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It is well known that the real cohomology of a compact Riemannian manifold 
M is isomorphic to the algebra of its harmonic forms. When M is a fiat 
Riemannian manifold, i.e. a Euclidean manifold, a differential form is harmonic 
if and only if it is a parallel differential form. In the local Euclidean coordinate 
systems on M, such a differential form has constant coefficients. Thus, for a 
Euclidean manifold, there is canonical isomorphism between its real coho- 
mology and its algebra of parallel differential forms. 

One can also ask about differential forms on M which in local coordinates 
have polynomial coefficients. A parallel form is one which is expressed by 
polynomials of degree 0. Unlike parallel forms, however, a polynomial form is 
not in general closed. The inclusion of the complex of polynomial forms on M 
into the de Rham complex of M induces a mapi , :H*oly (M)~H*(M ) of the 
polynomial cohomology of M into the de Rham cohomology of M. 

For a compact Euclidean manifold, a polynomial differential form on M 
must be parallel, so we get nothing new. However the notion of a polynomial 
form is invariant under more than just (isometric) Euclidean coordinate 
changes; rather the notion of polynomial form is invariant under affine coor- 
dinate changes. Hence if M is an affine manifold (see [ F G H ]  for the precise 
definition), there is a well-defined complex ~/:oly(M) of polynomial forms, 
which is naturally a subcomplex of the C a de Rham complex d* (M) .  The 
inclusion i: ~*o ly (M)cd*(M)  induces a map i* on cohomology. Several pro- 
perties of the map 

i*" H*o,y(M)~H*(M ) 

are studied in [ F G H ]  and [GH] .  The purpose of this paper is to prove: 

Theorem A. Let M be a compact complete affine manifold such that n t (M) is 
virtually polycyclic. Then the natural map 

i*: H*oly(M)--)H*(M ) 

is an isomorphism. 
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In [ F G H ]  this theorem is proved under the stronger assumption that 
~I(M) is nilpotent. In general it is not known whether the fundamental group 
of a complete affine manifold is virtually polycyclic; but all virtually polycyclic 
groups do occur. This is all discussed quite beautifully in [M]. We remark that 
in [FG]  all three-dimensional compact complete affine manifolds are listed, 
and that all of these manifolds have polycyclic fundamental group. 

The Bieberbach theorems give an extremely useful structure theorem for 
compact Euclidean M. For more general complete affine manifolds, such a 
structure theorem exists provided that the fundamental group is virtually poly- 
cyclic. The structure theorem (mainly due to Auslander) states that a complete 
affine manifold M with virtually polycyclic fundamental group may be repre- 
sented as the quotient of an affine solvmanifold FIG by a finite group of affine 
transformations. A (complete) affine solvmanifold is a complete affine manifold 
of the form F\G where G is a Lie group with a complete lefl-invariant affine 
structure and F ~ G is a discrete subgroup. Equivalently, an affine solvmanifold 
is a complete affine manifold ElF where F is a discrete subgroup of a simply 
transitive group of affine transformations. For more details the reader is 
referred to [FGH] ,  [FG],  w 1, and [M]. 

In general it is difficult to determine the degrees of closed polynomial 
differential forms. However under the above assumptions on M, there will 
always exist a parallel volume form if M is orientable. In other words Lebesgue 
measure on E is - invariant and therefore defines a measure on M. This will be 
proved in [FG]  and [GH2].  For a bound on the degrees of closed polynomial 
forms see [GH2]  as well as [F GH] .  

We have greatly profitted from conversations with David Fried, Moe 
Hirsch, Calvin Moore, and Joe Wolf. We are especially grateful to Calvin 
Moore for supplying one of the key ideas in the proof. 

Proof of Theorem A. Let M be a compact complete affine manifold with 
virtually polycyclic fundamental group. By passing to a covering we may 
assume that M is an affine solvmanifold F\G. This means ( [FGH])  that there 
exists a vector space E and a group G of affine transformations of E which acts 
simply transitively on E, such that the affine holonomy group F of M is a 
discrete cocompact subgroup of G. Let dev: G~E denote the evaluation map 
of G at the origin; this defines a developing map for a complete affine structure 
on G which is invariant under left-multiplications. In [FG] ,  w it is shown 
that, given F (in other words, given M), the simply transitive "crystallographic 
hull" G may be chosen so that F and G have the same algebraic hull in Aft(E). 
It follows that the images of F and G under Ad: G-*Aut(y)  have the same 
algebraic hull in Aut(y), where ~ denotes the Lie algebra of G. By a theorem 
of Mostow [Mt]  (see also [R],  Corollary 7.29), the complex * ~r (G) consist- 
ing of left-invariant differential forms on G injects into the de Rham complex 
of M =F\G, inducing an isomorphism of cohomology 

H~'eft.inv(G)--~ H*(M ). 

In general what we have denoted * G Hlen_inv( ) is equal to the Lie algebra 
cohomology of g. 



On the Polynomial Cohomology of Affine Manifolds 455 

Thus we must identify the Lie algebra cohomology H*(~) with the poly- 
nomial cohomology * Hpob(M) of M. Using the simply transitive action of G on 
E to pass back and forth between E and G, we reduce the proof  to the 
following: 
(*) every closed G-invariant differential form on E is cohomologous to a G- 
invariant polynomial form on E; furthermore for every exact form dr/, where r/ 
is a G-invariant form on E, there exists a polynomial G-invariant form r/' such 
that dr/= dtf. 

The proof of this will be based on the following lemmas. Part (ii) of the 
first lemma was supplied us by C. Moore. 

Lemma B. Let G be a connected solvable subgroup of a linear algebraic group 
and let A(G) denote its algebraic hull. Then: 

(i) A(G) decomposes as a semidirect product G>~R where G is normal in A(G) 
and R is a maximal reductive algebraic subgroup of A(G); 

(ii) Every closed left-invariant form on G is cohomologous to a left-invariant 
form on G which is also Ad(R)-invariant; moreover if r~ is a left-invariant Jorm, 
there exists a left-invariant and Ad (7)-invariant form r/' such that dr/= dtl'. 

Lemma C. I f  G cAff(E)  acts simply transitively, then every tensor field on E 
invariant under the algebraic hull A(G)~ Aft(E) is polynomial. 

Supposing these lemmas the proof of Theo rem A  for solvmanifolds con- 
cludes as follows. First we note the complex d*oiy(M ) is canonically isomor- 
phic to the complex s~r of F-invariant polynomial forms on E ( [GH],  
w Since a polynomial form on E is F-invariant if and only if it is invariant 
under A(F)=A(G), we have Sd*oly(E)r=~4*oly(E) a(~ Furthermore by Lemma C, 
sC*o~y(E)A(a)= sC*(E) A(a) the complex of all A(G)-invariant C ~ differential forms 
on E. 

We define an isomorphism d * t ~ a ( m - - * d  * (tt'~']AdR t~J ~left-invt~J as follows. The de- 
veloping map (i.e. evaluation at the origin) dev: G-->E is G-equivariant with 
respect to the action by left-multiplication on G and the affine action G 

Aft(E) on E. It is also R-equivariant with respect to Ad on G and the action 
R c A ( G ) c A f f ( E )  on E. Since A(G) is the semidirect product G>~R, a differen- 
tial form on E which is invariant under A(G) pulls back (under dev) to a form 
on G which is invariant under both left-multiplications and Ad(R). It follows 
that dev* is the desired isomorphism. 

By Lemma B, the natural map ~left-invrft* t~I(g-c']AdR~left-inv(G ) defines an iso- 
morphism on cohomology. By Mostow's theorem, the map s#l*ft.i,~(G ) ~ s r  
induces an isomorphism on cohomology. Composing all of these maps we 
obtain the inclusion i: d* ly (M)~C*(M ) inducing an isomorphism on coho- 
mology. 

Proof of Lemma B. Let geA(G). The property that Adg  stabilize y is an 
algebraic condition on g. Since G obviously stabilizes ~ and is Zariski-dense in 
A(G) implies that every g~A(G) stabilizes ~. Since G is connected, this means 
that G is normal in A(G). 

In general there is the decomposition of an algebraic group A(G)= U>~/~; 
the unipotent radical U is the maximal normal connected unipotent subgroup 
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and /~ is a maximal reductive subgroup (see e.g. [H]). Moreover when G is a 
connected solvable Lie subgroup of a linear algebraic group, the projection 
map A ( G ) ~ U  with kernel /~ maps G onto U (this fact can be proved by a 
simple modification of the proof of Lemma 4.36 of [R],  p. 72). It follows that 
A(G)=G.t~.  Taking R to be a connected algebraic subgroup of /~  such tha t /~  
= R x (/~ c~ G) part (i) of Lemma B follows. 

To prove (ii) we let d v denote the space of all left-invariant exterior 
differential p-forms on G. Let ~ P = d . 4  p-~ be the space of exact forms and ~,v 
= Ker d: ~ r  v+ 1 the space of closed forms. Evaluating a left-invariant form 
at the identity eeG and considering it as a tensor in AP~ * we readily see that 
the action of Au t (G)=Aut (~ )  on d p, .~P, and ~ep is algebraic, i.e. d p, ~P, and 
~(P are rational Aut (G)-modules. 

In particular these spaces are modules over R. Consider the exact se- 
quences: 

(A) 0 - ,  9~P--, ~P--, HP(~z)--, 0 

(B) O - , ~ P - ~ d P - - , ~  p+ 1 ~ 0 '  

It is well known that G acts trivially (under Ad) on HP(~); evidently its Zariski 
closure A(G), and hence also R c A ( G ) ,  act trivially on HP(~) as well. Since R 
acts reductively on all of these spaces there exists a splitting s: HP(y)--,~r p to 
(A), as R-modules. If ~ e ~ P  has cohomology class l-q]eHP(g), then s([q]) has 
the same cohomology class. Moreover s([q]) is R-invariant: for every geR, 
g*(s([q])) = s(g* [q]) = s([rl] ). This proves the first assertion. 

For the second assertion, suppose that ~esr  p has the property that d~ is R- 
invariant. Since R acts reductively on the spaces in (B) there exists an R- 
splitting h : 2 P + l ~ r  p. Then h(drt) is an R-invariant form on G such that 
d(h(drl))=rt, proving the second assertion. The proof of L e m m a B  is now 
complete. 

Proof of Lemma C. Decompose A(G) as U>~R where U is the unipotent radical 
of A(G) and R is reductive. By Auslander ([A], w the unipotent radical U 
acts simply transitively on E. But in [FGH] ,  w it is proved that any tensor 
field on E invariant under a simply transitive unipotent subgroup of Aft(E) 
must be polynomial. (In fact any tensor field invariant under a transitive 
unipotent affine action must be polynomial.) This completes the proof  of 
Lemma C. 

The proof  of Theorem A is now complete when M is an affine solvmanifold 
F \ G  as above. To finish the proof  of Theorem A, it suffices to prove that if 
~r-- ,M is a finite regular covering and the theorem is true for 2~, then it is also 
true for M. This is accomplished by the following standard lemma: 

Lemma D. Let j: cs163 be an inclusion of chain complexes (over the reals) which 
is equivariant with respect to a group E Suppose that F ' c F  is a normal subgroup 
of  finite index such that j,:H(cgr')--+H(Cg 'r') is an isomorphism. Then H(Cg r) 
~- (H(c~r')) r/r', H ( ~  'r) ~- (H(cg'r') r/r" and j , :  H(cgr)--*H(Cg 'r) is an isomorphism. 

The proof  of Lemma D uses a standard spectral sequence argument involv- 
ing the comparison of two spectral sequences for H ( ~  r) and H(Cg'r), as well as 
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the fact that the cohomology of a finite group with coefficients in a real 
module vanishes. The details of the proof will not be given. To finish the proof 
of Theorem A, we let cg be the complex of polynomial forms and cg, the 
complex of C a forms on E. The subgroup F' is chosen so that ElF' is a 
compact affine solvmanifold and such that F' is normal in F. 
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