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Influenced by S. Lie, in his 1872 Erlangen Program, F.
Klein proposed that a geometry is the study of properties
of an abstract space X which are invariant under a
transitive group G of transformations of X .
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of an abstract space X which are invariant under a
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conformal, constant curvature Lorentzian ..
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Geometry through symmetry

Influenced by S. Lie, in his 1872 Erlangen Program, F.
Klein proposed that a geometry is the study of properties
of an abstract space X which are invariant under a
transitive group G of transformations of X .

Algebraicization of geometry: Many diverse geometries —
homogeneous spaces G/H — classified by Lie groups and
Lie algebras.
Examples: Euclidean, hyperbolic, projective, affine,
conformal, constant curvature Lorentzian ..

.

Group theory arises in topology through the fundamental

group and the universal covering space.
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Putting geometric structure on a topological space

Topology: Smooth manifold M, coordinate patches Uα;
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Topology: Smooth manifold M, coordinate patches Uα;

Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

For each component C ⊂ Uα ∩ Uβ, ∃g = g(C ) ∈ G :

g ◦ ψα|C = ψβ |C .
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−−→ ψα(Uα) ⊂ X

For each component C ⊂ Uα ∩ Uβ, ∃g = g(C ) ∈ G :

g ◦ ψα|C = ψβ |C .

Well-defined local (G ,X )-geometry defined by ψα.
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Putting geometric structure on a topological space

Topology: Smooth manifold M, coordinate patches Uα;

Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

For each component C ⊂ Uα ∩ Uβ, ∃g = g(C ) ∈ G :

g ◦ ψα|C = ψβ |C .

Well-defined local (G ,X )-geometry defined by ψα.

Σ acquires geometric structure M modeled on (G ,X ).
(Ehresmann 1936)



Hyperbolizing
Surfaces

Geometric
structures

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Development

Globalize the G -compatible coordinate charts are to a
development: a local diffeomorphism

Σ̃ −→ X

equivariant with respect to a holonomy representation

π1(Σ)
ρ
−→ G

which is well-defined up to conjugation in G .
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Development

Globalize the G -compatible coordinate charts are to a
development: a local diffeomorphism

Σ̃ −→ X

equivariant with respect to a holonomy representation

π1(Σ)
ρ
−→ G

which is well-defined up to conjugation in G .

The space of marked structures on on a fixed topology Σ
forms a deformation space locally modeled on
Hom(π,G )/G (Thurston 1978):

D(G ,X )(Σ) :=

{

Marked (G ,X )-structures on Σ

}

/Isotopy

hol
−−→ Hom(π1(Σ),G )/G
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Quotient structures

Many cases: when M = Ω/Γ, where Ω ⊂ X is a domain
and Γ ⊂ G is discrete acting properly on Ω, the restriction
of hol is an embedding.
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Quotient structures

Many cases: when M = Ω/Γ, where Ω ⊂ X is a domain
and Γ ⊂ G is discrete acting properly on Ω, the restriction
of hol is an embedding.

Euclidean structures;

Hyperbolic structures;

Complete affine structures (includes Euclidean structures);

Complex projective structures (includes hyperbolic
structures via Poincaré disk, Euclidean, elliptic);

Real projective structures (hyperbolic structures via Klein
model, Euclidean, elliptic).
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Representations of surface groups

Σ closed oriented surface, χ(Σ) < 0, fundamental group
π = π1(Σ); G algebraic Lie group.
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Representations of surface groups

Σ closed oriented surface, χ(Σ) < 0, fundamental group
π = π1(Σ); G algebraic Lie group.

π is finitely generated =⇒ Hom(π,G ) algebraic set.

Algebraic structure on Hom(π,G) invariant under the
natural action of Aut(π) × Aut(G):

π −→ π
ρ

−→ G −→ G .
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Representations of surface groups

Σ closed oriented surface, χ(Σ) < 0, fundamental group
π = π1(Σ); G algebraic Lie group.

π is finitely generated =⇒ Hom(π,G ) algebraic set.

Algebraic structure on Hom(π,G) invariant under the
natural action of Aut(π) × Aut(G):

π −→ π
ρ

−→ G −→ G .

Mapping class group

Mod(Σ) = π0

(

Diff(Σ)
)

∼= Out(π) = Aut(π)/Inn(π)

acts on Hom(π,G)/G .
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The fundamental group of a closed surface

Obtain a genus g surface from a 4g -gon.

�
�
�
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A presentation for the fundamental group

The fundamental group π = π1(Σ) is the fundamental
group of a closed orientable surface admits a presentation

π = 〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . .AgBgA−1
g B−1

g = 1〉
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A presentation for the fundamental group

The fundamental group π = π1(Σ) is the fundamental
group of a closed orientable surface admits a presentation

π = 〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . .AgBgA−1
g B−1

g = 1〉

A representation π1(Σ) in a group G is just

(α1, . . . , βg ) ∈ G 2g

satisfying the defining relation

α1β1α
−1
1 β−1

1 . . . αgβgα
−1
g β−1

g = 1.
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Navigating the deformation space

Associated to simple closed curves α ⊂ Σ are generalized twist

deformations, paths in Hom(π,G ) supported on α.
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Navigating the deformation space

Associated to simple closed curves α ⊂ Σ are generalized twist

deformations, paths in Hom(π,G ) supported on α.

Example: if α is the nonseparating simple loop A1,

ρt :











Ai 7−→ ρ(Ai ) if i ≥ 1

Bj 7−→ ρ(Bj) if j > 1

B1 7−→ ρ(B1)ζ(t)

where ζ(t) path in the centralizer of ρ(A1).
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Navigating the deformation space

Associated to simple closed curves α ⊂ Σ are generalized twist

deformations, paths in Hom(π,G ) supported on α.

Example: if α is the nonseparating simple loop A1,

ρt :











Ai 7−→ ρ(Ai ) if i ≥ 1

Bj 7−→ ρ(Bj) if j > 1

B1 7−→ ρ(B1)ζ(t)

where ζ(t) path in the centralizer of ρ(A1).
Fenchel-Nielsen twist flow: (G = SL(2,R)): ζ(t) group of
transvections along ρ(A1)-invariant geodesic in H2 —

X X’
X

K K
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Observing the deformation space

A natural class of functions on Hom(π,G )/G arise from

functions G
f
−→ R invariant under conjugation and α ∈ π:

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(

ρ(γ)
)
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functions G
f
−→ R invariant under conjugation and α ∈ π:

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(

ρ(γ)
)

The trace of any linear representation G −→ GL(N,R)
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Observing the deformation space

A natural class of functions on Hom(π,G )/G arise from

functions G
f
−→ R invariant under conjugation and α ∈ π:

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(

ρ(γ)
)

The trace of any linear representation G −→ GL(N,R)

The geodesic displacement function (only defined for
hyperbolic elements)

tr(γ) = ±2 cosh
(

ℓ(γ)/2
)

if γ ∈ SL(2,R) is hyperbolic.
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Symplectic structure

Ad-invariant inner product on g =⇒ Mod(Σ)-invariant
symplectic structure on Hom(π,G )/G .
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Symplectic structure

Ad-invariant inner product on g =⇒ Mod(Σ)-invariant
symplectic structure on Hom(π,G )/G .

G = R or C =⇒ Hom(π,G ) is a real (or complex)
symplectic vector space H1(Σ).
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Symplectic structure

Ad-invariant inner product on g =⇒ Mod(Σ)-invariant
symplectic structure on Hom(π,G )/G .

G = R or C =⇒ Hom(π,G ) is a real (or complex)
symplectic vector space H1(Σ).

α represented by a simple closed curve on Σ,

Inn(G )-invariant function G
f
−→ R

=⇒ Hamiltonian flow of fα covered by generalized twist

flow on Hom(π,G ).
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Fricke space

Deformation space F(Σ) of marked hyperbolic structures
Σ corresponds to discrete embeddings:

π := π1(Σ)
ρ
→֒ PSL(2,R)
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Fricke space

Deformation space F(Σ) of marked hyperbolic structures
Σ corresponds to discrete embeddings:

π := π1(Σ)
ρ
→֒ PSL(2,R)

Components of Hom(π,PSL(2,R)) detected by the Euler

class of the associated oriented RP
1-bundle over Σ:

Hom(π,PSL(2,R))
e
−→ H2(Σ,Z) ∼= Z.
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Deformation space F(Σ) of marked hyperbolic structures
Σ corresponds to discrete embeddings:

π := π1(Σ)
ρ
→֒ PSL(2,R)

Components of Hom(π,PSL(2,R)) detected by the Euler

class of the associated oriented RP
1-bundle over Σ:

Hom(π,PSL(2,R))
e
−→ H2(Σ,Z) ∼= Z.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
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Fricke space

Deformation space F(Σ) of marked hyperbolic structures
Σ corresponds to discrete embeddings:

π := π1(Σ)
ρ
→֒ PSL(2,R)

Components of Hom(π,PSL(2,R)) detected by the Euler

class of the associated oriented RP
1-bundle over Σ:

Hom(π,PSL(2,R))
e
−→ H2(Σ,Z) ∼= Z.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
Equality ⇐⇒ ρ is a discrete embedding. (1980)
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Branched hyperbolic structures
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Branched hyperbolic structures
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Interior angles sum to 2πk, (k ∈ Z) =⇒ quotient space is
hyperbolic surface with one singularity (the image of the
vertex) with cone angle 2πk.
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Branched hyperbolic structures
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a1b1
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b2

 
a1

b1

a2

b2

Interior angles sum to 2πk, (k ∈ Z) =⇒ quotient space is
hyperbolic surface with one singularity (the image of the
vertex) with cone angle 2πk.

Holonomy representation of a hyperbolic surface with cone
angles 2πki extends to π1(Σ) with Euler number

e(ρ) = 2− 2g +
∑

ki .
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A hyperbolic surface of genus two
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A hyperbolic surface of genus two

Identifying a regular octagon with angles π/4 yields a
nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.



Hyperbolizing
Surfaces

Geometric
structures

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

A hyperbolic surface of genus two

Identifying a regular octagon with angles π/4 yields a
nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
But when the angles are π/2, the surface has one
singularity with cone angle 4π and

e(ρ) = 1 + χ(Σ) = −1.
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Branched hyperbolic structures

Each component of Hom(π,PSL(2,R)) contains holonomy
of branched hyperbolic structures.
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Branched hyperbolic structures

Each component of Hom(π,PSL(2,R)) contains holonomy
of branched hyperbolic structures.

The Euler class 2− 2g + k component deformation
retracts onto k-fold symmetric product. (Hitchin 1987)
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Dynamic/homotopic triviality

Discrete embeddings determine connected component of
Hom(π,PSL(2,R))/PGL(2,R).
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F(Σ) ≈ R6g−6.
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F(Σ) ≈ R6g−6.
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Discrete embeddings determine connected component of
Hom(π,PSL(2,R))/PGL(2,R).

F(Σ) ≈ R6g−6.
Mod(Σ) acts properly discretely on F(Σ).

Uniformization theorem identifies F(Σ) with Teichmüller
space of marked conformal structures on Σ.
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Dynamic/homotopic triviality

Discrete embeddings determine connected component of
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Dynamic/homotopic triviality

Discrete embeddings determine connected component of
Hom(π,PSL(2,R))/PGL(2,R).

F(Σ) ≈ R6g−6.
Mod(Σ) acts properly discretely on F(Σ).

Uniformization theorem identifies F(Σ) with Teichmüller
space of marked conformal structures on Σ.

Mod(Σ)-invariant complex structure on F(Σ).
For G = PSL(2,R), the general symplectic structure and
the complex structure from Teichmüller space are part of
the Weil-Petersson Kähler geometry on F(Σ).
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The group of orientation-preserving isometries of H3
R

equals
PSL(2,C). Close to Fuchsian representations in PSL(2,R) are
quasi-Fuchsian representations QF :

Discrete embeddings;

Topologically conjugate action on S2;

QF ≈ R
12g−12,

Mod(Σ) acts properly on QF .
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Hom(π,SL(2,C)) is connected, closure of QF consists of
all discrete embeddings.
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Discrete embeddings in PSL(2, C)

Hom(π,SL(2,C)) is connected, closure of QF consists of
all discrete embeddings.

Discrete embeddings not open; not comprise a component
of Hom(π,G ).
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Complex hyperbolic geometry

Complex hyperbolic space Hn
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is the unit ball in C
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the Bergman metric invariant under the projective
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Complex hyperbolic geometry

Complex hyperbolic space Hn
C

is the unit ball in C
n with

the Bergman metric invariant under the projective
transformations in CP

n.

x             y

x                  

y

C- linear subspaces meet Hn
C

in totally geodesic subspaces.
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Deforming discrete groups

Start with a Fuchsian representation π
ρ0−→ U(1, 1) acting

on a complex geodesic H1
C
⊂ Hn

C
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Start with a Fuchsian representation π
ρ0−→ U(1, 1) acting

on a complex geodesic H1
C
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ρ
−→ U(n, 1) stabilizes a

complex geodesic, conjugate to a Fuchsian representation

π
ρ
−→ U(1, 1)× U(n − 1) ⊂ U(n, 1).
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Deforming discrete groups

Start with a Fuchsian representation π
ρ0−→ U(1, 1) acting

on a complex geodesic H1
C
⊂ Hn

C
.

Every nearby deformation π
ρ
−→ U(n, 1) stabilizes a

complex geodesic, conjugate to a Fuchsian representation

π
ρ
−→ U(1, 1)× U(n − 1) ⊂ U(n, 1).

Components detected by a Z-valued characteristic class
generalizing the Euler class. (Toledo 1986, Xia 1997,
Gothen 1997)
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Singular points in Hom(π,G )!
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In general the analytic germ of a reductive representation

of the fundamental group of a compact Kähler manifold is
defined by a system of homogeneous quadratic equations.
(G Millson 1988)
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Singularities in the deformation space

Singular points in Hom(π,G )!

In general the analytic germ of a reductive representation

of the fundamental group of a compact Kähler manifold is
defined by a system of homogeneous quadratic equations.
(G Millson 1988)

For an SU(1, 1)-representation ρ0, the neighborhood of

π
ρ
−→ SU(1, 1) ⊂ SU(2, 1)

in Hom(π,SU(2, 1)) looks like the product of
Hom(π,U(1, 1) × U(1)) and a cone defined by a quadratic
form of signature e(ρ0) on R

4g−4.
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Real projective geometry

A convex RP
2-surface is a quotient M = Ω/Γ where

Ω ⊂ RP
2 is a convex domain and Γ ⊂ Aut(Ω) discrete,

acting properly and freely on Ω.
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curve. (Benzecri 1960)



Hyperbolizing
Surfaces

Geometric
structures

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Real projective geometry

A convex RP
2-surface is a quotient M = Ω/Γ where

Ω ⊂ RP
2 is a convex domain and Γ ⊂ Aut(Ω) discrete,

acting properly and freely on Ω.

χ(M) < 0 and ∂M = ∅ =⇒ ∂Ω is C 1 strictly convex
curve. (Benzecri 1960)

∂Ω is C 2 ⇐⇒ ∂Ω is a conic. (Kuiper 1956)



Hyperbolizing
Surfaces

Geometric
structures

Surface groups

SL(2, R)

SL(2, C)

SU(2, 1)

SL(3, R)

Aff(2, R)

Real projective geometry

A convex RP
2-surface is a quotient M = Ω/Γ where

Ω ⊂ RP
2 is a convex domain and Γ ⊂ Aut(Ω) discrete,

acting properly and freely on Ω.

χ(M) < 0 and ∂M = ∅ =⇒ ∂Ω is C 1 strictly convex
curve. (Benzecri 1960)

∂Ω is C 2 ⇐⇒ ∂Ω is a conic. (Kuiper 1956)
⇐⇒ RP

2-structure is hyperbolic.
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Deformations of triangle groups

Domains in RP
2 tiled by (3, 3, 4)-triangles.
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The deformation space of convex RP
2-structures

The deformation space C(Σ) ≈ R
16g−16 upon which

Mod(Σ) acts properly. (1988)
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The deformation space of convex RP
2-structures

The deformation space C(Σ) ≈ R
16g−16 upon which

Mod(Σ) acts properly. (1988)

C(Σ) is a connected component of
Hom(π,SL(3,R))/SL(3,R). (Choi G 1993)

C(Σ) identifies with the holomorphic vector bundle over
Teich(Σ) whose fiber over a marked Riemann surface X

equals the vector space H0(X , (κX )3) of holomorphic

cubic differentials

(Labourie 1997, Loftin 2001).
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Complete affine structures on the 2-torus

A complete affine manifold is a quotient R
n/Γ where

Γ ⊂ Aff(n,R) is a discrete group acting properly on R
n.
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Chaos on the Deformation Space

(Baues 2000) Deformation space ≈ R
2, with {(0, 0} ←→

Euclidean structure.
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Euclidean structure.
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Euclidean structure.
Mod(Σ)-action is linear GL(2,Z)-action on R
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The orbit space — the moduli space of complete affine
compact orientable 2-manifolds is non-Hausdorff.
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Chaos on the Deformation Space

(Baues 2000) Deformation space ≈ R
2, with {(0, 0} ←→

Euclidean structure.
Mod(Σ)-action is linear GL(2,Z)-action on R

2.

The orbit space — the moduli space of complete affine
compact orientable 2-manifolds is non-Hausdorff.

Contrast to the proper action of Mod(Σ) ∼= PGL(2,Z)
on F(Σ) by projective transformations.
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