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A REMARKABLE FAMIY OF AFFINE CUBIC
SURFACES

WILLIAM M. GOLDMAN

Abstract. In 1848 Cayley and Salmon proved that a nonsingular
projective cubic over C contains 27 lines. The family of affine
cubics defined by

x2 + y2 + z2 − xyz = t + 2

arises in several contexts, including relative SL(2,C)-character va-
rieties of the one-holed torus T1 These relative character varieties
enjoy a rich Poisson geometry, invariant under the mapping class
group of T1. We describe their geometry, symmetry and dynam-
ics, relating these to the structure of the classical geometry of their
projective completion and complexification. We pay particular at-
tention to the R-levels when t > 2, when all the lines are real.
However, the dynamics bifurcates at the level t = 18, where the
level surface relates to the Clebsch diagonal surface.
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Introduction

The trace tr[ξ, η] of the commutator [ξ, η] = ξηξ−1η−1 of two elements
ξ, η of SL(2,C) defines a family of affine cubic surfaces

St ∶= κ
−1(t)

where

(1) κ(x, y, z) ∶= x2 + y2 + z2 − xyz − 2
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and x = tr(ξ), y = tr(η), z = tr(ξη). In homogeneous coordinatesX,Y,Z,W
where

(x, y, z)z→
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⎥
⎥
⎥
⎥
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is the affine chart to the patch defined by W ≠ 0,

x =X/W(2)

y = Y /W(3)

z = Z/W(4)

are affine coordinates. Its projective completion St ⊂ P3 is defined by

(5) (X2 + Y 2 +Z2)W −XY Z − (t + 2)W 3 = 0

When t ≠ ±2, this surface is smooth.
S−2 is the Markoff cubic, S−10/3 is the Fermat cubic, S2 is the Cayley

cubic, and and S18 is the Clebsch cubic. When k ≥ 2, all the lines are
real and we mainly concentrate on this case.

In 1848, Cayley proved that a smooth projective cubic surface S over
C contains a line. He communicated this result to Salmon who shortly
thereafter showed that S contains 27 lines. The purpose of this paper
is to the geometry of the lines to study the dynamics of the modular
group of T1 on the set of R-points of the SL(2,C)-character variety of
T1.

Notations and terminology

We work over a field k of characterisitc zero, usually R or C. We
denote the affine space whose underlying vector space is kn by An, or
just A if n or C is understood from context. The vector space V can
be reconstructed from A as the group of translations of A. If W is
an vector space of dimension m, then the associated projective space
P(W) is defined as the space of one-dimensional linear subspaces of W
and has dimension m − 1. A basis of a one-dimensional subspace is
just a nonzero vector, so points of P(W) can be defined as projective
equivalence classes of nonzero vectors1 in W.

1Two vectors are projectively equivalent if and only if they are nonzero scalar
multiples of one another.
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An affine space An embeds in a projective space Pn ∶= P(W), where
W ∶= V ⊕ k, as the image of the affine hyperplane V ⊕ {1} comprising
vectors v ⊕ 1 in V ⊕ k under the quotient map

W ∖ {0}Ð→ P(W).

For more details on affine and projective geometry, see Goldman [11].
We denote the symmetric group on n symbols by Sn.
if S ⊂ An, denote its closure in Pn by S.
A line on S (respectively S) is an affine (respectively projective) line

contained in S (respectively S). The intersection of two lines on S will
be called a crossing point. A crossing point is an Eckardt point (or an
E-point) if it is the intersection of three distinct lines. A plane P ⊂ A3

is a tritangent plane (or simply a tritangent) if it is tangent to S at
three points or an Eckardt point. It is called generic if its intersection
with S is a union of three crossing lines; otherwise we call it an Eckardt
tritangent. If T is a generic tritangent, then it contains three crossing
points (the intersection of three lines) and equals the tangent plane
TpS for any of the crossing points p. If T is an Eckardt tritangent,
then T ∩S is the union of three distinct lines intersecting at an Eckardt
point p and T = TpS.

In as yet unpublished work with Domingo Toledo [12], we show that
given a projective cubic S together with a generic tritangent T , the
affine piece S ∖ T can be defined as:

(6) x2 + y2 + z2 − xyz = px + qy + rz + s

and if it admits a certain symmetry (of Z/2 ⊕ Z/2) then the linear
coefficients p = q = r = 0, and the affine cubic surface falls in our family
St, wheret = s + 2. This condition is equivalent to the existence of 6
E-points, all ideal (that is, in T ). In the general case, the cubic surface
(6) corresponds to the relative character variety of a four-holed sphere.

The generic smooth projective cubic surface S over C contains 27
lines, 45 tritangents and 135 crossing points (and no E-points). A
tritangent contains 27 crossing points, so the generic affine cubic surface
S contains 108 = 135 − 27 crossing points.

1. Singular points and symmetry

We begin with discussing the singular points of the level sets St =

κ−1(t). When t ≠ ±2, St is smooth. The two singular level sets corre-
spond to two famous cubic surfaces in our family: the level set S2 is
the Cayley cubic surface, and St is the Markoff cubic surface. All the
singular points are nodes: S2 has four nodes, which we call the vertices
in this family and S−2 has a single node, the origin.
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Then we discuss the group of automorphisms of κ. Since κ is a
symmetric polynomial in the variables x, y, z, it admits S3-symmetry.
Furthermore changing the signs of two of the variables and keeping
the third fixed defines sign-change automorphisms, forming a group we
denote ∆ ≅ Z/2 ⊕ Z/2. Together S3 and ∆ generate a group S3 ⋊ ∆
which permutes the four vertices. Indeed every permutation of the four
vertices is realized by an element of S3 ⋊∆. Therefore

S3 ⋊∆ ≅S4

and this group is the linear automorphism group of the surfaces St.
These are the automorphisms which extend to the projective comple-
tion St.

For listing the geometric objects, we exploit the 3-cycles in the cyclic
alternating group

A3 = {(), (123), (132)} <S3.

1.1. Critical points of κ. Since

dκ = (2x − yz)dx + (2y − zx)dy + (2z − xy)dx,

the critical points of κ are the solutions to the system

2x − yz = 2y − zx = 2z − xy = 0.

If one of the variables is zero, then the other two vanish as well, ob-
taining the origin

o ∶= (0,0,0)

as a critical point with critical value t = −2.
Otherwise all variables are nonzero, and an elementary calculation

shows that each quotient x/y, y/z, z/x squares to 1, and their product
equals 1. Thus each quotient equals ±1 and either all of them equal 1
or exactly two of them equals −1. Applying a sign-change if necessary,
we can assume x = y = z, in which case the common value equals 2.
This gives four critical points of κ with critical value 2, which we call
the vertices:

c0 ∶= (2,2,2);

c1 ∶= (2,−2,−2);

c2 ∶= (−2,2,−2);

c3 ∶= (−2,−2,2).(7)

These five critical points constitute the singular sets of the Markoff
surface S−2 and the Cayley surface S2 respectively. They are all nodes
(ordinary double points) of the respective level sets.
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The origin o = (0,0,0) is the character of the quaternion representa-
tion, given by Pauli matrices
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⎥
⎦

.

The vertices

Sing(S+2) = C ∶= {c0,c1,c2,c3}

are characters of central representations, that is, representations F2 Ð→

{±I2}. These representations form a group

∆ ∶= Hom(F2,{±I2}) ≅ (Z/2⊕Z/2),

acting simply transitively on C.
These are exactly the linear sign-change automorphisms in SL(3,Z):

δ1 ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
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⎥
⎥
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, δ2 ∶=
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, δ3 ∶=
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⎢
⎢
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0 −1 0

0 0 1
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⎥
⎥
⎦

In particular

c0
δ1
←→ c1, c2

δ1
←→ c3

c0
δ2
←→ c2, c3

δ2
←→ c1

c0
δ3
←→ c3, c1

δ3
←→ c2.

and thus correspond to free involutions in S4 = Aut(C) via:

δ1 ←→ (01)(23)

δ2 ←→ (02)(13)

δ3 ←→ (03)(12)

2. The ideal locus

Now we discuss the closure St of St ⊂ A3 in P3. The ideal locus
St ∖ St consists of three crossing lines, which forms a tritangent plane
to St. Its points are smooth points of St, although the intersection with
P2∞ = P3 ∖A3 is not transverse.

Thus the 27 lines divide into 3 ideal lines and 24 finite lines.2 The
first step in our classification of lines uses these three lines to divide
the finite lines into three 8-line families.

2These lines are counted with multiplicity in the singular cases t = ±2
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2.1. Locus at infinity. To identify the ideal locus of St, set W = 0 in
the defining equation (5) for St, obtaining:

XY Z = 0.

This is the union of the three lines

IX ∶= {X =W = 0}

IY ∶= {Y =W = 0}

IZ ∶= {Z =W = 0}.

These are the ideal loci of the three coordinate planes (or any parallel
translates of them) in A3.

These projective lines meet at the ideal points

pX ∞ =
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⎥
⎥
⎥
⎥
⎥
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, pZ ∞ =
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⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
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⎢
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⎥
⎥
⎥
⎥
⎥
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⎥
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At these crossing points, the ideal plane P∞ (defined by W = 0) equals

the tangent plane, so P∞ is a generic tritangent to St, which we denote
T∞.

Our context is thus the family of projective cubics St together with
a fixed generic tritangent plane; see Goldman-Toledo [12]. These pairs

(St,T∞) also exhibit extra symmetry, which fails in general. This sym-
metry is reflected in the absence of linear terms in the defining function
κ, for St.

3

2.2. Three families of non-ideal lines. The basic fact we exploit is
the following:

Theorem 2.2.1. On each line ` ⊂ St, exactly one of the coordinate
functions x, y, z is constant.

Thus the finite lines fall into three families labeled by X, Y , or
Z respectively. Each of the three families consists of of eight lines,
grouped into four pairs.

We use the elementary fact:

3Alternatively, it is reflected in the existence of ideal Eckardt points (14). These
linear terms do occur in the analogous description of the relative character variety
of the 4-holed sphere, where the Z/2⊕Z/2-symmetry is broken. See §3.1 for further
details.
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Lemma 2.2.2. Suppose that A3
f
ÐÐ→ k is an affine function and ` ⊂ A3

is a line. Let F be the covector in (k3)∗ extending f and let λ be the
line in the ideal plane P∞ corresponding to Ker(F ). Then the ideal
point of ` lies in λ if and only if the function f is constant on `.

Proof. Theorem 2.2.1 follows easily from Lemma 2.2.2 as follows. Each
line ` on St has an ideal point

`∞ ∶= ` ∩ T∞.

Since the ideal locus

St ∩ T∞ = IX ∪ IY ∪ IZ ,

the ideal point `∞ must lie in an ideal coordinate line. Then `∞ ∈ IX

if and only if the affine coordinate x is constant on ` (and similarly for
y and z). �

A more pedestrian and intuitive way of seeing Theorem 2.2.1 is to
imagine a line on St given in parametric form by:

sz→ p(s) = (x0 + sξ, y0 + sη, z0 + sζ).

The composition κ ○ p(s) is constant, yet it is given by a cubic poly-
nomial in s with leading term −s3ξηζ. Letting s Ð→ ∞, we see that
ξηζ = 0, that is, one of the three coordinates x, y, z is constant on p(s).

For example, the family corresponding to the Z-coordinate yields
four planes in A3 defined by

z0 = −
√
t + 2

z0 = −2

z0 = +2

z0 = +
√
t + 2.(8)

Each plane contains two lines, and the union with the ideal line Z∞ is a
tritangent. The lines in the planes z0 = ±

√
t + 2 we label with “C” (for

“crossing”). The lines in the planes z0 ± 2 we label with “P’ for (for
“parallel”). In general the intersection of Sk with plane z = z0 is a conic,
but this conic degenerates into a union of lines at the special levels (8).
Thus each special level plane contains two lines, either parallel (P) or
crossing (C).

This follows easily from writing the defining equation in terms of the
family of quadratic forms:

(9) Qz(x, y) ∶= x
2 − zxy + y2
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Then St is defined by:

(10) Qz(x, y) = t + 2 − z2

because κ(x, y, z) = Qz(x, y) − z2 − 2. When z = ±2,

Q2(x, y) = (x − y)2

Q−2(x, y) = (x + y)2.(11)

When z = ±
√
t + 2,

Q√t+2(x, y) = (y −m+x)(y −m−x)

Q−√t+2(x, y) = (y +m+x)(y +m−x)(12)

where the two slopes, m± ∈ Q[
√
t + 2,

√
t − 2] are defined by:

(13) m± ∶=

√
t + 2 ±

√
t − 2

2

The slopes satisfy:

m+m− = 1, m+ +m− =
√
t + 2, m+ −m− =

√
t − 2.

3. Two types of non-ideal lines

We classify the 24 non-ideal lines into 12 P-lines and 12 C-lines. As
in §2.2, these fall into three families, corresponding to the coordinates
X,Y,Z. Each family contains 4 P-lines and 4 C-lines.

3.1. P-lines. The P-lines arise when these lines are parallel, namely
when x0 = ±2, y0 = ±2, or z0 = ±2 respectively. The four P-lines in the
Z-family are:

PZ +
+ ∶ z = +2 y = x +

√
t − 2

PZ +
− ∶ z = +2 y = x −

√
t − 2

PZ −
+ ∶ z = −2 y = −x +

√
t − 2

PZ −
− ∶ z = −2 y = −x −

√
t − 2

arising from the factorizations (11). Apply 3-cycles in A3 to obtain
similar formulas for the X-family and the Y-family of P-lines.
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3.1.1. Ideal Eckard points. These lines fall into six pairs of parallelism
classes, namely PX +±, PY +±, and PZ +± respectively. They meet in six
ideal Eckardt points:

Eck∞X+ ∶= PX +
+ ∩ PX +

− =

⎡
⎢
⎢
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⎢
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⎢
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⎢
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⎢
⎢
⎢
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⎢
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⎥
⎥
⎥
⎥
⎥
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⎥
⎦

⎤
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⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Eck∞X− ∶= PX −
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−. =
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⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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⎢
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⎢
⎢
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⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Eck∞Y + ∶= PY +
+ ∩ P

Y +
− =

⎡
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎣

⎡
⎢
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⎢
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⎢
⎢
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⎤
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⎥
⎥
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⎥
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⎤
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. Eck∞Y − ∶= PY −
+ ∩ P

Y −
− =
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⎢
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⎢
⎢
⎢
⎣

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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0

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Eck∞Z+ ∶= PZ +
+ ∩ P

Z +
− =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Eck∞Z− ∶= PZ −
+ ∩ P

Z −
− =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(14)

3.2. C-lines. C-lines arise when the plane section is a degenerate conic,
consisting of a a pair of crossing lines. Consider the C-lines in the Z-
family. Rewrite the defining equation for St as (10) using the family of
quadratic forms Qz, defined in (9). Thus the C-lines occur at the levels
z = z0 where Qz0(x, y) = 0, that is, when z2 = t + 2. On these levels

z0 = +
√
t + 2,

the factorization (12) implies that the plane section is the union of lines

y =m±x

where the slopes m± are defined in (13). Similarly on the level z0 =

−
√
t + 2, the conic defined by Qz0 degenerates into the pair of lines

y = −m±x
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Thus the four C-lines in the Z-family are:

CZ +
+ ∶ z = +

√
t + 2 y =m+x

CZ +
− ∶ z = +

√
t + 2 y =m−x

CZ −
+ ∶ z = −

√
t + 2 y = −m+x

CZ −
− ∶ z = −

√
t + 2 y = −m−x

3.2.1. Dihedral characters. As with P-lines, the C-lines naturally pair;
however the C-lines cross rather than being parallel. These crossing
points play an important role in the geometry, and also arise as the
fixed points of the sign-change group ∆. They arise as the characters
of irreducible SL(2,C)-representations which are not absolutely irre-
ducible, since their restrictions to index-two subgroups are reducible.
Since their images are dihedral groups, we call such points dihedral
characters or D-points.

For fixed t, the six D-points are:

DihX ± = (±
√
t + 2,0,0)

DihY ± = (0,±
√
t + 2,0)

DihZ ± = (0,0,±
√
t + 2)

These are the fixed points on St of the sign-changes δ1, δ2, δ3 respec-
tively.

The corresponding representation of F2 has ξ, η symmetries in points
and their product ξη a transvection along the geodesic joining Fix(ξ)
and Fix(η) in H3. For example, DihZ + = (0,0,

√
t + 2) corresponds to:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 −1

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
√
t + 2

−1/
√
t + 2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m− 0

0 m+

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where the slopes m± are defined in (13).
Since D-points are crossing points, their tangent planes are tritan-

gents. Their intersections with St are the two crossing C-lines togther
with the ideal line corresponding to their coordinate family.

In the example above, CZ +±, together with IZ , span the tritangent
plane extending z = +

√
t + 2, which meets St in the union

CZ +
+ ∪ C

Z +
− ∪ I

Z .

The dihedral characters form a 6-element subset of St, invariant un-
der its full automorphism group. When t ≠ −2, they crossing points,
which all coalesce to the origin o as tÐ→ −2.
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4. Sylvester’s pentahedron

We give an alternate form for the cubic surfaces St ⊂ P3 using a
projective embedding P3 ↪ P4 which will clarify extra symmetry of S4

for the level set for t = 18,
identifying it as the Clebsch surface. Along the way, we find pentahe-

dral forms for the Fermat surface, the Markoff surface and the Cayley
surface

4.1. Pentahedral form. Let P3
1 ⊂ P4 be the projective hyperplane

defined in homogeneous coordinates U0, U1, U2, U3, U4 by

(15) U0 +U1 +U2 +U3 +U4 = 0.

To describe the embeddings St ↪ P3
1 we introduce a linear embedding

C3 U
ÐÐ→ C4 whose image is the hyperplane defined by (15):

U0 ∶=W

U1 ∶= (−2W +X − Y −Z)/8

U2 ∶= (−2W −X + Y −Z)/8

U3 ∶= (−2W −X − Y +Z)/8

U4 ∶= (−2W +X + Y +Z)/8(16)

Clearly the covectors in C4 satisfy (15), and thus U defines a projective
embedding P3 ↪ P4 whose image is P3

1. With more work, one calculates:

(X2 + Y 2 +Z2)W −XY Z − (t + 2)W 3 =

−64

3

⎧⎪⎪
⎨
⎪⎪⎩

(
3t + 10

64
)(U0)

3 + (U1)
3I + (U2)

3 + (U3)
3 + (U4)

3

⎫⎪⎪
⎬
⎪⎪⎭

Thus U maps St to the subvariety in P3
1 defined in homogeneous coor-

dinates by: U0, U1, U2, U3, U4 on P3
1 by

(17) (
3t + 10

64
)(U0)

3 + (U1)
3 + (U2)

3 + (U3)
3 + (U4)

3

This is Sylvester’s pentahedral form for St.
The five covectors U0, U1, U2, U3, U4 define the Sylvester planes:

Syli ∶= {Ui = 0}

for i = 0,1,2,3,4. The plane

Syl0 = {W = 0}
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equals the ideal tritangent T∞, but in general Syli is not tritangent
unless t = 18. The ideal complete quadrilateral is the configuration in
T∞ ≈ P2 defined by the four lines

fi ∶= Syl0 ∩ Syli

for i = 1,2,3,4.

4.2. Some special cases. For the respective cases t = 18,2,−2,−10/3,
the coefficient (3t+10)/64 of U0 assumes the respective values 1,1/4,1/16,0.
These correspond to the Clebsch surface, the Cayley surface, the Markoff
surface, and the Fermat surface, respectively.

4.2.1. The Markoff surface.

4.2.2. The Cayley surface. When t = 2, the surface admits a rational
parametrization, as the quotient of C∗×C∗ by the involution (a, b)z→
(a−1, b−1). Specifically, the branched double covering

C∗ ×C∗ Ð→ S2

(a, b)z→ (a + a−1, b + b−1, ab + a−1b−1)

is a quotient mapping. These correspond to the characters of reducible
SL(2,C)-representations, where X,Y,Z map to the diagonal matrices

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a 0

0 a−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b 0

0 b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a−1b−1 0

0 ab

⎤
⎥
⎥
⎥
⎥
⎥
⎦

respectively. The central representations (where the image lies in the
center ±1 of SL(2,C)) correspond to its four nodes c0,c1,c2,c3 (or
vertices) of S2. (Compare [10].) These are four of the five critical
points of κ.

4.2.3. The Fermat surface. This is the cubic surface in CP3 defined in
homogeneous coordinates by:

(18) (U0)
3 + (U1)

3 + (U2)
3 + (U3)

3 = 0.

As this defining polynomial in 4 homogeneous coordinates is symmetric,
it admits the symmetry of S4. Scalar multiplications of the homoge-
neous coordinates by cube roots of unity yield an action of (Z/3)3 by
diagonal 4 × 4 matrices, and these actions generate the full automor-
phism group Aut(S) = (Z/3)3 ⋊S4 which has order

#Aut(S) = 33 ⋅ 4! = 648.

Since the cube roots of unity are not real, the R-locus only admits the
S4-symmetry (24 automorphisms).
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To find a generic tritangent, combine (18) with the identity

U3
1 +U

3
2 +U

3
3 + (−U1 −U2 −U3)

3 = −3(U1 +U2)(U2 +U3)(U3 +U1)

to see that the plane P defined by U0+U1+U2+U3 = 0 meets the surface
in the union of three lines defined by:

(U1 +U2)(U2 +U3)(U3 +U1) = 0

and is a generic tritangent.

4.2.4. The Clebsch surface. When t = 18, the cubic polynomial

(U0)
3 + (U1)

3 + (U2)
3 + (U3)

3 + (U4)
3

is symmetric and the level set St admits an obvious symmetry of the
120-element symmetric group S5. This surface has four finite Eckard
points and will be discussed extensively in §9.

5. Symmetry

We first describe the automorphisms of these cubics. The linear au-
tomorphisms form the symmetric group S4, which extend to projective
automorphisms of St. We first describe this action, which combines the
triple symmetry of the three variables with the sign-change group de-
scribed above. The group S4 arises concretely as automorphisms of
several natural 4-element sets:

● The vertices, that is, the nodes of the Cayley cubic S2;
● The ends of the real locus R3 ∩ St;
● Complementary ideal triangular regions St, that is, the four

components of the complement of the ideal locus

IX ∪ IY ∪ IZ ⊂ T∞.

in the ideal tritangent plane.
● The finite E-points {Eck0,Eck1,Eck2,Eck3} of S18. These will

be discussed in detail in §9.

5.1. Linear automorphisms. These cubics all exhibit a finite sym-
metry group S4, which can be realized as the group of all automor-
phisms of the four-element set C, which are the vertices of a natural
tetrahedron on the Cayley cubic S+2.

Observe first that these cubics are symmetric in the three coordinates
X,Y,Z, leading to an action of the symmetric group S3, which we will
heavily exploit. The permutations of coordinates lead to permutations
of C which fix c0 but permute {c1,c2,c3}. The rest of S4 can be
understood in terms of the group ∆ of sign-change automorphisms,
described above.



AFFINE CUBIC SURFACES 15

In terms of coordinates, the symmetric group is a split extension

∆ ⊲ S4 ↠ S3,

where the epimorphism S4↠S3 is realized by permuting the three co-
ordinates, and the kernel ∆ comprises sign-changes as above. For rep-
resentations, the sign-changes correspond to the action of the group of
central representations Hom(F2,{±1}) on Hom(F2,SL(2,C)). The or-
bits comprise lifts of PSL(2,C)-representations to SL(2,C) and the rela-
tive character variety St corresponds to the image of a ∆⋅Inn(SL(2,C))-

invariant subset of Hom(F2,SL(2,C)) under the Inn(SL(2,C))-quotient
map.

The symmetric group S4 is the group of automorphisms of the pro-
jective cubic St for generic t, and is realized as above by linear automor-
phisms of St. The ends of the real level sets St∩R3 form a four-element
set whose full automorphism group equals S4.

Another finite subset invariant under the automorphism group S4 is
the six-element subset of ideal Eckardt points defined in (14) of §3.1.
These are the ideal points of the P-lines.

As for the six-element subset comprising dihedral characters, S4 is
the centralizer of an involution in S6 corresponding to the six-element
subset consisting of ordered pairs of distinct points of {0,1,2,3}.

5.2. Vieta invoutions. In addtion to the finite groups of automor-
phisms which extend to projective automorphisms, the affine cubics
St admit infinite groups of symmetries defining interesting dynamical
systems.

Namely, the coordinate projections C3 Ð→ C2 define double (branched
coverings) of St, and their Galois groups generate an action of the free
3-generator Coxeter group Z/2⋆Z/2⋆Z/2. That these automorphisms
generate the full group of automorphisms of the affine cubic surfaces
St is due to [5].

Take, for example, the coordinate projection for the z-coordinate.
Fix x0, y0 ∈ C. Then the restriction of the defining cubic polynomial κ
to the coordinate line {(x0, y0)}×C is quadratic. Thus the intersection

St ∩ {(x0, y0)} ×C

corresponds to the pair of solutions z of the quadratic equation

t = κ(x0, y0, z) = z2 − (x0y0) z + (x2 + y2 − 2).

If z, z′ are the two solutions, then z + z′ = x0y0, so

z′ = x0y0 − z.
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The deck transformation of the double covering St Ð→ C2 is the Vieta
involution. The three Vieta involutions are:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νX

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x′ ∶= yz − x

y

z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νY

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y′ ∶= zx − y

z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νZ

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

z′ ∶= xy − z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

They generate a free Coxeter group Z/2⋆Z/2⋆Z/2., naturally isomor-
phic to the level 2 congruence subgroup PGL(2,Z)(2). Specifically, the
respective Vieta involutions νZ , νX , νY are realized by the automor-
phisms of F2 and the corresponding elements of PGL(2,Z) acting on
points z in the upper half-plane, respectively:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

X

Y

Z

⎞
⎟
⎟
⎟
⎟
⎠

νZ

z→

⎛
⎜
⎜
⎜
⎜
⎝

X

Y −1

Y X−1

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

←→ ±

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0

0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∶ (z z→ −z̄)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

X

Y

Z

⎞
⎟
⎟
⎟
⎟
⎠

νX

z→

⎛
⎜
⎜
⎜
⎜
⎝

Y −1X−1Y −1

Y

Z−1

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

←→ ±

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 0

−2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∶
⎛

⎝
z z→

z̄

1 − 2z̄

⎞

⎠

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

X

Y

Z

⎞
⎟
⎟
⎟
⎟
⎠

νY

z→

⎛
⎜
⎜
⎜
⎜
⎝

X−1

X2Y −1

Z

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

←→ ±

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 2

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∶ (z z→ 2 − z̄).

The realizations in PGL(2,Z) are reflections in the imaginary axis iR+,
the unit semicircle ∣z∣ = 1, and the vertical line 1 + iR+, respectively.
(Compare [13].)

6. Automorphisms and lines

We now describe the action of S4 on the set of lines.
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A sign-change leaves invariant each line in the corresponding family
of C-lines. Then, for example the lines in the Z-family

CZ +
± = {z = +

√
t + 2, y =m±x}

CZ −
± = {z = −

√
t + 2, y = −m±x}

are each invariant under (x, y, z) ↦ (−x,−y, z) which corresponds to
the transposition σ(03) ∈S4. The transposition σ(12) interchanges

CZ ±
+↔ CZ ±

−.

The two remaining sign-changes (corresponding to σ(01)(23) and σ(02)(13)

in S4) interchange

CZ −
±↔ CZ +

±.

Here is what happens for P-lines. Consider the Z-family. Each

PZ −
± = {z = −2, x + y = ±

√
t − 2}

is invariant under the transposition (12). The sign-change δ3 inter-
changes these two lines; the other sign-changes interchange

PZ −
± ←→ PZ +

±.

For PZ +± = {z = +2, y − x = ±
√
t − 2}, the transposition

(03) = δ3(12) = (12)δ3

= δ1(12)δ1 = δ2(12)δ2 ∈S4

is realized by (x, y, z) ↦ (−y,−x, z) and leaves each of these two lines
invariant.

6.1. Involutions and lines. Indeed, the involutions in S4 distinguish
the P-lines from the C-lines as follows. The alternating group A4 <S4

consists of even permutations. The nontrivial elements of the sign-
change group Σ < A4 consists of even permutations of order two, namely
products of disjoint transpositions

σ(ij)(l4)↔ δl

where {i, j, l} = {1,2,3}. The odd permutations of order two are the
transpositions σ(ij) where {i, j} is a 2-element subset of {1,2,3} and

σ(l4)↔ δl ○ σ
(ij).

Proposition 6.1.1. Let ` ⊂ St be a (non-ideal) line. Then ` is invari-
ant under an odd involution ⇐⇒ ` is a P-line, and ` is invariant under
an even involution ⇐⇒ ` is a C-line.
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The action of S4 on the ideal lines in St is even easier. Each sign-change
in ∆ fixes each ideal line pointwise. The subgroup

S3 = Aut({1,2,3}) <S4

complementary to ∆ ⊲S4 acts by permutations of { IX , IY , IZ }.

6.2. Vieta automorphisms and lines. The Vieta involutions do not
extend to projective space (they are not even defined by homogeneous
polynomials), and therefore do not act on the ideal lines. We describe
their action on a sample P-line and a sample C-line. As S4 acts tran-
sitively on the set of P-lines (respectively C-lines), it suffices for the
discussion to consider one sample line from each type.

First consider the P-line PZ ++. The action of νX on it is:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

x −
√
t − 2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x − 2
√
t − 2

(x − 2
√
t − 2) + 2

√
t − 2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the νY -action is:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

x −
√
t − 2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

x +
√
t − 2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since both involutions map PZ +± → PZ +∓, their composition νX ○ νY

preserves each PZ +±, translating by −
√
t − 2 on each.

The involution νZ maps PZ +++ to a parabola:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

x −
√
t − 2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

x −
√
t − 2

(x +
√
t−2
2

)
2
− k+6

4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Next consider the C-line CZ ++. Both νX and νY map CZ ++ Ð→ CZ +−:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

m+x

+
√
t + 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νX

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(m+)2x

m+x

+2
√
t + 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

m+x

+
√
t + 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νY

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

m−x

+
√
t + 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since both involutions map CZ ++ → CZ +−, their composition νX ○ νY

preserves CZ ++, scaling by (m−)2.
The involution νZ maps CZ +++ to a parabola:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

m+x

+
√
t + 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

z→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

m+x

m+x2 −
√
t + 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6.3. Degeneration of lines: the Markoff surface t = −2. When
t → −2, the levels at ±

√
t + 2 coalesce at the level 0, and each pair

C○ +±, C○ −± converge to a single line, for example:

CX ± ∶= {z = ±iy, x = 0.}

CY ± ∶= {x = ±iz, y = 0.}

CZ ± ∶= {y = ±ix, z = 0.}

This gives 6 C-lines, each counted with multiplicity 2. The remaining
12 P-lines are:

PX +
± = {z = y ± 2i, x = +2}

PX −
± = {z = −y ± 2i, x = −2}

PY +
± = {x = z ± 2i, y = +2}

PY −
± = {x = −z ± 2i, y = −2}

PZ +
± = {y = x ± 2i, z = +2}

PZ −
± = {y = −x ± 2i, z = −2}

This gives 6 double C-lines, 12 P-lines and 3 ideal lines, verifying the
total count of 27 lines with multiplicity. The singularity at o is the
concurrent intersection of three double lines.

6.4. Degeneration of lines: the Cayley surface t = +2. The de-
generation is more severe on S+2. In that case,

√
t − 2 = 0 implies

that all the P-lines P +± (respectively P −±) coalesce. Furthermore since
m+ =m− = 1, the C-lines C +± (respectively C −±) coalesce. There remain
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6 quadruple lines:

PX + = CX + = {z = y, x = +2}

PX − = CX − = {z = −y, x = −2}

PY + = CY + = {x = z, y = +2}

PY − = CY − = {x = −z, y = −2}

PZ + = CZ + = {y = x, z = +2}

PZ − = CZ − = {y = −x, z = −2}

7. Galois automorphisms

The lines, tritangent planes, and their intersections also enjoy Galois
symmetry as follows. Their coordinates lie in the biquadratic field
Q[

√
t + 2,

√
t − 2], at least when

√
t ± 2 ∉ Q. Its Galois group is gener-

ated by involutions
√
t + 2

G+

←→ −
√
t + 2,

√
t − 2

G−

←→ −
√
t − 2.

This group, also isomorphic to (Z/2 ⊕ Z/2), acts on the configuration
of lines, tritangent planes, and intersection points.

Each pair of lines in one of the three coordinate families (X,Y or
Z) and four levels (8) is interchanged by the Galois involution G− (see
below). Observe that

m± G−

←→ m∓, m± G+

←→ −m∓

and G+ ○ G− = G− ○ G+ is an involution interchanging m± and −m±.
We observe that the Galois automorphisms act on the P -lines and

C-lines as follows. The involution G− interchanges the two lines in each
pair of parallel P -lines, that is,

P + Ð→ P −.

However it interchanges the two slopes m± so it also interchanges the
two line each pair of crossing C-lines.

The involution G+, on the other hand, interchanges
√
t + 2←→ −

√
t + 2

and m± ←→ −m∓ so it takes

C +± Ð→ C
−
∓.

8. The principal double-six

In this section we organize the configuration of lines in terms of a
remarkable configuration, due to Schläfli, called a double-six.
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8.1. Background. Recall that a Schläfli double-six consists of two
ordered sextuples of lines (a1, . . . , a6) and (b1, . . . , b6) such that:

● If i ≠ j, then ai � aj.
● If i ≠ j, then bi � bj.
● ai � bj if and only if i = j.
● ai and bj intersect whenever i ≠ j.

Schläfli’s original notation for this is:

⎛
⎜
⎝

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

⎞
⎟
⎠

8.2. Relation with tritangents. In the last case above, that is, when
i ≠ j, the crossing lines ai and bj lie in a tritangent plane which we
denote Tij. Write pij for the point of intersection ai ∩ bj; necessarily
pij ∈ Tij. Furthermore Tij meets Sk in a third line, which we denote cij.

Proposition 8.2.1. i ≠ j, then cij = cji.

I am grateful to Damiano Testa for supplying the proof of the following
fact:

Lemma 8.2.2. i ≠ j, then cij = cji.

Proof. Since ai � aj and aj � bj, it follows (since pji ∈ aj and pji ∈ bi)
that pji ∉ ai ∪ bj. Since Tij is a tritangent which intersects S in

ai ∪ bj ∪ cij,

pji ∈ cij. In particular aj intersects cij. Why is pji ∈ Tij?
Similarly, bi intersects cij. Since aj, bi, cij ∈ Lines(S), and they mutu-

ally cross, cij ⊂ Tji. Since these lines are distinct, cij = cji. �

Although cij = cji, the tritangent planes are distinct: Tij ≠ Tji. Indeed,
the line cij = Tij ∩ Tji.

Here is a simple example of a double-six:

a1 ∶= CX +
+, a2 ∶= CX −

+, a3 ∶= CY +
+, a4 ∶= CY −

+, a5 ∶= C
Z +

+, a6 ∶= C
Z −

+
b1 ∶= CX −

−, b2 ∶= CX +
−, b3 ∶= CY −

−, b4 ∶= CY +
−, b5 ∶= C

Z −
−, b6 ∶= C

Z +
−

The cij may be computed from Table 2.
The tritangents T12,T21 are the planes given by the crossing C-lines

in the X family. Since they are the parallel planes x = ±
√
t + 2, their in-

tersection is the ideal line IX . Similarly for T34,T43 (in the Y family),
and T56,T65 (in the Z family).
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b1 b2 b3 b4 b5 b6

a1 c12 c13 c14 c15 c16

a2 c12 c23 c24 c25 c26

a3 c13 c23 c34 c25 c36

a4 c14 c24 c34 c45 c46

a5 c15 c25 c35 c45 c56

a6 c16 c26 c36 c46 c56

Table 1. A Double-Six

CX +
+ CX −

+ CY +
+ CY −

+ CZ +
+ CZ −

+

CX −
− IX PZ +

− PZ −
+ PY +

− PY −
−

CX +
− IX PZ −

− PZ +
+ PY −

+ PY +
+

CY −
− PZ +

− PZ −
− IY PX +

− PX −
+

CY +
− PZ −

+ PZ +
+ IY PX −

− PX +
+

CZ −
− PY +

− PY −
+ PX +

− PX −
− IZ

CZ +
− PY −

− PY +
+ PX −

+ PX +
+ IZ

Table 2. The Principal Double-Six

Next we discuss crossing points and tritangents for a1, b3, and a3, b1.
The other entries in Table 2 will then follow by exploiting symmetry.

Since a1 = CX ++ is defined by x =
√
t + 2 and z =m+y, and b3 = CY −− is

defined by y = −
√
t + 2 and x = −m−z, the crossing point

p13 = (
√
t + 2,−

√
t + 2,−m+√t + 2)
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Its tangent plane Tp13 equals the tritangent T13 which equals, in homo-
geneous coordinates,

T13 = [[1 −1 m− −
√
t + 2]]

which evidently contains the line PZ +− defined by

z = 2, y = x −
√
t − 2.

Since T13 = Tp13 contains PZ +− and p13 ∉ PZ +− it follows that c13 = PZ +−.
For the pair a3, b1, note that the Galois involution G+ interchanges

a1 = CX +
+ ←→ b1 = CX −

−

and

a3 = e C
Y +

+ ←→ b3 = CY −
−,

so

p31 = G−p13 = (−
√
t + 2,

√
t + 2,−m−√t + 2)

and

T31 = G−T13 = [[1 −1 −m+ √
t + 2]]

Since G− fixes PZ +−, the above argument applies and c31 = PZ +− = c13.
This argument with G− works when this involution is nontrivial, that

is, when
√
t + 2 ∉ Q. However, the conclusion holds by continuity, since√

t + 2 is generically irrational.

9. Clebsch’s Diagonal Cubic Surface

When t = 18, St is Clebsch’s Diagonal Cubic Surface, the intersection
of the cubic hypersurface in CP3

(U0)
3 + (U1)

3 + (U2)
3 + (U3)

3 + (U4)
3 = 0,

with the hyperplane P2
1 ⊂ P3 defined by

U0 +U1 +U2 +U3 +U4 = 0.

(Compare §4.2.) It clearly enjoys S5-symmetry, which is one of the
maximal symmetry groups of a smooth projective cubic surface (#S5 =

5! = 120).
In my 2003 publication [9], I noted the level set St for t = 18 repre-

sented a dynamical bifurcation: for 2 ≤ t ≤ 18, the Γ-action is ergodic
but for t > 18 the action is not ergodic. The reason can be traced to
the geometric significance of the orbit of the finite Eckard points for
t = 18, and for t > 18 the Eckard tritangents.
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9.1. Eckard points. It has 10 Eckardt points. In addition to the 6
ideal Eckardt points, there are 4 non-ideal Eckardt points e0,e1,e2,e3

described as follows:

e0 = (−2,−2,−2) = PX −
− ∩ P

Y −
− ∩ P

Z −
−

e1 = (−2,2,2) = PX −
+ ∩ P

Y +
− ∩ P

Z +
+

e2 = (2,−2,2) = PX +
+ ∩ P

Y +
− ∩ P

Z +
−

e3 = (2,2,−2) = PX +
− ∩ P

Y +
+ ∩ P

Z −
+

If p ∈ St which is the intersection of two lines l1, l2 ⊂ St the intersection
of St with its tangent plane Tp is a cubic curve in Tp containing l1 ∪ l2.
Thus a third line l3 exists with

St ∩Tp = l1 ∪ l2 ∪ l3

and Tp is a tritangent. In particular, for any Eckardt point p, the
tangent plane Tp is a tritangent.

In general tritangents fall into two types: generic tritangents (which
contain three lines in general position) and tangent planes at Eckardt
points. We call the latter Eckard tritangents.

9.2. Inversion. The transposition U0 ↔ U4 corresponds to the invo-
lution

(x, y, z)
(04)
←ÐÐ→ (

x

x + y + z − 2
,

y

x + y + z − 2
,

z

x + y + z − 2
)

which we call inversion. It maps the ideal tritangent plane T∞ = Syl0
to the Sylvester tritangent Syl4 whose affine piece is defined by:

x + y + z = 2,

the plane containing the three Eckardt points e1,e2,e3.
This inversion which fixes the Eckard tritangent TEck0 whose affine

piece is defined by

x + y + z = 6

. The Sylvester tritangent Syl4 and the Eckard tritangent TEck0 are
related by the Galois involution G−.

The subgroup S4 < S5 consists of the linear automorphisms dis-
cussed earlier, and S5 = ⟨S4, (04)⟩.

9.3. Dynamical significance. The tritangent Te0 = Te0S18 defined
by:

x + y + z + (2 +
√
t − 2) = 0
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containing the three lines:

c23 = P
Z −

+ ∶= {z = −2, x + y +
√
t − 2 = 0}

c46 = PX −
+ ∶= {x = −2, y + z +

√
t − 2 = 0}

c15 = PY −
+ ∶= {y = −2, z + x +

√
t − 2 = 0}

is dynamically interesting, for k ≥ 18. The orthant Ω defined by
x, y, z ≤ −2 parametrizes the Fricke space of the 3-holed sphere with the
standard marking, the one whose generators correspond to the bound-
ary components. It meets Sk in a wandering domain for the action
of

Γ ∶= Out(F2) ≅ π0(Homeo(S)) ≅ GL(2,Z)

and is bounded by T13. Geometrically, points in the orbit ΓΩ cor-
respond to homotopy equivalences S ↝ M , where M is a complete
hyperbolic surface homeomorphic to a three-holed sphere.

The Eckardt point e0 ∶= (−2,−2,−2) in the Clebsch cubic S18 corre-
sponds to the complete finite area 3-punctured sphere M . This Eckardt
point arises as the domain Ω collapses as k ↘ 18.) The four P-lines
in each coordinate family bound an open annulus, whose levels are el-
lipses. The corresponding cyclic group of Dehn twists acts minimally
(and ergodically) on almost every level ellipse. This leads to chaotic
dynamics (ergodicity with respect to the Poisson measure arising from
the invariant function κ and Euclidean volume form) on the comple-
ment of the orbit Γ ⋅Ω of the wandering domain.

10. Enumerating tritangents

A general cubic surface contains 45 tritangent planes. We can ac-
count for them as follows on the Clebsch cubic S18, which has 4 finite
Eckardt points.

First there is the ideal tritangent T∞ containing all three ideal lines.
There are 30 tritangents arising from the double-six matrix. Namely

the 12 s partition into the two sextuples a1, . . . , a6 and b1, . . . , b6. When-
ever i ≠ j, the lines ai, bj extend to a tritangent also containing cij. The
15 lines cij consist of all 12 of the P-lines and all 3 of the ideal lines.
The ideal lines fall into the tritangents containing a pair of crossing
C-lines

Corresponding to 6 ideal Eckardt points (the common ideal points
of a parallel pair of P-lines) are 6 tritangents.

Corresponding to each of the 4 finite Eckardt points is tritangent of
concurrent P-lines. For example §9.3 discusses the Eckardt point

e0 ∶= c23 ∩ c46 ∩ c15 = P
Z −

− ∩ PX −
− ∩ P

Y −
−.



26 W. GOLDMAN

whose tangent plane Te0S18 is the tritangent defined by

x + y + z + (2 +
√
t − 2) = 0

Its image under the Galois involution G− is another tritangent contain-
ing lines

PZ −
− ∩ PX −

− ∩ P
Y −

−.

and defined by

x + y + z + (2 −
√
t − 2) = 0.

Thus the 4 tangent planes to E-points and their Galois conjugates give
a total of 8 tritangents.

This accounts for all 1+30+6+8 = 45 tritangents to St in the special
case k = 18.

11. A Steiner trihedral pair

Let S ⊂ P3 be a smooth projective cubic. A trihedral pair is an
unordered pair

{{φ1, φ2, φ3},{φ4, φ5, φ6}}

of unordered triples of covectors

φ1, φ2, φ3, φ4, φ5, φ6 ∈ V∗

such that

(φ1φ2ψ3) + (φ4φ5φ6) = 0

defines S. For example,

φ1 ∶=X + 2W φ4 ∶=W

φ2 ∶= Y + 2W φ5 ∶=X + Y +Z + (2 +
√
t − 2)W

φ3 ∶= Z + 2W φ6 ∶=X + Y +Z + (2 −
√
t − 2)W

is a trihedral pair for our family

S = St ∶= {(X2 + Y 2 +Z2)W −XY Z − (t + 2)W 3 = 0}.

The corresponding six tritangents are:

P1 ∶= {x = −2} P4 = T∞

P2 ∶= {y = −2} P5 = {x + y + z = −2 −
√
t − 2}

P3 ∶= {z = −2} P6 = {x + y + z = −2 +
√
t − 2}

given for the affine planes, except for the ideal plane P4 = T∞.
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Notation

Ideal lines: IX , IY , IZ

Coordinate ideal points: pX ∞, pY ∞, pZ ∞
C-lines: CX ±±, CY ±±, CZ ±±
P-lines: PX ±±, PY ±±, PZ ±±
Ideal tritangent plane: T∞
Ideal Eckardt points: Eck∞X±,Eck∞Y ±,Eck∞Z±
Finite Eckardt points: e0,e1,e2,e3

Symmetric groups: S3,S4,S5

Sylvester planes: Syl0,Syl1,Syl2,Syl3,Syl4
Ends: End0,End1,End2,End3
Critical points of κ: c0,c1,c2,c3,o
Dihedral characters: DihX ±, DihY ±, DihZ ±

Sign-changes δ1, δ2, δ3,1 comprise ∆, realizing (Z/2⊕Z/2) ⊲S4

Vieta involutions νX , νY , νZ
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