l  

+M2m(Ul(~) . . . . .  u2m_1(7); Ad Po(?') ul(q) . . . . .  Ad po(y) u2m_l(~)). 

Here M2m is the sum of all monomials in N2, . involving at least three brackets. 
We now decompose each u k according to u k = w k + v k. Hence 

Ad Po(7) Uk = Ad Po(7) uk + Ad Po(7) Vk 

for all 7~F. We now expand the first term on the right-hand side of the above 
equation. 

1 2m--1 1 2m-1 
- ~ [Wk(7), AdPo(7) W2,,_k(t/)] 2 k=l ~ [Uk(Y)'Adp~ k=l 

1 
+ ~  ~ [Wk(t/), AdPo(7) V2m-k(q)] 

k = l  

1 2m 
+ ~  ~ [Vk(7), adPo(7)W2m_k(t/)] 

k = m  

1 
+ ~  [vm(y ), Ad Po(7) v~(t/)]. 

We see that the two middle terms on the right are annihilated by the 
projection on go. Also the first term is zero for in each of the brackets one of 
the terms is in x 0 and the other in ~0. We now analyze M2, .. 

We expand M2, . by the total number of brackets to obtain: 

M2m(Wi(7) , vi(•); a d  Po(7) wi(tl), Ad po(O/) vi(t/) ) 
2m 

= ~ Aj(wi(?)  , vi(?); Ad Po(?) w,(tl), Ad Po(?) vi(tl)). 
j=3 

Here A~ is a sum of monomials  each of which is a j-fold bracket. Since we 
have projected onto ~o each monomial  is an element of ~o. The total t-degree 
is 2m. We claim that the Afs involve only the w's. Indeed any monomial  
occurring in the Afs  is in ~o and hence must involve an even number of v's by 
the discussion preceding Lemma 2.1. But if any v's occur then the monomial  
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will have t-degree larger than or equal to n+2m. Thus, the A/s  do not depend 
on the v's. 

Since j > 3  it is clear that  at least one w k or Adpo(?)w k occurring in a 
monomial  must  satisfy k <m.  Say Wko is such a term. Then Wko takes values in 
z o. But Wko occurs bracketed with a monomia l  in the w's which take values in 
~o. The resulting bracket with Wko must be zero since Wko takes values in x o. 
With this the lemma is proved. 

We now modify the curve p, so that the leading coefficient rood 2o is not a 
coboundary.  We have the following lemma. 

L e m m a  2.5. I f  Pt is any deformation of Po then there exists an analytic curve g, 
in G with go = e  such that either Ad gt o Pt is normalized with leading coeJ]~cient 
mod 2o not a coboundary or Ad gt ~ Pt is contained in H o m  (F, Go). 

Proof By L e m m a  2.3 we may assume that Pt is normalized. Suppose v,,, is the 
leading coefficient m o d e 0  of Pt. Suppose vm, is a coboundary,  Then there 
exists x e 2  such that vm , (7 )= Adpo(7 )x - x .  Let gin,,, be the one parameter  
group in G with g,,, = x. We consider the curve P't given by P't = A d  g,,,, e,, ~ P~. 
We define a curve u~ with values in g as before with u' t = log (Pl ~ Po 1) and write 

u~(7) = ~ u~(7)t k. Then a calculation similar to that of Lemma 2.3 shows that 
k = l  

t u'k=u k for k < m  1 and u" =Um--Vm. We see then that the curve Pt has leading 
coefficient mod  ~o equal to v,, 2 with m 2 > m  1. We normalize Pl and repeat the 
above process. Either we arrive at a deformation Ad gtopt with leading coef- 
ficient m o d 2 o  which is not a coboundary  or we obtain a formal curve g',= 

I~I gmk, ~mk which satisfies the analytic equations given by Adg ' top teHom(F ,  Zo) 
k=l 
where Z o is the analytic subgroup of  G o corresponding to Zo. But then by 
Art in [18] there exists an analytic curve g, such that Adg~optcHom(F,  Zo). 
With this the lemma is proved. 

We now examine more closely the cup-product  of the beginning of this 
section. The cup-product  of cochains gives rise to a map:  

Hi(F, ] )  X H'(F, ~ ) ~  H2(F, g n u )  
given by 

c | c(7, r/) = c(7) | Ad P(7)' c (t/). 

But the Lie bracket gives a F-module  m a p y |  into y inducing a map from 
H2(F, y|  to H2(F, y). The composi t ion of this map with the cup-product  
gives rise to the map 

H~(F, g) x Hi(F, g) [ , I  H2(F, g) 

described in the beginning of this section given by: 

[~, e](7, I/)= [~(7) Ad P(7)" e(q)]. 

We observe that [ ,  ] induces a map 

H'(F, gl)| gO~ H2(C, go). 
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We may apply the considerations of this section to the curve p, constructed 
in Sect. 1. We let c=v, ,  where v m is the leading coefficient of Pt mod Yo. We 
have observed that since Pt is not contained in Hem(F,  Go) there exists m so 
that v,,#:0. Moreover, since Pt is not contained in S(Hom(F, Go) ) for t>0 ,  
there is no curve gt such that A d g t o p t 6 H o m ( F  , Go). By Lemma 2.5, we may 
assume that v m is not a coboundary. But [Vm, Vm] is a coboundary by Lemma 
2.4. We let F act on y by Po. We observe that po(F)=j(U(n, 1)) and con- 
sequently we may identify F with j -a  o po(F) a cocompact discrete subgroup of 
U(n, 1). We obtain the following theorem. 

Theorem 2.1. Suppose R(po) is not open in Hem(F,  G). Then there exists a 
realization of F as a cocompact torsion-free discrete subgroup of U(n, 1) and a 
non-zero class c~HI(F, ~Ta) such that [c, c] is zero in H2(F, 5Zo). 

We now observe that the mapping trace: y 0 - , C  induces a map 
Hz(F,~o)~H2(F,C) .  Moreover, a calculation shows that trace takes pure 
imaginary values on Yo. Multiplying by i/2 we obtain a map from H2(F, go) to 
H2(F, R). By composition we obtain a map: 

7J : H'(F, ~,) x H ~ (F, ~,)--* H2(F, R). 

We now use some considerations from differential geometry to get a real 
quadratic form on Hi(F, #1). We may identify the homology and cohomology 
groups of F with real coefficients with the corresponding homology and coho- 
mology groups of the compact manifold M = F \ D .  But M is a projective 
variety and consequently has a distinguished class Z in H2(M, Z). This class is 
obtained as follows. Let H c M  be the hyperplane section class of the pro- 
jective embedding given by applying the Kodaira  Embedding Theorem to the 
Kahler form 05 normalized to have integral periods. ~0 is (a multiple of) the 
imaginary part of  the Bergmann metric. We observe that H ~ H 2 n _ 2 ( M  , Z) and 
~o is the Poincare dual of H. Then Z, the ( n -  1)-fold self-intersection class of H, 
is a non-zero element of H2(M, Z) which is Poincare dual to & - ~ .  

We now define a quadratic form Q on Ha(F, ~1) by: 

Q(c)= ~e(c, c). z.  

Here we use �9 to denote the Kronecker  index. 
We now observe that there is a vector space isomorphism from V to y~ 

given by sending (z~, z 2 . . . . .  z.+l) to the n + 2  by n + 2  matrix with first column 
(0, zl, z 2 . . . . .  Z,+a) and first row ( 0 , - - Z I , . . . , - z , , Z , + m )  and all other entries 
zero. The action of po(F) on y~ corresponds to the standard action of F 
c U(n, I) on C "+~ twisted by the restriction of the determinant. We then have 
the following consequence of Theorem 2.1. 

Theorem 2.1(bis). Suppose R(po) is not open in Hem(F,  G). Then there exists a 
non-zero class c in Hi(F, V) which is a zero of  the real quadratic form Q defined 
by the composition: 

Ha(F, V) • H'(F,  V)~  H2(F, R ) ~ R .  

Here the first arrow is the cup-product induced by the real bilinear map given by 
the imaginary part of <, ). The second arrow is evaluation on the class Z. 



Local rigidity of discrete groups acting on complex hyperbolic space 511 

3. Some hermitian linear algebra 

The purpose of the last two sections of our paper is to prove that the quadratic 
form Q on H 1(1. V) defined at the end of the last section is in fact positive 
definite. Thus the assumption that R(po) is not open in Hom(F,  G) leads to a 
contradict ion and our main theorem is proved. 

In this section we prove a definiteness theorem for a certain quadratic form. 
This theorem will imply that certain integrands considered in Sect. 4 are 
pointwise either positive or negative. This will in turn imply that Q will have a 
fixed sign on each of the four Hodge  groups associated to HI(F, V). We will 
then invoke a theorem of Matsush ima-Murakami  which implies that the two 
Hodge  groups on which Q is negative definite are in fact zero. 

Let U be a real vector space with a complex structure J and an inner 
product  ( , )  such that for all u~, u 2 in U we have: 

(Ju~, Ju2)=(ut, u2). 

The J acts on U* the dual space of U, by 

a . c ~ ( u )  = - ~(au). 

We define ooEA 2 U* the Kahler  form associated to ( , )  and J by: 

v~(ul, u2) =(J ul, u2). 

We can choose an or thonormal  basis {qj, pj: j =  1, 2 . . . . .  n} for U* such that for 
all j :  

Jqj=pj 

Jpj -= _ qj. 

We find that the Kahler  form vJ is given by: 

co= ~ qjApj. 
j=t 

We now consider elements of  U*|  We define an element ~ e U * Q R C  to 
be of type (1, 0) if a satisfies for all ueU: 

o:(Ju)=io:(u) or equivalently Jc~= - i ~ .  

We denote the subspace of U * |  (we drop the subscript R on the tensor 
products  henceforth) of type (1, 0) linear functionals by ( U * |  C)" '  0t. 

We define an element fl of U * |  to be of type (0, 1) if fl satisfies for all 
u~U: 

fl(Ju)= -if l(u) or equivalently J fl=ifl. 

Now if c~eU* |  then we define its complex conjugate ~ e U * @ C  by: 
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Clearly the opera t ion  of complex conjugat ion interchanges (U*@C) (1'0) 
and ( U ' |  t~ 1). Also we note that  {p j+iq~: j=l ,2 ,  . . . ,n} is a basis for (U* 
@ C ) " '  o7 considered as a complex vector  space and {pj- iq j :  j =  1, 2 . . . .  , n} is a 
basis for ( U * |  t~ 1~ considered as a complex vector  space. 

We define "t'GA 2 U* to be of type (1, 1) if z(Jul ,  Ju2)=r(ul ,  U2). We observe 
that  co is of type (1, 1). 

We will also need to consider U*@RV with V a complex vector space 
equipped with a non-singular  sesquilinear form ( , ) .  We let z denote the 
imaginary  par t  of  ( , ) .  Since V is a complex vector  space we may  define type 
(1, 0) forms, type (0, 1) forms and complex conjugat ion using the same formulas 
as above, noting the difference that  , (u) is now an element of  V. Observe  that  if 
~ U* and v~ V we have the dyad ct| v~ U * |  V defined by: 

~ |  v(u) = ~(u) v. 

We now define a real bilinear m a p  B on U * |  with values in the type 
(1, 1) elements of A 2 U* by the formula:  

B(:,,/~)(u,, u2)= ~(~(u0,/~(u~))-~(,(u2),/~(Ux)). 

We note that  this formula  is the same as: 

B(a,/3)(ul, uz) = Im ( ( , (u l ) ,  fl(Uz) ) - (~(u2), fl(uO) ). 

It is impor tan t  to observe that  B is symmetric, that  is, B(:r ~). 

L e m m a  3.1. Suppose ~, fl are in U * |  and v, v' are in V. Then: 

(i) I f  v and v' are orthogonal we have: 

B(c~| v, f l |  

(ii) B(~| c~ |  v> Imc~Ag. 

Here  if cr are in U * |  then Im(ctA//)  is the element of A 2 U  * whose 
value at (ul, uz) is the imaginary  par t  of the complex number  e(Ux)fl(u2) 
-~(u2)/~(Ul). 

Proof F r o m  the defining formula  for B we have for u 1, uzeU: 

B(c~ | v, fl | v')(u 1, u2)= I m  ((c~(ul)v, f l ( u z ) v ' ) -  (c~(u2) v, fi(u 0 v')) 

= I m  (a(ul) fi(u2) (v, v ' )  - e(u2) fi(Ux) (v, v')). 

The  l emma is now obvious.  
We now define a real-valued symmetr ic  form (( ,))  on U * |  by: 

((~,/~)) = (S(~,/~), co). 

Here  the inner p roduc t  on the right is the inner product  o n  A 2 U* induced by 
(,) .  
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L e m m a  3.2. (i) Suppose e e ( U * |  (x' o), then: 

( Im c~/x 6, co)= -Ijc~ll 2. 

(ii) Suppose cr174 t~ 11, then: 

( Im ~ A ~., co)= [10~1] 2 

Proof The second s ta tement  follows f rom the first since c~--*~ interchanges (U* 
|  ~1"~ and ( U * |  (~ 11. To prove the first s ta tement  note that  both  sides 
are bilinear functions on the real vector  space (U*|176 Hence it is suf- 
ficient to check the identity on the real basis 

{qj+ipj ,  i(qi+ipj): 1 <=j<=n}. 

But observing that  both  sides are unchanged upon replacing c~ by ic~ we see 
that  is sufficient to prove for 1 < j < n :  

I m  ((q; + ip;) A ( q j -  ipj), co) = - 2. 

But this is clear for 

(qj + ipj) /x (qj -- ipj) = -- 2iqj A pj. 

With this the l emma  is proved. 
Let V= V + |  V-  be a splitting of V into the or thogonal  sum of a positive 

definite subspace and a negative definite subspace. We obtain  a corresponding 
decomposi t ion:  

U,@V=(U,@V+)(1 ,  o ) | 1 7 4  )(1, o1|174 1j |  1~. 

Theorem 3.1. (i) The summands in the above decomposition are orthogonal for 
((,)). 

(ii) (( , ))  is negative definite on the first and last summands and positive 
definite on the other two summands. 

Proof The first s ta tement  follows from L e m m a  3.1. It  is sufficient to prove all 
dyads from one space are o r thogona l  to all dyads f rom another.  Let us 
consider U * |  I1'~ Clearly it is o r thogonal  to the second and fourth 
summands  by L e m m a  3.1. But it is or thogonal  to the third s u m m a n d  since if c~ 
has type (1,0) and fl has type (0, 1) then Imc~Afi  will have no type (1, 1) 
componen t  and will consequently be or thogonal  to co. The or thogonal i ty  of  the 
other summands  may be verified in a similar fashion. We now prove  (ii). 

Let { v } : l < j < r }  be an o r thonormal  basis for V + and {v~: l<=j<=s} be an 
or thogonal  basis for V -  satisfying (v~', v ~ ) = -  1 for j =  1, 2 . . . .  , s. Let a e (U*  

s 

|  (1'~ Then c~ may  be writ ten as c~= ~ c g @ v  ~ where a ; s ( U * |  (1'~ 
Then we have (by L e m m a  3.1): ~= 1 

B(~ A ~)= Z <6', vj> Im% A @. 
i 
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Hence we obtain:  

((ct, c~))= (B(c~ /x cr co)= ~ (v~, v)'} (Im (aj A ~), co)= - ~  (v)', v}'} II ~jll 2 
J j 

The other statements can be proved in a similar fashion, all dyads from one 
space are or thogonal  to all dyads from another. Let  us consider ( U * |  V+) (1' o~ 
Clearly it is or thogonal  to the second and fourth summands by Lemma 3.1. 
But it is or thogonal  to the third summand  since if ~ has type (1, 0) and /~ has 
type (0, 1) then ImccAf i  will have no type (1, 1) component  and will con- 
sequently be or thogonal  to co. The or thogonal i ty  of the other summands  may 
be verified in a similar fashion. We now prove (ii). 

Let {v): l < j < r }  be an o r thonormal  basis for V § and {v)': l< j<s}  be an 
or thogonal  basis for V-  satisfying <v'j, v~') = - 1 for j =  1, 2 . . . .  , s. Let ~ ( U *  

�9 = ~ cr ~ " where ~F(U*|176 |  ~1'~ Then c~ may be written as cr ~ v j  
Then we have (by Lemma 3.1): ~=~ 

J 
Hence we obtain:  

((cr ~)) = (B(cr A e), co) = ~, (v~, v)'} (Im (c~j A g),  co) = - ~ (v)', v}'} II ctj II 2. 
J J 

The other  statements can be proved in a similar fashion. 

4. Group cohomology, harmonic forms and the Matsushima-Murakami theorem 

In the section we show that the results of the last section imply that the 
restrictions of  Q to the non-zero Hodge  pieces of  H I(F, V) are given by the 
integral of an everywhere positive function. 

We first describe the decomposi t ion of  H l(F, V) using Hodge theory. If E is 
a vector bundle over M we let set(M, E) denote the E-valued r-forms on M. 
An  element of  stir(M, E) assigns an element of the fiber of E over x to a p- 
tuple of tangent vectors at xEM. If  E has a connect ion we may construct an 
exterior differential d on d * ( M ,  E). However  d 2 = 0  if and only if the con- 
nection is flat. 

N o w  let V be the flat bundle over M associated to V. Since ~" is fiat we 
obtain a complex { d * ( M ,  V), d} with cohomology  groups canonically isomor- 
phic to the cohomology  groups H*(M, [/) of M with local coefficients in V -  
see Raghuna than  [12], Chap. VIII .  We observe that the preceding remarks 
apply when V is replaced by any F-module  W and 1? is replaced by the 
associated flat bundle I~. 

We will be especially concerned with the case in which W = y .  In this case 
we have the cup-product  HI(F,~)xHI(F,~)~H2(F,~)  studied in Sect. 2. But 
we also have a multiplicative structure on d r ( M ,  ~). In the case r = 1 we define 
a bilinear function [ ,  ] on d ~ ( M ,  t?) with values in sff2(M, y~) by the formula 
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for X, Y tangent vectors to M: 

[co, z](X, Y)= [co(X), z(Y)] - [co(Y), v(X)]. 

The reader will verify that the above bilinear function is symmetric. In the next 
lemma ~ will denote the universal covering ~: iV/--, M. 

Lemma 4.1. The above isomorphism carries the bilinear form [, ] on Hi(M, ~) to 
the cup-product on H 1 (F, g). 

Proof This is standard material but since it is essential in our proof we give 
the details. We define d r (~ / ,  ~) to be the set of smooth ~-valued r-forms co on 
2~ with the action: 

7(-~ = Ad P(7)(?- 1). co. 

Clearly one obtains an isomorphism from s~'(M, ~) to d'(~7/, ~)r by pulling 
back ~ to i f / and  composing with parallel translation to the standard fiber. 

We consider the double complex: 

{ CV(F, dq(/f/,  y)): p, q non-negative integers} 

of Eilenberg-MacLane p-cochains with values in dq(.~7/, y) equipped with the 
obvious differentials. Then the above isomorphism may be realized be studying 
the two spectral sequences attached to the double complex. 

The map from HI(M, ~) to Hi(F, ~) is constructed as follows. Let co be a 
closed 1-form on M with values in ~. Choose f a smooth section of ~*~ such 
that df=~*co.  Define c: F--*~~ by c (7 )=Adp(~ ) - l f o~ - f  Then c(?) is 
constant, 6c=0 and so c gives rise to an element of H1(F,g). 

We now compute the image of [co, co] in HZ(F, ~). We note that for f as 
above If, co] is an element of C~ d I (.~, ~)) satisfying d([f, co])= [co, col. But 
then a =8  [J; co] is an element of CI(F, s~'l(AT/, g)) cohomologous to [co, col in 
the double complex. We find: 

a0 ' )  = [-c(~), co].  

But then - [ c , f ]  satisfies - d ( -  [c, f ] )  =a  and hence - 6 [c, f ]  is an element 
of Ca(F, ~) cohomologous to [co, col in the double complex. But a direct 
computation shows 6 [c, f ]  = - [c, c]. With this the lemma is proved. 

We use the bilinear form B of the previous section to define a symmetric 
bilinear mapping from s~'l(M, l?) x ~ ' I(M, V) to  ,s~CZ(M) also denoted B by: 

B(~, 3)Ix = B(~I~,/~l.0- 

Here x~M and we take U = Tx(M ) in the discussion of the previous section. 
We use the real valued bilinear form ((,)) to define a symmetric bilinear 

form with values in C ~ (M) also denoted ((,)) by: 

((~, fl))=(B(~, J~), o) here ( , )  is the Riemannian metric. 

Both B and ((,)) factor through cohomology. 
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We compose B: Hi(M, f/)x Ha(M, V)- .H2(M,  R) with integration over the 
cycle Z to get a quadratic form Q' on H i(M, V). 

Lemma 4.2. Under the isomorphism between H 1 (F, V) and H 1 (M, f/) the quadrat- 
ic forms Q and Q' coincide. 

Proof The lemma follows immediately from Lemma 4.1. 

We now redefine Q to be the quadratic form on Hi(M, l/) constructed 
above. We see that our theorem will follow if we can prove that Q is positive 
definite. 

We can give another formula for Q. Since co "-a is the Poincare dual of Z 
we have: 

O(~)=~ B(~, ~)= S B(< ~)ACO "-1. 
Z M 

But co"-1=,co hence we obtain 

Q(c 0 = ~ B(~, c 0/x ,co = ~ (B(c~, c0, co) vol = ~ ((c~, ~)) vol. 
M M M 

Here vol denotes the Riemannian volume element. Our main theorem is 
reduced to proving that we may choose a representative for a class a such that 
((a, c0) is a positive function. We will now see that the harmonic representative 
will work. 

We now recall the Hodge theory of H 1 (M, V). A good reference for the real 
Hodge theory is [12], Chap. VIII.  For the Hodge decomposition see Mu- 
rakami [10]. We have a Riemannian metric on M, we need a metric along the 
fibers for V. The standard positive definite Hermitian form on V is admissible, 
Borel-Wallach [1] [1], p. 47, and consequently we get an induced metric along 
the fibers and we may form a Laplacian A. We apply [12], Chap. VIII  to 
conclude that each class in Hi(M, V) has a unique harmonic representative. 
We observe that the Hodge Theorem in [12] is stated for G semi-simple but 
the same proof works for G reductive with compact center. 

Let us now consider the projective model for D, that is, D is the set of 
negative lines in P(V). Then we have the tautological line bundle E_ over D 
and the perpendicular bundle E+ which assigns to a negative line L the vectors 
in L l, the orthogonal complement of L in V for ( , ) .  The bundles E+ and E_ 
descend to M. We denote the corresponding bundles again by E+ and E_. We 
have then a decomposition as bundles over M: 

V=E+OE_. 

We let p+ and p_ denote the corresponding bundle projections. We have an 
associated decomposition: 

d * ( M ,  I7)= d * ( M ,  E+)Osg*(M, E_). 

Since E+ and E_ are not flat bundles it would seem impossible to define 
cohomology groups with values in E+ and E_. At this point we review the 
general theory of Matsushima-Murakami [9] which will in fact allow us to 
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make such a definition and get a decomposition of cohomology groups. The 
point will be that although the above decomposition is not compatible with d, 
it is compatible with A. To see this we will need more notation and some 
lemmas. Henceforth we let G denote U(n, 1). The symbol K will denote U(n) 
• U(1), a maximal compact subgroup of G. 

Let sgr(F\G, K, p) denote the subspace of all V-valued smooth r-forms t /on  
F \  G satisfying: 

(i) rlORk=p(k)-lrl for all keK. 
(ii) t ( X ) q = 0  for all X ~ f ,  the Lie algebra of K. 

Here R k denote the operation of right translation by keK and 1 denotes 
interior multiplication. The following fact is quite standard, Raghunathan [12], 
Matsushima-Murakami [9], but we include the proof for the sake of clarity. 

Lemma 4.3. ~r f~) is canonically isomorphic to dr(F\G,  K, p). 

Proof We construct the map from ~r V) to ~r K, p). 

Let coedr(M,  V) and n: ) f / ~ M  be the universal cover. Then since f '  pulled 
back to 57/ has a global parallelization we obtain a V-valued r-form co' on ~/ 
satisfying: 

7* co'= P(7) co'. 

We pull co' back to G via the fibering K-- ,G~A4 and we obtain a V-valued 
form co" on G satisfying: 

(i) L~ co" = p(?) co". 
(ii) l(X)co"=O for Xe# ,  

We now define co'" a V-valued r-form on G by the formula: 

~'"Lg=p(g) -1 co"lg. 

We leave the reader to verify that the map sending co to co" is the required 
isomorphism. 

Remark. In the last formula above it is essential that the representation p of F 
extend to a representation of G. 

We may now write out co'" in terms of the invariant parallelization of G to 
obtain an element q of Arp*| Coo(G)| V satisfying: 

(i) [1 |174 - q : r / .  
(ii) [(Adk)*|174 . rl=q. 

Here ~ is the orthogonal complement of ~r in ~ relative to the Killing form. 
Let us denote the isomorphism d" (M,  ~ ' )~  Ar~* |  C~176174 V sending co to 

t/ by ~. We let q+ and q_ denote the projections of V onto V+ and V_. It is 
apparent that: 

(i) ~ o p +  o C b - l = l | 1 7 4  
(ii) q~op o q ~ - ~ = l @ l |  

The main ingredient in the work of Matsushima-Murakami is Kuga's 
Formula which expresses cb o A o ~b- ~ in terms of an operator coming from the 
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center of the universal enveloping algebra U(g) of y. We now describe this 
formula. 

Let {Xi: i = l ,  2 . . . . .  s} be an orthonormal basis for the restriction of the 
Killing form A( . , ' )  to /~ and { Y j : j = I , 2  . . . . .  r} be a basis for ~f such that 
A(Yi, Y;)= -6 i j .  Consider the element C of U(~) given by: 

i=1  j = l  

Then C is in the center of U(~); that is, it gives rise to a bi-invariant 
differential operator in C~(G). We may also consider p (C)sEnd  V defined by 

i=1 j = l  

Then p(C) commutes with p(X) for any Xe~ .  Here and in the line above we 
are using the symbol p to denote the induced representation of ~. 

Kuga's  Formula  then states: 

q~o A o q~-I = - I @ C @ I + I @ I |  

We are now in a position to decompose H*(M, 1/). We first interpret the 
almost complex structure on D in terms of the Lie algebra ,(. We observe that 
we may identify C" with/~ by sending (z~, z 2, .. . ,  z,) to the matrix with the last 
column (z 1, z z . . . . .  z,, 0) and last row (zl, z2 . . . .  , g,, 0) and all other entries 
equal to zero. We let J be the diagonal matrix in ~ with diagonal entries 

+ 1 ' " "  n + l '  

Then the action of ad J on /~ coincides with multiplication by i on C". We 
observe that /~ is to be considered as a 2n dimensional real vector space with J 
operating by the usual 2n by 2n matrix. 

Since V is a complex vector space we may decompose V into the eigen- 
spaces of p(J). Clearly this is just the decomposition V = V + G V  -. The pro- 
jections q+ and q_ are then polynomials in p(J). Since J e ~  we know p(J) 
commutes with p(C) and we obtain the following critical lemma. 

Lemma 4.4. A commutes with p+ and p . 

Proof The lemma follows since 1 | C | 1 and 1 | 1 |  commute with 1 | 1 
|  and l | 1 7 4  . 

Corollary. coed ' (M,  1/) is harmonic if and only if p+ co and p_ co are harmonic. 

In this way we obtain a decomposition: 

Hr(M, 1))= H*(M, E+)@Hr(M, E ). 

We may decompose the harmonic r-forms still further by decomposing A'f i* 
|  into Hodge types. 
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Lemma 4.5. A commutes with the projection of d r ( M ,  I7") on any Hodge type. 

Proof After conjugation by q~ such a projection operator will be of the form p 
| 1 | 1 so the lemma follows from Kuga's Formula. 

Returning to the case in hand we obtain a decomposition" 

Hi(M,  I ? ) = H  1' ~ E+) |  1' ~ E _ ) O H  ~ I(M, E+) •H  ~ I(M, E ). 

We now state one of our main results. 

Theorem 4.1. (i) The above decomposition is an orthogonal splitting for Q. 
(ii) Q is negative definite on the first and last summands and positive definite 

on the other two. 

Proof By Lemma 4.2 the form Q may be computed by integrating a function 
over M. By Theorem 3.1 this function is identically zero, positive or negative 
as required in the theorem. The result follows by integrating the pointwise 
statements of Theorem 3.1. 

The positive definiteness of Q is then equivalent to the following theorem 
which follows from a general result of Matsushima-Murakami [--93. We leave to 
the reader the task of verifying that the results of [,93 generalize to reductive 
groups with compact center. 

Theorem 4.2. H l '~  E + ) = H  ~ I(M, E _ ) = 0  and consequently Q~ is positive 
definite on H 1 (m, 1/). 

Proof The eigenvalues of p(J) are i /n+l  on V+ and - i n / n + l  on V_. By 
Murakami [-10], Theorem 6.1, or [9], Theorem 6.1 (see the discussion preced- 
ing the theorem), we find that the (0, q) cohomology of M with values in 
occurs only in the highest weight space of p(J) and the (p, 0) cohomology 
occurs only in the lowest weight space of p(J). With this the theorem is proved. 

Corollary. Let c be a non-zero element of Hi(F, C"+1). Then [,c, c] +0. 

Remark. The results of this paper go over to the case 

Go=S(U(n ,1 )xU(k ) )  and G = S U ( n + k ,  1). 

In this case gl is isomorphic to V k twisted by U(k) acting from the right. We 
take for a Hermitian form on g~ the direct sum of ( , )  with itself k times. The 
results in Sects. 1 and 4 generalize in a straightforward manner to this case. 
However a modification of Lemma 2.4 is required since the centralizer of 
SU(n, 1) in G o is no longer abelian. For x in g0 we let x" denote the projection 
of x on the subalgebra u(n, 1) of g0 (the projection is relative the obvious 
product decomposition). But (in the notation of Lemma 2.4) since Pt is normal- 
ized w~' is in the center of u(n, 1) for k<m. The proof of Lemma 2.4 then shows 
that ~w2,,= [vm, vm]". Since Q(vm) factors through [,v,,, v,,]" the above formula 
implies Q is isotropic. We leave the details to the reader. 

Corresponding results seem to hold for embeddings of U(n, 1), in the 
automorphism groups of other bounded dymmetric domains but we have not 
yet studied the question in detail. 
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Oblatum 9-XI-1985 & 5-V-1986 

Note added in proof 
The special case of our conjecture in which p is discrete and faithful has been proved by K. 
Corlette in his PhD thesis at Harvard. 


