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Abstract. The study of locally homogeneous geometric struc-
tures on manifolds was initiated by Charles Ehresmann in 1936,
who first proposed the classification of putting a “classical geom-
etry” on a topological manifold. In the late 1970’s, locally ho-
mogeneous Riemannian structures on 3-manifolds formed the con-
text for Bill Thurston’s Geometrization Conjecture, later proved by
Perelman. This book develops the theory of geometric structures
modeled on a homogeneous space of a Lie group, which are not
necessarily Riemannian. Drawing on a diverse collection of tech-
niques, we hope to invite researchers at all levels to this fascinating
and currently extremely active area of mathematics.
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Introduction

Symmetry powerfully unifies the various notions of geometry. Based
on ideas of Sophus Lie, Felix Klein’s 1972 Erlanger program proposed
that geometry is the study of properties of a space X invariant under
a group G of transformations of X. For example Euclidean geometry
is the geometry of n-dimensional Euclidean space Rn invariant under
its group of rigid motions. This is the group of transformations which
transforms an object ξ into an object congruent to ξ. In Euclidean
geometry one can speak of points, lines, parallelism of lines, angles
between lines, distance between points, area, volume, and many other
geometric concepts. All these concepts can be derived from the notion
of distance, that is, from the metric structure of Euclidean geometry.
Thus any distance-preserving transformation or isometry preserves all
of these geometric entities.

Notions more primitive than that of distance are the length and
speed of a smooth curve. Namely, the distance between points a, b is
the infimum of the length of curves γ joining a and b. The length
of γ is the integral of its speed ‖γ′(t)‖. Thus Euclidean geometry
admits an infinitesimal description in terms of the Riemannian metric
tensor, which allows a measurement of the size of the velocity vector
γ′(t). In this way standard Riemannian geometry generalizes Euclidean
geometry by imparting Euclidean geometry to each tangent space.

Other geometries “more general” than Euclidean geometry are ob-
tained by removing the metric concepts, but retaining other geometric
notions. Similarity geometry is the geometry of Euclidean space where
the equivalence relation of congruence is replaced by the broader equiv-
alence relation of similarity. It is the geometry invariant under similar-
ity transformations. In similarity geometry does not involve distance,
but rather involves angles, lines and parallelism. Affine geometry arises
when one speaks only of points, lines and the relation of parallelism.
And when one removes the notion of parallelism and only studies lines,
points and the relation of incidence between them (for example, three
points being collinear or three lines being concurrent) one arrives at
projective geometry. However in projective geometry, one must enlarge
the space to projective space, which is the space upon whiich all the
projective transformations are defined.

Here is a basic example illustrating the differences among the var-
ious geometries. Consider a particle moving along a smooth path; it
has a well-defined velocity vector field (this uses only the differentiable
structure of Rn). In Euclidean geometry, it makes sense to discuss its
“speed,” so “motion at unit speed” (that is, “arc-length-parametrized
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geodesic”) is a meaningful concept there. But in affine geometry, the
concept of “speed” or “arc-length” must be abandoned: yet “motion
at constant speed” remains meaningful since the property of moving at
constant speed can be characterized as parallelism of the velocity vector
field (zero acceleration). In projective geometry this notion of “con-
stant speed” (or “parallel velocity”) must be further weakened to the
concept of “projective parameter” introduced by J. H. C. Whitehead
[283].

Synthetic projective geometry was developed by the architect De-
sargues in 1636–1639 out of attempts to understand the geometry of
perspective. Two hundred years later non-Euclidean (hyperbolic) ge-
ometry was developed independently and practically simultaneously
by Bolyai in 1833 and Lobachevsky in 1826–1829. These geometries
were unified in 1871 by Klein who noticed that Euclidean, affine, hy-
perbolic and elliptic geometry were all “present” in projective geom-
etry. Later in the nineteenth century, mathematical crystallography
developed, leading to the theory of Euclidean crystallographic groups.
Answering Hilbert’s eighteenth problem on the finiteness of the num-
ber of space groups in any given dimension n, Bieberbach developed a
structure theory in 1918??. For torsionfree groups, the quotient spaces
identified with flat Riemannian manifolds of dimension n, that is, Rie-
mannian n-manifolds having zero sectional curvature. Such Riemann-
ian structures are locally isometric to Euclidean space En. In particular,
every point has an open neighborhood isometric to an open subset of
En. These local isometries define a local Euclidean geometry on the
neighborhood. Furthermore on overlapping neighborfhoods, the local
Euclidean geometries “agree,” that is, they are related by restrictions
of global isometries En → En. The neighborhoods form coordinate
patches, the local isometries from the patches to En are the coordinate
charts, and the restrictions of isometries of En are the corresponding
coordinate changes. In this way a flat Riemannian manifold is defined
by a coordinate atlas for a Euclidean structure.

More generally, for any geometry one can define geometric struc-
tures on a manifold M modeled on the homogeneous space (G,X). A
geometric atlas consists of an open covering of M by patches U ↪→M , a

system of charts U
ψ−−→ X such that the coordinate changes are locally

restrictions of transformations of X which lie in G.
Th plethora of different geometries suggests that, at least at a su-

perficial level, no general inclusive theory of locally homogeneous geo-
metric structures exists. Each geometry has its own features and id-
iosyncrasies, and special techniques particular to each geometry are
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used in each case. For example, a surface modeled on CP1 has the un-
derlying structure of a Riemann surface, and viewing a CP1-structure
as a projective structure on a Riemann surface provides a satisfying
classification of CP1-structures. Namely, as was presumably under-
stood by Poincaré, the deformation space of CP1-structures on a closed
surface Σ with χ(Σ) < 0 identifies with a holomorphic affine bundle
over the Teichmüller space of Σ. When X is a complex manifold upon
which G acts biholomorphically, holomorphic mappings provide a pow-
erful tool in the study, a class of local mappings more flexible than
“constant” maps (maps which are “locally in G”) but more rigid than
general smooth maps. Another example occurs when X admits a G-
invariant connection (such as an invariant (pseudo-)Riemannian struc-
ture). Then the geodesic flow provides a powerful tool for the study of
(G,X)-manifolds.

We emphasize the interplay between different mathematical tech-
niques as an attractive aspect of this general subject. See [129] for a
recent historical account of this material.

Organization of the text

The book divides into three parts. Part One describes affine and
projective geometry and provides some of the main background on
these extensions of Euclidean geometry. As noted by Lie and Klein,
most classical geometries can be modeled in projective geometry. We
introduce projective geometry as an extension of affine geometry, so we
begin with a detailed discussion of affine geometry as an extension of
Euclidean geometry and projective geometry as an extension of affine
geometry. Part Two describes how to put the geometry of a Klein
geometry (G,X) on a manifold M , and gives the basic examples and
constructions. One goal is to classify the (G,X)-structures on a fixed
topology in terms of a deformation space whose points correspond to
equivalence classes of marked structures, whereby a marking is an extra
piece of information which fixes the topology as the geometry of M
varies. Part Three describes recent developments in this general theory
of locally homogeneous geometric structures.

Part One: Affine and Projective Geometry

The first chapter introduces affine geometry as the geometry of
parallelism. Two objects are parallel if they are related by a translation.
Translations form a vector space V, and act simply transitively on affine
space. That is, for two points p, q ∈ A there is a unique translation
taking p to q. In this way, points in A identify with the vector space V,
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but this identification depends on the (arbitrary) choice of a basepoint,
or origin which identifies with the zero vector in V. One might say that
an affine space is a vector space, where the origin is forgotten. More
accurately, the special role of the zero vector is suppressed, so that all
points are regarded equally.

The action by translations now allows the definition of acceleration
of a smooth curve. A curve is a geodesic if its acceleration is zero,
that is, if its velocity is parallel. In affine space itself, unparametrized
geodesics are straight lines; a parametrized geodesic is a curve following
a straight line at “constant speed”. Of course, the “‘speed” itself is
undefined, but the notion of “constant speed” just means that the
acceleration is zero.

This notion of parallelism is a special case of the notion of an affine
connection, except the existence of globally defined translations effect-
ing the notion of parallelism is a special feature to our setting — the
setting of flat connections. Just as Euclidean geometry is affine geom-
etry with a parallel Riemannian metric, other linear-algebraic notions
enhance affine geometry with parallel tensor fields. The most notable
(and best understood) are flat Lorentzian (and pseudo-Riemannian)
structures.

Chapter Two develops the geometry of projective space, viewed
as the compactification of affine space. Ideal points arise as “where
parallel lines meet.” A more formal definition of an ideal point is an
equivalence class of lines, where the equivalence relation is parallelism
of lines. Linear families (or pencils) of lines form planes, and indeed the
set of ideal points in a projective space form a projective hyperplane,
that is, a projective space of one lower dimension. Projective geometry
appears when the ideal points lose their special significance, just as
affine geometry appears when the zero vector 0 in a vector space loses
its special significance.

However, we prefer a more efficient (if less synthetic) approach to
projective geometry in terms of linear algebra. Namely, the projective
space associated to a vector space V is the space P(V) of 1-dimensional
linear subspaces of V (that is, lines in V passing through 0). Homoge-
neous coordinates are introduced on projective space as follows. Since
a 1-dimensional linear subspace is determined by any nonzero element,
its coordinates determine a point in projective space. Furthermore the
homogeneous coordinates are uniquely defined up to projective equiv-
alence, that is, the equivalence relation defined by multiplication by
nonzero scalars. Projectivizing linear subspaces of V produces projec-
tive subspaces of P(V), and projectivizing linear automorphisms of V
yield projective automorphisms, or collineations of P(V).
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The equivalence of the geometry of incidence in P(V) with the al-
gebra of V is remarkable. Homogeneous coordinates provide the “dic-
tionary” between projective geometry and and linear algebra. The
collineation group is compactified as a projective space of “projective
endomorphisms;” this will be useful for studying limits of sequences
of projective transformations. These “singular projective transforma-
tions” are important in controlling developing maps of geometric struc-
tures, as developed in the second part.

The third chapter discusses, first from the classical viewpoint of
polarities, the Cayley-Beltrami-Klein model for hyperbolic geometry.
Polarities are the geometric version of nondegenerate symmetric or
skew-symmetric bilinear forms on vector spaces. They provide a nat-
ural context for hyperbolic geometry, which is one of the principal
examples of geometry in this study.

The Hilbert metric on a properly convex domain in projective space
is introduced and is shown to be equivalent to the categorically defined
Kobayashi metric [177, 179]. Later this notion is extended to mani-
folds with projective structure.

The fourth chapter develops notions of convexity. The Cayley-
Beltrami-Klein metric on hyperbolic space is a special case of the
Hilbert metric on properly convex domains. These define natural met-
ric structures on certain well-studied projective structures. As an ap-
plication of the Hilbert metric is Vey’s semisimplicity theorem, which is
later used to characterize closed hyperbolic projective manifolds as quo-
tients of sharp convex cones. Then another metric (due to Vinberg) is
introduced, and is used to give a new proof of Benzécri’s Compactness
Theorem that the collineation group acts properly and cocompactly on
the space of convex bodies in projective space — in particular the quo-
tient is a compact (Hausdorff) manifold. This is used to characterize
the boundary of convex domains which cover convex projective mani-
folds. Recently Benzécri’s theorem has been used by Cooper, Long and
Tillman [78] in their study of cusps of RPn-manifolds.

Part Two: Geometric Manifolds

The second part globalizes these geometric notions to manifolds,
introducing locally homogeneous geometric structures in the sense of
Whitehead [282] and Ehresmann [96] in the fifth chapter. We as-
sociate to every transformation group (G,X) a category of geometric
structures on manifolds locally modeled on the geometry of X invariant
under the group G. Because of the “rigidity” of the local coordinate
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changes of open sets in X which arise from transformations in G, these
structures on M intimately relate to the fundamental group π1(M).

Chapter 5 discusses three viewpoints for these structures. First
we describe the coordinate atlases for the pseudogroup arising from
(G,X). Using the aforementioned rigidity, these are globalized in terms
of a developing map

M̃
dev−−−→ X,

defined on the universal covering space M̃ of the geometric manifold
M . The developing map is equivariant with respect to the holonomy
homomorphism

π1(M)
h−−→ G

which represents the group π1(M) of deck transformations of M̃ →M
in G. Each of these two viewpoints represent M as a quotient: in the
coordinate atlas description, M is the quotient of the disjoint union

U :=
∐

α∈A

Uα

of the coordinate patches Uα; in the second description, M is repre-

sented as the quotient of M̃ by the action of the group π1(M). While

a map defined on a connected space M̃ may seem more tractable than

a map defined on the disjoint union U , the space M̃ can still be quite

large. The third viewpoint replaces M̃ with M and replaces the de-
veloping map by a section of a bundle defined over M . The bundle
is a flat bundle, (that is, has discrete structure group in the sense of
Steenrod). The corresponding developing section is characterized by
transversality with respect to the foliation arising from the flat struc-
ture. This replaces the coordinate charts (respectively the developing
map) being local diffeomorphisms into X.

Chapter 6 discusses examples of geometric manifolds from these
three points of view. Although the main interest in these notes are
structures modeled on affine and projective geometry, we describe other
interesting structures.

All these structures are inter-related, because some geometries ”con-
tain” or ”refine others.” For example, affine geometry contains Eu-
clidean geometry, when the metric notions are abandoned, but notions
of parallelism are retained. This corresponds to the inclusion of the
Euclidean isometry group as a subgroup of the affine automorphism
group. Other examples include the projective and conformal models
for non-Euclidean geometry. In these examples, the model space of the
refined geometry is an open subset of the larger model space, and the
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transformations in the refined geometry are restrictions of transforma-
tions in the larger geometry.

This hierarchy of geometries plays a crucial role in the theory. This
is simply the geometric interpretation of the inclusion relations be-
tween closed subgroups of Lie groups. This algebraicization of classical
geometries in the ninieteenth century by Lie and Klein organized the
proliferation of classical geometries. We adopt that point of view here.
Indeed, we use this as a cornerstone in the construction and classifica-
tion of geometric structures. The classification of geometric manifolds
often shows that a manifold modeled on one geometry may actually
have a stronger geometry. For example, Fried’s theorem (discussed in
§11.4) shows that a closed manifold with a similarity structure is ei-
ther a Euclidean manifold or a manifold on En\{0} ∼= Sn−1 × R with
its invariant (product) Riemannian metric.

Chapter 7 deals with the general clssification of (G,X)-structures
from the point of view of developing sections. The main result is an im-
portant observation due to Thurston [265] that the deformation space
of marked (G,X)-structures on a fixed topology Σ is itself “locally
modeled” on the quotient of the space Hom

(
π1(Σ), G)

)
by the group

Inn(G) of inner automorphisms of G. The description of RP1-manifolds
is described in this framework.

Chapter 8 deals with the important notion of completeness, for tam-
ing the developing map. In general, the developing map may be quite
pathological — even for closed (G,X)-manifolds — but under vari-
ous hypotheses, can be proved to be a covering space onto its image.
However, the main techniques borrow from Riemannian geometry, and
involves geodesic completeness of the Levi-Civita connection (the Hopf-
Rinow theorem). As an example, we classify complete affine structures
on the 2-torus (due to Kuiper). The Hopf manifolds introduced in
§6.4 are fundamental examples of incomplete structures. That affine
structures on compact manifolds are generally incomplete is one dra-
matic difference between affine geometry and traditional Riemannian
geometry.

This requires, of course, relating geometric structures to connec-
tions, since all of the locally homogeneous geometric structures dis-
cussed in this book can be approached through this general concept.
However, we do not discuss the general notion of Cartan connections,
but rather refer to the excellent introduction to this subject by R.
Sharpe [249].
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Part Three: Affine and projective structures

Chapter 9 begins the classification of affine structures on surfaces.
We prove Benzécri’s theorem [34] that a closed surface Σ admits an
affine structure if and only if its Euler characteristic vanishes. We
discuss the famous conjecture of Chern that the Euler characteristic of
a closed affine manifold vanishes. Following Kostant-Sullivan [182] we
prove this in the complete case. Chern’s conjecture has recently been
proved in the volume-preserving case by Klingler [175].

Chapter 10 offers a detailed study of left-invariant affine structures
on Lie groups. These provide many examples; in particular all the
non-radiant affine structures on T 2 are invariant affine structures on
the Lie group T 2. For these structures the holonomy homomorphism
and the developing map blend together in an intriguing way, and this
perhaps this provides a conceptual basis for the unexpected relation
between the one-dimensional property of geodesic completeness and
the top-dimensional property of volume-preserving holonomy. Covari-
ant differentiation of left-invariant vector fields lead to well-studied
non-associative algebras algèbres symétriques à gauche (left-symmetric
algebras , so defined as their associators are symmetric in the left two
arguments. Commutator defines the structure of an underlying Lie
algebra. Associative algebras correspond to bi-invariant affine struc-
tures, so the “group objects” in the category of affine manifolds cor-
respond naturally to associative algebras. 1 As these structures were
introduced by Ernest Vinberg [278] in his study of homogeneous con-
vex cones in affine space, and further developed by Jean-Louis Koszul
and his school, we call these algebras Koszul-Vinberg algebras. We
take a decidedly geometric approach to these ubiquitous mathematical
structures.

Most closed affine surfaces are invariant affine structures on the
torus group.

Chapter 11 describes the question (apparently first raised by L.
Markus [209]) of whether, for an closed orientable affine manifold,
completeness is equivalent to parallel volume. The existence of a paral-
lel volume form is equivalent to unimodularity of the linear holonomy
group, that is, whether the holonomy is volume-preserving. This tan-
talizing question has led to much research, and subsumes various ques-
tions which we discuss. Carrière’s proof that compact flat Lorentzian
manifolds are complete [56] is a special case of this conjecture. In

1Apparently this is due to Vinberg, but I wonder if this was known earlier,
perhaps to Cartan or Ehresmann.
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particular we give the sharp classification of closed similarity mani-
folds by D. Fried [106] (a much different proof is independently due to
Vaisman-Reischer [270]). The analog of this question for left-invariant
affine structures on Lie groups is the conceptual and suggestive result
that completeness is equivalent to parallelism of right-invariant vector
fields, proved in §10.3.4.

Chapter 12 expounds the notions of “hyperbolicity” of Vey [275]
and Kobayashi [179]. Hyperbolic affine manifolds are quotients of prop-
erly convex cones. Compact such manifolds are radiant suspensions of
RPn-manifolds which are quotients of divisible domains. In particular
we describe how a completely incomplete closed affine manifold must be
affine hyperbolic in this sense. (That is, we tame the developing map of
an affine structure with no two-ended complete geodesics.) This strik-
ing result is similar to the tameness where all geodesics are complete
— complete manifolds are also quotients.

Chapter 13 summarizes some aspects of the now blossoming subject
of RP2-structures on surfaces, in terms of the explicit coordinates and
deformations which extend some of the classic geometric constructions
on the deformation space of hyperbolic structures on closed surfaces.

Chapter 14 describes the classic subject of CP1-manifolds, which
traditionally identify with projective structures on Riemann surfaces.
Using the Schwarzian derivative, these structures are classified by the
points of a holomorphic affine bundle over the Teichmüller space of Σ.
This parametrization (presumably known to Poincaré), is remarkable
in that is completely formal, using standard facts from the theory of
Riemann surfaces. One knows precisely the deformation space with-
out any knowledge of the developing map (besides it being a local
biholomorphism). This is notable because the developing maps can be
pathological; indeed the first examples of pathological developing maps
were CP1-manifolds on hyperbolic surfaces. The theory of projective
structures on Riemann surfaces is a paradigm for a successful classi-
faction of highly nontrivial geometric structures, and is a suggestive
paradigm for the study of geometric structures in higher dimensions.

Chapter 15 surveys known results, and the many open questions,
in dimension three. This complements Thurston’s book [266] and ex-
pository articles of Scott [246] and Bonahon [43], which deal with
geometrization and the relations to 3-manifold topology. In particu-
lar we describe the classification (due to Serge Dupont) of projective
structures on hyperbolic torus bundles
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Prerequisites

This book is aimed roughly at first-year graduate students and ad-
vanced undergraduate students, although some knowledge of advanced
material will be useful.

For general treatments of geometry, we refer to the two-volume text
of Berger [39, 38] (see also Berry-Pansu-Berry-Saint Raymond [40])
and Coxeter [80].

We also assume basic familiarity with elementary topology, smooth
manifolds, and the rudiments of Lie groups and Lie algebras. Much
of this can be found in Lee’s book “Introduction to Smooth Mani-
folds” [201], including its appendices. For topology, we require basic
familiarity with the notion of metric spaces, covering spaces and fun-
damental groups.

Fiber bundes, as discussed in the still excellent treatise of Steen-
rod [259], or the more modern treatment of principal bundles given in
Sontz [257], will be used.

Some familiarity with the properties of proper maps and proper
group actions will also be useful.

Some familiarity with the theory of connections in fiber bundles
and vector bundles is useful, for example, Kobayashi-Nomizu [181], or
Milnor [222], do Carmo [87] Lee [200], O’Neill [230].

We put the discussion of Fenchel-Nielsen coordinates on Fricke
space in the context of Darboux’s theorem in symplectic geometry;
we recommend §22 of Lee [201], §22 for a good general treatment con-
sistent with our notation.

Notation, terminology and general background

In this section we collect various notational and terminological con-
ventions, as well as some basic material which we use throughout.

Vectors and matrices. We work over a field k, usually the field
R of real numbers, but sometimes the field C of complex numbers. We
shall denote vectors and matrices in bold font. Let V be a vector space
over k of dimension n. A vector in V corresponds to a column vector:

v ←→



v1

...
vn




A covector is defined as a linear functional V
ω−−→ k, corresponding to

a row vector:

ω ←→
[
ω1 . . . ωn

]



NOTATION AND TERMINOLOGY 13

and the duality pairing between V and V∗ is:

V × V∗ −→ k

(v, ω) 7−→ viωi

(summation over paired indicees). A linear transformation km −→ kn

is defined by an m× n matrix

A =
[
Ai j
]

mapping

km
A−−→ kn

v =



v1

...
vm


 7−→



A1

jv
j

...
Anjv

j




where j = 1, . . . ,m.
Affine vector fields on A correspond to affine maps A→ A:

A := (Ai jx
j + ai)∂i ←→ Â :=

[
A a

]

where

A =




A1
1 . . . A1

i . . . A1
n

...
...

...
Ai1 . . . Ai j . . . Ain

...
...

...
An1 . . . Anj . . . Ann




is the linear part and and

a =




a1

...
ai

...
an




is the translational part. In this notation,

(1) Â =
[
A a

]
=




A1
1 . . . A1

n a1

...
...

...
. . . Ai j . . . ai

...
...

...
An1 . . . Ann an



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Projective equivalence. Denote the multiplicative group of nonzero
scalars in k by k×, and let W be a vector space over k. Then k× acts
by scalar multiplication on W. Say that nonzero vectors w,u ∈ W are
projectively equivalent if and only if ∃λ ∈ k× such that w = λu. Pro-
jective equivalence classes [v] of nonzero vectors v form the projective
space P(V) associated to V. Denote the projective equivalence class of

a vector v =

[
v1

...
vn

]
∈ V by

[v] :=





v1

...
vn






and the projective equivalence class of a covector ω = [ ω1 ... ωn ] ∈ V∗

by

[ω] :=
[[
ω1 . . . ωn

]]
.

The set of projective equivalence classes of nonzero vectors in W is
the projective space associated to W and denoted P(W). (Projective
equivalence classes of nonzero covectors comprise the projective space
P(W∗) dual to P(W).

General Topology. For general background in topology we refer
to Lee [201] and Willard [285].

If A is a topological space, and B ⊂ A is a subspace, then we write
B ⊂⊂ A if B is compact (in the subspace topology).

We denote the space of mappings A −→ B by Map(A,B), given
the compact-open topology.

If fn (for n = 1, 2, . . . ,∞) are mappings on a space X, write fn ⇒
f∞ if fn converges uniformly to f∞ on X.

Denote the group of diffeomorphisms of a smooth manifold X by
Diff(X), with the C∞ topology (uniform convergence to all orders, on
all K ⊂⊂ X). If f, g are smooth maps between smooth manifolds
X −→ Y , then we say that f and g are isotopic if and only if there is
a smooth path

φt ∈ Diff(X), 0 ≤ t ≤ 1,

with φ0 = IX such that g = φ1 ◦ f . Denote this relation by f ' g.
Suppose (X, d) is a metric space. If x ∈ X, r > 0, define the (open)

ball with center x and radius r as:

Br(x) :=
{
y ∈ X | d(x, y) < r

}
.
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The open balls in a metric space are partially ordered by inclusion.
More generally, if A ⊂ X, define

Br(A) :=
{
y ∈ X | ∃a ∈ A such that d(x, a) < r

}
.

If (X, d) is a metric space, and S, T ⊂⊂ X, then define their Hausdorff
distance

d(S, T ) := inf
{
r ∈ R | S ⊂ Br(T ) and T ⊂ Br(S)

}
.

If X is compact, then the set of closed subsets of X with Hausdorff
distance d is a metric space.

Denote group of isometries of a metric space (X, d) by Isom(X, d),
or just Isom(X) if the context is clear.

Fundamental group and covering spaces. If [a, b]
γ−−→ X is a

continuous path, write

γ(a)
γ
 γ(b)

to indicate that γ runs between its two endpoints γ(a), γ(b). Fix an

arbitrary basepoint p0 ∈ X. A loop based at p0 is a path p0
γ
 p0. Two

such based loops γ1, γ2 are relatively homotopic if they are homotopic
by a homotopy which fixes p0. In that case we write γ1 ' γ2. In
that The fundamental group π1(M ; p0) corresponding to p0 consists of
relative homotopy classes [γ] of based loops γ.

The group operation is defined by concatenation of paths: If

[ai, bi]
γi−−→ X, for i = 1, 2

are paths, with γ1(b1) = γ2(a2), write γ1 ? γ2 for the continuous path

γ1(a1) γ2(b2),

defined by:

[a1, b2]
γ1?γ2−−−−→ X

t 7−→
{
γ1(t) if a1 ≤ t ≤ b1

γ2(t) if a2 ≤ t ≤ b2

If γ1, γ2 are loops based at p0, so is γ1 ? γ2, and concatenation defines
an binary operation on π1(X, p0).

The constant path p0 defines an identity element on π1(X, p0) since

p0 ? γ ' γ ? p0 ' γ. Define the inverse of a path [a, b]
γ−−→M

[a, b]
γ−1

−−−→M

t 7−→ γ(a+ b− t).
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If γ is a loop based at p0, then

γ ? γ−1 ' γ−1 ? γ ' p0,

obtaining inversion in π1(M ; p0). If [a3, b3]
γ3−−→ X with γ2(b2) =

γ3(a2), then
(γ1 ? γ2) ? γ3 ' γ1 ? (γ2 ? γ3),

implying associativity. Thus π1(X, p0) is indeed a group.
Under rather general conditions on X (such as being a topological

manifold) defined the universal covering space (corresponding to p0)

X̃(p0) Π−−→ X

as the collection of relative homotopy classes of paths γ starting at p0,

with the other endpoint at Π(γ). Give X̃(p0) the coarsest topology such
that Π is continuous. Then Π is a local homeomorphism, and indeed a
Galois covering space with covering group π1(X, p0).

The (left) action on X̃(p0) by deck transformations from π1(X, p0)

is defined as follows. Choose a point p ∈ X, a path p0
η
 p and a loop

γ based at p0. The action of [γ] on [η] is defined by:

[η]
[γ]7−−−→ [γ ? η].

The action is free and proper, preserves p = Π([η]). The quotient

map naturally identifies with Π and the quotient space X̃(p0)/π1(X, p0)
naturally identifies with X.

Smooth manifolds. We shall work in the context of smooth man-
ifolds, for which a good general reference is Lee [200]. This will enable
the use of differential calculus locally, and notions of smooth mappings
between manifolds. A smooth manifold is a Hausdorff space built from
open subsets of Rn, which we call coordinate patches. The coordinate
changes are general smooth locally invertible maps. If M and N are
given such structures, a continuous map M −→ N is smooth if in the
local coordinate charts it is given by a smooth map.

This structure enables the tangent bundle TM , whose points are the
infinitesimal displacements of points in M . That is, to every smooth

curve (a, b)
γ−−→M , and parameter t with a ≤ t ≤ b, is a velocity vector

γ′(t) ∈ Tγ(t)M

representing the infinitesimal effect of displacing γ(t) along γ. Since
the local coordinates change by general smooth locally invertible maps,
there is no natural way of identifying these infinitesimal displacements
at different points. Therefore we attach to each point p ∈M , a “copy”
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TpM of the model space Rn, which represents the vector space of in-
finitesimal displacements of p. It is important to note that although
the fibers TpM are disjoint, that the union

TM :=
⋃

p∈M

TpM

is topologized as a smooth manifold (indeed, a smooth vector bundle),
and not as the disjoint union.

The velocity vector of a smooth curve is a tangent vector at p, which
can be defined in two equivalent ways:

• Equivalence classes of smooth curves γ(t) with γ(0) = p, where
curves γ1 ∼ γ2 if and only if

d

dt

∣∣∣∣
t=0

f ◦ γ1(t) =
d

dt

∣∣∣∣
t=0

f ◦ γ2(t)

for all smooth functions U
f−−→ R, where U ⊂ A is an open

neighborhood of p.

• Linear operators C∞(A)
D−−→ R satisfying

(2) D(fg) = D(f)g(p) + f(p)D(g).

The tangent space TpM is a vector space linearizing the smooth man-
ifold M at the point p ∈M .

The space of tangent vectors forms a smooth vector bundle TM
Π−−→

M , with fiber Π−1(p) := TpM . If U 3 p is a coordinate patch, then
Π−1(U) identifies with U × Rn, and this defines a smooth coordinate
atlas on TM .

Let M,N be smooth manifolds, and p ∈M . A mapping

M
f−−→ N

is differentiable at p if every infinitesimal displacement v ∈ TpM maps
to an infinitesimal displacement Dpf(v) ∈ TqN , where q = f(p). That
is, if γ is a smooth curve with γ(0) = p and γ′(0) = v, then we require
that f ◦ γ is a smooth curve through q at t = 0; then we call the new
velocity (f ◦ γ)′(0) ∈ TqN the value of the differential or derivative

TpM
(Df)p−−−−→ TqN

v 7−→ (f ◦ γ)′(0)

If P is a third smoooth manifold, and N
g−−→ P is a smooth map, the

composition M
g ◦ f−−−−→ P is defined, and is a smooth map. The Chain

Rule expresses the derivative of the composition as the composition of
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the derivatives of f and g: and M
f−−→ N

g−−→ P are smooth maps,
then the differential of a composition

M
f
//

g ◦ f

  
N g

// P

induces a commutative diagram

TxM
(Df)x

//

(
D(g ◦ f)

)
x

**
Tf(x)N

(Dg)f(x)

// T(g◦f)(x)P

that is, D(g, ◦ f)x = (Dg)f(x) ◦ (Df)x.
If M,N are smooth manifolds, a diffeomorphism M −→ N is an

invertible smooth mapping whose inverse is also smooth. In particular

a diffeomorphism is a homeomorphism. If M
f−−→ N is a smooth map

and p ∈M such that the differential

TpM
(Df)p−−−−→ Tf(p)N

is an isomorphism of vector spaces, the Inverse Function Theorem im-
plies the existence of an open neighborhood U 3 p such that the re-
striction f |U is a diffeomorphism U → f(U). In particular f(U) ⊂ N
is open and U can be chosen so that (Df)q is an isomorphism for every
q ∈ U . Such a map is called a local diffeomorphism (at p).

Under the C∞ topology, diffeomorphisms M →M form a topologi-
cal group, denoted by Diff(M). Indeed Diff(M) has more structure as a
Fréchet Lie group. IfN is a smooth manifold, then a mapN → Diff(M)
is smooth if the natural composition N×M →M is smooth. A smooth

homomorphism R Φ−−→ Diff(M) is called a smooth flow on M .

Vector fields. A vector field on M is a section of the tangent

bundle TM
Π−−→M , that is a mapping M

ξ−→ TpM such that

Π ◦ ξ = IM ,

or equivalently, ξ(p) ∈ TpM . Denote the space of all vector fields on
M by Vec(M). Just as individual tangent vectors at p ∈ M define
derivations C∞(M) −→ R over the evaluation map

C∞(M) −→ R
f 7−→ f(p)
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(as in (2)), vector fields in Vec(M) define derivations of the algebra
C∞(M).

Let a < b ∈ R. A smooth curve (a, b)
γ−−→ M is an integral curve

for ξ ∈ Vec(M) if and only if

γ′(t) = ξ
(
γ(t)

)
∈ Tγ(t)M

for all a < t < b. If Φ is a smooth flow as above, then for each p ∈M ,

(a, b)
Φp−−→M

t 7−→ Φ(t)(p)

is a smooth curve in M with velocity vector field (Φp)
′(t) ∈ TΦp(t)M .

In particular

ξ(p) := (Φp)
′(0) ∈ TpM (since Φp(0) = p)

defines a smooth vector field ξ ∈ Vec(M).
The Fundamental Theorem on Flows is a statement in the converse

direction: every vector field ξ ∈ Vec(M) is tangent to a local flow.
That is, through every point there exists a unique maximal integral
curve, defined for some open interval (a, b) containing 0. When M is a
closed manifold), then the integral curves are defined on all of R and
corresponds to a flow Φ on M . Such a vector field is called complete.
More generally (Lee [201], Theorem 9.16), if ξ is compactly supported,
it is complete.

See Lee [201], §9, for full details; a precise statement of the Funda-
mental Theorem on Flows is given in Theorem 9.12. If f is a local dif-
feomorphism, and ξ ∈ Vec(N), then define the pullback f ∗ξ ∈ Vec(M)
by:

(3) (f ∗ξ)p :=
(
(Df)p

)−1
(ξf(p)).

In particular, in the terminology of Lee [201], the vector fields ξ and
f ∗ξ are f -related.

Suppose that M
f−−→ N is a smooth map and ξ ∈ V ect(M) and

η ∈ Vec(N) are f -related vector fields, that is,

(Df)p
(
ξ(p)

)
= η
(
f(p)

)
, ∀p ∈M.

The Naturality of Flows (Lee [201], Theorem 9.13) implies that if Ψ(t)
is the local flow defined by ξ ∈ Vec(M) and Ψ(t) the local flow on N
defined by η ∈ Vec(N),nthen

f
(
Φt(p)

)
= Ψt

(
f(p)

)

whenever these objects are defined.
The vector fields onM form a Lie algebra Vec(M) under Lie bracket.
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Affine geometry

This section introduces the geometry of affine spaces. After a rig-
orous definition of affine spaces and affine maps, we discuss how linear
algebraic constructions define geometric structures on affine spaces.
Affine geometry is then transplanted to manifolds. The section con-
cludes with a discussion of affine subspaces, vector fields, volume and
the notion of center of gravity.

1.1. Euclidean space

We begin with a short summary of Euclidean geometry in terms of
its underlying space and its group of isometries.

Euclidean geometry can be described in many different ways. Here
is one simple approach. Denote by En the set of points in the vector
space Rn (that is, ordered n-tuples of real numbers) with the distance
function

En × En
d−−→ R

(p, q) 7−→ ‖p− q‖.

Exercise 1.1.1. Let (En, d)
g−−→ (En, d) be an isometry. Then

g(p) = Ap+ b

for an orthogonal matrix A ∈ O(n) and a vector b ∈ Rn.

That is, the isometry g of Euclidean n-space En is a composition of the
linear isometry defined by A and the translation

p
τb7−−→ p+ b

by b.
Two objects X, Y are parallel if they are related by the action of a

translation, in which case we write X ‖ Y .

Exercise 1.1.2. Show that translations form a normal subgroup
Trans(En) isomorphic to Rn and

Isom(En) = Trans(En) o O(n).

Deduce that Isom(En) preserves the relation of parallelism.

23
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Another feature of Euclidean geometry is the notion of angle:

Exercise 1.1.3. Every isometry of En preserves angles. (Hint: use
the fact that angles can be defined in terms of inner products on Rn.)

That is, every isometry is angle-preserving, or conformal. The equiv-
alence relation of similarity is generated by the group Sim(En) of con-
formal transformations of En.

An element of Sim(En) which is not an isometry is the homothety
given by scalar multiplication p 7−→ λp, where λ ∈ R and λ 6= ±1.
(See §1.5.2 for the general definiton of homotheties.) Denote the group
of scalar multiplications by λ > 0 by R+.

Exercise 1.1.4. The group Sim(En) is generated by Isom(En) and
R+. Indeed,

Sim(En) = Sim0(En) n Trans(En)

where
Sim0(En) := R+ × O(n)

is the group of linear similarities of En. Explicitly a transformation g
of En lies in Sim(En) if it has the form

p 7−→ λA(p) + b

where A ∈ O(n) and λ ∈ R+.

Yet another feature of Euclidean geometry is volume:

Exercise 1.1.5. Show that an orientation-preserving isometry of
Euclidean space is volume-preserving. Show that an orientation-preserving
similarity transformation preserves volume if and only if it is an isom-
etry.

Compare §1.4.2 for further discussion of volume in affine geometry.

1.2. Affine space

What geometric properties of En do not involve the metric notions
of distance, angle and volume? For example, the notion of straight line
is invariant under translations and more general linear maps which are
not Euclidean isometries. Although it admits a metric definition as
“the shortest path joining two points,” it enjoys a more fundamental
characterization as a curve of zero acceleration, that is, a geodesic.
However to define the acceleration of a smooth curve, one needs to
compare the velocity vectors at different points along the curve. This
is achieved by the parallel transport of the velocity along the curve, and
hence involves the notion of parallelism. (This is the notion of an affine
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connection, which is way to “connect” the infinitesimal displacements
at different locations.)

Here is our first definition of an affine transformation:

Definition 1.2.1. An affine transformation of Rn is a mapping of
the form

Rn g−−→ Rn

p 7−→ Ap+ b

where A ∈ GL(n,R) is an n × n invertible matrix and b ∈ Rn is a
vector. A is called the linear part of g, and denoted L(g) and b is
called the translational part of g, and denoted u(g).

Thus an affine transformation g is:

• a translation if and only if L(g) = I;
• a Euclidean isometry if and only if L(g) ∈ O(n);
• a Euclidean similarity (conformal transformation) if and only

if L(g) ∈ Sim0(Rn) = R+ × O(n);
• a volume-preserving affine transformation if and only if L(g) ∈

SL(n,R) .

1.2.1. The geometry of parallelism. Here is a more formal def-
inition of an affine space. Although less intuitive, it embodies the idea
that affine geometry is the geometry of parallelism.

Recall that subsets X, Y ⊂ En are parallel (written X ‖ Y ) if and
only if τv(X) = Y for some vector v ∈ Rn. (Here τv ∈ Trans(En)
denotes the translation p 7−→ p + v.) Affine geometry is the geom-
etry arising from the simply transitive action of the vector space of
translations (isomorphic to Rn).

Recall that an action of a group G on a space X is simply transi-
tive if and only if if for some (and then necessarily every) x ∈ X, the
evaluation map

G −→ X

g 7−→ g · x
is bijective: that is, for all x, y ∈ X, a unique g ∈ G takes x to y.
Equivalently, the action is both:

• Transitive: There is only one orbit, and
• Free: No nontrivial element fixes a point.

For further general discussion about group actions, see §A.3.

Definition 1.2.2. Let G be a group. A G-torsor is a space X with
a simply transitive G-action.
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Thus a G-torsor is like the group G, except that the special role of
its identity element is “forgotten.” Thus all the points are regarded
as equivalent. What is remembered is the algebraic structure of the
transformations in G which transport uniquely between the points.

Now we give the formal definition of a an affine space:

Definition 1.2.3. An affine space is a V-torsor A, where V is a
vector space. We call V the vector space underlying A, and denote it
by Trans(A), the elements of which are the translations of A.

This abstract approach provides the usual coordinates for an affine
space. Namely, choose a basepoint p0 ∈ A which will correspond to
the origin. That is, it will be labeled by the zero vector 0 ∈ V. Any
other point p ∈ A is related to p0 by a unique translation τ ∈ Trans(A)
satisfying p = τ(p0). (This translation exists because the action is
transitive, and is unique because the action is free.) Identifying the
transformations Trans(A) with vectors v ∈ V in the usual coordinates,
the vector v corresponding to τ is just v = p−p0, and τ is the mapping

A
τ−−→ A

p 7−→ p+ v.

1.2.2. Affine transformations. Here is the second definition of
affine transformations.

Affine maps are maps between affine spaces which are compatible
with these simply transitive actions of vector spaces. Suppose A,A′ are
affine spaces with underlying vector spaces

V←→ Trans(A), V′ ←→ Trans(A′).

Then a map

A
f−−→ A′

is affine if for each τ ∈ Trans(A), there exists a translation τ ′ ∈
Trans(A′) such that the diagram

A
f−−−→ A′

τ

y
yτ ′

A
f−−−→ A′

commutes. Necessarily τ ′ is unique and evidently the correspondence

τ
L(f)7−−−−→ τ ′

defines a homomorphism of groups V −→ V′, that is, a linear map
between vector spaces. This linear map is the linear part of f , denoted
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L(f). Denoting the space of all affine maps A −→ A′ by aff(A,A′) and
the space of all linear maps V −→ V′ by Hom(V,V′), linear part defines
a map

aff(A,A′)
L−−→ Hom(V,V′)

The set of affine endomorphisms of an affine space A will be denoted
by aff(A) and the group of affine automorphisms of A will be denoted
Aff(A).

The notion of translational part involves choosing basepoints p0 ∈ A
and p′0 ∈ A′, respectively. Then the translational part of f ∈ aff(A,A′)
is simply

u(f) := f(p0)− p′0,
that is, the vector in V′ corresponding to the translation τf ∈ Trans(A)
taking p′0 ∈ A′ to f(p0) ∈ A′. Then (τf )

−1 ◦ f maps p0 to p′0 and
corresponds to the linear part L(f) as follows. Let p ∈ A be an arbitrary
point which corresponds to the vector

x = p− p0 ∈ V,

that is, the translation τ ∈ Trans(A) corresponding to x maps p0 to p,
as in §1.2. Then

(
(τf )

−1 ◦ f
)
◦ τ(p0) = τ ′ ◦

(
(τf )

−1 ◦ f
)
p0 = τ ′(p′0) = p′0 + L(f)x

where τ ′ ∈ Trans(A′) corresponds to L(f)x. Thus f is the composition
of the translation τf ←→ u(f) with the linear part L(f).

The space aff(A,A′) has the natural structure of an affine space.
Namely the vector space

Hom(V,V′)⊕ V′.

acts simply transitively on aff(A,A′). Furthermore the Cartesian prod-
uct Aff(A) × Aff(A′) acts by composition on aff(A,A′), preserving the
affine structure. (Compare Vey [275] for a discussion of the affine
structure on the space of affine mappings.)

Aff(A) is a Lie group and its Lie algebra identifies with aff(A), which
we later identify with affine vector fields on A. Furthermore Aff(A) is
isomorphic to the semidirect product Aut(V)nV, where V is the normal
subgroup consisting of translations and

Aut(V) = GL(V)

is the group of linear automorphisms of the vector space V←→ Trans(A).
Affine geometry is the study of affine spaces and affine maps be-

tween them. If U ⊂ A is an open subset, then a map U
f−−→ A′ is

locally affine if for each connected component Ui of U , there exists an
affine map fi ∈ aff(A,A′) such that the restrictions of f and fi to Ui
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are identical. Note that two affine maps which agree on a nonempty
open set are identical.

1.3. The connection on affine space

Now we discuss the structure of an affine space A as a smooth
manifold. To analyze the differentiable structure on A, we consider
smooth paths in A and their velociity vector fields, which live in the
tangent bundle TA. From this we “connect” the tangent spaces to
define covariant differentiation enabling us to define acceleration as
the covariant derivative of the velocity. Geodesics are curves of zero
acceleration.

1.3.1. The tangent bundle of an affine space. Let γ(t) denote
a smooth curve in A; that is, in coordinates

γ(t) =
(
x1(t), . . . , xn(t)

)

where xj(t) are smooth functions of the time parameter, which ranges
in an interval [t0, t1] ⊂ R. The vector γ(t) − γ(t0) corresponds to the
unique translation taking γ(t0) to γ(t0), and lies in the vector space V
underlying A. It represents the displacement of the curve γ as it goes
from t = t0 to t. Define its velocity vector γ′(t) ∈ V as the derivative
of this path in the vector space V of translations. It represents the
infinitesimal displacement of γ(t) as t varies.

The set of tangent vectors is a vector space, denoted TpM , and
naturally identifies with V as follows. If v ∈ V is a vector, then the
path γ(p,v)(t) defined by:

(4) t 7→ p+ tv = τtv(p)

is a smooth path with γ(0) = p and velocity vector γ′(0) = v. Con-
versely, definition above of an infinitesimal displacement, shows that
every smooth path through p = γ(0) with velocity γ′(0) = v is tangent
to the curve (4) as above.

The tangent spaces TpM linearize M as follows. A mapping

M
f−−→M ′

is differentiable at p if every infinitesimal displacement v ∈ TpM maps
to an infinitesimal displacement Dpf(v) ∈ TqM

′, where q = f(p). That
is, if γ is a smooth curve with γ(0) = q and γ′(0) = v, then we require
that f ◦ γ is a smooth curve through q at t = 0; then we call the new
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velocity (f ◦ γ)′(0) the value of the derivative

TpM
Dpf−−−→ TqM

′

v 7−→ (f ◦ γ)′(0)

1.3.2. Parallel transport. On an affine space A, all the tangent
spaces identify with each other. Namely, if x, y ∈ A, let τ ∈ Trans(A)
be the unique translation taking x to y. (τ corresponds to the vector
y − x.) The differential (Dτ)x maps TxA isomorphically to TyA) and
we denote this by:

TxA
Px,y−−−→ TyA

We call this map parallel transport from x to y.

Exercise 1.3.1. Another construction involves the linear structure
of V ←→ Trans(A). Namely, the action of V by translations identifies

the vector space V with TxA. Denoting this isomorphism by V
αx−−→

TxA, show that Px,y = αy ◦ (αx)
−1.

A vector field ξ ∈ Vec(A) is parallel if it is invariant under parallel
transport. That is, Px,y(ξx) = ξy for any x, y ∈ A. This just means

that ξ is a “constant vector field,” defined by a constant map A
v−−→ V:

as a differential operator

C∞(A)
ξ−→ R

f 7−→ vi(x)
∂f

∂xi

where v(x) is constant. Thus V identifies with the space of parallel
vector fields on A, and is based by the coordinate vector fields

∂

∂xi
∈ Vec(A),

which we abbreviate simply by ∂i.

Exercise 1.3.2. Show that ξ ∈ Vec(A) is parallel if and only if it
generates a one-parameter group of translations.

Similarly, the dual vector space V∗ identifies with parallel 1-forms as
follows. A 1-form (covector field) on A corresponds to a constant map
A −→ V∗. The basis of parallel covector fields dual to the coordinate
basis {∂1, . . . , ∂n} of parallel vector fields is denoted {dx1, . . . , dxn} (as
usual).

Exercise 1.3.3. Show that a parallel 1-form is exact, and hence
closed.
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1.3.3. Acceleration and geodesics. The velocity vector field
γ′(t) of a smooth curve γ(t) is an example of a vector field along the
curve γ(t): For each t, the tangent vector γ′(t) ∈ Tγ(t)A. Differenti-
ating the velocity vector field raises a significant difficulty: since the
values of the vector field live in different vector spaces, we need a way
to compare, or to connect them. The natural way is use the simply
transitive action of the group V of translations of A. That is, suppose
that γ(t) is a smooth path, and ξ(t) is a vector field along γ(t). Let τ ts
denote the translation taking γ(t+ s) to γ(t), that is, in coordinates:

A
τ ts−−→ A

p 7−→ p+
(
γ(t+ s)− γ(t)

)

Its differential

Tγ(t+s)A
Dτ ts−−−→ Tγ(t)A

then maps ξ(t+s) into Tγ(t)A and the covariant derivative D
dt
ξ(t) is the

derivative of this smooth path in the fixed vector space Tγ(t)A:

D

dt
ξ(t) :=

d

ds

∣∣∣∣
s=0

(Dτ ts)
(
ξ(t+ s)

)

= lim
s→0

(Dτ ts)
(
ξ(t+ s)

)
− ξ(t)

s

In this way, define the acceleration as the covariant derivative of the
velocity:

γ′′(t) :=
D

dt
γ′(t)

A curve with zero acceleration is called a geodesic.

Exercise 1.3.4. Given a point p and a tangent vector v ∈ TpA,
show that the unique geodesic γ(t) with

(
γ(0), γ′(0)

)
= (p,v)

is given by (4).

In other words, geodesics in A are parametrized curves which are Eu-
clidean straight lines traveling at constant speed. However, in affine
geometry the speed itself in not defined, but “motion along a straight
line at constant speed” is affinely invariant (zero acceleration).

This leads to the following important definition:
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Definition 1.3.5. Let p ∈ A and v ∈ Tp(A) ∼= V. Then the
exponential mapping is defined by:

TpA
Expp−−−−→ A

v 7−→ p+ v.

Thus the unique geodesic with initial position and velocity (p,v) equals

t 7−→ Expp(tv) = p+ tv.

1.4. Parallel structures

Many important refinements of affine geometry involve structures
which are parallel. Parallelism generalizes the notion of “constant”
when the targets vary from point to point.

For example, the most familiar geometry is Euclidean geometry,
extremely rich with metric notions such as distance, angle, area and
volume. We have seen that affine geometry underlies it with the more
primitive notion of parallelism. Euclidean geometry arises from affine
geometry by introducing a Riemannian structure on A, which is paral-
lel.

Parallel vector fields and 1-forms were introduced back in §1.3.2,
where parallel vector fields correspond to vectors in V and parallel 1-
forms (parallel covector fields) correspond to covectors in V∗. Now we
consider parallel tensor fields of higher order.

1.4.1. Parallel Riemannian structures. Let B be an inner prod-
uct on V and O(V; B) ⊂ GL(A) the corresponding orthogonal group.
Then B defines a flat Riemannian metric on A and the inverse image

L−1(O(V; B)) ∼= O(V; B) · Trans(A)

is the full group of isometries, that is, the Euclidean group. If B is a non-
degenerate indefinite form, then there is a corresponding flat pseudo-
Riemannian metric on A and the inverse image L−1

(
O(V; B)

)
is the full

group of isometries of this pseudo-Riemannian metric.

Exercise 1.4.1. Show that an affine automorphism g of Euclidean
n-space Rn is conformal (that is, preserves angles) if and only if its lin-
ear part is the composition of an orthogonal transformation and scalar
multiplication.

Such a transformation will be called a similarity transformation
and the group of similarity transformations will be denoted Sim(En).
The scalar multiple is called the scale factor λ(g) ∈ R+ and defines



32 1. AFFINE GEOMETRY

a homomorphism Sim(En)
λ−−→ R+. In general, if g ∈ Sim(En, then

∃A ∈ O(n),b ∈ Rn such that

g(x) = λ(g)Ax+ b.

1.4.2. Parallel tensor fields. Namely, any tangent vector vp ∈
TpA extends uniquely to a vector field on A invariant under the group
of translations. As we saw in §1.4.1, Euclidean structures are defined
by extending an inner product from a single tangent space to all of E.

Dual to parallel vector fields are parallel 1-forms. Every tangent
covector ωp ∈ T∗pA extends uniquely to a translation-invariant 1-form.

Exercise 1.4.2. Prove that a parallel 1-form is closed. Express a
parallel 1-form in local coordinates.

If n = dim(A), then an exterior n-form ω must be f(x) dx1∧· · ·∧dxn
in local cooordinates, where f ∈ C∞(A) is a smooth function. Then ω
is parallel if and only if f(x) is constant.

Exercise 1.4.3. Prove that an affine transformation g ∈ Aff(A)
preserves a parallel volume form if and only if det L(g) = 1.

1.4.3. Complex affine geometry. We have been working en-
tirely over R, but it is clear one may study affine geometry over any
field. If k ⊃ R is a field extension, then every k-vector space is a vector
space over R and thus every k-affine space is an R-affine space. In this
way we obtain more refined geometric structures on affine spaces by
considering affine maps whose linear parts are linear over k.

Exercise 1.4.4. Show that 1-dimensional complex affine geometry
is the same as (orientation-preserving) 2-dimensional similarity geom-
etry.

This structure is another case of a parallel structure on an affine
space, as follows. Recall a complex vector space has an underlying
structure as a real vector space V. The difference is a notion of scalar
multiplication by

√
−1, which is given by a linear map

V
J−−→ V

such that J ◦ J = −I. Such an automorphism is called a complex
structure on V, and “turns V into” a complex vector space.

If M is a manifold, an endomorphism field (that is, a (1, 1)-tensor
field) J where, for each p ∈M , the value Jp is a complex structure on
the tangent space TpM is called an almost complex structure. Neces-
sarily dim(M) is even.
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Recall that a complex manifold is a manifold with an atlas of co-
ordinate charts where coordinate changes are biholomorphic. (Such an
atlas is called a holomorphic atlas. Every complex manifold admits
an almost complex structure, but not every almost complex structure
arises from a holomorphic atlas, except in dimension two.

Exercise 1.4.5. Prove that a complex affine space is the same as
a affine space with a parallel almost complex structure.

1.5. Affine vector fields

A vector field X on A is said to be affine if it generates a one-
parameter group of affine transformations. Affine vector fields include
parallel vector fields and radiant vector fields. Parallel vector fields gen-
erate one-parameter groups of translations, and radiant vector fields
generate one-parameter groups of homotheties. Covariant differentia-
tion provides general criteria characterizing affine vector fields.

1.5.1. Translations and parallel vector fields.

Exercise 1.5.1. A vector field X on A is parallel if, for every
p, q ∈ A, the values Xp ∈ TpA and Xq ∈ TqA are parallel.

Since translation τ by v = q − p is the unique translation taking p
to q, this simply means that the differential Dτ maps Xp to Xq.

Exercise 1.5.2. Let X ∈ Vec(A) be a vector field on an affine space
A. The following conditions are equivalent:

• X is parallel
• The coefficients of X (in affine coordinates) are constant.
• ∇YX = 0 for all Y ∈ Vec(A).
• The covariant differential ∇X = 0.
• The linear part L(X) = 0.

The vector space V identifies with the space of parallel vector fields on
A. The parallel vector fields form an abelian Lie algebra of vector fields
on A.

1.5.2. Homotheties and radiant vector fields. Another im-
portant class of affine vector fields are the radiant vector fields, or
infinitesimal homotheties:

Definition 1.5.3. An affine transformation φ ∈ Aff(A) is a homo-
thety if it is conjugate by a translation to scalar mutiplication v 7−→
λv, for some scalar λ ∈ R×. An affine vector field is radiant if it
generates a one-parameter group of homotheties.
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Observe that a homothety fixes a unique point p ∈ A, which we
often take to be the origin. The only zero of the corresponding radiant
vector field is p.

Radiant vector fields are also called Euler vector fields, due to their
role in Euler’s theorem on homogeneous functions: Recall that a func-

tion Rn f−−→ R is homogeneous of degree m if and only if

f(λx) = λmf(x)

for all λ ∈ R+.

Theorem 1.5.4 (Euler). Suppose that R is the radiant vector field
vanishing at the origin 0. Then f is homogeneous of degree m if and
only if the directional derivative Rf = mf .

Exercise 1.5.5. Prove Euler’s theorem above.

Radiant vector fields play an important role in our study. Many im-
portant examples of affine manifolds admit radiant vector fields, and
radiant vector fields provide a link between affine structures in dimen-
sion n and projective structures in dimension n− 1.

Exercise 1.5.6. Let R ∈ Vec(A) be a vector field. Then the follow-
ing conditions are equivalent:

• R is radiant;
• ∇R = IA (where IA ∈ T 1(A; TA) is the identity map TA −→

TA, regarded as an endomorphism field on A);
• there exists bi ∈ R for i = 1, . . . , n such that

R =
n∑

i=1

(xi − bi) ∂

∂xi
.

Note that b = (b1, . . . , bn) is the unique zero of R and that R generates
the one-parameter group of homotheties fixing b. (Thus a radiant vec-
tor field is a special kind of affine vector field.) Furthermore R generates
the center of the isotropy group of Aff(A) at b, which is conjugate (by
translation by b) to GL(A). Show that the radiant vector fields on A
form an affine space isomorphic to A.

1.5.3. Affineness criteria. Affine vector fields can be character-
ized in terms of the covariant differential operation

T p(M ; TM)
∇−−→ T p+1(M ; TM)

where T p(M ; TM) denotes the space of TM -valued covariant p-tensor
fields on M , that is, the tensor fields of type (1, p). Thus T 0(M ; TM) =
Vec(M), the space of vector fields on M . The space T 1(M ; TM) is
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comprises T∗M -valued vector fields on M , which identify with TM -
valued 1-forms, or equivalently endomorphism fields on M .

Exercise 1.5.7. X is affine if and only if it satisfies any of the
following equivalent conditions:

• For all Y, Z ∈ Vec(A),

∇Y∇ZX = ∇(∇Y Z)X.

• ∇∇X = 0.
• The coefficients of X are affine functions, that is,

X =
n∑

i,j=1

(ai jx
j + bi)

∂

∂xi

for constants ai j, b
i ∈ R.

Write

L(X) =
n∑

i,j=1

ai jx
j ∂

∂xi

for the linear part (which corresponds to the matrix (ai j) ∈ gl(Rn))
and

X(0) =
n∑

i=1

bi
∂

∂xi

for the translational part (the translational part of an affine vector field
is a parallel vector field).

Exercise 1.5.8. Under this correspondence, covariant derivative
corresponds to composition of affine maps (matrix multiplication):

∇BA ←→ ÂB̂

The Lie bracket of two affine vector fields is given by:

• L([X, Y ]) = [L(X), L(Y )] = L(X)L(Y )− L(X)L(Y )
(matrix multiplication)

• [X, Y ](0) = L(X)Y (0)− L(Y )X(0).

In this way the space aff(A) = aff(A,A) of affine endomorphisms A �
is a Lie algebra.

Let M be an affine manifold. A vector field ξ ∈ Vec(M) is affine
if in local coordinates ξ appears as a vector field in aff(A). We denote
the space of affine vector fields on an affine manifold M by aff(M).

Exercise 1.5.9. Let M be an affine manifold.

(1) Show that aff(M) is a subalgebra of the Lie algebra Vec(M).
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(2) Show that the identity component of the affine automorphism
group Aut(M) has Lie algebra aff(M).

(3) If ∇ is the flat affine connection corresponding to the affine
structure on M , show that a vector field ξ ∈ Vec(M) is affine
if and only if

∇ξυ = [ξ, υ]

∀υ ∈ Vec(M).

1.6. Affine subspaces

Suppose that A1
ι
↪→ A is an injective affine map; then we say that

ι(A1) (or with slight abuse, ι itself) is an affine subspace. If A1 is
an affine subspace then for each x ∈ A1 there exists a linear subspace
V1 ⊂ Trans(A) such that A1 is the orbit of x under V1 (that is, “an
affine subspace in a vector space is just a coset (or translate) of a
linear subspace A1 = x + V1.”) An affine subspace of dimension 0 is
thus a point and an affine subspace of dimension 1 is a line.

Exercise 1.6.1. Show that if l, l′ are (affine) lines and

(x, y) ∈ l × l, x 6= y

(x′, y′) ∈ l′ × l′, x′ 6= y′

are pairs of distinct points. Then there is a unique affine map l
f−−→ l′

such that

f(x) = x′,

f(y) = y′.

If x, y, z ∈ l (with x 6= y), then define [x, y, z] to be the image of z

under the unique affine map l
f−−→ R with f(x) = 0 and f(y) = 1.

Show that if l = R, then [x, y, z] is given by the formula

[x, y, z] =
z − x
y − x.

This is called an affine parameter along the line.

1.7. Volume in affine geometry

Although an affine automorphism of an affine space A need not
preserve a natural measure on A, Euclidean volume nonetheless does
behave rather well with respect to affine maps. The Euclidean volume
form ω can almost be characterized affinely by its parallelism: it is
invariant under all translations. Moreover two Trans(A)-invariant vol-
ume forms differ by a scalar multiple but there is no natural way to
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normalize. Such a volume form will be called a parallel volume form.
If g ∈ Aff(A), then the distortion of volume is given by

g∗ω = det L(g) · ω.
Thus although there is no canonically normalized volume or measure
there is a natural affinely invariant line of measures on an affine space.
The subgroup SAff(A) of Aff(A) consisting of volume-preserving affine
transformations is the inverse image L−1(SL(V)), sometimes called the
special affine group of A. Here SL(V) denotes, as usual, the special
linear group

Ker
(
GL(V)

det−−−→ R×
)

= {g ∈ GL(V) | det(g) = 1}.
1.7.1. Centers of gravity. Given a finite subset F ⊂ A of an

affine space, its center of gravity or centroid F̄ ∈ A is point associated

with F in an affinely invariant way: that is, given an affine map A
φ−→ A′

we have
φ(F ) = φ(F̄ ).

This operation can be generalized as follows.

Theorem 1.7.1. Let µ be a probability measure on an affine space
A. Then there exists a unique point x̄ ∈ A (the centroid of µ) such that

for all affine maps A
f−→ R,

(5) f(x) =

∫

A

f dµ

Proof. Let (x1, . . . , xn) be an affine coordinate system on A. Let
x̄ ∈ A be the points with coordinates (x̄1, . . . , x̄n) given by

x̄i =

∫

A

xi dµ.

This uniquely determines x̄ ∈ A; we must show that (5) is satisfied for

all affine functions. Suppose A
f−→ R is an affine function. Then there

exist a1, . . . , an, b such that

f = a1x
1 + · · ·+ anx

n + b

and thus

f(x̄) = a1

∫

A

x1 dµ+ · · ·+ an

∫

A

xn dµ

+ b

∫

A

dµ =

∫

A

f dµ

as claimed. �
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Now let C ⊂ A be a convex body, that is, a convex open subset
having compact closure. Then C determines a probability measure µC
on A by

µC(X) =

∫
X∩C ω∫
C
ω

where ω is any parallel volume form on A.

Proposition 1.7.2. Let C ⊂ A be a convex body. Then the centroid
C̄ of C lies in C.

Proof. C is the intersection of halfspaces, that is, C consists of
all x ∈ A such that f(x) > 0 for all affine maps

A
f−−→ R

such that f |C > 0. If f is such an affine map, then clearly f(C̄) > 0.
Therefore C̄ ∈ C. �

1.7.2. Divergence. If ξ ∈ Vec(M), then the infinitesimal distor-
tion of volume is the divergence of ξ, defined as the function div(ξ) such
that

Lξ(ω) = div(ξ)ω

where ω is (any) parallel volume form and Lξ denotes Lie differentiation
with respect to ξ. If, in coordinates ξ = ξi∂i, then

div(ξ) = ∂iξ
i

(the usual formula).

Exercise 1.7.3. The Lie algebra of the special affine group SAff(A)
consists of affine vector fields of divergence zero.

1.8. Linearizing affine geometry

Associated to every affine space A is an embedding A′ of A as an
affine hyperplane in a vector space W as follows.

Exercise 1.8.1. Let A be an affine space over a field k with un-

derlying vector space V := Trans(A). Let W := V ⊕ k and let W
ψ−−→ k

denote linear projection onto the second summand.

• For each s ∈ k, the group V acts simply transitively on the
affine hyperplane ψ−1(s).

– A identifies with ψ−1(1).
– V identifies with Ker(ψ) = ψ−1(0).
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• Define a bijective correspondence betwen n-dimensional affine
spaces A and pairs (W, ψ) where W is an n + 1-dimensional
vector space and ψ ∈ W∗ is a nonzero covector, where A cor-
responds to ψ−1(1).
• Identify the affine group Aff(A) with the subgroup of GL(W)

preserving this hyperplane, as well as the stabilizer of ψ.
• If

[
A a

]
represents an affine transformation with linear part

A and translational part a, show that the corresponding linear
transformation of W is represented by the block matrix[

A a
0 1

]

where 0 is the row vector representing the zero map V→ R.

In coordinates, A′(v) =



v1

...
vn
1


 ∈ W and ψ = [ 0 ... 0 1 ] ∈ W∗. The

affine transformation has linear part A =

[
A1

1 ... A
1
n

...
...

An1 ... A
n
n

]
∈ GL(V) and

translational part a =

[
a1

...
an

]
∈ V:

v

[
A a

]
7−−−−−−→



A1

1 . . . A1
n

... Ai j
...

An1 . . . Ann







v1

...
vj

...
vn




+




a1

...
ai

...
an




=




A1
jv
i + a1

...
Ai jv

j + ai

...
Anjv

j + an




A′(v) 7−→




A1
1 . . . A1

n a1

...
...

An1 . . . Ann an

. . . . . . . . . . . . . . . . . .
0 . . . 0 1







v1

...
vn

. .
1




=




A1
iv
i + a1

...
Aniv

i + an

. . . . . . . . . .
1








CHAPTER 2

Projective geometry

Projective geometry arose historically out of the efforts of Renais-
sance artists to understand perspective. Imagine a painter looking at a
2-dimensional canvas with one eye closed. His open eye plays the role
of the the origin in the 3-dimensional vector space W and the canvas
plays the role of an affine hyperplane A ⊂ W as in §1.8. As the canvas
tilts, the geometry seen by the painter changes. Parallel lines no longer
appear parallel (like the railroad tracks described above) and distance
and angle are distorted. But lines stay lines and the basic relations of
collinearity and concurrence are unchanged. The change in perspective
given by “tilting” the canvas is determined by a linear transformation
of W, since a point on A is determined completely by the 1-dimensional
linear subspace of V containing it. (One must solve systems of linear
equations to write down the effect of such transformation.) Projec-
tive geometry is the study of points, lines and the incidence relations
between them.

Projective space closes off affine space — that is, it compactifies
affine space by adding ideal points at infinity. To develop an intu-
itive feel for projective geometry, consider how points in An may go to
infinity:

The easiest way to go to infinity in An is by following geodesics, since
they have zero acceleration. Furthermore two geodesics approach the
same ideal point if they are parallel. A good model are railroad tracks
running parallel to each other — they meet ideally at the horizon. We
thus force parallel lines to intersect by attaching ideal points where the
extended parallel lines are to intersect.

A good general reference for projective geometry (especially in di-
mension two) is Coxeter [81]), as well as Berger [37, 38] and Cox-
eter [80]. More classical treatments are Busemann-Kelly [54], Semple-
Kneebone [248] and Veblen-Young [271, 272].

2.1. Ideal points

Parallelism of lines in A is an equivalence relation. Define an ideal
point of A as an equivalence class. The ideal set of an affine space A is

41
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the space P∞(A) of ideal points, with the quotient topology. If l, l′ ⊂ A
are parallel lines, then the point in P∞ corresponding to their paral-
lelism class is defined as their intersection. So two lines are parallel if
and only if they intersect at infinity.

Projective space is defined as the union P := A ∪ P∞(A), with a
suitable topology. The natural structure on P is perhaps most easily
seen in terms of an alternate, maybe more familiar, description. Embed
A as an affine hyperplane in a vector space W ∼= V⊕k as in §1.8, where
V = Trans(A) is the vector space underlying A. For example, if

p =



p1

...
pn


 ∈ An,

then its embedding in W = kn+1 is the nonzero vector

A′(p) =




p1

...
pn

1


 ∈ W.

Furthermore the line kA′(p) it spans meets the afffine hyperplane A↔
kn×{1} in a single point. Think of A as the “canvas” or viewing hyper-
plane, and the line kA′(p) as the line of sight as the point p is viewed
from the origin 0 ∈ W (the eye of the painter). The nonzero elements
of this line k×A′(p) form the projective equivalence class [A′(p)].

Now suppose that p travels to infinity along an affine geodesic ` ⊂ A:

p(t) := p+ tv,

where t ∈ k and v ∈ V is a nonzero vector. Denote the corresponding
path of vectors in W by

w(t) := A′
(
p(t)

)
∈ W.

Although limt→∞w(t) does not exist, the corresponding lines k ·w(t)
converge to the line k · v corresponding to v ∈ W. This limiting line
defines the ideal point of the affine line `:

lim
t→∞

[w(t)] = [v]

This motivates the following fundamental definition:

Definition 2.1.1. Let W denote a vector space over k. The projec-
tive space associated to W is the space P(W) of projective equivalence
classes [w] of nonzero vectors w ∈ W, with the quotient topology.
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Thus a point in P(W) (a “projective point”) corresponds to a line (that

is, a one-dimensional linear subspace) in W. If w =

[
w1

...
wn+1

]
∈ W, the

correponding projective point is

p := [w] =





w1

...
wn+1




 ∈ P(W)

and w1, . . . , wn+1 are the homogeneous coordinates of p.
Since linear transformations of W preserve lines, GL(W) = Aut(W)

acts on P(W); the induced transformations are the projective transfor-
mations or collineations of P(W).

Exercise 2.1.2. The action of GL(W) on P(W) is not effective.
Its kernel consists of the group k× of nonzero scalings, which forms the
center of GL(W). The projective group or collineation group is the
quotient

PGL(W) := GL(W)/k×

which does act effectively.

2.2. Projective subspaces

Returning to the projective geometry of the line `, note that the
affine line w(t) in W lies in the linear 2-plane span(p,v) ⊂ W. The
one-dimensional linear subspaces contained in this linear 2-plane is a
projective line.

Definition 2.2.1. Let P = P(W) be a projective space, and let d be
a nonnegative integer. A d-dimensional projective subspace S of P is
the collection of all projective equivalence classes [v] of nonzero vectors
v lying in a fixed d + 1-dimensional linear subspace S ⊂ W. We write
S = P(S) and call S the projectivization of S.

Thus a projective line is the projectivization of a linear 2-plane in W
and a projective hyperplane is the projectivization a linear hyperplanee
in W.

A linear embedding S1 ↪→ S2 ⊂ W of linear subspaces induces an
embedding of projective subspaces P(S1) ↪→ P(S2) and we say that
the subspaces P(S1) and P(S2) are incident. Clearly projective trans-
formations preserve the relation of incidence. The converse, that an
incidence-preserving transformation of projective space, is a deep the-
orem, sometimes called the fundaamental theorem of projective geome-
try.
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Exercise 2.2.2. Show that the set of ideal points is a projective
hyperplane.

Suppose that S1, S2 ⊂ P are disjoint projective subspaces. Then,
writing Si = P(Si) for respective linear subspaces Si ⊂ W, the projec-
tivization P(S1 + S2) is a projective subspace span(S1, S2) ⊂ P and

dim
(
span(S1, S2)

)
= dim(S1) + dim(S2) + 1.

If S1 and S2 are points, then span(S1, S2) is a line, and we use the more

familiar notation
←−→
S1S2. If Si are projective subspaces and S1 ∩ S2 6= ∅,

then S1 ∩ S2 is a projective subspace and

dim
(
span(S1, S2)

)
+ dim(S1 ∩ S2) = dim(S1) + dim(S2).

Evidently span(S1, S2)
)

is the smallest projective subspace containing
S1 and S2.

2.2.1. Affine patches. Ideal points are only special when projec-
tive space is the completion of affine space; by changing the viewing
hyperplane, one gets different notions of “ideal.” Indeed, every projec-
tive point has neighborhoods which are affine subspaces.

Let P be d-dimensional projective space and H ⊂ P be a projective
hyperplane Then the complement P \H is an affine patch and has the
structure as a d-dimensional affine space with underlying vector space
V via an affine chart

V
A−−→
≈

P \H,

defined as follows. Write P = P(W). Choose a covector ψ ∈ W∗ such
that H = P(V) where V :=

(
Ker(ψ). Choose a vector w0 ∈ W with

ψ(w0) = 1 to define an origin in the affine patch. Then

V
A(ψ,w0)

−−−−−→ P \H
v 7−→ [w0 + v]

defines an affine chart on P \H. Compare §1.8.
Every projective point p ∈ P lies in an affine patch. Writing

p = [X] =





X1

...
Xd+1




 ∈ Pd,
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some homogeneous coordinate X i of the nonzero vector X is nonzero.
Then X i 6= 0 defines an affine patch with chart

kd
Ai−−→ Pd



v1

...
vd


 7−→







v1

...
vi−1

1
vi

...
vd







and p ∈ A(i) := A(i)(V). These d+ 1 coordinate affine patches define a
covering by contractible open sets.

Exercise 2.2.3. Suppose that 1 ≤ i 6= j ≤ d+ 1.

(1) Express the intersection A(i)∩A(j) in terms of the charts A(i),A(j).
(2) Compute the change of coordinates

(
A(i)

)−1(
A(i) ∩ A(j)

)
(
A(j)
)−1

◦ A(i)

−−−−−−−−−−→
(
A(j)

)−1(
A(i) ∩ A(j)

)
.

(3) Let k = R and let a, b ∈ R with a < b. Suppose that

(a, b)
γ−−→ V

is a curve such that A(i)
(
γ(t)

)
∈ A(i) and A(j)

(
γ(t)

)
∈ A(j) for

a < t < b. Suppose that A(i) ◦ γ is a geodesic in A(i). Show
there exists a reparametrization, that is, a diffeomorphism

(a, b)
τ−−→
≈

τ
(
(a, b)

)
⊂ R

such that the composition A(j) ◦ γ ◦ τ , that is, the map

t 7−→ A(j)
((
γ
(
τ(t)

))
,

is a geodesic in A(j).

In general, the topology of projective space is complicated. Since
it arises from a quotient and not a subset construction, it is more
sophisticated than a subset. Indeed, projective space generally does
not arise as a hypersurface in Euclidean space. Although Pd can be
covered by d+ 1 contractible open sets, it cannot be covered by fewer
contractible open sets. For either k = R or C, projective space Pd(k)
is a compact smooth manifold. We summarize some basic facts about
the topology.
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Exercise 2.2.4. Suppose k = R. Exhibit Pd(R) as a quotient of the
unit sphere Sd ⊂ Rd+1 by the antipodal map. Show that P1(R) ≈ S1

and for d > 1 the fundamental group Pd(R) has order two. Show that
Pd(R) is orientable if and only if d is odd.

Exercise 2.2.5. Suppose that k = C. Exhibit Pd(C) as a quotient of
the unit sphere S2d−1 ⊂ Cd+1 by the group T of unit complex numbers.
Show that P1(C) ≈ S2, and Pd(C) is simply connected and orientable
for all d ≥ 1.

Exercise 2.2.6. Find a natural S1-fibration P2d+1(R) −→ Pd(C).

2.3. Projective mappings

Linear mappings V
φ−−→ W between vector spaces define mappings

between the corresponding projective spaces. However, if φ is not in-
jective, the corresponding projective map is not defined on all of P(V).
We begin discussing with projective maps defined by injectivee linear
maps, particularly emphaszing automorphisms, classically known as
collineations. Collneations arise from liner autmorphisms of the vector
space W.

2.3.1. Embeddings and Collineations. A projective subspace
S ⊂ P(W) determines a projective map, determined by the linear in-
clusion S ↪→ W, where S is the linear subspace of W projectivizing to
S.

Exercise 2.3.1. Show that an injective projective map P(S −→
P(W) is determined by an injeective linear map S −→ W is determined
by an injeective linear map, unique up to composition with a homothety
of S on the left and a homothety of W on the right.

A linear automorphism of a vector spaces W induces an invertible

transformation P(W)
φ−−→ P(W). We call such a transformatioon a

collineation or a homography. Evidently a collineation preserves pro-
jective subspaces, and the relations between them. An involution is a
collineation of order two, that is, φ = φ−1.

Exercise 2.3.2. Let RPn be a real projective space of dimension n,
and let φ be an involution of RPn.

• Suppose n is even. Then Fix(φ) is the union of two disjoint
projective subspaces of dimensions d1, d2 where d1 +d2 = n−1.
• Suppose n = 2m+ 1 is odd. Then either:

– Fix(φ) 6= ∅ and equals the union of two disjoint projective
subspaces of dimensions d1, d2 where d1 + d2 = n− 1, or
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– Fix(φ) = ∅, and φ leaves invariant an S1-fibration

RPn −→ CPm.

For example, an involution φ of RP2 has an isolated fixed point p and
a disjoint fixed line l. In an affine patch containing p, φ looks like a
symmetry in p, preserving the local orientation. In contrast, φ looks
like a reflection in l in an affine patch containing l, reversing the local
orientation. Since RP2 is nonorientable no global orientation exists to
either preserve or reverse.

Here is an explicit example. The involution defined in homogeneous
coordinates by:

RP2 ι−→ RP2





X
Y
Z




 7−→





−X
−Y
Z






fixes the point

p =






0
0
1






and the projective line defined by Z = 0, that is, l =
[[
0 0 1

]]
. In

the affine chart A3, the isolated fixed point has coordinates (0, 0) and
ι appears as the symmetry

[
v1

v2

]
7−→

[
−v1

−v2

]
.

and in the affine chart A1, the fixed line has coordinates (∗, 0) and ι
appears as the reflection

[
v1

v2

]
7−→

[
−v1

v2

]

fixing the vertical axis. That a single reflection can appear simultane-
ously as a symmetry in a point and reflection in a line indicates the
topological complexity of P2: A reflection in a line reverses a local ori-
entation about a point on the line, and a symmetry in a point preserves
a local orientation about the point.

2.3.2. Singular projective mappings. When the linear map φ
is not injective, then P

(
Ker(φ)

)
is a projective subspace, upon which

the projectivization [φ] of φ is not defined. For that reason, we call it
the undefined set of [φ], and denote it U([φ]).
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Exercise 2.3.3. Show that the projective automorphisms of P form
a group Aut(P) which has the following description. If

P
f−−→ P

is a projective automorphism, some linear isomorphism

V
f̃−−→ V

induces f . Indeed,

1 −→ R× −→ GL(V) −→ Aut(P) −→ 1

is a short exact sequence, where R× −→ GL(V) is the inclusion of the
group of multiplications by nonzero scalars. This quotient, the projec-
tive general linear group

PGL(V) := PGL(V) := GL(V)/R× ∼= Aut(Pn),

is also denoted PGL(n+ 1,R) If n is even, then

PGL(n+ 1,R) ∼= SL(n+ 1;R).

If n is odd, then PGL(n+ 1,R) has two connected components, and its
identity component is doubly covered by SL(n+ 1;R) and is isomorphic
to SL(n+ 1;R)/{±I}.

If V,V′ are vector spaces with associated projective spaces P,P′

then a linear map V
f̃−−→ V′ maps lines through 0 to lines through 0.

But f̃ only induces a map P
f−−→ P′ if it is injective, since f(x) can

only be defined if f̃( x̃ ) 6= 0 (where x̃ is a point of Π−1(x) ⊂ V−{0}).
Suppose that f̃ is a (not necessarily injective) linear map and let

U(f) = Π
(
Ker(f̃)

)
.

The resulting projective endomorphism of P is defined on the comple-
ment P − U(f). If U(f) 6= ∅, the corresponding projective endomor-
phism is by definition a singular projective transformation of P. If f is
singular, its image is a proper projective subspace, called the range of
f and denoted R(f).

A projective map P1
ι−→ P corresponds to a linear map V1

ι̃−→
V between the corresponding vector spaces (well-defined up to scalar
multiplication). Since ι is defined on all of P1, ι̃ is an injective linear
map and hence corresponds to an embedding. Such an embedding (or
its image) will be called a projective subspace. Projective subspaces of
dimension k correspond to linear subspaces of dimension k + 1. (By
convention the empty set is a projective space of dimension -1.) Note
that the “bad set” U(f) of a singular projective transformation is a
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projective subspace. Two projective subspaces of dimensions k, l where
k+l ≥ n intersect in a projective subspace of dimension at least k+l−n.
The rank of a projective endomorphism is defined to be the dimension
of its image.

Exercise 2.3.4. Let P be a projective space of dimension n. Show
that the (possibly singular) projective transformations of P form them-
selves a projective space of dimension (n + 1)2 − 1. We denote this
projective space by End(P). Show that if f ∈ End(P), then

dimN(f) + rank(f) = n− 1.

Show that f ∈ End(P) is nonsingular (in other words, a collineation) if
and only if rank(f) = n, that is, U(f) = ∅. Equivalently, R(f) = P.

An important kind of projective endomorphism is a projection, also
called a perspectivity. Let Ak, Bl ⊂ Pn be disjoint projective subspaces
whose dimensions satisfy k+l = n−1. Define the projection Π = ΠAk,Bl

onto Ak from Bl

Pn −Bl Π−−→ Ak

as follows. For every x ∈ Pn − Ak the minimal projective subspace

←→
xB := span({x} ∪Bl)

containing {x}∪Bl is unique and has dimension l+ 1. It intersects Ak

transversely in a 0-dimensional projective subspace, that is, a unique
point ΠAk,Bl(x), that is:

{ΠAk,Bl(x)} =
←→
xB ∩ A.

Perspectivities are projective mappings obtained as restrictions of pro-
jections:

Exercise 2.3.5. Let A′ ⊂ P be a projective subspace of dimension
k disjoint from B.

• Restriction ΠA,B|A′ is a projective isomorphism A′ → A.
• Express an arbitrary projective isomorphism between projective

subspaces as a composition of perspectivities.
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Figure 2.1. A perspectivity between two lines l, l′ in
the plane. The undefined set of {O} of the projection is
the center of the perspectivity.

2.3.3. Locally projective maps. If P,P′ are projective spaces

and U ⊂ P is an open set then a map U
f−−→ P′ is locally projective if

for each component Ui ⊂ U there exists a linear map

V(P)
f̃i−−→ V(P′)

such that the restrictions of f ◦ Π and Π ◦ f̃i to Π−1Ui agree. Locally
projective maps (and hence also locally affine maps) satisfy the Unique
Extension Property: if U ⊂ U ′ ⊂ P are open subsets of a projective
space with U nonempty and U ′ connected, then any two locally pro-
jective maps f1, f2 : U ′ −→ P′ which agree on U must be identical.
(Compare §5.1.1.)

The passage between the geometry of P and the algebra of V is a
“dictionary” between linear algebra and projective geometry. Linear
maps and linear subspaces correspond geometrically to projective maps
and projective subspaces: inclusions, intersections and linear spans cor-
respond to incidence relations in projective geometry. Thus projective
geometry lets us visually understand linear algebra and linear algebra
enables to prove theorems in geometry by calculation.

Exercise 2.3.6. Let U ⊂ P be a connected open subset of a pro-

jective space of dimension greater than 1. Let U
f−→ P be a local dif-

feomorphism. Then f is locally projective if and only if for each line
l ⊂ P, the image f(l ∩ U) is a line.
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2.4. Affine patches

Let H ⊂ P be a projective hyperplane (projective subspace of codi-
mension one). Then the complement P−H has a natural affine geom-
etry, that is, is an affine space in a natural way. Indeed the group of
projective automorphisms P→ P leaving fixed each x ∈ H and whose
differential TxP→ TxP is a volume-preserving linear automorphism is
a vector group acting simply transitively on A = P \H. Moreover the
subgroup of Aut(P) leaving H invariant is Aff(A). In this way affine
geometry embeds in projective geometry.

Here is how it looks in terms of matrices. Let A = Rn; then the
affine subspace of

V = Trans(A)⊕ R = Rn+1

corresponding to A is Rn × {1} ⊂ Rn+1, the point of A with affine or
inhomogeneous coordinates (x1, . . . , xn) has homogeneous coordinates
[x1, . . . , xn, 1]. Let f ∈ Aff(E) be the affine transformation with linear
part A ∈ GL(n;R) and translational part b ∈ Rn, that is, f(x) =
Ax+ b, is then represented by the (n+ 1)-square matrix

[
A b
0 1

]

where b is a column vector and 0 denotes the 1× n zero row vector.

2.4.1. Projective vector fields. In the affine space An, let

B(An) −→ An

denote the bundle of bases, more commonly known as the affine frame
bundle over An: its fiber Bp over a point p ∈ An consists of the set of
bases for the tangent space TpA

n. Using the simply transitive action of
kn = Trans(An) on An, the total space B(An) is a torsor for the affine
automorphism group Aff(An): an affine automorphism is determined
uniquely by its action on a basepoint p0 ∈ An and a basis β0 ∈ Bp0 of
TpA

n. and every (p, β) ∈ B is the image of (p0, β).
Let g ∈ Aut(Pn be a projective automorphism. Fixing a basepoint

p0 and a basis β0 of Tp0An, let h ∈ Aff(An) be the unique affine auto-
morphism taking (p0, β0) to (p, β). Then h−1 ◦ g is a projective auto-
morphism fixing p0 and acts identically on Tp0Pn = Tp0An. In the affine
chart An+1 where p0 is the origin, such a projective transformation is
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defined in homogeneous coordinates by:






X1

...
Xn

Xn+1





 7−→







X1

...
Xn

∑n
i=1 ξiX

i +Xn+1







for a row vector ξ† for ξ ∈ kn, that is, by the block matrix
[
In 0
ξ 1

]
.

In affine coordinates such a transformation is given by

(x1, . . . , xn)
gξ7−−→

( x1

1 +
∑n

i=1 ξix
i
, . . . ,

xn

1 +
∑n

i=1 ξix
i

)
.

Exercise 2.4.1. Show that this group is isomorphic to a n-dimensional
vector group, and gξ lies in the one-parameter group

t 7−→ gtξ.

The corresponding vector field equals the product

−
n∑

i=1

ξix
iR

where R is the radiant vector field defined in §1.5.2. Denote the Lie
algebra of such vector fields by g1, the Lie algebra of parallel vector
fields on An by g−1, and the Lie algebra of linear vector fields on An

by g0, show that, for λ = 0,±1, the subalgebra gλ of the Lie algebra g
of projective vector fields equals the λ-eigenspace of AdR. Furthermore
[gλ, gµ] ⊂ gλ+µ where gν := 0 if ν 6= 0,±1. In particular as a vector
space g decomposes as a direct sum

g = g−1 ⊕ g0 ⊕ g1
∼= kn ⊕ gl(n)⊕ kn.

Describe the corresponding group-theoretic decomposition of the projec-
tive automorphiism group

Aut(Pn) := PGL(n+ 1).

2.5. Classical projective geometry

This section surveys standarad results in projective geometry. The
fundamental theorem of projective geometry characterizes projective
mappings. The cross ratio of four points is the fundamental invari-
ant in one-dimensional projective geometry. The classical notion of
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a

Figure 2.2. The four points on the horizontal line form
a harmonic quadruple. Such a quadruple is characterized
by having cross-ratio −1.

harmonic sets is introduced, and is applied to the study of projective
reflections and their products.

2.5.1. One-dimensional reflections. Let l be a projective line
x, z ∈ l be distinct points. Then there exists a unique reflection (a
harmonic homology in classical terminology)

l
ρx,z−−−→ l

whose fixed-point set equals {x, z}. We say that a pair of points y, w
are harmonic with respect to x, z if ρx,z interchanges them. In that case
one can show that x, z are harmonic with respect to y, w. Furthermore
this relation is equivalent to the existence of lines p, q through x and
lines r, s through z such that

y =
←−−−−−−−−−→
(p ∩ r)(q ∩ s) ∩ l(6)

z =
←−−−−−−−−−→
(p ∩ s)(q ∩ r) ∩ l(7)

This leads to a projective-geometry construction of reflection, as
follows. Let x, y, z ∈ l be fixed; we seek the harmonic conjugate of y
with respect to x, z, that is, the image Rx,z(y). Erect arbitrary lines
(in general position) p, q through x and a line r through z. Through y
draw the line

l′ :=
←−−−−−−→
y (r ∩ q)
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through r ∩ q; join its intersection with p with z to form a line:

s =
←−−−−−−→
z (p ∩ l′) .

Then Rx,z(y) will be the intersection of s with l.
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Figure 2.3. Non-Euclidean tesselations by equilateral
triangles
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Exercise 2.5.1. Consider the projective line P1 = R∪ {∞}. Show
that for every rational number x ∈ Q there exists a sequence

x0, x1, x2, x3, . . . , xn ∈ P1

such that:

• x = limi→∞ xi;
• {x0, x1, x2} = {0, 1,∞};
• For each i ≥ 3, there is a harmonic quadruple (xi, yi, zi, wi)

with
yi, zi, wi ∈ {x0, x1, . . . , xi−1}.

If x is written in reduced form p/q then what is the smallest n for which
x can be reached in this way?

Exercise 2.5.2 (Synthetic arithmetic). Using the above synthetic
geometry construction of harmonic quadruples, show how to add, sub-
tract, multiply, and divide real numbers by a straightedge-and-pencil
construction. In other words, draw a line l on a piece of paper and
choose three points to have coordinates 0, 1,∞ on it. Choose arbitrary
points corresponding to real numbers x, y. Using only a straightedge
(not a ruler!) construct the points corresponding to

x+ y, x− y, xy, and x/y if y 6= 0.

2.5.2. Fundamental theorem of projective geometry. One
version of what is sometimes called the fundamental theorem of projec-
tive geometry is that the projective transformations (defined by linear
transformations of the associated vector space) are precisely the trans-
formations of projective space which preserve the ternary relation of
collinearity (hence collineations). Collinearity is a special instance of
the set of incidence relations between projective subspaces. For exam-
ple, two distinct projective points p, q are incident to a unique projec-
tive line←→p, q and (p, q, r) is a collinear triple if and only if r ∈ ←→p, q. We do
not develop this theory in detail, but refer to the texts of Berger [39, 38]
and Coxeter [80] for discussion, and in particular the relation with au-
tomorphisms of the ground field k.

If l ⊂ P and l′ ⊂ P′ are projective lines, part of the Fundamental
Theorem of Projective Geometry asserts that for given triples x, y, z ∈ l
and x′, y′, z′ ∈ l′ of distinct points there exists a unique projective map

l
f−−→ l′

x 7−→ x′

y 7−→ y′

z 7−→ z′
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If w ∈ l then the cross-ratio [w, x, y, z] is defined to be the image of w

under the unique collineation l
f−−→ P1 with

x
f7−−→ 1

y
f7−−→ 0

z
f7−−→ ∞

If l = P1, then this linear fractional transformation is:

f(w) :=
w − y
w − z

/
x− y
x− z

so

(8) [w, x, y, z] :=
w − y
w − z

/
x− y
x− z ,

thus defining1 the cross-ratio. Cross-ratio extends to quadruples of four
points, of which at least three are distinct.

Exercise 2.5.3. Let σ be a permutation on four symbols. Show
that there exists a linear fractional transformation Φσ such that

[xσ(1), xσ(2), xσ(3), xσ(4)] = Φσ([x1, x2, x3, x4].

Determine which permutations leave the cross-ratio invariant.

The cross-ratio is a function of 4 variables, and therefore transforms
under the action of the symmetric group S4 on 4 symbols. The group
S4 is a split extension

Z/2⊕ Z/2�S4 � S3

where the normal subgroup Z/2⊕ Z/2 consists of products of disjoint
transpositions and a section S3 ↪→ S4 corresponds to the inclusion
{2, 3, 4} ↪→ {1, 2, 3, 4}.

Exercise 2.5.4. Show that the cross-ratio is invariant under the
normal subgroup Z/2 ⊕ Z/2, and transforms under S3 = Aut{2, 3, 4}

1The literature has several variations of the cross-ratio; the version here is
used by Veblen-Young [271],Kneebone-Semple[248], Coxeter [82], Ahlfors [3].
Other versions can be found in Goldman [124], Hubbard [154], Ovsienko-
Tabachnikov [231].
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by the rules, where z = [z1, z2, z3, z4]:

[z1, z2, z4, z3] = 1/z

[z1, z3, z2, z4] = 1− z
[z1, z3, z4, z2] = 1− 1/z

[z1, z4, z2, z3] = 1/(1− z)

[z1, z4, z3, z2] = z/(z − 1)

This corresponds to an embedding S3 ↪→ GL(2,Z) taking

(34) 7−→
[
0 1
1 0

]

(23) 7−→
[
−1 1
0 1

]

(234) 7−→
[
1 −1
1 0

]

(243) 7−→
[

0 1
−1 1

]

(24) 7−→
[
−1 0
−1 +1

]

which induces an isomorphism S3
∼= GL(2,Z/2).

A pair {w, x} is harmonic with respect to the pair {y, z} (in which
case we say that (x, y, w, z) is a harmonic quadruple) if and only if the
cross-ratio [x, y, w, z] = −1.

Exercise 2.5.5. When z = ∞, the expression for the cross-ratio
simplifies:

[x, y, w,∞] :=
x− w
y − w

and defines a fundamental affine invariant.

• (x, y, z,∞) is a harmonic quadruple if and only if y is the
midpoint of xz.
• Suppose (x, y, w), (x′, y′, w′) are ordered triples of distinct points

of A1. Show that [x, y, w,∞] = [x′, y′, w′,∞] if and only if ∃g ∈
Aff(A1) such that

x′ = g(x)

y′ = g(y)

w′ = g(w).



2.5. CLASSICAL PROJECTIVE GEOMETRY 59

The process of extending a triple of points on P1 to a harmonic
quadruple is equivalent to applying a projective reflection in one pair
to the remaining element. This process is called harmonic subdivision.
Iterated harmonic subdivisions produce a countable dense subsets of
P1 corrresponding to the rational numbers Q ⊂ R. Such a subset is
called a harmonic net (Coxeter [81], §3.5) or a net of rationality in
Veblen-Young [271],p.84). Compare also Busemann-Kelly [54], §I.6.
These ideas provide an approach to the fundamental theorem:

Exercise 2.5.6. Let P1 f−→ P1 be a homeomorphism. Show that the
following conditions are equivalent:

• f is projective;
• f preserves harmonic quadruples
• f preserves cross-ratios, that is, for all quadruples (x, y, w, z),

the cross-ratios satisfy

[f(x), f(y), f(w), f(z)] = [x, y, w, z].

Determine the weakest hypothesis on f to obtain these conditions.

2.5.3. Distance via cross-ratios. For later use in §12.1, here are
some explicit formulas for cross-ratios on 1-dimensional spaces R+ and
I. Their infinitesimal forms yield the Poincaré metrics on R+ and I.

Exercise 2.5.7. (Parameters on the positive ray and unit intervals)

[0, ea, eb,∞] = [−1, tanh(a/2), tanh(b/2), 1] = eb−a

2.5.4. Products of reflections. If φ, ψ are collineations, each of
which fix a point O ∈ P, their composition φψ = φ ◦ ψ fixes O. In
particular its derivative

D(φψ)O = (DφO) ◦ (DψO)

acts linearly on the tangent space TOP. We consider the case when φ, ψ
are reflections in P2. As in Exercise 2.3.2, a reflection φ is completely
determined by its set Fix(φ) which consists of a point pφ and a line lφ
such that pφ /∈ lφ. Define

O := lφ ∩ lψ
and PO the projective line whose points are the lines incident to O.

Exercise 2.5.8. Let ρ denote the cross-ratio of the four lines

l,
←→
Op,

←→
Op′, l′

as elements of PO.
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• The linear automorphism

TOP
D(φψ)O−−−−−→ TOP

of the tangent space TOP leaves invariant a postive definite
inner product gO on TOP.
• Furthermore D(φψ)O represents a rotation of angle θ in the

tangent space TO(P) with respect to gO if and only if

ρ =
1

2
(1 + cos θ)

for 0 < θ < π and is a rotation of angle π (that is, an involu-
tion) if and only if p ∈ l′ and p′ ∈ l.

2.6. Asymptotics of projective transformations

We shall be interested in the singular projective transformations
since they occur as limits of nonsingular projective transformations.
The collineation group Aut(P) of P = Pn is a large noncompact group
which is naturally embedded in the projective space End(P) as an open
dense subset as in Exercise 2.3.4. Thus understanding precisely what
it means for a sequence of collineations to converge to a (possibly sin-
gular) projective transformation is crucial.

A singular projective transformation of P is a projective map f
defined on the complement of a projective subspace U(f) ⊂ P, called
the undefined subspace of f and taking values in a projective subspace
R(f) ⊂ P, called the range of f . Furthermore

dim P = dim U(f) + dim R(f) + 1.

Proposition 2.6.1. Let gm ∈ Aut(P) be a sequence of collineations
of P and let g∞ ∈ End(P). Then the sequence gm converges to g∞ in
End(P) if and only if the restrictions gm|K converge uniformly to g∞|K
for all compact sets K ⊂⊂ P− U(g∞).

Convergence in End(P) may be described as follows. Let P = P(V)
where V ∼= Rn+1 is a vector space. Then End(P) is the projective space
associated to the vector space End(V) of (n + 1)-square matrices. If
a = (aij) ∈ End(V) is such a matrix, let

‖a‖ =
√

Tr(aa†) =

√√√√
n+1∑

i,j=1

|aij|2

denote its Euclidean norm; projective endomorphisms then correspond
to matrices a with ‖a‖ = 1, uniquely determined up to the antipodal
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map a 7→ −a. The following lemma will be useful in the proof of
Proposition 2.6.1.

Lemma 2.6.2. Let V,V′ be vector spaces and let V
f̃n−→ V′ be a se-

quence of linear maps converging to V
f̃∞−→ V′. Let K̃ ⊂ V be a compact

subset of V − Ker(f̃∞). Define:

V
fi−−→ V′

x 7−→ f̃i(x)

‖f̃i(x)‖
.

Then fn converges uniformly to f∞ on K̃ as n −→∞.

Proof. Choose C > 0 such that C ≤ ‖f̃∞(x)‖ ≤ C−1 for x ∈ K̃.

For ε > 0, ∃N such that if n > N , then ∀x ∈ K̃,

‖f̃∞(x)− f̃n(x)‖ < Cε

2
,

∣∣∣∣1−
f̃n(x)

‖f̃∞(x)‖

∣∣∣∣ <
ε

2
.(9)

Let x ∈ K̃. Then
∥∥∥∥fn(x)− f∞(x)

∥∥ =

∥∥∥∥
f̃n(x)

‖f̃n(x)‖
− f̃∞(x)

‖f̃∞(x)‖

∥∥∥∥

=
1

‖f̃∞(x)‖

∥∥∥∥
‖f̃∞(x)‖
‖f̃n(x)‖

f̃n(x)− f̃∞(x)

∥∥∥∥

≤ 1

‖f̃∞(x)‖

( ∥∥∥∥
‖f̃∞(x)‖
‖f̃n(x)‖

f̃n(x)− f̃n(x)

∥∥∥∥

+ ‖f̃n(x)− f̃∞(x)‖
)

=

∣∣∣∣1−
‖f̃n(x)‖
‖f̃∞(x)‖

∣∣∣∣ +
1

‖f̃∞(x)‖
‖f̃n(x)− f̃∞(x)‖

<
ε

2
+ C−1(

Cε

2
) = ε

(
by (9)

)
,

completing the proof of Lemma 2.6.2. �

Proof of Proposition 2.6.1. Suppose gm is a sequence of lo-
cally projective maps defined on a connected domain Ω ⊂ P converging
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uniformly on all compact subsets of Ω to a map

Ω
g∞−−−→ P′.

Lift g∞ to a linear transformation g̃∞ of norm 1, and lift gm to linear
transformations g̃m, also linear transformations of norm 1, converging
to g̃∞. Then

gm −→ g∞
in End(P). Conversely if gm −→ g∞ in End(P) and

K ⊂ P− U(g∞),

choose lifts as above and K̃ ⊂⊂ V such that Π(K̃) = K. By Lemma 2.6.2,

g̃m/‖g̃m‖ ⇒ g̃∞/‖g̃∞‖
on K̃. Hence gm|K ⇒ g∞|K , completing the proof of Proposition 2.6.1.

�

2.6.1. Some examples. Let us consider a few examples of this
convergence. Consider the case first when n = 1. Let λm ∈ R be a se-
quence converging to +∞ and consider the projective transformations
given by the diagonal matrices

gm =

[
λm 0
0 (λm)−1

]

Then gm −→ g∞ where g∞ is the singular projective transformation
corresponding to the matrix

g∞ =

[
1 0
0 0

]

— this singular projective transformation is undefined at U(g∞) =
{[0, 1]}; every point other than [0, 1] is sent to [1, 0]. It is easy to see
that a singular projective transformation of P1 is determined by the
ordered pair of points

(
U(f),R(f)

)
. Note that in the next example,

the two points U(φ∞),R(φ∞)
)

coincide.

Exercise 2.6.3. Consider the sequence of projective transforma-
tions of P1

φn(x) :=
x

1− nx, as n −→ +∞
• Show that the pointwise limit equals the constant function 0:

lim
n→∞

φn(x) = 0, ∀x ∈ P1.

• Show that φn does not converge uniformly on any subset S ⊂
P1 which contains an infinite subsequence sj > 0 with sj ↘ 0
as j −→∞.
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• Show that φn does converge to the singular projective trans-
formation φ∞ defined on the complement of U(φ∞) = {0} and
has constant value 0.
• Use this idea, together with the techniques involved in the proof

of Lemma 2.6.2, to prove a statement converse to Proposi-
tion 2.6.1: If gn ∈ Aut(P) is a sequence of projective trans-
formations converging to a singular projective transformation
g∞ ∈ End(P), then, for any open subset S ⊂ P which meets
U(g∞), the restrictions gn|S do not converge uniformly.

Exercise 2.6.4. (1) The projective group PGL(2,R) = Aut(RP1)
is an open dense subset of End(RP1) ≈ RP3. Its complement
naturally identifies with the Cartesian product RP1 ×RP1 un-
der the correspondence

End(RP1) \ Aut(RP1)←→ RP1 × RP1

[f ]←→
(
U(f),R(f)

)

(2) Prove the analogous statements for PGL(2,C) and CP1, that
is, when R is replaced by C.

(3) Show that if Γ < PGL(2,C) is a discrete subgroup with limit
set Λ ⊂ CP1, then Γ \ Γ identifies with Λ× Λ ⊂ CP1 × CP1.

2.6.2. Higher dimensional projective maps. More interesting
phenomena arise when n = 2. Let gm ∈ Aut(P2) be a sequence of
diagonal matrices 


λm 0 0
0 µm 0
0 0 νm




where 0 < λm < µm < νm and λmµmνm = 1. Corresponding to the
three eigenvectors (the coordinate axes in R3) are three fixed points

p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1].

They span three invariant lines

l1 =←−−→p2 p3 , l2 =←−−→p3 p1 , l3 =←−−→p3 p1 .

Since 0 < λm < µm < νm, the collineation has an repelling fixed point
at p1, a saddle point at p2 and an attracting fixed point at p3. Points
on l2 near p1 are repelled from p1 faster than points on l3 and points
on l2 near p3 are attracted to p3 more strongly than points on l1. Sup-
pose that gm does not converge to a nonsingular matrix; it follows that
νm −→ +∞ and λm −→ 0 as m −→ ∞. Suppose that µm/νm −→ ρ;
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then gm converges to the singular projective transformation g∞ deter-
mined by the matrix




0 0 0
0 ρ 0
0 0 1




which, if ρ > 0, has undefined set U(g∞) = p1 and range l1; otherwise
U(g∞) = l2 and Image(g∞) = p2.

2.6.3. Limits of similarity transformations. Convergence to
singular projective transformations is perhaps easiest for translations
of affine space, or, more generally, Euclidean isometries.

Exercise 2.6.5. Suppose gm ∈ Isom(En) be a divergent sequence
of Eucidean isometries. Show that ∃p ∈ Pn−1

∞ a subsequence gmk , that
gmk |K ⇒ p for every compact K ⊂⊂ En.

Indeed the boundary of the translation group V of An is the projective
space Pn−1

∞ . More generally the boundary of Isom(En) identifies with
Pn−1
∞ .

Exercise 2.6.6. Suppose gm ∈ Sim(En) be a divergent sequence of
similarities of Eucidean space. Then ∃ a subsequence gmk , and a point

p ∈ En
∐

Pn−1
∞

such that one of the three possibilities occur:

• p ∈ Pn−1
∞ and gmk |K ⇒ p, ∀K ⊂⊂ En;

• p ∈ Pn−1
∞ and ∃q ∈ En such that

gmk |K ⇒ p, ∀K ⊂⊂ En \ {q};

• p ∈ En∞ and

gmk |K ⇒ p, ∀K ⊂⊂ En.

The scale factor homomorphism Sim(En)
λ−−→ R+ defined in §1.4.1 of

Chapter 1 controls the asymptotics of linear similarities. The two lat-
ter cases occur when limk→∞ λ(gmk) = ∞ and limk→∞ λ(gmk) = 0,
respectively.

These results will be used in Fried’s classification of closed similarity
manifolds (§11.4 of Chapter 11).
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2.6.4. Normality domains. Convergence to singular projective
transformations closely relates to the notion of normality, introduced
by Kulkarni-Pinkall [194], and extending the classical notion of normal
families in complex analysis. Let G be a group acting on a space X
strongly effectively. A point x ∈ X is a point of normality with respect
to G if and only if x admits an open neighborhood W such the the set
of restrictions

G|W := {g|W | g ∈ G}
is a compact subset of Map(W,X) with respect to the compact-open
topology on Map(W,X). (This means that G|W is a normal family
in the sense of Montel.) Denote the set of points of normality by
Nor(G,X). Clearly Nor(G,X) is a G-invariant open subset of X, called
the normality domain.

Proposition 2.6.7. Suppose that Γ < Aut(P) is a discrete group of
collineations of a projective space P. Let Γ ⊂ End(P) denote its closure
in the set of singular projective transformations. Then the normality
domain Nor(Γ, X) consists of the complement

UΓ := X \
⋃

γ∈Γ

U(γ)

in P of the union
⋃
γ∈Γ U(γ).

Proof. Observe first that
⋃
γ∈Γ U(γ) ⊂⊂ X since each projective

subspace U(γ) ⊂⊂ X. Since the parameter space Γ is compact. Thus
it’s closed, and its complement

UΓ := X \
⋃

γ∈Γ

U(γ)

is open. We claim that UΓ = Nor(Γ, X).
We first show any point x ∈ UΓ is a point of normality. To this end,

we show that. set of restrictions Γ|UΓ
is precompact in Map(UΓ, X).

This follows immediately from Proposition 2.6.1 as follows. Consider
an infinite sequence γn ∈ Γ. Proposition 2.6.1 ensures a subsequence
γn and a singular projective transformation γ∞ ∈ End(P), such that

γn|K ⇒ γ∞|K , ∀K ⊂⊂ UΓ

as desired. (Since K ∩ U(γ∞) = ∅, the restriction γ∞|K is defined.)
Conversely suppose that x ∈ U(γ) for some γ ∈ Γ. Choose a se-

quence gn ∈ Γ converging to γ, and a precompact open neighborhood
S 3 x. By Exercise 2.6.3, the restrictions gn|S do not converge uni-
formly, and the restrictions to the closure S ⊂ X do not converge
uniformly. Thus x /∈ Nor(Γ, X) as claimed. �





CHAPTER 3

Duality and non-Euclidean geometry

The axiomatic development of projective geometry enjoys a basic
symmetry: In P2, a pair of distinct points lie on a unique line and a pair
of distinct lines meet in a unique point. Consequently any statement
about the geometry of P2 can be dualized by replacing “point” by
“line,” “line”by “point,” “collinear” with “concurrent,” etc,̇ as long as
it is done in a completely consistent fashion.

One of the oldest nontrivial theorems of projective geometry is Pap-
pus’ theorem (300 A.D.), asserting that if l, l′ ⊂ P2 are distinct lines
and A,B,C ∈ l and A′, B′, C ′ ∈ l′ are triples of distinct points, then
the three points

←→
AB′ ∩

←→
A′B,

←−→
BC ′ ∩

←−→
B′C,

←→
CA′ ∩

←→
C ′A

are collinear. Dual to Pappus’ theorem is the following: if p, p′ ∈ P2 are
distinct points and a, b, c are distinct lines all passing through p and
a′, b′, c′ are distinct lines all passing through p′, then the three lines

←−−−−−−−−−−→
(a ∩ b′) (a′ ∩ b),

←−−−−−−−−−−→
(b ∩ c′) (b′ ∩ c),

←−−−−−−−−−−→
(c ∩ a′) (c′ ∩ a)

are concurrent. (According to [80], Hilbert observed that Pappus’ the-
orem is equivalent to the commutative law of multiplication.)

This chapter introduces the projective models for elliptic and hy-
perbolic geometry through the classical notion of polarities. We begin
by working over both R and C, but specialize to the case k = R when
we discuss important cases of polarities:

• Elliptic polarities, corresponding to definite symmetric bilinear
forms, and leading to elliptic (spherical) geometry;
• Hyperbolic polarities, corresponding to Lorentzian bilinear

forms, and leading to hyperbolic geometry;
• Null polarities, corresponding to nondegeneraate skew-sym-

metric bilinear forms, and leading to contact projective ge-
ometry (in odd dimensions). (Compare Semple and Knee-
bone [248].)

See Ratcliffe [239] for a good elementary treatment of the Beltrami-
Klein model for hyperbolic geometry, as well as Thurston [266], §2.3.

67
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The various derivations of hyperbolic geometry are aided by symme-
try. The Beltrami-Klein metric generalizes to the Hilbert metric on
convex domains. For an extensive modern discussion of Hilbert geome-
try, see Papadopoulos-Troyanov [233]. These, in turn, are special cases
of intrinsic metrics, which we introduce here, and discuss later in the
context of affine and projective structures on manifolds.

3.1. Dual projective spaces

In terms of our projective geometry/linear algebra dictionary, pro-
jective duality translates into duality between vector spaces as follows.
Let P = P(W) be a projective space associated to the vector space W.
A nonzero linear functional

W
ψ−−→ k

defines a projective hyperplane Hψ in P; two such functionals define
the same hyperplane if and only if they are projectively equivalent,
that is, they differ by scalar multiplication by a nonzero scale factor.
Equivalently, they determine the same line in the vector space W∗ dual
to W.

The projective space P∗ dual to P consists of lines in the dual vector
space W∗, which correspond to hyperplanes in P. The line joining
two points in P∗ corresponds to the intersection of the corresponding
hyperplanes in P, and a hyperplane in P∗ corresponds to a point in P.

Exercise 3.1.1. Show that an n-dimensional projective space en-
joys a natural correspondence

{k − dimensional subspaces of P} ←→
{l − dimensional subspaces of P∗}

where k + l = n− 1.

Since vector spaces of the same dimension are isomorphic, a projec-
tive space P is projectively isomorphic to the dual of P∗, but in many
different ways.

Let P
f−−→ P′ be a projective map. Then for each hyperplane H ′ ⊂

P′ the preimage f−1(H ′) is a hyperplane in P. This defines a projective

map (P′)∗
f∗−−→ P∗.

Here is the detailed construction. Suppose that f is defined by a

linear mapping of vector spaces W
F−−→ W′, where P,P′ projectivize

W,W′ respectively. Since f is defined on all of P, the linear map F
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is injective. The projective hyperplane H corresponds to the linear
hyperplane

S := Ker(ψ) ⊂ W,

for some nonzero covector ψ ∈ W∗. Since F−1(S) = Ker(ψ ◦ F ), the
preimage f−1(H ′) is the projective hyperplane defined by the covector
ψ ◦ F ∈ (W′)∗.

Exercise 3.1.2. If f is the projectivization of a linear map W
F−−→

W′, show that f ∗ is the projectivization of the dual map (W′)∗
F ∗−−−→

W∗ given by matrix transpose. That is, represent F by a matrix M
by choosing bases of W and W′ respectively. Show that the matrix
representing F ∗ in the respective dual bases of W∗ and (W′)∗ is the
transpose M † of the matrix M .

3.2. Correlations and polarities

Definition 3.2.1. Let P be a projective space. A correlation of P
is a projective map P −→ P∗.

That is, a correlation associates to every projective point p a projective
hyperplane C(p) in such a way to preserve incidences: if p, q, r ∈ P
are distinct projective points, then p, q, r are collinear if and only if the
projective subspace C(p)∩C(q)∩C(r) has codimension two (not three).

Exercise 3.2.2. Let W be a vector space such that P = P(W).
Correlations of P identify with projective equivalence classes of nonde-
generate bilinear forms

W ×W −→ k,

or, equivalently, linear isomorphisms W −→ W∗.

3.2.1. Example: Elliptic geometry. Here is an example of a
correlation, corresponding to the standard Euclidean inner product on
W = R3. This correlation associates a point p = [v] ∈ RP2 the pro-
jective line p∗ corresponding to the orthogonal complement v⊥. The
corrresponding linear isomorphism W −→ W∗ is the usual transpose
operation, interchanging column vectors and row vectors.

Exercise 3.2.3. p and p∗ are never incident.

An important property of this correlation is that it is self-inverse
in the following sense:

Exercise 3.2.4. Let p 7−→ p∗ be the correlation defined as above.
If l,m ∈ P∗ are distinct projective lines, with

l = p∗, m = q∗,
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for respective projective points p, q, then

(l ∩m)∗ = ←→pq .

Definition 3.2.5. A self-inverse correlation is called a polarity.

3.2.2. Elliptic polarties and elliptic geometry. Our interest
in projective correlations stems from their use to define models of non-
Euclidean geometry. The above correlation defines a distance d on RP2,
making (RP2, d) into a metric space, called the elliptic plane. It is a
basic example of non-Euclidean geometry.

For any two points p, q ∈ RP2, define the distance d(p, q) as follows.
If p = q, define their distance to be zero. Otherwise, p, q span a unique
projective line l := ←→pq , and we extend (p, q) to a quadruple on l and
compute its cross-ratio. Since p and p∗ (respectively q and q∗) are not
incident, p∗ ∩ l and q∗ ∩ l are points on l, denoted p′, q′ respectively.
Define:

d(p, q) := tan−1
√

[p, q, p′, q′].

Exercise 3.2.6. (RP2, d) is a metric space satisfying:

• SO(3) acts isometrically and transitively on this metric space.
• (Busemann-Kelly [54], Exercise 38.1, p. 237) This metric

space arises from a Riemannian structure, defined in an affine
patch with coordinates (x, y) ∈ R2, by the metric tensor

dx2 + dy2 +
(
x dy − y dx

)2

x2 + y2 + 1

• Relate this metric space to the Euclidean unit sphere in R3.
• The Gaussian curvature equals +1.
• The geodesics are exactly the projective lines.

This construction extends to higher dimensions, and the metric geom-
etry is Elliptic Geometry. The corresponding Riemannian metric is
called the Fubini-Study metric. In 1866 Beltrami showed that the only
Riemannian metrics on domains in Pn where the geodesics are straight
line segments are (up to a collineation and change of scale factor) Eu-
clidean metrics and these two metrics. Hilbert’s fourth problem was to
determine all metric space structures on domains in Pn whose geodesics
are straight line segments. There are many unusual such metrics, see
Busemann-Kelly [54], and Pogorelov [236]. For more general discus-
sion compare Coxeter [82] and Goldman [124],§1.3.
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3.2.3. Polarities. The correlation defining elliptic geometry is an
example of a polarity, which is self-inverse in the sense of Exercise 3.2.4.
Polarities give rise to more general and fascinating geometries, the most
important being hyperbolic non-Euclidean geometry.

We discuss polarites in general. For expository simplicity, we hence-
forth restrict to the case k = R, although the complex case is quite
interesting and basic.

Using the dictionary between projective geometry and linear alge-
bra, one sees that if W is the vector space corresponding to P = P(W),
then P∗ = P(W∗) and a correlation θ is realized as a linear isomorphism

W
θ̃−→ W∗, which is uniquely determined up to homotheties. Linear

maps W
θ̃−→ W∗, correspond to bilinear forms

W ×W
Bθ̃−−→ R

under the correspondence

θ̃(v)(w) = Bθ̃(v, w)

and θ̃ is an isomorphism if and only if Bθ̃ is nondegenerate. Thus
correlations can be interpreted analytically as projective equivalence
classes of nondegenerate bilinear forms.

Exercise 3.2.7. A correlation θ is a polarity (that is, θ is self-
inverse) if and only if a corresponding bilinear form Bθ is either sym-
metric or skew-symmetric.

Let θ be a polarity on P. A point p ∈ P is conjugate if it is incident
to its polar hyperplane, that is, if p ∈ θ(p). By our dictionary we see
that the conjugate points of a polarity correspond to null vectors of the
associated quadratic form, that is, to nonzero vectors v ∈ W such that
Bθ(v, v) = 0. A polarity is said to be elliptic if it admits no conjugate
points. which are definite. The polarity of § 3.2.1 which associates
to a point p = [v] ∈∈ P2 the line P(v⊥) ⊂ P2 is an elliptic polarity
(compare Exercise 3.2.3).

At the other extreme, a polarity is null if and only if every point is
conjugate.

Exercise 3.2.8. Null polarities of a projective space P correspond
to nondegenerate skew-symmetric bilinear forms on the vector space W,
where P = P(W). A projective space P admits a null polarity if and
only if dim P is odd.

Exercise 6.1.2 develops the theory of geometric structures (called con-
tact projective structures) related to null polarities.
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3.2.4. Quadrics. As in §3.2.2 an elliptic polarity describes the
structure of elliptic geometry on RPn. In particular it induces a Rie-
mannian structure on RPn, namely the Fubini-Study metric. This con-
struction readily generalizes to polarities which are not null, and corre-
spond to nodegenerate symmetric bilinear forms, which are indefinite.
The isomorphism class of such a bilinear form is determined by its sig-
nature (p, q) where p, q are positive integers with p + q = n + 1. A
standard example is the Bp,q defined by:

(x, y)
Bp,q7−−−−→ x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xn+1yn+1

corresponding to the quadratic form

x 7−→ (x1)2 + · · ·+ (xp)2 − (xp+1)2 − · · · − (xp+q)2.

Exercise 3.2.9. Let B = Bθ be a nondegenerate symmetric bilinear
form on the vector space space W of signature (p, q) where p + q =
n+ 1 = dim(W). Consider the quadric hypersurfaces:

Q− := {w ∈ W | B(w,w) = −1}
Q0 := {w ∈ W | B(w,w) = 0}
Q+ := {w ∈ W | B(w,w) = 1}.

Their respective projectivizations in P = P(W) decompose P as a dis-
joint union:

P = P
(
Q−
)
q P

(
Q0
)
q P

(
Q+
)
.

• If p = 0, then B is negative definite, and P
(
Q−
)

= P
(
Q0
)

= ∅
and P

(
Q+
)

= P.

• If 0 < p, q < n+1, then B is indefinite and P
(
Q−
)
,P
(
Q0
)
,P
(
Q+
)

are each connected and nonempty. Indeed,

P
(
Q0
)
≈ Sp−1 × Sq−1

if p, q > 1 and

P
(
Q0
)
≈ Sq−1

if p = 1.
• If p = n + 1, then B is positive definite, P

(
Q+
)

= P
(
Q0
)

= ∅
and P

(
Q−
)

= P.

Proposition 3.2.10. P
(
Q+
) (

respectively P
(
Q−
))

admits a PO(p, q)-

invariant pseudo-Riemannian structure of signature (p−1, q)
(
respectively

(p, q + 1)
)
.



3.2. CORRELATIONS AND POLARITIES 73

Proof. The symmetric bilinear form Q on W induces an invariant
pseudo-Riemannian structure on Q+. Let v ∈ Q+. Then the tangent
space TvQ identifies with the orthogonal complement v⊥ ⊂ W. The
restriction of the pseudo-Riemannian structure to v⊥ has signature (p−
1, q) and is evidently PO(p, q)-invariant. The case of Q− is completely
analogous. �

The set of conjugate points of a polarity θ is the quadric P
(
Q0
θ

)
, com-

prising points [w] ∈ P with Bθ(w,w) = 0.
The quadric Q determines the polarity θ as follows.
For brevity we consider only the case q = 1, in which case the

complement P \Q has two components, a convex component

Ω = {[x0 : x1 : · · · : xn] | (x0)2 − (x1)2 − · · · − (xn)2 < 0}
and a nonconvex component

Ω† = {[x0 : x1 : · · · : xn] | (x0)2 − (x1)2 − · · · − (xn)2 > 0}
diffeomorphic to the total space of the tautological line bundle over
Pn−1 (for n = 2 this is a Möbius band). If x ∈ Q, let θ(x) denote
the hyperplane tangent to Q at x. If x ∈ Ω† the points of Q lying on
tangent lines to Q containing x all lie on a hyperplane which is θ(x).
If H ∈ P∗ is a hyperplane which intersects Q, then either H is tangent
to Q (in which case θ(H) is the point of tangency) or there exists a
cone tangent to Q meeting Q in Q ∩H — the vertex of this cone will
be θ(H). If x ∈ Ω, then there will be no tangents to Q containing x,
but by representing x as an intersection H1 ∩ · · · ∩Hn, we obtain θ(x)
as the hyperplane containing θ(H1), . . . , θ(Hn).

Exercise 3.2.11. Show that P
θ−→ P∗ is projective.

Observe that a polarity on P of signature (p, q) determines, for
each non-conjugate point x ∈ P a unique reflection Rx which preserves
the polarity. The group of collineations preserving such a polarity
is the projective orthogonal group PO(p, q), that is, the image of the
orthogonal group O(p, q) ⊂ GL(n + 1,R) under the projectivization
homomorphism

GL(n+ 1,R) −→ PGL(n+ 1,R)

having kernel the scalar matrices R× ⊂ GL(n+ 1,R). Let

Ω = {Π(v) ∈ P | B(v, v) < 0};
then by projection from the origin Ω can be identified with the hyper-
quadric

{v ∈ Rp,q | B(v, v) = −1}
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whose induced pseudo-Riemannian metric has signature (q, p− 1) and
constant nonzero curvature. In particular if (p, q) = (1, n) then Ω
is a model for hyperbolic n-space Hn in the sense that the group of
isometries of Hn are represented precisely as the group of collineations
of Pn preserving Ωn. In this model, geodesics are the intersections of
projective lines in P with Ω; more generally intersections of projective
subspaces with Ω define totally geodesic subspaces.

Consider the case that P = P2. Points “outside” Ω correspond to
geodesics in H2. If p1, p2 ∈ Ω†, then

←−−→p1p2 ∩ Ω 6= ∅
if and only if the geodesics θ(p1), θ(p2) are ultra-parallel in H2; in this
case θ

(←−−→p1p2

)
is the geodesic orthogonal to both θ(p1), θ(p2). (Geodesics

θ(p) and l are orthogonal if and only if p ∈ l.) Furthermore ←−−→p1p2 is
tangent to Q if and only if θ(p1) and θ(p2) are parallel. For more in-
formation on this model for hyperbolic geometry, see [80]. or [265],
§2. This model for non-Euclidean geometry seems to have first been
discovered by Cayley in 1858.

3.3. Projective model of hyperbolic geometry

The case when q = 1 is fundamentally important. Then P
(
Q−
)

is
equivalent to the unit ball B ⊂ Rn defined by

‖x‖2 = x · x =
n∑

i=1

(xi)2 < 1.

and the induced Riemannian metric

ds2
B =

−4√
1− ‖x‖2

d2
√

1− ‖x‖2

=
−4

1− ‖x‖2

{(
1− ‖x‖2

)
dx · dx +

(
x · dx

)2
}

=
4

(
1− ‖x‖2

)2

n∑

i=1

(
xidxi

)2
+
(
1− ‖x‖2

)2(
dxi
)2

(10)

defines a complete PO(n, 1)-invariant Riemannian structure of constant
curvature −1 on B. The resulting Riemannian manifold is (real) hy-
perbolic space Hn.

In 1894 Hilbert discovered a beautiful general construction of the
distance function on the underlying metric space involving projective
geometry. Suppose x, y ∈ B ⊂ P are distinct points. They span a
uniqute projective line ←→xy ⊂ P. Then ←→xy meets ∂B in two points
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x

y

x 0

y 0

Figure 3.1. The Klein-Beltrami projective model of
hyperbolic space. The Hilbert metric on the convex do-
main bounded by a quadric in projective space is defined
in terms of cross-ratio. This metric is a Riemannian met-
ric of constant negative curvature.

x0, y0 as in Figure 3.1. Then the cross-ratio [x, y, x0, y0] is defined and
the Hilbert distance

d(x, y) := log[x, y, x0, y0]

makes (B, d) into a metric space.

Exercise 3.3.1. Show that this metric space underlies the Rie-
mannian structure defined above. Show that its group of isometries is
PO(n, 1) and acts transitively not just on Hn but on its unit tangent
bundle.

This metric is analogous to the construction of the Fubini-Study
metric given in Exercise 3.2.6. Its generalizes to arbitrary properly
convex domains, as will be discussed in the next chapter.

3.3.1. The hyperbolic plane. Due to its fundamental role, we
discuss the projective model of the hyperbolic plane H2 in detail:

Exercise 3.3.2. Let H2 denote th upper halfplane R×R+ with the
Poincaré metric

g = y−2
(
dx2 + dy2

)
.

Our model for the Lorentzian vector space R2,1 is the Lie algebra sl(2,R)
of traceless 2× 2 real matrices with the quadratic form

1

2
Tr

[
a b
c −a

]2

= a2 + bc = a2 +
(b+ c

2

)2

−
(b− c

2

)2

.
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The mapping

H2 I−→ sl(2,R) ∩ SL(2,R) ⊂ R2,1(11)

(x, y) 7−→ y−1

[
x −(x2 + y2)
1 −x

]

isometrically embeds H2 as the component of the hypersphere in R2,1

{[
a b
c −a

] ∣∣∣∣ a2 + bc = −1, c > 0

}
.

Composition P ◦ I with projectivization isometrically embeds H2 in pro-
jective space, as above. P◦I is equivariant, mapping the isometry group
PGL(2,R) of H2 isomorphically onto the projective automorphism group
PO(2, 1) ∼= SO(2, 1). For any point z ∈ H2, the matrix I(z) corresponds
to the symmetry about z, that is, the orientation-preserving involutive
isometry of H2 fixing z.

Appendix B.4 derives the Levi-Civita connection of this metric.

3.3.2. The upper halfspace model of hyperbolic 3-space.
Hyperbolic 3-space is fundamentally important as well. Its group of
orientation-preserving isometries is isomorphic to PGL(2,C) ∼= PSL(2,C)
under a local isomorphism

PSL(2,C) −→ O(3, 1).

(See Appendix E for a construction of such a local isomorphism.) It
admits a useful model as the upper halfspace in the division algebra of
quaternions.

3.3.2.1. Quaternions. Recal that the (Hamilton) quaternions are
defined as a 4-dimensional real vector space H with basis denoted
{1, i, j,k}. Its multiplicative structure is defined by the multiplication
table:

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

1 is a two-sided identity element, and H is an associative (but not
commutative!) division algebra over R. We write

q := r1 + xi + yj + zk = r1 + v

where r, x, y, z ∈ R are scalars and

v = xi + yj + zk ∈ R3
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is a vector.
Quaternionic conjugation

H −→ H
q = r1 + v 7−→ q := r1− v

is an anti-automorphism, (that is, q1q2 = q2q1). Its fixed set is thus a
subalgebra, the image of the embedding

R ↪→ H
r1 7−→ r1 + 0i + 0j + 0k.

(In fact, R = R1 is the center of H.) In particular the real part is the
projection

H <−−→ R

q 7−→ r =
1

2
(q + q)

A quaternion is pure if its real part is zero, and pure quaternions iden-
tify with the vector space R3. Multiplication of pure quaternions cor-
respond to the operations of dot and cross product of vectors in R3:

v1v2 = −(v1 · v2) 1 + v1 × v2.

Furthermore
qq = ‖q‖2 = r2 + ‖v‖2 ≥ 0

and qq > 0 if q 6= 0. Thus H is a division algebra, with

q−1 := ‖q‖−2 q.

3.3.2.2. Hyperbolic 3-space. The embedding

C ↪→ H
r1 + xi 7−→ r1 + xi + 0j + 0k

makes H into a (left) vector space over C. Define the upper halfspace
H3 as the subset of H consisting of z + hj, where z ∈ C and h > 0.

Exercise 3.3.3. Let

g :=

[
a b
c d

]
∈ SL(2,C),

that is, a, b, c, d ∈ C and ad− bc = 1.

• Show that

g(w) := (aw + b)(cw + d)−1

defines a (left) action of SL(2,C) on H. Interpret this action
as a projective action over H.



78 3. DUALITY AND NON-EUCLIDEAN GEOMETRY

• Show that H3 is invariant under this action.
• Find a Riemannian metric on H3 upon which this group acts

as its group of orientation-preserving isometries.
• Prove that the subspace H2 ⊂ H3 defined by =(z) = 0 (that is,
R×R+) is an isometrically embedded hyperbolic plane. Deter-
mine its group of isometries.
• Show that

z + hj 7−→ z + hj

is an isometry of H3 fixing H2 (reflection in H2) and given by
quaternion conjugation by

q 7−→ −i q i.

• Show that the symmetry in the point j ∈ H3 is given by the
quaternionic formula

q 7−→ i q−1 i.
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Figure 3.2. Projective model of a (3, 3, 4)-triangle tes-
selation of H2

Figure 3.3. Projective deformation of hyperbolic
(3, 3, 4)-triangle tesselation





CHAPTER 4

Convexity

The Klein-Beltrami projective model of hyperbolic geometry ex-
tends to geometries defined on properly convex domains in RPn. This
chapter concerns this notion of convexity. After surveying some basic
examples, we describe the Hilbert metric, a projective-geometry con-
struction which includes the Klein-Beltrami hyperbolic metric. This
metric is only Riemannian only in this special case, and is generally
Finsler, that is, arises from a norm on the tangent spaces. From there
we describe another construction, due to Vinberg [278], which leads to
natural Riemannian structure. We use this structure to give new proofs
of several results of Benzécri [35], on spaces of convex bodies in pro-
jective space. These results lead to regularity properties for domains
arising from convex RPn-manifolds.

A convex domain Ω ⊂ P is said to be quasi-homogeneous if Aut(Ω
acts syndetically —- that is, the quotient Ω/Aut(Ω) is compact, but not
necessarily Hausdorff. (Benzécri calls such domains balayable, trans-
lated as “sweepable”. If the action is proper, (that is, the quotient is
Hausdorff), then the domain is said to be divisible. We are particu-
larly interested in these compactness criteria. For reasons of space, we
do not discuss the currently very active field of finite volume prop-
erly convex manifolds, but refer to relatively recent work by Mar-
quis [212, 210, 211], Cooper-Long-Tillmann [78, 79] Ballas-Danciger-
Lee-Marquis [18], Ballas-Cooper-Leitner[17], and Choi [74].

Later in §12.2 we revisit these ideas in the more general setting of
the intrinsic metrics introduced by Carathéodory and Kobayashi, in
the analogous context of complex manifolds. Our treatment of the pro-
jective theory closely follows Kobayashi [177, 178, 179] and Vey [275].

4.1. Convex domains and cones

Let W be a real vector space. Recall that a subset Ω ⊂ W is convex
if, whenever x, y ∈ Ω, the line segment xy ⊂ Ω. Equivalently, W is
closed under convex combinations: if w1, . . . ,wm ∈ W and t1, . . . , tm ∈
R satisfy ti ≥ 0 and

t1 + . . . tm = 1,

81
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then
t1w1 + · · ·+ tmwm ∈ Ω.

A domain Ω ⊂ W is a cone if and only if it is invariant under
the group R+ of positive homotheties, that is, scalar multiplication
by positive real numbers. A cone is sharp (in French, saillant) if it
contains no complete affine line.

Since Ω′ ⊂ W \ {0} is convex, Ω must be disjoint from at least one
hyperplane H in P. (In particular P is itself not convex.) Equivalently
Ω ⊂ P is convex if a hyperplane H ⊂ P exists such that Ω is a convex
set in the complementary affine space P \H.

A domain Ω ⊂ P is properly convex if and only if a sharp properly
convex cone Ω′ ⊂ W exists such that Ω = Π(Ω′). Equivalently, Ω is
properly convex if and only if a hyperplane H ⊂ P exists such that
Ω is a convex subset of the affine space P \ H. If Ω ⊂ P is properly
convex, then its intersection Ω∩P′ with any projective subspace P′ ⊂ P
is either empty or properly convex in P′. In particular every projective
line intersecting Ω meets ∂Ω in exactly two points.

For example, W itself and the upper half-space

Rn × R+ = {(x0, . . . , xn) ∈ W | x0 > 0}
are both convex cones but neither is sharp. The positive orthant

(R+)n+1 := {(x0, . . . , xn) ∈ W | xi > 0 for i = 0, 1, . . . , n}
and the positive light-cone

Cn+1 = {(x0, . . . , xn) ∈ W | x0 > 0 and − (x0)2 + (x1)2 + . . . (xn)2 < 0}
are both properly convex cones.

Exercise 4.1.1. Define the parabolic convex domain as

(12) P := {(x, y) ∈ R2 | y > x2}.
• Show that P is is a properly convex affine domain but not

affinely equivalent to a cone.
• Describe the group of affine automorphisms of P.
• Describe the group of projective automorphisms of P.

Exercise 4.1.2. Show that the set Pn(R) of all positive definite
symmetric n × n real matrices is a properly convex cone in the n(n +
1)/2-dimensional vector space W of n × n symmetric matrices. Are
there any affine transformations of W preserving Pn(R)? What is its
group of affine automorphisms?

Convex affine domains have the structure of principal R-bundles
over sharp convex cones:



4.1. CONVEX DOMAINS AND CONES 83

Proposition 4.1.3. Let Ω ⊂ V be an open convex cone in a vector
space. Then there exists a unique linear subspace W ⊂ V such that:

• Ω is invariant under translation by vectors in W (that is, Ω is
W-invariant;)
• There exists a properly convex cone Ω0 ⊂ V/W such that Ω =
π−1

W (Ω0) where πW : V −→ V/W denotes linear projection with
kernel W.

Proof. Let

W = {w ∈ V | x+ tw ∈ Ω, ∀x ∈ Ω, t ∈ R}.
Then W is a linear subspace of V and Ω is W-invariant. Let

Ω0 = πW(Ω) ⊂ V/W;

then Ω = π−1
W (Ω0). We must show that Ω0 is properly convex. To this

end we can immediately reduce to the case W = 0. Suppose that Ω
contains a complete affine line {y+tw | t ∈ R} where y ∈ Ω and w ∈ V.
Then for each s, t ∈ R

xs,t =
s

s+ 1
x+

1

s+ 1

(
y + stw

)
∈ Ω

whence

lim
s→∞

xs,t = x+ tw ∈ Ω̄.

Thus x+ tw ∈ Ω̄ for all t ∈ R. Since x ∈ Ω and Ω is open and convex,
x+ tw ∈ Ω for all t ∈ R and w ∈ W as claimed. �

4.1.1. Halfspaces and supporting hyperplanes. Let Ω ⊂ A
be a proper convex domain in an affine space A. In general Ω will be
an intersection of open halfspaces.

Here is a sketch of the proof, using the Hahn-Banach theorem.
The Hahn-Banach theorem (as stated in Theorem 11.4.1 of Berger [37])

asserts that every affine subspace (for example a point) disjoint from
Ω extends to an affine hyperplane disjoint from Ω. Since Ω is proper,
A \ Ω is nonempty. Choose a point p ∈ A \ Ω. The Hahn-Banach
theorem guarantees an affine hyperplane H ⊂ V containing p disjoint
from Ω. The two components of its complement V \H are halfspaces.
Since Ω is connected, one of them contains Ω.

Let W denote the set of halfspaces W ⊃ Ω. Suppose that

p ∈
( ⋂

W∈W

W
)
\ Ω.
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Applying the Hahn-Banach theorem again guarantees a halfspace con-
taining Ω but not containing p, a contradiction. Thus Ω is the inter-
section of open halfspaces.

The boundary of a minimal open halfspace containing Ω is a hy-
perplane, called a supporting hyperplane for Ω. By Proposition 11.5.2
of Berger [37], at every point of ∂Ω is a supperting hyperplane for Ω.

4.1.2. Convexity in projective space. Convexity is somewhat
more subtle in projective space P. First observe first that convexity is
invarariant under translations, and thus invariant under affine transfor-
mations. Say that a domain Ω ⊂ P is convex if and only if Ω lies in some
affine patch A ⊂ P, and is a convex subset of A. The above remarks
imply that this notion is independent of the choice of A. Equivalently,
if P = P(W) and

W \ {0} Π−−→ P

denotes projectivization, then Ω is convex if Ω = Π(Ω′) for some convex
cone Ω′ ⊂ W.

For studying convex subsets of projective space, passing to the dou-
ble covering space, the sphere of directions is useful, especially for cal-
culations.

4.2. The Hilbert metric

In 1894 Hilbert introduced a projectively invariant metric d = dΩ

on any properly convex domain Ω ⊂ P as follows. This was introduced
in §3.3 as an explicit form of the metric on Hn in the Klein-Beltrami
model. After reviewing its definition and basic properties, we discuss
the other basic example of an open simplex, in which case the metric
does not arise from a Riemannian structure. A simple example is Vey’s
semisimplicity Theorem 4.3.1, which we prove in a special case (used
later in §12 to classify completely incomplete affine structures, following
Kobayashi [179] and Vey [277, 276].

4.2.1. Definition and basic properties. Let x, y ∈ Ω be a pair
of distinct points; then the line ←→xy meets ∂Ω in two points which we

denote by x∞, y∞ (the point closest to x will be x∞, etc)̇. The Hilbert
distance

d = dHilb
Ω

between x and y in Ω will be defined as the logarithm of the cross-ratio
of this quadruple:

d(x, y) = log[x∞, x, y, y∞]
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(where the cross-ratio is defined in (8)). Clearly d(x, y) ≥ 0, so that
d(x, y) = d(y, x). Since Ω contains no complete affine line, x∞ 6= y∞,
and d(x, y) > 0 if x 6= y.

Similarly

Ω× Ω
d−−→ R

is proper, or finitely compact: that is, for each x ∈ Ω and r > 0, the
closed “r-ball”

Br(x) = {y ∈ Ω | d(x, y) ≤ r}
is compact. Once the triangle inequality is established, the complete-
ness of the metric space (Ω, d) follows. The triangle inequality results
from the convexity of Ω, although we deduce it by showing that the
Hilbert metric agrees with the general intrinsic metric introduced by
Kobayashi [179]. Thus we enforce the triangle inequality as part of the
construction of the metric. In this metric the geodesics are represented
by straight lines.

By Exercise 3.3.1, the Hilbert metric on a quadric domain agrees
with the Beltrami-Klein Riemannian structure. The other fundamental
example is the open simplex, which is the projectivization of an orthant
in Rn (for example the positive orthant (R+)n ⊂ Rn). When n = 3,
the projective domain is just a triangle.

4.2.2. The Hilbert metric on a triangle. Let 4 ⊂ P2 denote
a domain bounded by a triangle. Then the balls in the Hilbert metric
are hexagonal regions. (In general if Ω is a convex k-gon in P2 then
the unit balls in the Hilbert metric will be interiors of 2k-gons.)

Exercise 4.2.1. (Unit balls in the Hilbert metric)

• Prove that Aut(4) is conjugate to the group of diagonal ma-
trices with positive eigenvalues.
• Deduce that Aut(4) acts transitively on 4.
• Conclude that all the unit balls are isometric.

Here is a construction which illustrates the Hilbert geometry of 4.
(Compare Figure 2.3.) Start with a triangle4 and choose line segments
l1, l2, l3 from an arbitrary point p1 ∈ 4 to the vertices v1, v2, v3 of 4.
Choose another point p2 on l1, say, and form lines l4, l5 joining it to the
remaining vertices. Let

ρ = log

∣∣∣∣
[
v1, p1, p2, l1 ∩←−−→v2 v3

]∣∣∣∣
where [, ] denotes the cross-ratio of four points on l1. The lines l4, l5
intersect l2, l3 in two new points which we call p3, p4. Join these two
points to the vertices by new lines li which intersect the old li in new
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points pi. In this way one generates infinitely many lines and points
inside 4, forming a configuration of smaller triangles Tj inside 4. For
each pi, the union of the Tj with vertex pi is a convex hexagon which
is a Hilbert ball in 4 of radius ρ. Note that this configuration is
combinatorially equivalent to the tesselation of the plane by congru-
ent equilateral triangles. Indeed, this tesselation of 4 arises from an
action of a (3,3,3)-triangle group by collineations and converges (in an
appropriate sense) to the Euclidean equilateral-triangle tesselation as
ρ −→ 0.

Exercise 4.2.2. Let 4 := {(x, y) ∈ R2 | x, y > 0} be the positive
quadrant. Then the Hilbert distance is given by

d((x, y), (x′, y′)) = log max

{
x

x′
,
x′

x
,
y

y′
,
y′

y
,
xy′

x′y
,
x′y

xy′

}
.

• Show that the unit balls are hexagons.
• For any two points p, p′ ∈ 4, show that there are infinitely

many geodesics joining p to p′.
• Show that there are even non-smooth polygonal curves from p

to p′ having minimal length.

Daryl Cooper has called such a Finsler, where the unit balls are hexagons,
a hex-metric.

4.3. Vey’s semisimplicity theorem

The following theorem is due to Vey [277, 276].

Theorem 4.3.1. Let V be a real vector space and Ω ⊂ V a divisible
sharp convex cone. Then the action of Aut(Ω) is semisimple, that is,
any Aut(Ω)-invariant linear subspace W < V, there exists an Aut(Ω)-
invariant complementary linear subspace. In particular a unique de-
composition

V =
r⊕

i=1

Vi

exists, with sharp convex cones Ωi ⊂ Vi such that

Ω =
r∏

i=1

Ωi

and the action of Aut(Ωi) on Vi is irreducible.

Corollary 4.3.2. Suppose Ω ⊂ An is a properly convex divisible
domain. Then Ω is a sharp convex cone.
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The parabolic region {(x, y) ∈ A2 | y − x2 > 0} is an example of a
properly convex domain with a group Γ < Aut(Ω) such that Γ\Ω is
compact but not Hausdorff (that is, the transformation group (Γ,Ω) is
syndetic). In particular Ω is not a cone.

We don’t prove all of Theorem 4.3.1 here, but just the special case
when W is assumed to be a supporting hyperplane for Ω. This is all
which is needed to deduce Corollary 4.3.2. Our treatment is is based
on Hoban [152].

Proof of Corollary 4.3.2. Suppose that Ω ⊂ A is a properly
convex domain with Γ < Aut(Ω) dividing Ω. Embed A as an affine
hyperplane in a vector space V. Let ψ ∈ V∗ be a linear functional such
that A = ψ−1(1). Then

Ω′ :=
{
ω ∈ V

∣∣ ψ(ω) 6= 0 and ψ(ω)−1ω ∈ Ω
}

is sharp convex cone to which the action Γ on A extends to a linear
action on V preserving Ω′. This linear action extends to Γ×R+, where
R+ acts by homotheties. The linear hyperplane

W := Ker(ψ) = ψ−1(0)

supports Ω′ in the sense of §4.1.1. Furthermore, taking λ > 1, the
product Γ′ := Γ× 〈λ〉 divides Ω′ and preserves W.

By the special case of Theorem 4.3.1 when W is a supporting hy-
perplane, ∃L < V which is Γ-invariant and

V = W ⊕ L.
Now L is a line which intersects the affine hyperplane A in a point p0,
and p0 is fixed by Γ. Then Ω is a open convex cone with vertex p0. �

Proof of special case of Theorem 4.3.1. The proof uses the
following general fact about metric spaces, whose proof is given in Ap-
pendix C.

Lemma 4.3.3. Let X be any compact metric space. Then any dis-
tance non-increasing homeomorphism of X is an isometry

Let Ω∗ ⊂ V∗ be the cone dual to Ω, as in §4.4. If W is a linear
hyperplane which supports Ω, then the annihilator Ann(W) < V∗ is a
line lying in ∂Ω∗. It suffices to find a Γ-invariant complementary linear
hyperplane H < V∗.

Let L be a line which is invariant under Γ and intersects nontrivially
with Ω.

We define a Γ-invariant map Ω
s−→ ∂Ω as follows. For each x ∈ Ω,

let Ωx := Ω∩ (x+L). Since Ω is sharp, Ωx is a ray, with endpoint s(x)
on the boundary of Ω.
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Evidently s commutes with Γ.
Then, for t ∈ R,

ct(x) := s(x) + et(x− s(x))

defines a one parameter group of homeomorphisms of Ω.

Lemma 3. Let ⌦ be a sharp divisible convex cone, and G a subgroup dividing ⌦. Let

L be a 1 dimensional subspace of V which is G-stable and L \ ⌦ 6= 0. Then there is

a hyperplane H supplementary to L which is also stable under G, so V = L�H.

Proof of Lemma 3. Let L be a line which is invariant under G and intersects nontriv-

ially with ⌦. For each x 2 ⌦, let ⌦x = ⌦ \ (x + L). Since ⌦ is sharp, ⌦x is a ray,

with endpoint on the boundary of ⌦. Let s : ⌦! @⌦ take x to the endpoint of ⌦x.

Observe that s commutes with G: By definition x � s(x) 2 L, and L is G-stable

so gx � gs(x) 2 L. Of course g preserves the boundary of ⌦, so gs(x) 2 @⌦, hence

gs(x) = s(gx).

For each t 2 R let

ct(x) = s(x) + et(x� s(x))

Claim: This one parameter group of homeomorphisms of ⌦ is distance non-

increasing with respect to the Hilbert metric, i.e. dH(ct(x), ct(y))  dH(x, y)

Figure 2: ct is a distance non-increasing homeomorphism

To see this, choose p, q 2 ⌦ (See figure 2). Clearly ct(p) � p and ct(q) � q are

both in L. Let a and b denote the intersections of  !pq with @⌦, and c and d denote

the intersections of
 �����!
ct(p) ct(q) with @⌦. Now let â and b̂ denote the intersections of

a + L and b + L respectively with
 �����!
ct(p) ct(q). By convexity of ⌦, âb̂ ⇢ cd, hence

[c, ct(p), ct(q), d]  [â, ct(p), ct(q), b̂] = [a, p, q, b]. The last equality is due to the in-

variance of the cross ratio under projective transformations (in particular this is a

perspectivity). Since the cross ratio is non-increasing, it follows that dH is non-

increasing as well.

4

Figure 4.1. Projection does not increase Hilbert distance

�

Lemma 4.3.4. ct does not increase Hilbert distance:

(13) dHilb
(
ct(x), ct(y)

)
≤ dHilb(x, y)

Proof. To prove (13), choose p, q ∈ Ω as in Figure 4.1. Clearly
ct(p)−p and ct(q)−q are both in L. Let a and b denote the intersections
of ←→pq with ∂Ω. Let c and d denote the two points of the intersection
of ∂Ω with ←−−−−−−→

ct(p) ct(q) .

Now the intersections of a + L and b + L respectively with
←−−−−−→
ct(p) ct(q)

are two points, denoted â and b̂. Since Ω is convex,

âb̂ ⊂ cd,

hence

[c, ct(p), ct(q), d] ≤ [â, ct(p), ct(q), b̂] = [a, p, q, b].

The last equality is due to the invariance of the cross ratio under
projective transformations (in particular this is a perspectivity). Since
cross ratio is non-increasing, dHilb is non-increasing as well, concluding
the proof of Lemma 4.3.4. �
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Since s commutes with G, we can pass the map ct down to a map Ct on the

quotient. Ct : G\⌦! G\⌦ given by Ct(Gx) = Gct(x), and this map is distance non-

increasing with respect to the induced metric on the quotient. Note that the quotient

is only a metric space because G divides ⌦. So Ct is a distance non-increasing

homeomorphism of G\⌦. So Ct satisfies the hypotheses of Lemma 1 , hence Ct is an

isometry. This now implies that ct is a local isometry on ⌦.

Note: Figure 2 is a bit misleading here since the domain pictured is not a cone,

and ct is actually strictly decreasing for this domain. Figure 3 below, shows ct on a

cone, and in this picture we see that ct is actually an isometry.

Figure 3: ct is an isometry of the cone

We now claim that the set s(⌦) is convex: Suppose by way of contradiction that

there are x, y 2 ⌦ such that the line segment s(x) s(y) is not contained in s(⌦) ⇢ @⌦.

Let p 2 s(x) s(y) be such that p /2 s(⌦). Let N be a neighborhood of p on which ct

is an isometry, and choose q 2 (s(x) s(y)) \ N . Choose t < 0 such that both ct(p)

and ct(q) are contained in N . Let a, b be the intersections of
 �����!
ct(p) ct(q) with @⌦. Let

â = (a + L) \ !pq and b̂ = (b + L) \ !pq . Clearly now â is in s(x) s(y), but not equal

to s(x): if it were equal to s(x) then a = s(x) and t = 0. Similarly b̂ is on s(x) s(y)

and not equal to s(y). Now we have that â b̂ ( s(x) s(y), hence [a, ct(p), ct(q), b] =

[â, p, q, b̂] < [s(x), p, q, s(y)] and dH(ct(p), ct(q)) < dH(p, q), contradicting that ct is an

isometry on N .

Now s(⌦) is a convex set contained in the boundary of ⌦, so it generates a hy-

perplane H. Now V = L + H and this sum is actually a direct sum: for any x 2 ⌦,

x� s(x) = l for some l 2 L, so x = l + s(x) and hence V = L�H.

Since s commutes with G, H is G-stable which completes the proof.

Lemma 3 is actually a weaker version than what was proved by Vey in [6], but

5

Figure 4.2. ct is an isometry of the cone

Since s commutes with Γ, we can pass the map ct down to a map

M
Ct−−→M on the quotient M = Γ\Ω. Furthermore Ct is distance non-

increasing with respect to dHilb
M . Note that M is a metric space because

Γ divides Ω. (In particular M is Hausdorff.) Thus Ct is a distance
non-increasing homeomorphism of M = Γ\Ω, and by Lemma 4.3.3, it
is an isometry. Thus ct is a local isometry on Ω.

Note: Figure 4.1 is a bit misleading here since the domain pictured
is not a cone, and ct is actually strictly decreasing for this domain.
Figure 4.2 below, depicts how ct acts isometrically on the cone.

Lemma 4.3.5. s(Ω) is convex.

Proof. Suppose ∃x, y ∈ Ω such that the line segment

s(x) s(y) 6⊂ s(Ω) ⊂ ∂Ω.

Suppose

p ∈ s(x) s(y) \ s(Ω).

Let N be a neighborhood of p on which ct is an isometry, and choose

q ∈ (s(x) s(y)) ∩N.
Choose t < 0 such that both ct(p) and ct(q) lie in N . Let a, b be the

intersections of
←−−−−−→
ct(p) ct(q) with ∂Ω. Write

â = (a+ L) ∩ ←−→p q , b̂ = (b+ L) ∩ ←−→p q .
Clearly â ∈ s(x) s(y), but not equal to s(x): otherwise a = s(x) and

t = 0. Similarly b̂ ∈ s(x) s(y), but not equal to s(y).
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Thus â b̂ 6⊂ s(x) s(y), whence [â, p, q, b̂] < [s(x), p, q, s(y)]. Further-

more, a perspectivity maps ([a, ct(p), ct(q), b) to ([â, p, q, b̂), so

[a, ct(p), ct(q), b] = [â, p, q, b̂] < [s(x), p, q, s(y)].

Therefore dHilb(ct(p), ct(q)) < dHilb(p, q), a contradiction since ct is an
isometry. �

Now s(Ω) is a convex set contained in the boundary of Ω, and
generates a hyperplane H. Now V = L+H and this sum is actually a
direct sum: x− s(x) ∈ L for any x ∈ V, so

x = (x− s(x) + s(x)

∈ L ⊕ H.

Hence V = L⊕H.
Since s commutes with Γ, the hyperplane H is Γ-invariant. This

completes the proof of the special case of Theorem 4.3.1.

4.4. The Vinberg metric

Suppose that Ω ⊂ V is a properly convex cone. Its dual cone is
defined to be the set

Ω∗ = {ψ ∈ V∗ | ψ(x) > 0, ∀x ∈ Ω}
where V∗ is the vector space dual to V.

Lemma 4.4.1. Let Ω ⊂ V be a properly convex cone. Then its dual
cone Ω∗ is a properly convex cone.

Figure 4: Proving s(⌦) is convex

it will be all that is necessary for the proof of theorem 1. In his paper, Vey actually

proved:

Theorem 2. Let ⌦ be a sharp divisible convex cone, and G a subgroup dividing ⌦.

Then the action of G is semi-simple.

3 Proof of Vey’s Theorem

Theorem 1: Every properly convex divisible domain is a cone.

Proof. Let ⌦ be a properly convex divisible domain in an n dimensional a�ne space.

Construct the cone over ⌦ in Rn+1:

C(⌦) = {(x, t) | x 2 Rn, t > 0 2 R, x
t
2 ⌦}.

C(⌦) is now a sharp convex cone, and the plane L1 = {(x, 1) 2 Rn+1} can be

identified with the original a�ne space E containing ⌦. Further, ⌦ is identified

with ⌦1 = {(x, 1)|x 2 ⌦}. The group G dividing ⌦ can be identified with a group

of automorphisms preserving L1 \ ⌦1, and we obtain a homomorphism � : G !
Aut(C(⌦)) given by

Ax + b!

0
@ A b

0 1

1
A

Let G̃ be the subgroup of Aut(C(⌦)) generated by �(G) and homotheties � =

{2k : k 2 Z}, so G̃ =< �(G),� >. Note that G̃ preserves the supporting hyperplane

L0.

G̃ now divides C(⌦): Let K ⇢ ⌦ (= ⌦1) be compact such that GK = ⌦1. Let

K̃ = K ⇥ [1, 2]. Now G̃K̃ = C(⌦), so C(⌦) is quasi-homogeneous.

6

Figure 4.3. s(Ω) is convex.
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Proof. Clearly Ω∗ is a convex cone. We show that Ω∗ is properly
convex and open. If Ω∗ contains a line, then ψ0, λ ∈ V∗ exist such that
λ 6= 0 and ψ0 + tλ ∈ Ω∗ for all t ∈ R, that is, ∀x ∈ Ω,

ψ0(x) + tλ(x) > 0

for each t ∈ R. Let x ∈ Ω; then necessarily λ(x) = 0. Otherwise, if if
λ(x) 6= 0, then t ∈ R exists with

ψ0(x) + tλ(x) ≤ 0,

a contradiction. Thus Ω∗ is properly convex. The openness of Ω∗

follows from the proper convexity of Ω. Since Ω is properly convex,
its projectivization P(Ω) is a properly convex domain; in particular its
closure lies in an open ball in an affine subspace A of P and thus the set
of hyperplanes in P disjoint from P(Ω) is open. It follows that P(Ω∗),
and hence Ω∗, is open. �

Lemma 4.4.2. The canonical isomorphism V −→ V∗∗ maps Ω onto
Ω∗∗.

Proof. Identify V∗∗ with V. Clearly, Ω ⊂ Ω∗∗. Since both Ω and
and Ω∗∗ are open convex cones, either Ω = Ω∗∗ or ∂Ω ∩ Ω∗∗ 6= ∅. Let
y ∈ ∂Ω∩Ω∗∗. Let H ⊂ V be a supporting hyperplane for Ω at y. Then
the covector ψ ∈ V∗ defining H vanishes at y and is positive on Ω.
Thus ψ ∈ Ω∗. However, y ∈ Ω∗∗ implies ψ(y) > 0, a contradiction. �

Theorem 4.4.3. Let Ω ⊂ V be a properly convex cone. Then there
exists a real analytic Aff(Ω)-invariant closed 1-form α on Ω such that
its covariant differential ∇α is an Aff(Ω)-invariant Riemannian metric
on Ω. Furthermore

α(RV) = −n < 0

where RV is the radiant vector field on V.

4.4.1. The Vinberg characteristic function. Let dψ denote a
parallel volume form on V∗. Define the characteristic function f of the
properly convex cone Ω by the following integral

Ω
f−−→ R(14)

f(x) :=

∫

Ω∗
e−ψ(x)dψ

over the dual cone Ω∗. This function and its derivatives yields a canon-
ical Riemannian geometry on Ω invariant under the automorphism
group Aff(Ω). Furthermore it produces a canonical diffeomorphism
Ω −→ Ω∗. (Note that replacing the parallel volume form dψ by an-
other one c dψ replaces the characteristic function f by its constant
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multiple c f . Thus Ω
f−−→ R is well-defined only up to scaling.) For

example in the one-dimensional case, where

Ω = R+ ⊂ V = R
the dual cone equals Ω∗ = R+ and the characteristic function equals

f(x) =

∫ ∞

0

e−ψxdψ =
1

x
.

We begin by showing the integral (14) converges for x ∈ Ω. For
x ∈ V and t ∈ R consider the hyperplane cross-section

V∗x(t) = {ψ ∈ V∗ | ψ(x) = t}
and let

Ω∗x(t) = Ω∗ ∩ V∗x(t).

For each x ∈ Ω we obtain a decomposition

Ω∗ =
⋃

t>0

Ω∗x(t)

and for each s > 0 there is a diffeomorphism

Ω∗x(t)
hs−−→ Ω∗x(st)

ψ 7−→ sψ

and obviously hs ◦ ht = hst. We decompose the volume form dψ on Ω∗

as
dψ = dψt ∧ dt

where dψt is an (n− 1)-form on V∗x(t). Now the volume form (hs)
∗dψst

on Ω∗x(t) is a parallel translate of tn−1dψt. Thus:

f(x) =

∫ ∞

0

(
e−t
∫

Ω∗x(t)

dψt

)
dt

=

∫ ∞

0

e−ttn−1

(∫

Ω∗x(1)

dψ1

)
dt

= (n− 1)! area(Ω∗x(1)) <∞(15)

since Ω∗x(1) is a bounded subset of V∗x(1). Since

area(Ω∗x(n)) = nn−1area(Ω∗x(1)),

the formula in (15) implies:

(16) f(x) =
n!

nn
area(Ω∗x(n))

Let ΩC denote the tube domain Ω +
√
−1 V ⊂ V ⊗R C. Then the

integral defining f(x) converges absolutely for every x ∈ ΩC . Therefore



4.4. THE VINBERG METRIC 93

Ω
f−−→ R extends to a holomorphic function ΩC −→ C, from which it

follows that f is real analytic on Ω.

Lemma 4.4.4. The function f(x) −→ +∞ as x −→ ∂Ω.

Proof. Consider a sequence {xn}n>0 in Ω converging to x∞ ∈ ∂Ω.
Then the functions

Ω∗
Fk−−→ R

ψ 7→ e−ψ(xk)

are nonnegative functions converging uniformly to F∞ on every com-
pact subset of Ω∗ so that

lim inf f(xk) = lim inf

∫

Ω∗
Fk(ψ)dψ ≥

∫

Ω∗
F∞(ψ)dψ.

Suppose that ψ0 ∈ V∗ defines a supporting hyperplane to Ω at x∞;
then ψ0(x∞) = 0. Let K ⊂ Ω∗ be a closed ball; then K + R+ψ0 is a
cylinder in Ω∗ with cross-section K1 = K ∩ ψ−1

0 (c) for some c > 0.
∫

Ω∗
F∞(ψ)dψ ≥

∫

K+R+ψ0

e−ψ(x∞)dψ

≥
∫

K1

(∫ ∞

0

dt

)
e−ψ(x∞) dψ1 =∞

where dψ1 is a volume form on K1. �

Lemma 4.4.5. If γ ∈ Aff(Ω) ⊂ GL(V) is an automorphism of Ω,
then

(17) f ◦ γ = det(γ)−1 · f
In other words, if dx is a parallel volume form on A, then f(x) dx
defines an Aff(Ω)-invariant volume form on Ω.

Proof.

f(γx) =

∫

Ω∗
e−ψ(γx) dψ

=

∫

γ−1Ω∗
e−ψ(x) γ∗dψ

=

∫

Ω∗
e−ψ(x)(det γ)−1 dψ

= (det γ)−1f(x)

�
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4.4.2. The covector field. Since det(γ) is a constant, it fol-
lows from (17) that log f transforms under γ by the additive constant
log det(γ)−1 and thus

α = d log f = f−1df

is an Aff(Ω)-invariant closed 1-form on Ω. Furthermore, taking γ to be
the homothety

x
hs7−→ sx,

implies:

f ◦ hs = s−n · f,
which by differentiation with respect to s yields:

α(RV) = −n.
Let X ∈ TxΩ ∼= V be a tangent vector; then df(x) ∈ T∗xΩ maps

X 7→ −
∫

Ω∗
ψ(X)e−ψ(x)dψ.

Using the identification T∗xΩ
∼= V∗ we obtain a map

Φ : Ω −→ V∗

x 7→ −d log f(x).

As a linear functional, Φ(x) maps X ∈ V to
∫

Ω∗
ψ(X)e−ψ(x) dψ∫
Ω∗
e−ψ(x) dψ

so if X ∈ Ω, the numerator is positive and Φ(x) > 0 on Ω. Thus
Φ : Ω −→ Ω∗. Furthermore by decomposing the volume form on Ω∗ we
obtain

Φ(x) =

∫∞
0
e−ttn

(∫
Ω∗x(1)

ψ1dψ1

)
dt

∫∞
0
e−ttn−1

(∫
Ω∗x(1)

dψ1

)
dt

= n

∫
Ω∗x(1)

ψ1dψ1dt∫
Ω∗x(1)

dψ1dt

= n centroid(Ω∗x(1)).

Since

Φ(x) ∈ n · Ω∗x(1) = Ω∗x(n),

that is, Φ(x) : x 7→ n,

(18) Φ(x) = centroid(Ω∗x(n)).
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4.4.3. The metric tensor. For any function Ω
f−−→ R, the loga-

rithmic Hessian
d2 log f = ∇d log f = ∇α

is an Aff(Ω)-invariant symmetric 2-form on Ω and equals:

d2(log f) = ∇(f−1df) = f−1d2f − (f−1df)2.

Furthermore the value of d2f(x) ∈ Sym2T∗xΩ on a pair

(X, Y ) ∈ TxΩ× TxΩ = V × V

equals ∫

Ω∗
ψ(X)ψ(Y )e−ψ(x)dψ

Proposition 4.4.6. d2 log f is positive definite and defines an Aff(Ω)-
invariant Riemannian metric on Ω.

Proof.

f(x)2
(
d2 log f(x)

)
(X,X) =

∫

Ω∗
e−ψ(x) dψ

∫

Ω∗
ψ(X)2e−ψ(x) dψ

−
(∫

Ω∗
ψ(X)e−ψ(x) dψ

)2

= ‖e−ψ(x)/2‖2
2 ‖ψ(X)e−ψ(x)/2‖2

2

− 〈e−ψ(x)/2, ψ(X)e−ψ(x)/2〉22 > 0

by the Schwartz inequality, since the functions

ψ 7−→ e−ψ(x)/2,

ψ 7−→ ψ(X)e−ψ(x)/2

on Ω∗ are not proportional. (Here 〈, 〉2 and ‖ ‖2 respectively denote
the usual L2 inner product and norm on (Ω∗, dψ).) Thus d2 log f is
positive definite as claimed. �

We characterize the linear functional Φ(x) ∈ Ω∗ quite simply as
follows. Since Φ(x) is parallel to df(x), each of its level hyperplanes is

parallel to the tangent plane of the level set Sx of Ω
f−→ R containing

x. Note that Φ(x)(x) = n.

Proposition 4.4.7. The tangent space to the level set Sx of Ω
f−−→

R at x equals Φ(x)−1(n).

This characterization yields the following result:

Theorem 4.4.8. Ω
Φ−−→ Ω∗ is bijective.
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Proof. Let ψ0 ∈ Ω∗ and let

Q0 := {z ∈ V | ψ0(z) = n}.
Then the restriction of log f to the affine hyperplane Q0 is a convex
function which approaches +∞ on ∂(Q0∩Ω). Therefore the restriction
f |Q0∩Ω has a unique critical point x0, which is necessarily a minimum.
Then Tx0Sx0 = Q0 from which Proposition 4.4.7 implies that Φ(x0) =
ψ0. Furthermore, if Φ(x) = ψ0, then f |Q0∩Ω has a critical point at x so

x = x0. Therefore Ω
Φ−−→ Ω∗ is bijective as claimed. �

If Ω ⊂ V is a properly convex cone and Ω∗ is its dual, then let
ΦΩ∗ : Ω∗ −→ Ω be the diffeomorphism Ω∗ −→ Ω∗∗ = Ω defined above.
If x ∈ Ω, then ψ = (Φ∗)−1(x) is the unique ψ ∈ V∗ such that:

• ψ(x) = n;
• The centroid of Ω ∩ ψ−1(n) equals x.

The duality isomorphism GL(V) −→ GL(V∗) (given by inverse trans-
pose of matrices) defines an isomorphism Aff(Ω) −→ Aff(Ω∗). Let

Ω
ΦΩ−−−→ Ω∗,

Ω∗
ΦΩ∗−−−→ Ω∗∗ = Ω

be the duality maps for Ω and Ω∗ respectively. Vinberg points out
in [278] that, in general, the composition

Ω
ΦΩ∗ ◦ΦΩ−−−−−−→ Ω

is not the identity. However, if Ω is homogeneous (that is, Aff(Ω) ⊂
GL(V) acts transitively on Ω), then ΩΩ∗ ◦ ΦΩ = I:

Proposition 4.4.9 (Vinberg [278]). Let Ω ⊂ V be a homogeneous
properly convex cone. Then ΦΩ∗ and ΦΩ are inverse maps Ω∗ ←→ Ω.

Proof. Let x ∈ Ω and Y ∈ V ∼= TxΩ be a tangent vector. Denote
the value of the canonical Riemannian metric ∇α = d2 log f at x by:

TxΩ× TxΩ
gx−−→ R

Then the differential of Ω
ΦΩ−−−→ Ω∗ at x equals the composition

TxΩ
g̃−−→ T∗xΩ

∼= V∗ ∼= TΦ(x)Ω
∗

where Ω
g̃x−−→ T∗xΩ is the linear isomorphism corresponding to gx and

the isomorphisms

T∗xΩ
∼= V∗ ∼= TΦ(x)Ω

∗
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are induced by parallel translation. Taking the directional derivative
of the equation

αx(Rx) = −n
with respect to Y ∈ V ∼= TxΩ yields:

0 =(∇Y α)(R) + α(∇Y R)

= gx(Rx, Y ) + αx(Y )

= gx(x, Y )− Φ(x)(Y ).(19)

Let Ω
fΩ−−→ R and Ω∗

fΩ∗−−−→ R be the characteristic functions for
Ω and Ω∗ respectively. Then fΩ(x) dx is a volume form on Ω invariant
under Aff(Ω) and fΩ∗(ψ) dψ is a volume form on Ω∗ invariant under

the induced action of Aff(Ω) on Ω∗. Moreover Ω
Φ−−→ Ω∗ is equivariant

with respect to the isomorphism Aff(Ω) −→ Aff(Ω∗). Therefore the
tensor field on Ω defined by

fΩ(x) dx ⊗ (fΩ∗ ◦ Φ) (x) dψ

∈ ∧nTxΩω ⊗ ∧nTΦ(x)Ω
∗

∼= ∧nV ⊗ ∧nV∗

is Aff(Ω)-invariant. Since the parallel tensor field dx⊗dψ ∈ ∧nV⊗∧nV∗

is invariant under all of Aff(V), the coefficient

(20) h(x) = fΩ(x) dx⊗ (fΩ∗ ◦ Φ(x) dψ)

is an Aff(Ω)-invariant function on Ω. Since Ω is homogeneous, h is
constant.

Differentiating log h using (20),

0 = d log h = d log fΩ(x) + d log(fΩ∗ ◦ Φ)(x).

Since d log fΩ∗(ψ) = ΦΩ∗(ψ),

0 = −Φ(x)(Y ) + ΦΩ∗(dΦ(Y ))

= −Φ(x)(Y ) + gx(Y,ΦΩ∗ ◦ ΦΩ(x))

Combining this equation with (19) yields:

ΦΩ∗ ◦ ΦΩ(x) = x

as desired. �

Thus, if Ω is a homogeneous cone, then Φ(x) ∈ Ω∗ is the centroid of
the cross-section Ω∗x(n) ⊂ Ω∗ in V∗.
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4.5. Benzécri’s Compactness Theorem

Let P = P(V) and P∗ = P(V∗) be the associated projective spaces.
Then the projectivization P(Ω) ⊂ P of Ω is by definition a properly

convex domain and its closure K = P(Ω) a convex body . Then the
dual convex body K∗ equals the closure of the projectivization P(Ω∗)
consisting of all hyperplanes H ⊂ P such that Ω̄ ∩ H = ∅. A pointed
convex body consists of a pair (K, x) where K is a convex body and
x ∈ int(K) is an interior point of K. Let H ⊂ P be a hyperplane and
A = P \ H its complementary affine space. We say that the pointed
convex body (K, u) is centered relative to A (or H) if u is the centroid
of K in the affine geometry of A.

Proposition 4.5.1. Let (K, u) be a pointed convex body in a pro-
jective space P. Then there exists a hyperplane H ⊂ P disjoint from K
such that in the affine space A = P \H, the centroid of K ⊂ E equals
u.

Proof. Let V = V(P) be the vector space corresponding to the
projective space P and let Ω ⊂ V be a properly convex cone whose
projectivization is the interior ofK. Let x ∈ Ω be a point corresponding
to u ∈ int(K). Let

Ω∗
ΦΩ∗−−−→ Ω

be the duality map for Ω∗ and let ψ = (ΦΩ∗)
−1(y). Then the centroid

of the cross-section

Ωψ(n) = {x ∈ Ω | ψ(x) = n}
in the affine hyperplane ψ−1(n) ⊂ V equals y. Let H = P(Ker

(
ψ)
)

be
the projective hyperplane in P corresponding to ψ; then projectiviza-
tion defines an affine isomorphism

ψ−1(n) −→ P \H
mapping Ωψ(n) −→ K. Since affine maps preserve centroids, it follows
that (K, u) is centered relative to H. �

Thus every pointed convex body (K, u) is centered relative to a unique
affine space containing K. In dimension one, this means the following:
let K ⊂ RP1 be a closed interval [a, b] ⊂ R and let a < x < b be an
interior point. Then x is the midpoint of [a, b] relative to the “hyper-
plane” H obtained by projectively reflecting x with respect to the pair
{a, b}:

H = R[a,b](x) =
(a+ b)x− 2ab

2x− (a+ b)
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An equivalent version of Proposition 4.5.1 involves using collineations
to “move a pointed convex body” into affine space to center it:

Proposition 4.5.2. Let K ⊂ E be a convex body in an affine space
and let x ∈ int(A) be an interior point. Let P ⊃ E be the projective

space containing A. Then there exists a collineation P
g−−→ P such that:

• g(K) ⊂ A;
• (g(K), g(x)) is centered relative to A.

The one-dimensional version is really just the fundamental theorem of
projective geometry: if [a, b] is a closed interval with interior point x,
then the unique collineation mapping

a 7→ −1

x 7→ 0

b 7→ 1

centers [a, b] at x.

Proposition 4.5.3. Let Ki ⊂ A be convex bodies (i = 1, 2) in

an affine space A with centroids ui, and suppose that P
g−−→ P is a

collineation such that g(K1) = K2 and g(u1) = u2. Then g is an affine
automorphism of A, that is, g(A) = A.

Proof. Let V be a vector space containing A as an affine hyper-
plane and let Ωi be the properly convex cones in V whose projective

images are Ki. By assumption there exists a linear map V
g̃−−→ V

and points xi ∈ Ωi mapping to ui ∈ Ki such that g̃(Ω1) = Ω2 and
g̃(x1) = x2. Let Si ⊂ Ωi be the level set of the characteristic function

Ωi
fi−−→ R

containing xi. Since (Ki, ui) is centered relative to A, it follows that
the tangent plane

TxiSi = E ⊂ V.

Since the construction of the characteristic function is linearly invari-
ant, it follows that g̃(S1) = S2. Moreover

g̃(Tx1S1) = Tx2S2,

that is, g̃(A) = E and g ∈ Aff(A) as desired. �
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4.5.1. Convex bodies in projective space. Let C(P) denote
the set of all convex bodies in P, with the topology induced from the
Hausdorff metric on the set of all closed subsets of P (which is induced
from the Fubini-Study metric on P, see §Let

C∗(P) = {(K, x) ∈ C(P)× P | x ∈ int(K)}
be the corresponding set of pointed convex bodies, with a topology
induced from the product topology on C(P) × P. The collineation
group G acts continuously on C(P) and on C∗(P).

Recall that an action of a group Γ on a space X is syndetic if
∃K ⊂⊂ X such that ΓK = X. Furthermore the action is proper if the
corresponding map

Γ×X −→ X ×X
(γ, x) 7−→ (γx, x)

is a proper map (inverse images of compact subsets are compact). See
§A.2 for discussion of elementary properties of group actions.

Theorem 4.5.4 (Benzécri). The collineation group G acts properly
and syndetically on C∗(P). In particular the quotient C∗(P)/G is a
compact Hausdorff space.
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Figure 4.4. A sequence of projectively equivalent con-
vex domains with a corner converging to a triangle with
the corner as a vertex.

Figure 4.5. A sequence of projectively equivalent con-
vex domains with a flat part of the boundary converging
to a triangle having the flat part as a side.



102 4. CONVEXITY

4.5.2. How convex bodies can degenerate. While the quo-
tient C∗(P)/G is Hausdorff, the space of equivalence classes of convex
bodies C(P)/G is generally not Hausdorff. Here are three basic exam-
ples.

4.5.2.1. Corners. Suppose that Ω is a properly convex domain whose
boundary is not C1 at a point x1. Then ∂Ω has a “corner” at x1 and
we may choose homogeneous coordinates so that x1 = [1 : 0 : 0] and Ω̄
lies in the domain

4 = {[x : y : z] ∈ RP2 | x, y, z > 0}

in such a way that ∂Ω is tangent to ∂4 at x1. Under the one-parameter
group of collineations defined by

gt =



e−t 0 0
0 1 0
0 0 et




as t −→ +∞, the domains gtΩ converge to 4. t(Compare Figure 4.4.)
Then the G-orbit of Ω̄ in C(P) is not closed. The corresponding equiv-
alence class of Ω̄ is not a closed point in C(P)/G unless Ω was already
a triangle.

4.5.2.2. Flats. Similarly suppose that Ω is a properly convex do-
main which is not strictly convex, that is, its boundary contains a non-
trivial line segment σ. (We suppose that σ is a maximal line segment
contained in ∂Ω.) As above, we may choose homogeneous coordinates
so that Ω ⊂ 4 and such that Ω̄ ∩ 4̄ = σ̄ and σ lies on the line
{[x : y : 0] | x, y ∈ R}. As t −→ +∞ the image of Ω under the
collineation

gt =



e−t 0 0
0 e−t 0
0 0 e2t




converges to a triangle region with vertices {[0 : 0 : 1]}∪∂σ. As above,
the equivalence class of Ω̄ in C(P)/G is not a closed point in C(P)/G
unless Ω is a triangle.

4.5.2.3. Osculating conics. As a final example, consider a properly
convex domain Ω with C1 boundary such that there exists a point
u ∈ ∂Ω such that ∂Ω is C2 at u. In that case a conic C osculates ∂Ω
at u. Choose homogeneous coordinates such that u = [1 : 0 : 0] and

C = {[x : y : z] | xy + z2 = 0}.
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Then as t −→ +∞ the image of Ω under the collineation

gt =



e−t 0 0
0 et 0
0 0 1




converges to the convex region

{[x : y : z] | xy + z2 < 0}
bounded by C. As above, the equivalence class of Ω̄ in C(P)/G is not
a closed point in C(P)/G unless ∂Ω is a conic.

In summary:

Proposition 4.5.5. Suppose Ω̄ ⊂ RP2 is a convex body whose
equivalence class [Ω̄] is a closed point in C(P)/G. Suppose that ∂Ω
is neither a triangle nor a conic. Then ∂Ω is a C1 strictly convex
curve which is nowhere C2.

The forgetful map C∗(P)
P i−−→ C(P) which forgets the point of a

pointed convex body is induced from Cartesian projection C(P)×P −→
C(P).

Theorem 4.5.6 (Benzécri). Let Ω ⊂ P is a properly convex domain
such that there exists a subgroup Γ ⊂ Aut(Ω) which acts syndetically
on Ω. Then the corresponding point [Ω̄] ∈ C(P)/G is closed.

In the following result, all but the continuous differentiability of the
boundary in the following result was originally proved in Kuiper [192]
using a somewhat different technique; the C1 statement is due to
Benzécri [35] as well as the proof given here.

Corollary 4.5.7. Suppose that M = Ω/Γ is a convex RP2-manifold
such that χ(M) < 0. Then either the RP2-structure on M is a hyper-
bolic structure or the boundary ∂Ω of its universal covering is a C1

strictly convex curve which is nowhere C2.

Proof. Apply Proposition 4.5.5 to Theorem 4.5.6. �

Proof of Theorem 4.5.6 assuming Theorem 4.5.4. Let Ω be
a properly convex domain with an automorphism group Γ ⊂ Aff(Ω)
acting syndetically on Ω. It suffices to show that the G-orbit of {Ω̄} in
C(P) is closed, which is equivalent to showing that the G-orbit of

Π−1({Ω̄}) = {Ω̄} × Ω

in C∗(P) is closed. This is equivalent to showing that the image of

{Ω̄} × Ω ⊂ C∗(P)
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under the quotient map C∗(P) −→ C∗(P)/G is closed. Let K ⊂ Ω be a
compact subset such that ΓK = Ω; then {Ω̄} ×K and {Ω̄} × Ω have
the same image in C∗(P)/Γ and hence in C∗(P)/G. Hence it suffices
to show that the image of {Ω̄} ×K in C∗(P)/G is closed. Since K is
compact and the composition

K −→ {Ω̄} ×K ↪→ {Ω̄} × Ω ⊂ C∗(P) −→ C∗(P)/G

is continuous, it follows that the image of K in C∗(P)/G is compact.
By Theorem 4.5.4 , C∗(P)/G is Hausdorff and hence the image of K in
C∗(P)/G is closed, as desired. The proof of Theorem 4.5.6 (assuming
Theorem 4.5.4) is now complete. �

Now we prove Theorem 4.5.4. Choose a fixed hyperplane H∞ ⊂ P
and let A = P \H∞ be the corresponding affine patch and Aff(A) the
group of affine automorphisms of A. Let C(A) ⊂ C(P) denote the set
of convex bodies K ⊂ E, with the induced topology. (Note that the
C(A) is a complete metric space with respect to the Hausdorff metric
induced from the Euclidean metric on E and we may use this metric
to define the topology on C(A). The inclusion map C(A) ↪→ C(P) is
continuous, although not uniformly continuous.) We define a map

C(A)
ι−→ C∗(P)

as follows. Let K ∈ C(A) be a convex body in affine space A; let ι(K)
to be the pointed convex body

ι(K) = (K, centroid(K)) ∈ C∗(P);

clearly ι is equivariant respecting the embedding Aff(A) ↪→ G.

4.5.3. Reduction to the affine case.

Theorem 4.5.8. Let A ⊂ P be an affine patch in projective space.
Then the map

C(A)
ι−→ C∗(P)

K 7−→
(
K, centroid(K)

)

is equivariant with respect to the inclusion Aff(A) −→ G and the cor-
responding homomorphism of topological transformation groupoids

(
C(A),Aff(A)

) ι−→ (C∗(P), G)

is an equivalence of groupoids.

Proof. The surjectivity of C(A)/Aff(A)
ι∗−−→ C∗(P)/G follows im-

mediately from Proposition 4.4.9 and the bijectivity of

Hom(a, b)
ι∗−−→ Hom(ι(a), ι(b))
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follows immediately from Proposition 4.5.2. �

Thus the proof of Proposition 4.5.3 reduces (via Lemma A.3.1 and
Theorem 4.5.8) to the following:

Theorem 4.5.9. Aff(A) acts properly and syndetically on C(A).

Let E ⊂ C(A) denote the subspace of ellipsoids in A; the affine
group Aff(A) acts transitively on E with isotropy group the orthogonal
group — in particular this action is proper. If K ∈ C(A) is a convex
body, then there exists a unique ellipsoid ell(K) ∈ E (the ellipsoid of
inertia of K such that for each affine map ψ : A −→ R such that
ψ(centroid(K)) = 0 the moments of inertia satisfy:∫

K

ψ2dx =

∫

ell(K)

ψ2dx

Proposition 4.5.10. Taking the ellipsoid-of-inertia of a convex
body

C(A)
ell−−→ E

defines an Aff(A)-invariant proper retraction of C(A) onto E.

Proof of Theorem 4.5.9 assuming Proposition 4.5.10.
Since Aff(A) acts properly and syndetically on E and ell is a proper
map, it follows that Aff(A) acts properly and syndetically on C(A). �

Proof of Proposition 4.5.10. ell is clearly affinely invariant and
continuous. Since Aff(A) acts transitively on E, it suffices to show that
a single fiber ell−1(A) is compact for e ∈ E. We may assume that e is
the unit sphere in E centered at the origin 0. Since the collection of
compact subsets of E which lie between two compact balls is compact
subset of C(A), Proposition 4.5.10 will follow from: �

Proposition 4.5.11. For each n there exist constants 0 < r(n) <
R(n) such that every convex body K ⊂ Rn whose centroid is the origin
and whose ellipsoid-of-inertia is the unit sphere satisfies

Br(n)(O) ⊂ K ⊂ BR(n)(O).

Cooper-Long-Tillmann [78] call such an affine chart a Benzécri chart,
and in [79] provide an algorithm for computing a Benzécri chart.

The proof of Proposition 4.5.11 is based on:

Lemma 4.5.12. Let K ⊂ A be a convex body with centroid O. Sup-
pose that l is a line through O which intersects ∂K in the points X,X ′.
Then

(21)
1

n
≤ OX

OX ′
≤ n.
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Proof. Let ψ ∈ A∗ be a linear functional such that ψ(X) = 0
and ψ−1(1) is a supporting hyperplane for K at X ′; then necessarily
0 ≤ ψ(x) ≤ 1 for all x ∈ K. We claim that

(22) ψ(O) ≤ n

n+ 1
.

For t ∈ R let

A
ht−−→ A

x 7−→ t(x−X) +X

be the homothety fixing X having strength t. We compare the linear
functional ψ with the “polar coordinates” on K defined by the map

[0, 1]× ∂K F−−→ K

(t, s) 7→ hts

which is bijective on (0, 1]× ∂K and collapses {0}× ∂K onto X. Thus

there is a well-defined function K
t−→ R such that for each x ∈ K,

there exists x′ ∈ ∂K such that x = F (t, x′). Since 0 ≤ ψ(F (t, s)) ≤ 1,
it follows that for x ∈ K,

0 ≤ ψ(x) ≤ t(x)

Let µ = µK denote the probability measure supported on K defined
by

µ(S) =

∫
S∩K dx∫
K
dx

.

There exists a measure ν on ∂K such that for each measurable function
f : A −→ R

∫
f(x)dµ(x) =

∫ 1

t=0

∫

s∈∂K
f(ts)tn−1dν(s)dt,

that is, F ∗dµ = tn−1dν ∧ dt.
The first moment of K

t−→ [0, 1] is:

t̄(K) =

∫

K

t dµ =

∫
K

t dµ∫
K
dµ

=

∫ 1

0
tn
∫
∂K
dν dt

∫ 1

0
tn−1

∫
∂K
dν dt

=
n

n+ 1

and since the value of the affine function ψ on the centroid equals the
first moment of ψ on K, we have

0 < ψ(O) =

∫

K

ψ(x) dµ(x) <

∫

K

t(x) dµ =
n

n+ 1
.
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Now the distance function on the line
←−→
XX ′ is affinely related to the

linear functional ψ, that is, there exists a constant c > 0 such that for

x ∈ ←−→XX ′ the distance Xx = c|ψ(x)|; since ψ(X ′) = 1 it follows that

ψ(x) =
Xx

XX ′

and since OX +OX ′ = XX ′ it follows that

OX ′

OX
=
XX ′

OX
− 1 ≥ n+ 1

n
− 1 =

1

n
.

This gives the second inequality of (21). The first inequality follows by
reversing the roles of X,X ′. �

Proof of Proposition 4.5.11. Let X ∈ ∂K be a point at min-
imum distance from the centroid O; then there exists a supporting

hyperplane H at x which is orthogonal to
←→
OX and let A

ψ−−→ R be the
corresponding linear functional of unit length. Let a = ψ(X) > 0 and
b = ψ(X ′) < 0; Proposition 4.5.10 implies −b < na.

We claim that 0 < |ψ(x)| < na for all x ∈ K. To this end let
x ∈ K; we may assume that ψ(x) > 0 since −na < ψ(X ′) ≤ ψ(x).
Furthermore we may assume that x ∈ ∂K. Let z ∈ ∂K be the other

point of intersection of
←→
Ox with ∂K; then ψ(z) < 0. Now

1

n
≤ Oz

Ox
≤ n

implies that
1

n
≤ |ψ(z)|
|ψ(x)| ≤ n

(since the linear functional ψ is affinely related to signed distance along←→
Ox). Since 0 > ψ(z) ≥ −a, it follows that |ψ(x)| ≤ na as claimed.

Let wn denote the moment of inertia of ψ for the unit sphere; then
we have

wn =

∫

K

ψ2dµ ≤
∫

K

n2a2dµ = n2a2

whence a ≥ √wn/n. Taking r(n) =
√
wn/n we see that K contains

the r(n)-ball centered at O.
To obtain the upper bound, observe that if C is a right circular cone

with vertex X, altitude h and base a sphere of radius ρ and C
t−→ [0, h]

is the altitudinal distance from the base, then the integral
∫

C

t2dµ =
2h3ρn−1vn−1

(n+ 2)(n+ 1)n
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where vn−1 denotes the (n− 1)-dimensional volume of the unit (n− 1)-
ball. Let X ∈ ∂K and C be a right circular cone with vertex X and
base an (n − 1)-dimensional ball of radius r(n). We have just seen

that K contains Br(n)(O); it follows that K ⊃ C. Let K
t−→ R be the

unit-length linear functional vanishing on the base of C; then

t(X) = h = OX.

Its second moment is

wn =

∫

K

t2dµ ≥
∫

C

t2dµ =
2h3r(n)n−1vn−1

(n+ 2)(n+ 1)n

and thus it follows that

OX = h ≤ R(n)

where

R(n) =

(
(n+ 2)(n+ 1)nwn

2r(n)n−1vn−1

) 1
3

as desired. The proof is now complete. �

Exercise 4.5.13. The volume of the unit ball in Rn equals:

vn =

{
πn/2/(n/2)! for n even

2(n+1)/2π(n−1)/2/(1 · 3 · 5 · · ·n) for n odd

Its moments of inertia are:

wn =

{
vn/(n+ 2) for n even

2vn/(n+ 2) for n odd

Based on Cooper-Long-Tillmann [78], explicit formulas are given in
Casella-Tate-Tillmann[58] for the size of a Benzécri chart.

4.6. Quasi-homogeneous and divisible domains

Corollary 4.5.7 of Benzécri’s Theorem ref provides sharp informa-
tion on the geometry of a convex domain Ω on which Aut(Ω) acts
syndetically. A convex domain Ω ⊂ P is said to be quasi-homogeneous
if Aut(Ω acts syndetically, that is, the quotient Ω/Aut(Ω) is compact
(although not necessarily Hausdorff). If the action is proper, (that
is, the quotient is Hausdorff), then the domain is said to be divisible.
Although for simplicity we have only discussed the two-dimensional
situation, much is known in this case, especially through a series of
papers of Benoist, starting with his paper Automorphismes des cônes
convexes [27], and continuing into his series of four Convex divisibles
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papers [30, 29, 31, 32]. He discusses these results, background and
further advances (at the time) in his excellent survey paper [33] (which
is written in English).

He begins by characterizing automorphisms of convex cones by the
dynamical notion of proximality. A projective action of Γ on P is
proximal if ∃γ ∈ Γ with a unique attracting fixed point. From this he
finds restrictions on which Zariski closures Γ can occur.

A crucial idea is that when Ω is strictly convex, the natural geo-
desic flow defined by the Hilbert metric is an Anosov flow, that is, it
preserves a decomposition of the tangent bundle as a direct sum of (1)
the line bundle generating the flow; (2) a subbundle of tangent vectors
exponential expanded by the flow (with respect to a fixed Riemannian
structure); (3) a subbundle of tangent bundle exponentially contracted
by the flow. From this he deduces that Γ is a hyperbolic group in the
sense of Gromov. Furthermore ∂Ω is C1+α for some α > 0.

When Ω is not strictly convex (such as the triangle) much of this
breaks down. However, as Benzécri noted, Theorem ?? implies that if
Ω is not strictly convex, then Ω contains a properly embedded trian-
gle. A simple example1 is a deformation of a Coxeter group Γ0 built
on a regular ideal tetrahedron in H3 ⊂ RP3. Deformations Γt ex-
ist of this (noncompact) convex RP3-orbifold where the cusps of Γt,
where t > 0, are the regular (3, 3, 3)-triangle tesselations of a trian-
gle discussed in §4.2.2 and depicted in Figure 2.3. In RP3, these cusp
groups preserve a projective hyperplane Ht ⊂ RP3 By adding reflec-
tions R1(t), R2(t), R3(t), R4(t) in these hyperplanes one creates projec-
tive Coxeter groups Γ∗t acting properly and syndetically on a properly
convex domain Ω∗t which is not strictly convex. (This is analogous
to deforming the cusps in Thurston’s hyperbolic Dehn surgery.) The
quotient of Ω∗t by a torsionfree finite-index subgroup of Γ∗t is a closed
3-manifold with incompressible tori corresponding to the cusps of Γ0.

Benoist gives a comprehensive description of such divisble 3-domains
in [32], and relates the non-strict convexity of the boundary to in-
compressible tori and the JSJ-decomposition of the quotient convex
RP3-manifolds. See Choi-Hodgson-Lee [72] for further discussion of
divisible convex domains arising from Coxeter groups in RP3.

In a series of papers [160, 159, 161, 162], Kyeonghee Jo investi-
gates the differentiability of the boundary of a convex quasi-homogeneous
domain. She shows that under various assumptions on the differentia-
bility of ∂Ω, such a domain must be homogeneous. For example, if Ω

1The author gave a lecture on this example at a regional meeting of the Amer-
ican Mathematical Society on October 30, 1982.
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is strictly convex quasi-homogeneous, then its boundary is at least C1,
but if it is C2 except at a finite set of points, then it must be an ellipsoid.
(Other characterizations of ellipsoids among quasi-homogeneous con-
vex domains are due to Socié-Méthou [256] and Colbois-Verovic [76].)

In [168] Kapovich gives examples of strictly convex divisible do-
mains whose quotients are the non-locally symmetric negatively curved
manifolds first discovered by Gromov and Thurston.



Part 2

Geometric manifolds





CHAPTER 5

Locally homogeneous geometric structures

Let M be a manifold and let X be a space with a transitive action
of a Lie group G. Then in the spirit of Klein’s Erlangen program [172],
(G,X) defines a geometry: namely, the objects inX which are invariant
under G. (A recent discussion of the Erlangen program is [158].)

We want to impart this geometry to M by a system of coordinate
charts taking coordinate patches in M to open subsets of X, in such
a way that. the coordinate changes on overlapping patches are locally
restrictions of transformations coming from G. Such a coordinate atlas
defines a (G,X)-structure on M , and we call M a (G,X)-manifold.

The general notion of defining a structure on a manifold by an atlas
of local charts is that of a pseudogroup. These are defined by a collection
G of homeomorphisms between open subsets of a topological space S
satisfying several natural conditions: G contains the identity IS and
is closed under restrictions to open subsets, inversion and composition
(where defined). Furthermore, if U =

⋃
α Uα and gα, gβ ∈ G are defined

on Uα and Uβ respectively, such that the restrictions

gα|Uα = gβ|Uβ ,
then ∃g ∈ G defined on U restricting to gα on Uα. See Kobayashi-
Nomizu [181], pp.1–2 for further discussion.

For example, if (G,X) is affine or projective geometry, the cor-
responding global object is an affine structure or projective structure
on M . (Such structures are also called “affinely flat structures,” “flat
affine structures,” “flat projective structures,” etc. An affine structure
on a manifold is the same thing as a flat torsion-free affine connection,
and a projective structure is the same thing as a flat normal projective
connection (see Sharpe [249], Chern-Griffiths [64] Kobayashi [176] or
Hermann [148] for the theory of projective connections). We shall refer
to a projective structure modeled on RPn an RPn-structure; a manifold
with an RPn-structure will be called an RPn-manifold.

In many cases of interest, there may be a readily identifiable geo-
metric object on X whose stabilizer is G, and modeling a manifold on
(G,X) may be equivalent to a geometric object locally equivalent to
the G-invariant geometric object on X. Perhaps the most important

113
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such object is a locally homogeneous Riemannian metric. For example
if X is a simply-connected Riemannian manifold of constant curva-
ture K and G is its group of isometries, then locally modeling M on
(G,X) is equivalent to giving M a Riemannian metric of curvature K.
(This idea can be vastly extended, for example to cover indefinite met-
rics, locally homogeneous metrics whose curvature is not necessarily
constant, etc.) In particular Riemannian metrics of constant curvature
are special cases of (G,X)-structures on manifolds.

Thurston [266] gives a detailed discussion of some of the pseu-
dogroups defining structures on 3-manifolds.

5.1. Geometric atlases

Let G be a Lie group acting transitively on a manifold X. Let

U ⊂ X be an open set and let U
f−−→ X be a smooth map. We say

that f is locally-G if for each component Ui ⊂ U , there exists gi ∈ G
such that the restriction of gi to Ui ⊂ X equals the restriction of f to
Ui ⊂ U . (Of course f will have to be a local diffeomorphism.) The
collection of open subsets of X, together with locally-G maps defines a
pseudogroup upon which can model structures on manifolds as follows.

A (G,X)-atlas on M is a pair (U ,Φ) where

U := {Uα | α ∈ A},

is an open covering of M and

Φ =
{
Uα

φα−−→ X
}
Uα∈U

is a collection of coordinate charts such that for each pair

(Uα, Uβ) ∈ U × U

the restriction of φα ◦ (φβ)−1 to φβ(Uα ∩ Uβ)) is locally-G. An (G,X)-
structure on M is a maximal (G,X)-atlas and an (G,X)-manifold is a
manifold together with an (G,X)-structure on it.

An (G,X)-manifold has an underlying real analytic structure, since
the action of G on X is real analytic.

This notion of a map being locally-G has already been introduced
for locally affine and locally projective maps.

Suppose that M and N are two (G,X)-manifolds and M
f−−→ N is

a map. Then f is an (G,X)-map if for each pair of charts

Uα
φα−−→ X, Vβ

ψβ−−→ X,
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for M and N respectively, the restriction

ψβ ◦ f ◦ φ−1
α

∣∣∣
φα

(
Uα∩f−1(Vβ)

)

is locally-G. In particular we only consider (G,X)-maps which are local
diffeomorphisms. Clearly the set of (G,X)-automorphisms M −→ M
forms a group, which we denote by Aut(G,X)(M) or just Aut(M) when
the context is clear.

Exercise 5.1.1. Let N be an (G,X)-manifold and M
f−→ N a local

diffeomorphism.

• There is a unique (G,X)-structure on M for which f is an
(G,X)-map.
• Every covering space of an (G,X)-manifold has a canonical

(G,X)-structure.
• Conversely suppose M is an (G,X)-manifold upon which a

discrete subgroup Γ ⊂ Aut(G,X)(M) acts properly and freely.
Then M/Γ is an (G,X)-manifold and the quotient mapping

M −→M/Γ

is a (G,X)-covering space.

5.1.1. The pseudogroup of local mappings. The fundamental
example of an (G,X)-manifold is X itself. Evidently any open subset
Ω ⊂ X has an (G,X)-structure (with only one chart—the inclusion
Ω ↪→ X). Locally-G maps satisfy the following Unique Extension Prop-

erty: If U ⊂ X is a connected nonempty open subset, and U
f−−→ X is

locally-G, then there exists a unique element g ∈ G restricting to f .
Here is another perspective on a (G,X)-atlas. First regard M as a

quotient space of the disjoint union

U =
∐

α∈A

Uα

by the equivalence relation ∼ defined by intersection of patches. A
point u ∈ Uα ∩ Uβ determines corresponding elements

uα ∈ Uα ⊂ U

uβ ∈ Uβ ⊂ U

and we define the equivalence relation on U by: uα ∼ uβ.
Now the coordinate change

φβ(Uα ∩ Uβ)
φα◦(φβ)−1

−−−−−−−→ φα(Uα ∩ Uβ)
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is locally-G. By the unique extension property, it agrees with the action
of a unique element of G restricted to each connected component of
φβ(Uα ∩ Uβ). Thus it corresponds to a locally constant map:

(23) Uα ∩ Uβ
gαβ−−−→ G

We can alternatively define the (G,X)-manifold M as the quotient of
the disjoint union

UΦ :=
∐

α∈A

φα(Uα)

by the equivalence relation ∼Φ defined as:

φα(uα) ∼Φ gαβ
(
φβ(uβ)

)

for u ∈ Uα ∩ Uβ notated as above. That ∼Φ is an equivalence relation
follows from the cocycle identities

gαα(uα) = 1(24)

gαβ(uβ)gβα(uα) = 1

gαβ(uβ)gβγ(uγ)gγα(uα) = 1

whenever u ∈ Uα, u ∈ Uα ∩ Uβ, u ∈ Uα ∩ Uβ ∩ Uγ, respectively.
This rigidity property is a distinguishing feature of the kind of

geometric structures considered here. However, many familiar pseu-
dogroup structures lack this kind of rigidity:

Exercise 5.1.2. Show that the following pseudogroups do not sat-
isfy the unique extension property:

• Cr local diffeomorphisms between open subsets of Rn, when
r = 0, 1, . . . ,∞, ω.
• Local biholomorphisms between open subsets of Cn.
• Smooth diffeomorphisms between open subsets of a domain

Ω ⊂ Rn preserving an exterior differential form on Ω.

5.1.2. (G,X)-automorphisms. Now we discuss the automorphisms
of a structure locally modeled on (G,X).

If Ω ⊂ X is a domain, an (G,X)-automorphism Ω
f−−→ Ω is the

restriction of a unique element g ∈ G preserving Ω, that is::

Aut(G,X)(Ω) ∼= StabG(Ω) = {g ∈ G | g(Ω) = Ω}

Now suppose that M
φ−−→ Ω is a local diffeomorphism onto a domain

Ω ⊂ X. There is a homomorphism

Aut(G,X)(M)
φ ∗−−→ Aut(G,X)(Ω)
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whose kernel consists of all maps M
f−−→M making the diagram

M
φ−−−→ Ω

f

y
∥∥∥

M −−−→
φ

Ω

commute.

Exercise 5.1.3. Find examples where:

• φ∗ is surjective but not injective;
• φ∗ is injective but not surjective.

5.2. Development, holonomy

There is a useful globalization of the coordinate charts of a geomet-
ric structure in terms of the universal covering space and the funda-
mental group. The coordinate atlas {Uα}α∈A is replaced by a universal

covering space M̃ −→ M with its group of deck transformations π.
In the first approach, M is the quotient space of the disjoint union∐

α∈A Uα, and in the second it is the quotient space of M̃ by the group

action π. The coodinate charts Uα
ψα−−→ X are replaced by a globally

defined map M̃
dev−−−→ X.

This process of development originated with Élie Cartan and gen-
eralizes the notion of a developable surface in E3. If S ↪→ E3 is an
embedded surface of zero Gaussian curvature, then for each p ∈ S, the
exponential map at p defines an isometry of a neighborhood of 0 in
the tangent plane TpS, and corresponds to rolling the tangent plane
Ap(S) on S without slipping. In particular every curve in S starting at
p lifts to a curve in TpS starting at 0 ∈ TpS. For a Euclidean manifold,

this globalizes to a local isometry of the universal covering S̃ −→ E2,
called by Élie Cartan the development of the surface (along the curve).
The metric structure is actually subordinate to the affine connection,
as this notion of development really only involves the construction of
parallel transport.

Later this was incorporated into the notion of a fiber space, as
discussed in the 1950 conference [263]. The collection of coordinate
changes of a (G,X)-manifold M defines a fiber bundle EM −→M with
fiber X and structure group G. The fiber over p ∈M of the associated
principal bundle

PM

ΠP−−−→M
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consists of all possible germs of (G,X)-coordinate charts at p. The fiber
over p ∈ M of EM consists of all possible values of (G,X)-coordinate

charts at p. Assigning to the germ at p of a coordinate chart U
ψ−−→ X

its value

x = ψ(p) ∈ X
defines a mapping

(PM)p −→ (EM)p.

Working in a local chart, the fiber over a point in (EM)p corresponding
to x ∈ X consists of all the different germs of coordinate charts ψ taking
p ∈ M to x ∈ X. This mapping identifies with the quotient mapping
of the natural action of the stabilizer Stab(G, x) ⊂ G of x ∈ X on the
set of germs.

For Euclidean manifolds, (PM)p consists of all affine orthonormal
frames, that is, pairs (x, F ) where x ∈ En is a point and F is an
orthonormal basis of the tangent space TxEn ∼= Rn. For an affine
manifold, (PM)p consists of all affine frames: pairs (x, F ) where now
F is any basis of Rn.

5.2.1. Construction of the developing map. Let M be an
(G,X)-manifold. Choose a universal covering space

M̃
Π−−→M

and let π = π1(M) be the corresponding fundamental group. The
covering projection Π induces an (G,X)-structure on M̃ upon which
π acts by (G,X)-automorphisms. The Unique Extension Property has
the following important consequence.

Proposition 5.2.1. Let M be a simply connected (G,X)-manifold.

Then there exists a (G,X)-map M
f−−→ X.

It follows that the (G,X)-map f completely determines the (G,X)-
structure on M , that is, the geometric structure on a simply-connected
manifold is “pulled back” from the model space X. The (G,X)-map f
is called a developing map for M and enjoys the following uniqueness

property. If M
f ′−−→ X is another (G,X)-map, then there exists an

(G,X)-automorphism φ of M and an element g ∈ G such that

M
f ′−−−→ X

φ

y
yg

M −−−→
f

X
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Figure 5.1. Extending a coordinate chart to a devel-
oping map

Proof of Proposition 5.2.1. Choose a basepoint x0 ∈ M and
a coordinate patch U0 containing x0. For x ∈ M , we define f(x) as
follows. Choose a path {xt}0≤t≤1 in M from x0 to x = x1. Cover the
path by coordinate patches Ui (where i = 0, . . . , n) such that xt ∈ Ui
for t ∈ (ai, bi) where

a0 < 0 <a1 < b0 < a2 < b1 < a3 < b2 <

· · · <an−1 < bn−2 < an < bn−1 < 1 < bn

Let Ui
ψi−−→ X be an (G,X)-chart and let gi ∈ G be the unique trans-

formation such that gi◦ψi and ψi−1 agree on the component of Ui∩Ui−1

containing the curve {xt}ai<t<bi−1
. Let

f(x) = g1g2 . . . gn−1gnψn(x);

we show that f is indeed well-defined. The map f does not change if the
cover is refined. Suppose that a new coordinate patch U ′ is “inserted
between” Ui−1 and Ui. Let {xt}a′<t<b′ be the portion of the curve lying
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inside U ′ so

ai−1 < a′ < ai < bi−1 < b′ < bi.

Let U ′
ψ′−−→ X be the corresponding coordinate chart and let hi−1, hi ∈

G be the unique transformations such that ψi−1 agrees with hi−1◦ψ′ on
the component of U ′ ∩Ui−1 containing {xt}a′<t<bi−1

and ψ′ agrees with
hi◦ψi on the component of U ′∩Ui containing {xt}ai<t<b′ . By the unique
extension property hi−1hi = gi and it follows that the corresponding
developing map

f(x) = g1g2 . . . gi−1hi−1higi+1 . . . gn−1gnψn(x)

= g1g2 . . . gi−1gigi+1 . . . gn−1gnψn(x)

is unchanged. Thus the developing map as so defined is independent
of the coordinate covering, since any two coordinate coverings have a
common refinement.

Next we claim the developing map is independent of the choice
of path. Since M is simply connected, any two paths from x0 to x
are homotopic. Every homotopy can be broken up into a succession
of “small” homotopies, that is, homotopies such that there exists a
partition

0 = c0 < c1 < · · · < cm−1 < cm = 1

such that during the course of the homotopy the segment {xt}ci<t<ci+1

lies in a coordinate patch. It follows that the expression defining f(x)
is unchanged during each of the small homotopies, and hence during
the entire homotopy. Thus f is independent of the choice of path.

Since f is a composition of a coordinate chart with a transformation
X −→ X coming from G, it follows that f is an (G,X)-map. The proof
of Proposition 5.2.1 is complete. �

If M is an arbitrary (G,X)-manifold, then we may apply Propo-
sition 5.2.1 to a universal covering space M̃ . We obtain the following
basic result:

Theorem 5.2.2 (Development Theorem). Let M be an (G,X)-

manifold with universal covering space M̃
Π−−→ M and group of deck

transformations

π = π1(M) ⊂ Aut
(
M̃

Π−−→M
)
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Then ∃ a pair (dev, h) consisting of an (G,X)-map M̃
dev−−−→ X and a

homomorphism π
h−−→ G such that for each γ ∈ π,

M̃
dev−−−→ X

γ

y
yh(γ)

M̃ −−−→
dev

X

commutes. Furthermore if (dev′, h′) is another such pair, then ∃g ∈ G
such that dev′ = g ◦ dev and h′(γ) = Inn(g) ◦ h(γ) for all γ ∈ π.
That is, the diagram

M̃
dev−−−→ X

g−−−→ X

γ

y
yhol(γ)

yhol′(γ)

M̃ −−−→
dev

X −−−→
g

X

commutes.

We call such a pair (dev, h) a development pair, and the homomorphism
h the holonomy representation. (It is the holonomy of a flat connection
on a principal G-bundle over M associated to the (G,X)-structure.)
The developing map globalizes the coordinate charts of the manifold
and the holonomy representation globalizes the coordinate changes. In
this generality the Development Theorem is due to C. Ehresmann [96]
in 1936.

5.2.2. Role of the holonomy group. The image of the holo-
nomy representation is the “smallest” subgroup Γ ⊂ G such that M
admits a (Γ, X)-structure:

Exercise 5.2.3. Let M be an (G,X)-manifold with development
pair (dev, h).

• Find a (G,X)-atlas for M such that the coordinate changes
gαβ lie in Γ.
• Suppose that N −→ M is a covering space. Show that there

exists a (G,X)-map N −→ X if and only if the holonomy
representation restricted to π1(N) ↪→ π1(M) is trivial.

Thus the holonomy covering space M̂ −→M — the covering space of
M corresponding to the kernel of h — is the “smallest” covering space
of M for which a developing map is “defined.”

The holonomy group

hol(π) = Γ ⊂ G
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is the “smallest” subgroup of G for which there is a compatible (G,X)-
atlas, where the coordinate changes lie in Γ.

Exercise 5.2.4. Let M be an (G,X)-manifold. Find a (G,X)-atlas
such that all the coordinate changes are restrictions of transformations
in Γ.

Exercise 5.2.5. Suppose that (G,X) and (G′, X ′) represent a pair
of geometries for which there exists a pair (Φ, φ) as in §5.2.3. Show
that if M is a (G,X)-manifold with development pair (dev, h), then

(Φ ◦ dev, φ ◦ h)

is a development pair for the induced (X ′, G′)-structure on M .

5.2.3. Extending geometries. A geometry may contain or re-
fine another geometry. In this way one can pass from structures mod-
eled on one geometry to structures modeled on a geometry containing

it. Let (X,G) and (X ′, G′) be homogeneous spaces and let X
Φ−−→ X ′

be a local diffeomorphism which is equivariant with respect to a ho-
momorphism φ : G → G′ in the following sense: for each g ∈ G the
diagram

X
Φ−−−→ X ′

g

y
yφ(g)

X −−−→
Φ

X ′

commutes. Hence locally-G maps determine locally-(X ′, G′)-maps and
an (G,X)-structure on M induces an (X ′, G′)-structure on M in the

following way. Let Uα
ψα−−→ X be an (G,X)-chart; the composition

Uα
Φ ◦ ψα−−−−−→ X ′

defines an (X ′, G′)-chart.

Exercise 5.2.6. Explain the extension of geometries in terms of
the development pair.

5.2.4. Simple applications of the developing map.

Exercise 5.2.7. Suppose that M is a closed manifold with finite
fundamental group.

• If X is noncompact then M admits no (G,X)-structure.
• If X is compact and simply-connected show that every (G,X)-

manifold is (G,X)-isomorphic to a quotient of X by a finite
subgroup of G.
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(Hint: if M and N are manifolds of the same dimension, M
f−−→ N is

a local diffeomorphism and M is closed, show that f must be a covering
space.)

As a consequence a closed affine manifold must have infinite funda-
mental group and every RPn-manifold with finite fundamental group is
a quotient of Sn by a finite group (and hence a spherical space form).

Exercise 5.2.8. Suppose Ω ⊂ X is a Γ-invariant open subset.

• dev−1(Ω) is a a π-invariant open subset of M̃ ;
• Its image

MΩ := Π
(
dev−1(Ω)

)

is an open subset of M ;

• Each connected component of Π−1(MΩ) ⊂ M̃ is a connected
component of dev−1(Ω).
• MΩ ⊂ M depends only on the pair (Γ,Ω) and is independent

of the choice of universal covering space M̃ −→M and devel-

oping map M̃
dev−−−→ X.

This will be used later in §14.2.

5.3. The graph of a geometric structure

This can be put in an even “more global” context using the fiber
bundle associated to a (G,X)-structure. This is a fiber bundle EM −→
M with fiber X, structure group G in the sense of Steenrod[259]. It
plays a role analogous to the tangent bundle of a smooth manifold. It
admits a flat structure, that is a foliation F transverse to the fibration,
and a section DM which is transverse to F as well as the fibration. The
section DM plays the role of the zero-section of the tangent bundle.
Indeed, its normal bundle inside EM is isomorphic to the tangent bundle
TM of M . It is obtained as the graph of the collection Φ of coordinate
charts. The flat bundle EM is the natural “home” in which DM lives.

5.3.1. The tangent (G,X)-bundle. The total space EM of this
bundle is obtained from the disjoint union

UX :=
∐

α∈A

Uα ×X

of trivial X-bundles.
Now suppose Uα, Uβ ∈ U are coordinate patches. Introduce an

equivalence relation ∼X on UX by:

(uα, x) ∼X
(
uβ, gαβ(uβ)x

)
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where gαβ is the cocycle introduced in (23). The cocycle identities (24)
imply that ∼X is an equivalence relation. The projections

Uα ×X −→ Uα

are trivial X-bundles and define a trivial X-bundle

UX −→ U

compatible with the equivalence relations ∼X ,∼. The corresponding
mapping of quotient spaces

EM UX/ ∼XyΠ

M U/ ∼
is a locally trivial X-bundle with structure group G.

Furthermore the structure group is really G with the discrete topol-
ogy, since the transition functions

Uα ∩ Uβ
gαβ−−−→ G

are locally constant. This implies that the foliation of the total space
EM with local leaves (sometimes called plaques) Uα×{x} piece together
to define the leaves of a foliation F of EM . (Compare Steenrod [259,
§13.].)

Exercise 5.3.1.

• Show that for every leaf L ⊂ EM of F, the restriction Π|L is a
covering space L −→M .
• If M is simply connected, then (EM ,F) is trivial, that is, iso-

morphic to M × X with the trivial foliation, namely the one
with leaves M × {x}, where x ∈ X.

It follows that the flat (G,X)-bundle (EM ,F) arises from a representa-

tion π1(M)
h−−→ G as follows. The group π1(M) admits a (left-)action

on the trivial bundle M̃ ×X by:

(p̃, x)
γ7−−→
(
p̃γ−1, h(γ)x

)

where

M̃ × π1(M) −→ M̃

(p̃, γ) 7−→ p̃γ

denotes the (right-) action of π1(M) by deck transformations. Then EM
identifies as the quotient (M̃ ×X)/π1(M), that is as the fiber product
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p

π−1(p)

dev

F

N

Figure 5.2. The graph of a developing map is an F-
transverse section

M̃ ×h X. Furthermore h is unique up to the action of Inn(G) by left-
composition. We call h ∈ Hom

(
π1(M), G

)
the holonomy representation

of the flat (G,X)-bundle (EM ,F).

5.3.2. Developing sections. Just as (EM ,F) globalizes the co-
ordinate changes, its transverse section DM globalizes the coordinate
atlas Φ.

When M is a single coordinate patch, then EM is just the product
M ×X and EM −→M is just the Cartesian projection M ×X −→M .

A section of EM −→M is just the graph of a map M
f−−→ X:

M
graph(f)−−−−−−→M ×X ∼= EM

p 7−→
(
p, f(p)

)

5.3.3. The associated principal bundle. The fiber over p ∈M
of the associated principal bundle

PM

ΠP−−−→M

consists of all possible germs of (G,X)-coordinate charts at p. The fiber
over p ∈ M of EM consists of all possible values of (G,X)-coordinate
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N1

N2

F

Figure 5.3. The isotopy between nearby F-transverse
sections

charts at p. Assigning to the germ at p of a coordinate chart U
ψ−−→ X

its value
x = ψ(p) ∈ X

defines a mapping
(PM)p −→ (EM)p.

Working in a local chart, the fiber over a point in (EM)p corresponding
to x ∈ X consists of all the different germs of coordinate charts ψ taking
p ∈ M to x ∈ X. This mapping identifies with the quotient mapping
of the natural action of the stabilizer Stab(G, x) ⊂ G of x ∈ X on the
set of germs.

For Euclidean manifolds, (PM)p consists of all affine orthonormal
frames, that is, pairs (x, F ) where x ∈ En is a point and F is an
orthonormal basis of the tangent space TxEn ∼= Rn. For an affine
manifold, (PM)p consists of all affine frames: pairs (x, F ) where now
F is any basis of Rn.

The coordinate atlas/developing map defines a section of EM →M
which is transverse to the two complementary foliations of EM :
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• As a section, it is necessarily transverse to the foliation of EM
by fibers;
• The nonsingularity of the coordinate charts/developing map

implies this section is transverse to the horizontal foliation
FM of EM defining the flat structure.

This picture of an Ehresmann structure will be used in defining the
deformation space Def(G,X)(Σ) in Chapter 7, §7.2.

Figure 5.4, Figure 5.5, and Figure 5.6 depict developing sectons for
various RP1-manifolds. M and X are both homeomorphic to S1, and
we representM as a horizontal closed interval with endpoints identified.
Similarly X is represented as a vertical closed interval with endpoints
identified. Thus the total space EM is represented by a square, where
the left and right edges are identified by parallel (horizontal) transla-
tion. The projection Π is just horizontal projection, with fibers are
vertical line segments. The leaves of FM of EM are drawn so that they
are identified by the parallel translation.

Figure 5.4 and Figure 5.5) depict structures with trivial holonomy.
The leaves, represented by horizontal lines (lines of slope 0), are all
closed sections, corresponding to the singular structure with “constant
developing map”. Figure 5.4 depicts the canonical structure RP1; the
developing section is the line of slope 1, the graph of the identity map
RP1 → RP1.

For any m ∈ Z a line segment of slope m (and some of its horizontal
translates) describes a section s. We have already discussed the cases
m = 0, 1. If m 6= 0, the section is transvere to F. Replacing m by
−m gives a section inducing the opposite orientation, so that the line
of slope −1 (the other diagonal of the square) depicts the developing
section for an oppositely oriented manifold; explicitly, the developing
section is the graph of a reflection of RP1 (an involution which reverses
orientation).

Figure 5.5) depicts the developng section for the double covering of
RP1.

Figure 5.6 depicts a structure with elliptic holonomy. In this case
the foliation is a linear foliation of the torus. In this case the leaves
are drawn as lines of positive slope (explicitly m = 1/3 and each
leaf projects to M by a triple covering. The ”diagonal” section s1

and the “horizontal” section s2 are both F-transverse and define RP1-
structures.

Figure 5.7 depicts structures with hyperbolic holonomy η. The two
fixed points of η on RP1 determine two “horizontal” sections (“constant
developing maps” of singular structures). In the picture, these are
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represented by the top/bottom edges of the square and the diameter
halfway up. The depicted section s1 is horizontal and misses these two
horizontal sections; the corresponding developing map misses Fix(η)
and corresponds to the (Hopf) affine structure. The depicted section
s2 crosses both constant horizontal sections, and the corresponding
developing map is onto.

Figure 5.8 is similar, except now the holonomy η is parabolic. Cor-
responding to the single fixed point of η is a horizontal closed leaf,
represented in this picture as the top/bottom sides of the square. The
complete Euclidean structure is represented by the F-transverse hori-
zontal section s1 and misses this ’“constant” section. The section s2 is
F-transverse and corresponds to a structure with surjective developing
map.
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Figure 5.4. Developing section for the canonical pro-
jective closed 1-manifold RP1

Figure 5.5. Developing section for other projective
closed 1-manifolds with trivial holonomy
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Figure 5.6. Developing sections for projective closed
1-manifolds with elliptic holonomy

Figure 5.7. Developing sections for projective closed
1-manifolds with hyperbolic holonomy
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Figure 5.8. Developing sections for projective closed
1-manifolds with parabolic holonomy

5.4. The classification of geometric 1-manifolds

The basic general question concerning geometric structures on man-
ifolds is, given a topological manifold M and a geometry (G,X) ,
whether an (G,X)-structure on M exists, and if so, to classify all
(G,X)-structures on M . Ideally, one would like a deformation space,
a topological space whose points correspond to isomorphism classes of
(G,X)-manifolds.

As an exercise to illustrate these general ideas, we classify geometric
manifolds in dimension one. We consider the three geometries

E1 ∼=−−→ A1 ↪→ P1

in increasing order. Euclidean manifolds are affine manifolds, which in
turn are projective manifolds. Thus we classify RP1-manifolds. (Com-
pare Kuiper [190], Goldman [115], Baues [23].)

Let M be a connected 1-manifold. There are two cases:

• M is noncompact, in which case M is homeomorphic (diffeo-
morphic) to a line (M ≈ R);
• M is compact, in which case M homeomorphic (diffeomorphic)

to a circle (M ≈ S1).

In particular M is simply connected ⇐⇒ M is noncompact and other-
wise π1(M) ∼= Z.
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5.4.1. Compact Euclidean 1-manifolds and flat tori. The
cyclic group Z acts by translations on E1 ∼= R. The quotient

E1 := E1/Z ∼= R/Z

is a compact Euclidean 1-manifold. The Euclidean metric on R induces
a flat Riemannian structure on the quotient R/Z which has length 1.

More generally, choose ` > 0. Then the quotient

E` := E1/`Z ∼= R/`Z

is a compact Euclidean 1-manifold which has length `. Different choices
of ` determine different isometry classes of Euclidean 1-manifolds but
E1 is affinely isomorphic to E` by the affine map x 7−→ `x. In other
words, if ` 6= 1, then E1 and E` are inequivalent Euclidean manifolds
but equivalent affine manifolds.

Exercise 5.4.1. Let M = E`. Show that the total space of EM
identifies with the quotient of R2 by the diagonally embedded Z acting
by translations:

(x, y) 7−→ (x+ n, y + n`)

for n ∈ Z, the fibration is induced by the projection

(x, y) 7−→ x,

the foliation induced by horizontal lines R × {y}, and the developing
section by the diagonal

∆(x) := (x, x).

When these structures are regarded as RP1-manifolds, EM acquires an
extra (horizontal) closed leaf. This section (corresponding to the ideal
point of RP1) is disjoint from the developing section ∆.

These manifolds generalize to one of the most basic classes of closed
geometric manifolds, namely the flat tori. Let Λ ⊂ Rn be a lattice, that
is the additive subgroup of Rn generated by a basis. Then Λ acts by
translations, so the quotient Rn/Λ is a compact Euclidean manifold.
Bieberbach proved that every compact Euclidean manifold is finitely
covered by a flat torus.

Exercise 5.4.2. Since Λ is a normal subgroup of Rn, a flat torus
is also an abelian Lie group. Show that this algebraic structure is
compatible with the geometric structure: the Euclidean structure on
Rn/Λ is invariant under multiplications. (Since Rn is commutative,
left-multiplications and right-multiples coincide.)
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5.4.2. Compact affine 1-manifolds and Hopf circles. A com-
pact affine manifold is either a Euclidean manifold as above, or given
by the following construction. Let λ > 1 and consider the cyclic group
〈λ〉 ∼= Z acting by homotheties on A1:

x 7−→ λnx

Then
Aλ := R+/〈λ〉

is a compact affine 1-manifold.

Exercise 5.4.3. Show that different values of λ yield inequivalent
affine structures, and no Aλ is affinely equivalent to E`. However show
that, for λ, λ′ the developing maps for Aλ and A′λ are topologically
conjugate by a homeomorphism A1 −→ A1 and the developing maps
for Aλ and E` are topologically semi-conjugate by a homeomorphism
R+ −→ R ∼= E1.

We call these latter affine 1-manifolds Hopf circles, since these are
the 1-dimensional cases of Hopf manifolds discussed in §6.4.

5.4.2.1. Geodesics. Hopf circles model incomplete closed geodesics
on affine manifolds. The affine parameter on a Hopf circle is paradoxi-
cal. A particle moving with zero acceleration seems to be accelerating
so rapidly that in finite time it “runs off the edge of the manifold.”
Here is an explicit calculation:

The geodesic on A1 defined by

t 7−→ 1 + t(λ−1 − 1)

begins at 1 and in time

t∞ := 1 + λ−1 + λ−2 + · · · = (1− λ−1)−1 > 0

reaches 0. It defines a closed incomplete closed geodesic p(t) on M
starting at p(0) = p0. The lift

(−∞, t∞)
p̃−−→ M̃

satisfies
dev
(
p̃(t)

)
= 1 + t(λ−1 − 1),

which uniquely specifies the geodesic p(t) on M . It is a geodesic since
its velocity

p′(t) = (λ−1 − 1)∂x

is constant (parallel). However p(tn) = p0 for

tn :=
1− λ−n
1− λ−1

= 1 + λ−1 + · · ·+ λ1−n
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and as viewed in M , seems to go “faster and faster” through each
cycle. By time t∞ = limn→∞ tn, it seems to “run off the manifold:” the
geodesic is only defined for t < t∞. The apparent paradox is that p(t)
has zero acceleration: it would have “constant speed” if “speed” were
only defined.

Exercise 5.4.4. Show that these affine structures are invariant
affine structures on the Lie group S1, namely, that the translation
on the group S1 is affine. (Since S1 is abelian, both left- and right-
translation agree.)

These are the only examples of compact affine 1-manifolds, although
there are projective manifolds which have the “same” holonomy homo-
morphisms, defined by grafting ; see §5.4.5.

5.4.3. Classification of projective 1-manifolds. To simplify

matters, we pass to the universal covering X = R̃P1, which is home-

omorphic to R and the corresponding covering group G = ˜PGL(2,R)
which acts on X. Suppose that M is a connected noncompact RP1-
manifold (and thus diffeomorphic to an open interval). Then a devel-
oping map

M ≈ R dev−−−→ R ≈ X

is necessarily an embedding of M onto an open interval in X. Given
two such embeddings

M
f−−→ X, M

f ′−−→ X

whose images are equal, then f ′ = j◦f for a diffeomorphism M
f−−→M .

Thus two RP1-structures on M which have equal developing images are
isomorphic. Thus the classification of RP1-structures on M is reduced
to the classification of G-equivalence classes of intervals J ⊂ X. Choose
a diffeomorphism

X ≈ R ≈ (−∞,∞);

an interval in X is determined by its pair of endpoints in [−∞,∞].
Since G acts transitively on X, an interval J is either bounded in X or
projectively equivalent to X itself or one component of the complement
of a point in X. Suppose that J is bounded. Then either the endpoints
of J project to the same point in RP1 or to different points. In the first
case, let N > 0 denote the degree of the map

J/∂J −→ RP1

induced by dev; in the latter case choose an interval J+ such that the
the restriction of the covering projection X −→ RP1 to J+ is injective
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and the union J ∪ J+ is an interval in X whose endpoints project to
the same point in RP1. Let N > 0 denote the degree of the restriction
of the covering projection to J ∪ J+. Since G acts transitively on pairs
of distinct points in RP1, it follows easily that bounded intervals in X
are determined up to equivalence by G by the two discrete invariants:
whether the endpoints project to the same point in RP1 and the positive
integer N . It follows that every (G,X)-structure on M is (G,X)-
equivalent to one of the following types. We shall identify X with the
real line and group of deck transformations of X −→ RP1 with the
group of integer translations.

• A complete (G,X)-manifold (that is, M
dev−−−→ X is a diffeo-

morphism);

• M dev−−−→ X is a diffeomorphism onto one of two components
of the complement of a point in X, for example, R+ = (0,∞).
• dev is a diffeomorphism onto an interval (0, N) where N > 0

is a positive integer;
• dev is a diffeomorphism onto an interval (0, N + 1

2
).

Next consider the case that M is a compact 1-manifold; choose a
basepoint x0 ∈M . Let

π = π1(M,x0) ∼= Z

be the corresponding fundamental group of M and let γ ∈ π be a
generator. We claim that the conjugacy class of h(γ) ∈ G completely

determines the structure. Choose a lift J of M \ {x0} to M̃ to serve

as a fundamental domain for π. Then J is an open interval in M̃ with

endpoints y0 and y1. After choosing a developing map M̃
dev−−−→ X, a

holonomy representation π
h−−→ G,

dev(y1) = h(γ)dev(y0).

Now suppose that dev′ is a developing map for another structure
with the same holonomy. By applying an element of G we may assume
that dev(y0) = dev′(y0) and that dev(y1) = dev′(y1). Furthermore a

diffeomorphism J
φ−−→ J exists such that

dev′ = φ ◦ dev.

This diffeomorphism lifts to a diffeomorphism M̃
φ̃−−→ M̃ taking dev

to dev′. Conversely suppose that η ∈ G is orientation-preserving (this
means simply that η lies in the identity component of G) and is not
the identity. Then ∃x0 ∈ X which is not fixed by η; let x1 = ηx0.
There exists a diffeomorphism J −→ X taking the endpoints yi of J
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to xi for i = 0, 1. This diffeomorphism extends to a developing map

M̃
dev−−−→ X. In summary:

Theorem 5.4.5. A compact RP1-manifold is either projectively equiv-
alent to:

• A Hopf circle R+/〈λ〉;
• A Euclidean 1-manifold R/Z;
• A quotient of the universal covering of RP1 by a cyclic group.

The first two cases are the affine 1-manifolds, and are homogeneous.
The last case contains homogeneous structures if the holonomy is ellip-
tic.

Exercise 5.4.6. Determine all automorphisms of each of the above
list of RP1-manifolds.

Corollary 5.4.7. Let G0 denote the identity component of the uni-
versal covering group G of PGL(2,R). Let M be a closed 1-manifold.
Then the set of isomorphism classes of RP1-structures on M is in bi-
jective correspondence with the set(

G0 \ {1}
)
/Inn(G)

of G-conjugacy classes in the set G0 \ {1} of elements of G0 not equal
to the identity.

Exercise 5.4.8. Show that the quotient topology on
(
G0\{1}

)
/Inn(G)

is not Hausdorff.

5.4.4. Homogeneous affine structures. As observed in Exer-
cise 5.4.4, a closed one-dimensional affine manifold M has the extra
structure as an affine Lie group: M is a Lie group isomorphic to the
circle R/Z and the operations of left-translation and right-translation
are affine. (Since M is abelian, these two operations are identical.) In

particular the universal covering M̃ inherits an affine Lie group struc-
ture (isomorphic to R). By forming products one obtains affine Lie
group structures on the two-dimensional abelian Lie group R2.

Exercise 5.4.9. Affine Lie group structures on R2.

• Show that the products of affine Lie group structures on R give
three nonequivalent affine Lie group structures on G = R2. If
Λ < G is a lattice, then G/Λ is an affine Lie group isomor-
phic to the 2-torus R2/Z2. Find such a structure which is not
affinely equivalent to a product of closed affine 1-manifolds.
• Find two other affine Lie group structures on G.
• Prove that these five structures are the only affine Lie group

structures on G.
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In § 10.2, these structures will be identified with 2-dimensional com-
mutative associative algebras over R and will be generalized to left-
invariant affine structures on (possibly noncommutative) Lie groups.

Every homogeneous affine structure on T 2 is obtained by this con-
struction. The other affine structures are obtained by the radiant sus-
pension construction of Exercise 6.5.10; compare Baues [23] for more
information on the affine structures on T 2.
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Figure 5.9. Some incomplete complex-affine structures
on T 2
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Figure 5.10. Some hyperbolic affine structures on T 2
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Figure 5.11. Radiant affine structures on T 2 develop-
ing to a halfplane
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Figure 5.12. Nonradiant affine structures on T 2 devel-
oping to a halfplane
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5.4.5. Grafting. Another approach to the classification is through
the operation of grafting, developed in Goldman [120] in this general-
ity. Let M1,M2 be two (G,X)-manifolds with two-sided hypersurfaces
Vi ⊂Mi respectively. Suppose that each Vi has a tubular neighborhood

Ui and with an (G,X)-isomorphism U1
f−−→ U2. Then the complement

Mi \ Vi is the interior of a manifold-with-boundary Mi|Vi with two
boundary components V ′i , V

′′
i and an indentification map Mi|Vi � Mi

which identify V ′i ←→ V ′′i to Vi

Exercise 5.4.10. The restriction of the isomorphism f to Vi ⊂Mi

induces indentifications V ′1 ←→ V ′′2 and V ′2 ←→ V ′′1 which defines an
equivalence relation ∼ on the disjoint union M1|V1 tM2|V2. Then the
quotient space

M :=
(
M1|V1 tM2|V2

)/
∼

inherits a unique (G,X)-structure such that the natural inclusions Mi\
Vi ↪→M are (G,X)-maps.

This construction applies in dimension one, to give all compadt
RP1-manifolds.

Exercise 5.4.11. If M is a closed RP1-manifold with hyperbolic or
parabolic holonomy, the following conditions are equivalent:

• dev is surjective;
• M is not homogeneous;

• The developing image dev(M̃) contains at least one fixed point
of the holonomy;
• M is obtained by grafting a homogeneous (affine) 1-manifold

with the model RP1-manifold M0 (given by an isomorphism
M0
∼= RP1).



CHAPTER 6

Examples of Geometric Structures

This section introduces examples of geometric manifolds in dimen-
sions greater than one. The theory of Lie groups and their homoge-
neous spaces organized the abundance of classical geometries, and this
algebraicization of geometry clarifies the relationship between various
geometric structures. We give several general constructions to pass
from one geometric structure to another. This provides a rich class of
geometric structures on manifolds.

We begin with general remarks on these constructions, which in-
clude the inclusion of homogeneous subdomains, Cartesian products,
mapping tori and homogeneous fibrations. Then we study parallel
structures in affine geometry, generalizing the construction of Euclidean
geometry as (flat) Riemannian geometry. From our viewpoint, a Eu-
clidean structure is just a parallel Riemannian structure on an affine
manifold. This is the first example of extending a geometry, where the
model space X is fixed (in this case an affine space) but the automor-
phism group G is reduced or enlarged. We digress to discuss Bieber-
bach’s theorem structure of Euclidean manifolds, (see Charlap [63] or
Wolf [286]), and give some examples of closed Euclidean manifolds,
some of which are mapping tori constructed as parallel suspensions.

We then discuss other important cases, arising when one model
space X ′ embeds in the other model space as a subdomain:

• The inclusion of affine space in projective space; in this way
every affine structure inherits a projective structure.
• The (real-) projective models of hyperbolic geometry and el-

liptic geometry, whereby every elliptic or hyperbolic manifold
has an RPn-structure.
• The (complex-) projective models of hyperbolic geometry and

elliptic geometry; in real dimnsion 2, every elliptic or hyper-
bolic surface has a natural CP1-structure.
• The complement An\{p} of a point p in affine n-space naturally

identifies with the complement Rn \ {0} which has automor-
phism group GL(n+ 1,R) and every

(
GL(n+ 1,R),Rn \ {0}

)
-

manifold has a special type of affine structure (called radiant .

143
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Hopf manifolds — quotients of An \ {p}
)

by cyclic groups are
basic examples of radiant affine manifolds, closely related to
RPn−1-manifolds.

Properties of radiant affine manifolds are discussed, and we use the
radiant supension construction to produce affine structures on products
Σ× S1, for any surface Σ.

6.1. The hierarchy of geometries

We begin by stating the general construction for enlarging one ge-
ometry to another. Cartesian products are closely related and we de-
scribe taking products of affine and projective structures. These are
special cases of homogeneous fibrations. The general discussion ends
with a brief review of the mapping torus construction, and how suspen-
sions of affine and projective automorphisms lead to new structures.

6.1.1. Enlarging and refining. Here is the general construction.

Suppose that X
Φ−−→ X ′ is a universal covering space and G is the group

of lifts of transformations X ′
g′−−→ X ′ in G′ to X. Let G

φ−−→ G′ be the
corresponding homomorphism.

Exercise 6.1.1. Show that (Φ, φ) induces an isomorphism between
the categories of (G,X)-manifolds/maps and (X ′, G′)-manifolds/maps.

For this reason we may always assume (when convenient) that our
model space X is simply-connected.

In many cases, we wish to consider maps between different man-
ifolds with geometric structures modeled on different geometries. To
this end we consider the following general situation. Let (G,X) and
(X ′, G′) be two homogeneous spaces representing different geometries
and consider a family M of maps X −→ X ′ such that if f ∈ M, g ∈
G, g′ ∈ G′, then the composition

g′ ◦ f ◦ g ∈M.

If U ⊂ X is a domain, a map U
f−−→ X ′ is locally-M if for each

component Ui ⊂ U there exists fi ∈ M such that the restriction of f
to Ui ⊂ U equals the restriction of fi to Ui ⊂ X. Let M be an (G,X)-
manifold and N an (X ′, G′)-manifold. Suppose that f : M −→ N is a
smooth map. We say that f is an M-map if for each pair of charts

Uα
φα−−→ X( for M)

Vβ
ψβ−−→ X( for N)
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the restriction of the composition ψβ ◦ f ◦ φ−1
α to φα(Uα ∩ f−1(Vβ)) is

locally-M.
The basic examples are affine and projective maps between affine

and projective manifolds: For affine maps we take

(X,G) = (Rm,Aff(Rm)), (X ′, G′) = (Rn,Aff(Rn)),

M = aff(Rm,Rn).

For example if M,N are affine manifolds, and M × N is the product
affine manifold (see §4.17), then the projections M × N −→ M and
M ×N −→ N are affine. Similarly if x ∈M and y ∈ N , the inclusions

{x} ×N ↪→M ×N,
M × {y} ↪→M ×N

are each affine.
For projective maps we take

(X,G) = (Pm,Proj(Pm)),

(X ′, G′) = (Pn,Proj(Pn)),

and M = Proj(Pm,Pn), the set of projective maps Pm −→ Pn (or
more generally the collection of locally projective maps defined on open
subsets of Pm). Important examples of this correspondence abound,
many of which occur when Φ is an embedding. For example when Φ is
the identity map andG ⊂ G′ is a subgroup, then every (G,X)-structure
is a fortiori an (X ′, G′)-structure. Thus every Euclidean structure is a
similarity structure which in turn is an affine structure. Similarly every
affine structure determines a projective structure, using the embedding

(
Rn,Aff(Rn)

)
↪→
(
Pn,Proj(Pn)

)

of affine geometry in projective geometry.
The polarities discussed in § 3.2.3 provide further examples. For ex-

ample, elliptic-geometry structures arise as projective structures whose
holonomy preserve an elliptic polarity — these identify with Riemann-
ian structures of constant positive curvature. Hyperbolic structures
arise from projective structures whose holonomy preserves a hyperbolic
polarity of index 1. In each case these correspond to the respective sub-
groups PO(n + 1) and PO(n, 1) of PGL(n + 1,R). Contact projective
structures arise on manifolds M2m+1 when the holonomy preserves a
null polarity, as in Exercise 3.2.8; these structure correspond to the
subgroup PSp(2d,R) < PGL(2d+ 1).

Exercise 6.1.2. A null polarity θ on P defines a contact structure
ξ on P, namely the contact hyperplane ξp ⊂ TpP at p ∈ P is just
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the tangent plane Tpθ(p). Conversely, the polar hyperplane θ(p) is the
unique projective hyperplane in P whose tangent space at p equals ξp.

A manifold modeled on the projective space with a contact structure
arising from a null polarity may be called a contact projective manifold.
Gray’s stability theorem (see for example Eliashberg-Mishachev [98],
§9.5.2, .95) asserts that contact structures fall into a discrete set of
isotopy classes. Perhaps a more appropriate classification problem in-
volves fixing a closed contact manifold (N2d+1, ξ) and classifying the
marked contact RP2d+1-structures compatible with ξ.

6.1.2. Cartesian products. The following is due to Benzécri [35].

Exercise 6.1.3 (Products of affine manifolds). Let Mm, Nn be
affine manifolds.

(1) Show that the Cartesian product Mm×Nn has a natural affine
structure.

(2) Show that M ×N is complete if and only if both M and N are
complete.

(3) Show that M ×N is radiant if and only if both M and N are
radiant.

For projective structures, the situation is somewhat different:

Exercise 6.1.4. On the other hand, find compact manifolds M,N
each of which has a projective structure but M × N does not admit a
projective structure.

(1) If M1, . . . ,Mr are manifolds with real projective structures,
show that the Cartesian product M1× · · · ×Mr × T r−1 admits
a projective structure.

6.1.3. Fibrations. One can also pull back geometric structures
by fibrations of geometries as follows. Let (G,X) be a homogeneous

space and suppose that X ′
Φ−−→ X is a fibration with fiber F and that

G′
φ−−→ G is a homomorphism such that for each g′ ∈ G′ the diagram

X ′
g′−−−→ X ′

Φ

y
yΦ

X ′ −−−→
φ(g′)

X ′

commutes.
Suppose that M is an (G,X)-manifold, with a universal covering

space M̃
Π−→ M with group of deck transformations π and developing
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pair (dev, h). Then the pullback dev∗Φ is an F -fibration M̃ ′ over M̃

and the induced map M ′ dev′−−−→ X ′ is a local diffeomorphism and thus a

developing map for an (G′, X ′)-structure on M̃ ′. We summarize these
maps in the following commutative diagram:

M̃ ′ dev′−−−→ X ′y
yΦ

M̃ −−−→
dev

X

Suppose that the holonomy representation π
h−−→ G lifts to π

h′−−→ G′.
(In general the question of whether h lifts will be detected by certain
invariants in the cohomology of M .) Then h′ defines an extension of

the action of π on M̃ to M̃ ′ by (G′, X ′)-automorphisms. Since the

action of π on M̃ ′ is proper and free, the quotient M ′ = M̃ ′/π is an

(G′, X ′)-manifold. Moreover the fibration M̃ ′ −→ M̃ descends to an
F -fibration M ′ −→M .

6.1.4. Suspensions. Before discussing Benzécri’s theorem and the
classification of 2-dimensional affine manifolds, we describe several con-
structions for affine structures from affine structures and projective
structures of lower dimension. Namely, let Σ be a smooth manifold

and Σ
f−→ Σ a diffeomorphism. The mapping torus of f is defined to be

the quotient M = Mf (Σ) of the product Σ×R by the Z-action defined
by

(x, t)
n7−−→ (f−nx, t+ n)

It follows that dt defines a nonsingular closed 1-form ω on M tangent
to the fibration

M
t−→ S1 = R/Z.

Furthermore the vector field ∂
∂t

on Σ × R defines a vector field Sf on

M , the suspension of the diffeomorphism Σ
f−→ Σ. The dynamics of f

is mirrored in the dynamics of Sf : there is a natural correspondence
between the orbits of f and the trajectories of Sf . The embedding
Σ ↪→ Σ×{t} is transverse to the vector field Sf and each trajectory of
Sf meets Σ. Such a hypersurface is called a cross-section to the vector
field. Given a cross-section Σ to a flow {ξt}t∈R, then (after possibly
reparametrizing {ξt}t∈R), the flow can be recovered as a suspension.
Namely, given x ∈ Σ, let f(x) equal ξt(x) for the smallest t > 0 such
that ξt(x) ∈ Σ, that is, the first-return map or Poincaré map for {ξt}t∈R
on Σ. For the theory of cross-sections to flows see Fried [107].
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6.2. Parallel structures in affine geometry

Perhaps the simplest case occurs when the model spaces are equal:
X = X ′ and G < G′. We saw this already in §1.4, for affine structures,
where X ′ = An and G′′ = Aff(An). By imposing conditions on the
linear holonomy L(G) < GL(Rn), one obtains refinements of affine ge-
ometry involving parallel structures. For example, when G = L−1O(n),
one obtains Euclidean geometry as affine geometry with a parallel Rie-
mannian metric. Replacing the Euclidean inner product on V = Rn

with other bilinear forms B and taking G = L−1
(
O(V; B)

)
yields affine

structures with parallel tensor fields. Taking B to be a Lorentzian inner
product, yields a category of Ehresmann structures which correspond to
flat Lorentzian manifolds, where G = Isom(En−1,1) = L−1

(
O(n− 1, 1)

)
.

If n = 2m, then G = L−1
(
GL(m,C)

)
realizes complex affine geom-

etry as affine geometry with a parallel almost complex structure as in
§1.4.3.

6.2.1. Flat tori and Euclidean structures. Recall that a flat
torus is a Euclidean manifold of the form En/Γ, where Γ is a lattice of
translations. We can regard flat tori as (G,X)-manifolds where both X
and G are the same vector space, and G is acting on X by translation.
In fact, every closed (G,X)-manifold is a flat torus.

Bieberbach’s structure theorem is essentially a qualitative structure
theorem classifying closed Euclidean manifolds. It states that every
closed Euclidean manifold is finitely covered by a flat torus. That is,
given a closed Euclidean manifold M , there is a flat torus N and a
finite subgroup F ⊂ Isom(N) such that F acts freely on N and M is
isometric to the quotient manifold N/F . For an extensive discussion
see Charlap [63].

From the viewpoint of enlarging and refining geometric structures,
this result may be stated as follows. Corresponding to F is a finite
subgroup Φ ⊂ O(n), the linear holonomy group of M . Let VΦ be
the subgroup of Isom(En) generated by the translation group V and Φ.
Then Bieberbach’s structure theorem can be restated as follows:

Theorem 6.2.1. Every losed
(
Isom(En),En

)
-manifold has a (VΦ,En)

structure for some finite subgroup Φ ⊂ O(n).

6.2.2. Parallel suspensions. Let Σ be an affine manifold and
f ∈ Aff(Σ) an automorphism. We shall define an affine manifold M
with a parallel vector field Sf and cross-section Σ ↪→M such that the
corresponding Poincaré map is f . (Compare §6.1.4.) We proceed as
follows. Let Σ × A1 be the Cartesian product with the product affine
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structure and let Σ × A1 t−→ A1 be an affine coordinate on the second
factor. Then the map

Σ× A1 f̃−→ Σ× A1

(x, t) 7−→ (f−1(x), t+ 1)

is affine and generates a free proper Z-action on Σ×A1, which t-covers
the action of Z on A1 ∼= R by translation. Let M be the corresponding
quotient affine manifold. Then d/dt is a parallel vector field on Σ×A1

invariant under f̃ and thus defines a parallel vector field Sf on M .
Similarly the parallel 1-form dt on Σ × A1 defines a parallel 1-form
ωf on M for which ωf (Sf ) = 1. For each t ∈ A1/Z, the inclusion
Σ×{t} ↪→M defines a cross-section to Sf . We call (M,Sf ) the parallel
suspension or affine mapping torus of the affine automorphism (Σ, f).

Exercise 6.2.2. Suppose that N and Σ are affine manifolds and
that

π1(Σ)
φ−−→ Aff(N)

is an action of π1(Σ) on N by affine automorphisms. The flat N-
bundle over Σ with holonomy φ is defined as the quotient of Σ̃×N by
the diagonal action of π1(Σ) given by deck transformations on Σ̃ and
by φ on N . Show that the total space M is an affine manifold such that
the fibration M −→ Σ is an affine map and the the flat structure (the
foliation of M induced by the foliation of Σ̃×N by leaves Σ̃×{y}, for
y ∈ N) is an affine foliation.

6.2.3. Closed Euclidean manifolds. The first example of a closed
Euclidean manifold which is not a flat torus is a Euclidean Klein bottle.
One can easily construct it as the parallel suspension of a free isometric
involution of the Euclidean circle E1/Z.

Exercise 6.2.3. Compute the affine holonomy group of this com-
plete affine surface. Show that it has the same rational homology as
S1.

6.2.3.1. A Euclidean Q-homology 3-sphere. Here is an interesting
example in dimension 3, which we denote by S3

Q.
Here is the construction of S3

Q as a closed Euclidean 3-manifold.
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Consider the group Γ ⊂ Isom(E3) generated by the three isometries

A =




1 0 0 1
0 −1 0 0
0 0 −1 0




B =



−1 0 0 0
0 1 0 1
0 0 −1 0




C =



−1 0 0 0
0 −1 0 0
0 0 1 1




and Γ is a discrete group of Euclidean isometries which acts properly
and freely on R3 with quotient a compact 3-manifold M . Furthermore
there is a short exact sequence

Z3 ∼= 〈A2, B2, C2〉 ↪→ Γ
L−−→ Z/2⊕ Z/2

We denote the quotient Γ\E3 by S3
Q. It is a Euclidean manifold, which

has a regular Z/2 ⊕ Z/2-covering space by a torus, and hence admits
a complete affine structure.

Exercise 6.2.4. Let M3 = Γ\E3 as above.

• Show that M3 has the same rational homology as S3.
• Prove that every closed Euclidean 3-manifold is either a paral-

lel suspension of an isometry of a closed Euclidean 2-manifold
or is isometric to M3.

Later we will see that every affine structure on S3
Q must be complete,

and indeed a Euclidean structure as above.

6.3. Homogeneous subdomains

6.3.1. Projective structures from non-Euclidean geometry.
Using the Klein model of hyperbolic geometry(

Hn,PO(n, 1)
)
↪→
(
Pn,Proj(Pn)

)

every hyperbolic-geometry structure (that is, Riemannian metric of
constant curvature -1) determines a projective structure. Using the
inclusion of the projective orthogonal group PO(n+1) ⊂ PGL(n+1;R)
one sees that every elliptic-geometry structure (that is, Riemannian
metric of constant curvature +1) determines a projective structure.
Since every surface admits a metric of constant curvature, we obtain
the following:

Theorem 6.3.1. Every surface admits an RP2-structure.
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Similarly, the Poincaré model of 2-dimensional hyperbolic geometry
(
H2,PGL(2,R)

)
↪→
(
CP1,PGL(2,C)

)

embeds the hyperbolic plane in complex-projective 1-dimensional ge-
ometry, and every hyperbolic structure on a surface determines a CP1-
structure.

Theorem 6.3.2. Every surface admits a CP1-structure.

6.4. Hopf manifolds

The basic example of an incomplete affine structure on a closed
manifold is a Hopf manifold. (The one-dimensional cases were intro-
duced in §5.4.2.) Consider the domain

Ω := Rn − {0}.
The group R+ of positive homotheties (that is, scalar multiplications)
acts on Ω properly and freely. Indeed, there is an R+-equivariant home-
omorphism

Ω
h−−→ R× Sn−1

v 7−→
(

log(‖v‖),v/‖v‖
)

(25)

where R+ acts by translation on the first factor and identically on the
second. Clearly the affine structure on Ω is incomplete. If λ ∈ R
and λ > 1, then the cyclic group 〈λ〉 is a discrete subgroup of R+

and the quotient Ω/〈λ〉 is a compact incomplete affine manifold M .
We shall denote this manifold by Hopfnλ. (A geodesic whose tangent
vector “points” at the origin will be incomplete; on the manifold M
the affinely parametrized geodesic will circle around with shorter and
shorter period until in a finite amount of time will “run off” the mani-
fold.) If n = 1, then M consists of two disjoint copies of the Hopf circle
R+/〈λ〉 — this manifold is an incomplete closed geodesic (and every
incomplete closed geodesic is isomorphic to a Hopf circle). For n > 1,
then M is connected and is diffeomorphic to the product S1 × Sn−1.
For n > 2 both the holonomy homomorphism and the developing map
are injective.

If n = 2, then M is a torus whose holonomy homomorphism maps

π1(M) ∼= Z ⊕ Z onto the cyclic group 〈λ〉. Note that M̃
dev−−−→ R2 is

neither injective nor surjective, although it is a covering map onto its
image. For k ≥ 1 let π(k) ⊂ π be the unique subgroup of index k which
intersects Ker(h) ∼= Z in a subgroup of index k. Let M (k) denote the
corresponding covering space of M . Then M (k) is another closed affine
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manifold diffeomorphic to a torus whose holonomy homomorphism is
a surjection of Z⊕ Z onto 〈λ〉.

Exercise 6.4.1. Show that for k 6= l, the two affine manifolds M (k)

and M (l) are not isomorphic. (Hint: consider the invariant defined as
the least number of breaks of a broken geodesic representing a sim-
ple closed curve on M whose holonomy is trivial.) Thus two different
affine structures on the same manifold can have the same holonomy
homomorphism.

Exercise 6.4.2. Suppose that λ < −1. Then M = (Rn − {0})/〈λ〉
is an incomplete compact affine manifold doubly covered by Hopfnλ.
What is M topologically?

Exercise 6.4.3. Let A ∈ GL(n,R) be a linear expansion, that is a
linear map all of whose eigenvalues have modulus > 1. Suppose that A
preserves orientation, that is, det(A) > 0. Then for every λ > 1, find
a homeomorphism

Rn φ−−→ Rn

such that φ
(
A(v)

)
= λφ(v). Show that

(
Rn \ {0}

)
/〈A〉 is a closed

incomplete affine manifold homeomorphic to Sn−1 × S1.
What can you say if det(A) < 0?

Hopf manifolds play an important role in relating projective structures
and affine structures on closed manifolds.

6.4.1. Geodesics on Hopf manifolds. These geodesically in-
complete structures model incomplete closed geodesics on affine mani-
folds. Namely, the geodesic on A1 defined by

t 7−→ 1 + t(λ−1 − 1)

begins at 1 and in time

t∞ := 1 + λ−1 + λ−2 + · · · = (1− λ−1)−1 > 0

reaches 0. It defines a closed incomplete closed geodesic p(t) on M
starting at p(0) = p0. The lift

(−∞, t∞)
p̃−−→ M̃

satisfies

dev
(
p̃(t)

)
= 1 + t(λ−1 − 1),

which uniquely specifies the geodesic p(t) on M . It is a geodesic since
its velocity

p′(t) = (λ−1 − 1)∂x
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is constant (parallel). However p(tn) = p0 for

tn :=
1− λ−n
1− λ−1

= 1 + λ−1 + · · ·+ λ1−n

and as viewed in M , seems to go “faster and faster” through each
cycle. By time t∞ = limn→∞ tn, it seems to “run off the manifold:” the
geodesic is only defined for t < t∞. The apparent paradox is that p(t)
has zero acceleration: it would have “constant speed” if “speed” were
only defined.

6.4.2. The sphere of directions. An important example is the
following, which in many contexts is a more useful model space than
projective space.

Definition 6.4.4. Let V be an R-vector space with origin 0. Define
the sphere of directions in V as the quotient space of V \ {0}} by the
group R+ of positive scalar multiplications, and denote it by:

S(V) := V \ {0}/R+

If V = Rn+1, write Sn := S(V).

Exercise 6.4.5. Let V = Rn+1 and G = GL(n + 1;R) its group of
linear automoprhisms.

• Show that S(V) ≈ Sn by explicity constructing a section of the
principal R+-bundle defined by the quotient V \ {0} −→ S(V).
• Construct an explicit double covering S(V) −→ P(V), realiz-

ing the sphere of directions as the universal covering space of
projective space.
• Show that the action of the collineation group PGL(n + 1,R)

lifts to the linear action of GL(n+ 1,R) on Sn and compute its
kernel of the action of GL(n+ 1,R) on Sn.

This construction relates to the Hopf manifolds Hopfnλ as follows.
For each λ > 1, form the quotient by the cyclic subgroup 〈λ〉 < R+

rather than all of R+. The resulting quotient map is a principal R+/〈λ〉-
fibration

Hopfn+1
λ −→ Sn

which is GL(n+ 1,R)-equivariant.

6.4.3. Hopf tori. There is another point of view concerning Hopf
manifolds in dimension two. Let M be a two-torus; we may explicitly
realize M as a quotient C/Λ where Λ ⊂ C is a lattice. The complex

exponential map C exp−−−→ C× is a universal covering space having the
property that

exp ◦ τ(z) = ez · exp
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where τ(z) denotes translation by z ∈ C. For various choices of lattices
Λ, the exponential map

M̃ = C exp−−−→ C×

is a developing map for a (complex) affine structure on M with holo-
nomy homomorphism

π ∼= Λ
exp−−−→ exp(Λ) ↪→ C× ⊂ Aff(C)

We denote this affine manifold by exp(C/Λ); it is an incomplete com-
plex affine 1-manifold or equivalently an incomplete similarity 2-manifold.
Every compact incomplete orientable similarity manifold is equivalent
to an exp(C/Λ) for a unique lattice Λ ⊂ C. Taking Λ ⊂ C to be
the lattice generated by log λ and 2πi we obtain the Hopf manifold
Hopf2

λ. More generally the lattice generated by log λ and 2kπi corre-
sponds to the k-fold covering space of Hopf2

λ described above. There
are “fractional” covering spaces of the Hopf manifold obtained from
the lattice generated by log λ and 2π/n for n > 1; these manifolds ad-
mit n-fold covering spaces by Hopf2

λ. The affine manifold M admits no
closed geodesics if and only if Λ ∩R = {0}. Note that the exponential
map defines an isomorphism C/Λ −→ M which is definitely not an
isomorphism of affine manifolds.

Any λ > 1 generates a lattice inside the multiplicative group R+,
which acts affinely on A1. The quotient R+/〈λ〉 also defines an affine
structure on M , which is not a Euclidean structure since dilation by λ
is not an isometry. Explcitly, take f to be a diffeomorphism onto the

interval [1, λ] ⊂ R ≈ A1, so that dev is a diffeomorphism of M̃ onto
(0,∞) = R+ ⊂ A1.

Like the preceding example, this affine structure is also bi-invariant
with respect to the natural Lie group structure on R+/〈λ〉.

Observe that, since the exponential map

R −→ R+

x 7−→ ex

converts addition (translation) to multiplication (dilation), it defines a
diffeomorphism between two quotients

R/lZ −→ R+/〈λ〉
where l := log(λ). This map also defines a (non-affine) analytic iso-
morphism between the corresponding Lie groups.

The preceding construction then applies and we obtain a radiant
affine structure on the total space M ′ of a principal R+-bundle over M
with holonomy representation h̃. The radiant vector field RM ′ generates



6.4. HOPF MANIFOLDS 155

the (fiberwise) action of R+; this action of R× on M ′ is affine, given
locally in affine coordinates by homotheties. (This construction is due
to Benzécri [35] where the affine manifolds are called variétés coniques
affines. He observes there that this construction defines an embed-
ding of the category of RPn-manifolds into the category of (n + 1)-
dimensional affine manifolds.)

Since R+ is contractible, every principal R+-bundle is trivial (al-
though there is in general no preferred trivialization). Choose any
λ > 1; then the cyclic group 〈λ〉 ⊂ R+ acts properly and freely on M ′

by affine transformations. We denote the resulting affine manifold by
M ′

λ and observe that it is homeomorphic to M×S1. (Alternatively, one
may work directly with the Hopf manifold Hopfn+1

λ and its R×-fibration
Hopfn+1

λ −→ RPn.) We thus obtain:

Proposition 6.4.6 (Benzécri [35], §2.3.1). Suppose that M is an
RPn-manifold. Let λ > 1. Then M × S1 admits a radiant affine
structure for which the trajectories of the radiant vector field are all
closed geodesics each affinely isomorphic to the Hopf circle R+/〈λ〉.

Since every (closed) surface admits an RP2-structure, we obtain:

Corollary 6.4.7 ( Benzécri [35]). Let Σ be a closed surface. Then
Σ× S1 admits an affine structure.

If Σ is a closed hyperbolic surface, the affine structure on M = Σ×
S1 can be described as follows. A developing map maps the universal
covering of M onto the convex cone

Ω = {(x, y, z) ∈ R3 | x2 + y2 − z2 < 0, z > 0}
which is invariant under the identity component G of SO(2, 1). The
group G×R+ acts transitively on Ω with isotropy group SO(2). Choos-
ing a hyperbolic structure on Σ determines an isomorphism of π1(Σ)
onto a discrete subgroup Γ of G; then for each λ > 1, the group
Γ×〈λ〉 acts properly and freely on Ω with quotient the compact affine
3-manifold M .

Exercise 6.4.8. A CPn-structure is a geometric structure modeled
on complex projective space CPn with coordinate changes locally from
the projective group PGL(n+ 1;C)). Let M be a CPn-manifold.

• Show that there is a T 2-bundle over M which admits a complex
affine structure and an S1-bundle over M which admits an
RP2n+1-structure.
• Show that this is a contact RP2n+1-structure as defined in Ex-

ercise 6.1.2.
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Compare Guichard-Wienhard [141].
Suppose that F is a foliation of a manifold M ; then F is locally

defined by an atlas of smooth submersions U −→ Rq for coordinate
patches U . An (G,X)-atlas transverse to F is defined to be a collection
of coordinate patches Uα and coordinate charts

Uα
ψα−→ X

such that for each pair (Uα, Uβ) and each component C ⊂ Uα∩Uβ there
exists an element gC ∈ G such that

gC ◦ ψα = ψβ

on C. An (G,X)-structure transverse to F is a maximal (G,X)-atlas
transverse to F. Consider an (G,X)-structure transverse to F; then an

immersion Σ
f−→M which is transverse to F induces an (G,X)-structure

on Σ.
A foliation F of an affine manifold is said to be affine if its leaves

are parallel affine subspaces (that is, totally geodesic subspaces). It is
easy to see that transverse to an affine foliation of an affine manifold is
a natural affine structure. In particular if M is an affine manifold and
ζ is a parallel vector field on M , then ζ determines a one-dimensional
affine foliation which thus has a transverse affine structure. Moreover
if Σ is a cross-section to ζ, then Σ has a natural affine structure for
which the Poincaré map Σ −→ Σ is affine.

Exercise 6.4.9. Show that the Hopf manifold Hopfnλ has an affine
foliation with one closed leaf if n > 1 (two if n = 1) and its complement
consists of two Reeb components.

6.5. Radiant manifolds

A Hopf manifold is the prototypical example of a radiant affine
manifold. Many properties of Hopf manifolds are shared by radiant
structures, and use the existence of a radiant vector field. For example,
a closed radiant affine manifold M is always incomplete, and a radiant
vector field is always nonsingular. Therefore χ(M) = 0.

In this section we discuss general properties of radiant affine struc-
tures.

6.5.1. Radiant vector fields. Recall, from §1.5.2, that a vector
field R on an affine manifold M is radiant if it is locally equivalent to
the Euler vector field,

R0 :=
n∑

i=1

xi
∂

∂xi
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Exercise 1.5.6 gives alternate characterizations of radiance.

Proposition 6.5.1. Let M be an affine manifold with development
pair (dev, h). The following conditions are equivalent:

• The affine holonomy group Γ = h(π) fixes a point in A (by
conjugation we may assume this fixed point is the origin 0 ∈
V);
• M is isomorphic to a (V,GL(V))-manifold;
• M possesses a radiant vector field RM .

If RM is a radiant vector field on M , we shall often refer to the pair
(M,RM) as well as a radiant affine structure. Then a Γ-invariant radi-
ant vector field RA on A exists, such that

Π∗RM = dev∗RA.

Theorem 6.5.2. The developing image dev(M̃) does not contain
any stationary points of the affine holonomy.

Corollary 6.5.3. Let (M,RM) be a closed radiant affine manifold.

• M is incomplete.
• The radiant vector field RM is nonsingular.
• The Euler characteristic χ(M) = 0.

Proof. Choosing affine coordinates (x1, . . . , xn) and a developing
pair (dev, h), we may assume that 0 is fixed by the affine holonomy
h
(
π1(M)

)
, so that

RA =
n∑

i=1

xi
∂

∂xi

with flow

x
Ψt−−→ etxk.

We prove that 0 /∈ dev(M̃).

We find a vector field R̃ ∈ Vec(M̃) which is Π-related to RA. Since

dev is a local diffeomorphism, the pullback R̃ := dev∗(RA) is defined

by (3). Let Φ̃t be the corresponding local flow. By the Naturality of
Flows,

devΦ̃t(x) = etdev(x).

M is radiant, so h preserves RA and therefore R̃ is π1(M)-invariant.

It follows that ∃RM ∈ Vec(M) which is Π-related to R̃:

Π∗RM = R̃.
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Since M is closed, RM integrates to a global flow M
Πt−−→,, defined

∀t ∈ R. Exercise 6.5.4 (below) implies that R̃ is complete and integrates
to a flow

M̃
Φ̃t−−→ M̃

such that

Π ◦ Φ̃t = Φt

Let M0 := Π(dev−1(0)). Since Π and dev are local diffeomorphisms
and 0 ∈ A is a h

(
π1(M)

)
-invariant discrete set, M0 ⊂ M is discrete.

set. Compactness of M implies that M0 is a finite set. We show that
M0 = ∅.

Since the only zero of RA is the origin 0, the vector field RM is
nonsingular on the complement of M0 Choose a neighborhood U of
M0, each component of which develops to a small ball B about 0 in

A. Let K ⊂ M̃ be a compact set such that the saturation Π(K) = M ;
then ∃N � 0 such that

e−t(dev(K)) ⊂ B

for t ≥ N . Thus Φ̃t(K) ⊂ B for t ≤ −N . It follows that U is
an attractor for the flow of −RM , that is, Φ−t(M) ⊂ U for t � N .

Consequently M
ΦN−−→ U deformation retracts the closed manifold M

onto U . Since a closed manifold is not homotopy-equivalent to a finite

set, this contradiction implies M0 = ∅ and 0 /∈ dev(M̃) as desired. �

Exercise 6.5.4. Let M
f−−→ N be a local diffeomorphism betweeen

smooth manifolds, and ξ ∈ Vec(M), η ∈ Vec(N) be f -related vector
fields. Suppose that f is a covering space. Then ξ is complete if and
only if η is complete.

Theorem 6.5.5. Let M be a compact radiant manifold.Then M
cannot have parallel volume. (In other words a compact manifold can-
not support a

(
Rn, SL(n;R)

)
-structure.)

Proof. Let ωA = dx1 ∧ · · · ∧ dxn be a parallel volume form on A
and let ωM be the corresponding parallel volume form on M , that is,
Π∗ωM = dev∗ωA. The interior product

ηM :=
1

n
ιRMωM

is an (n− 1)-form on M . Since

dιRA
ωA = nωA,
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dηM = ωM . However, ωM is a volume form on M and

0 < vol(M) =

∫

M

ωM =

∫

M

dηM = 0

a contradiction. �

Intuitively, the main idea in the proof above is that the radiant flow
on M expands the parallel volume uniformly. Thus by “conservation
of volume”a compact manifold cannot support both a radiant vector
field and a parallel volume form.

Exercise 6.5.6. The first Betti number of a closed radiant affine
manifold is always positive. (Hint: Compare Exercise 11.1.2.)

6.5.2. Radiant supensions. Let (M,RM) be a radiant affine man-
ifold of dimension +1. Transverse to RM is an RPn-structure, as follows.
In local affine coordinates the trajectories of RM are rays through the
origin in Rn+1 and projectivization maps coordinate patches submer-

sively into RPn. In particular, if Σ is an n-manifold and Σ
f−→ M is

transverse to RM , then f determines an RPn-structure on Σ.

Proposition 6.5.7. Let Σ be a compact RPn-manifold and f ∈
Aut(Σ) a projective automorphism. Then there exists a radiant affine

manifold (M,RM) and a cross-section Σ
ι
↪→ M to RM such that the

Poincaré map for ι equals ι−1 ◦f ◦ ι. In other words, the mapping torus
of a projective automorphism of an compact RPn-manifold admits a
radiant affine structure.

Proof. Let Sn be the double covering of RPn (realized as the
sphere of directions in Rn+1) and let

Rn+1 \ {0} Φ−−→ Sn

be the corresponding principal R+-fibration. Let N be the principal
R+-bundle over M constructed in §6.4.2 and choose a section M

σ−→ N .

Let {ξt}t∈R be the radiant flow on N and denote by {ξ̃t}t∈R the radiant

flow on Ñ . Let (dev, h) be a development pair; then f lifts to an

affine automorphism f̃ of M̃ . Furthermore there exists a projective
automorphism g ∈ GL(n+ 1;R)/R+ of the sphere of directions Sn such
that

Ñ
dev′−−−→ Rn+1 \ {0}

f̃

y
yg

Ñ −−−→
dev′

Rn+1 \ {0}
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commutes. Choose a compact set K ⊂ M̃ such that

π1(M) ·K = M̃.

Let K̃ ⊂ Ñ be the image of K under a lift of σ to a section M̃ −→ Ñ .
Then

K̃ ∩ f̃ ξ̃t(K̃) = ∅
whenever t > t0, for some t0. It follows that the affine automorphism
ξtf̃ generates a free and proper affine Z-action on N for t > t0. We
denote the quotient by M . In terms of the trivialization of N −→ M
arising from σ, it is clear that the quotient of N by this Z-action is
diffeomorphic to the mapping torus of f . Furthermore the setion σ
defines a cross-section Σ ↪→M to RM whose Poincaré map corresponds
to f . �

We call the radiant affine manifold (M,RM) the radiant suspension of
the pair (Σ, f).

Exercise 6.5.8. Express the Hopf manifolds of Exercise 6.4.3 as
radiant suspensions of the automorphism of Sn−1 given by the linear
expansion A of Rn.

6.5.2.1. Radiant similarity manifolds. Hopf manifolds provide an-
other example of a refined geometric structure, which arise in the clas-
sification of similarity structures on closed manifolds (§11.4).

Exercise 6.5.9. Let X = En\{0} and G ⊂ Sim(En) the stabilizer of
0. Let M be a compact (G,X)-manifold with holonomy group Γ ⊂ G.

• Prove that G ∼= R+ × O(n).
• Find a G-invariant Riemannian metric g0 on X.
• Suppose that n > 2. Prove that M ∼= Γ\X, and that M admits

a finite covering space isomorphic to a Hopf manifold.
• Suppose n = 2. Find an example where M is not isomorphic

to Γ\X.

6.5.2.2. Radiant affine surfaces. A small modification of these con-
structions lead to the classification of radiant affine structures on closed
2-manifolds, and, with the classification of affine Lie group structures
on the 2-torus, to the full list of closed affine 2-manifolds.

By Benzécri’s theorem 9.1.1, every closed affine 2-manifold is home-
omorphic to a torus or a Klein bottle. By passing to a covering space
we can reduce to affine structures on a 2-torus T 2.

These examples are obtained as follows. Begin with a linear expan-
sion A of R2. The cyclic group 〈A〉 acts properly on Ω := Rn − {0})
with quotient MA homeomorphic to a torus, as in Exercise 6.4.3.
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Here is an explicit description of the development, which will be
necessary to describe the modifications needed for all inhomogeneous
affine tori. Choose a circle C centered at 0 ∈ R2. Then C and its image
C ′ := A(C) cobound an annulus A ⊂ Ω, which is a fundamental domain
for the action of the holonomy group 〈A〉 on Ω.

Choose a point x̃0 ∈ C and an arc

x̃0
ã
 A(x̃0)

in A. Split A along ã obtaining a quadrilateral � with four sides:

S1: C split along x̃0;
S2: The original arc ã;
S3: A(C) split along A(x̃0;
S4: Another arc corresponding to ã.

The annulus A is the quotient of � by an identification b which iden-
tifies sides S2 and S4. The torus MA is the quotient of A by A, which
induces an identification of sides S1 and S3.

The image x0 of the vertex x̃0 of � serves as a basepoint in MA,
and the fundamental group π := π1(MA, x0) is free abelian. Relative
homotopy classes of the based loops corresponding to S1 and S2 define
elements a, b ∈ π, respectively, which form a basis of π

A model for the universal covering space M̃A of MA is then the
quotient of �× π by identifications described above. The mapping of
� into Ω extending the embedding on the interior of � generates a de-

veloping map M̃A � Ω. The corresponding holonomy homomorphism
h maps a to A and b to the identity.

One can modify this construction in various ways. One modification
involves passing to an n-fold covering space with the “same holonomy.”

That is, one passes to the covering space M̃/〈a, bn〉 which unwinds in
the direction with trivial holonomy. These manifolds are all quotients
of the n-fold covering space Ω(n) of Ω.

All of these holonomy groups are cyclic, and the developing map
factors through the covering space Ω(n) � Ω.

However we can modify these structures so that the holonomy of
b is nontrivial, and find examples where the holonomy homomorphism
is injective. Choose an affine transformation β which commutes with
A; since 0 is the unique point fixed by A, the affine transformation β
is necessarily linear. We can replace Ω by the quotient Ωβ of � × π
by identifications generated by taking S1 to S2 by β. Equivalently, Ωβ

is the quotient of the universal covering space Ω̃ by the cyclic group

〈b ◦ β̃〉 where β̃ is the mapping on Ω̃ induced by β.
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Since A commutes with β, it defines an affine automorphism Aβ of
Ωβ, and the quotient

MA,β := Ωβ/〈Aβ〉
is a radiant affine torus with holonomy homomorphism

π
h−−→ Aff(A2)

a 7−→ A

b 7−→ β

Exercise 6.5.10. Express these manifolds as radiant suspensions
of automorphisms of closed RP1-manifolds.

Compare Exercise 6.4.3.
Every closed orientable affine 2-manifold which is not covered by

an affine Lie group is one of these manifolds.

Exercise 6.5.11. Find an example of an affine Lie group which is
one of these manifolds.

These turn out to be the only affine structures that are not homo-
geneous: indeed every other affine structure on a 2-torus is an affine
commutative Lie group.

6.5.2.3. Cross-sections to the radiant flow. A natural question is
whether every closed radiant affine manifold is a radiant suspension. A
radiant affine manifold (M,R) is a radiant suspension if and only if the
flow of R admits a cross-section. David Fried [105, 109] constructed
a closed affine 6-manifold with diagonal holonomy whose radiant flow
admits no cross-section. Choi [69] (using work of Barbot [19]) proves
that every radiant affine 3-manifold is a radiant suspension, and there-
fore is either a Seifert 3-manifold covered by a product F × S1, where
F is a closed surface, a nilmanifold or a hyperbolic torus bundle.

In dimensions 1 and 2 all closed radiant manifolds are radiant sus-
pensions. When M is hyperbolic, that is, a quotient of a sharp convex
cone (see Chapter 12), the existence of the Koszul 1-form implies that
M is a radiant suspension.

In general affine automorphisms of affine manifolds can display
quite complicated dynamics and thus the flows of parallel vector fields
and radiant vector fields can be similarly complicated. For example,
any element of GL(2;Z) acts affinely on the flat torus R2/Z2; the most
interesting of these are the hyperbolic elements of GL(2;Z) which de-
termine Anosov diffeomorphisms on the torus. Their suspensions thus
determine Anosov flows on affine 3-manifolds which are generated by
parallel or radiant vector fields. Indeed, it can be shown (Fried [108])
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that every Anosov automorphism of a nilmanifold M can be made
affine for some complete affine structure on M .

As a simple example of this we consider the linear diffeomorphism
of the two-torus T 2 = R2/Z2 defined by a hyperbolic element A ∈
GL(2;Z). The parallel suspension of A is the complete affine 3-manifold
R3/Γ where Γ ⊂ Aff(R3) is consists of the affine transformations

[
An 0 p
0 1 n

]

where n ∈ Z and p ∈ Z2. Since A is conjugate in SL(2;R) to a di-
agonal matrix with reciprocal eigenvalues, Γ is conjugate to a discrete
cocompact subgroup of the subgroup of Aff(R3)

G =

{

eu 0 0 s
0 e−u 0 t
0 0 1 u



∣∣∣∣∣ s, t, u ∈ R

}

which acts simply transitively. Since there are infinitely many conju-
gacy classes of hyperbolic elements in SL(2;Z) (for example the matri-
ces [

n+ 1 n
1 1

]

for n > 1, n ∈ Z are all non-conjugate), there are infinitely many
isomorphism classes of discrete groups Γ. Louis Auslander observed
that there are infinitely many homotopy classes of compact complete
affine 3-manifolds — in contrast to the theorem of Bieberbach that
in each dimension there are only finitely many homotopy classes of
compact flat Riemannian manifolds. Notice that each of these affine
manifolds possesses a parallel Lorentz metric and hence is a flat Lorentz
manifold. (Auslander-Markus [9]).

Exercise 6.5.12. Express the complete affine structures on the 2-
torus as mapping tori of affine automorphisms of the complete affine
manifold R/Z.





CHAPTER 7

Classification

Given a topology Σ and a geometry (G,X), how does one deter-
mine the various ways of putting (G,X)-structures on Σ? This chapter
discusses how to organize the geometric structures on a fixed topology.
This is the general classification problem for (G,X)-structures.

7.1. Marking geometric structures

We begin with two more familiar and classical cases:

• The moduli space of flat tori;
• The classification of marked Riemann surfaces by Teichmüller

space.

The latter is only analogous to our classification problem, but plays an
important role, both historically and technically, in the study of locally
homogeneous structures.

7.1.1. Marked Riemann surfaces. The prototype of this clas-
sification problem is the classification of Riemann surfaces of genus g.
The Riemann moduli space is a space Mg whose points correspond to
the biholomorphism classes of genus g Riemann surfaces. It admits the
structure of a quasiprojective complex algebraic variety. In particular
it is a Hausdorff space, with a singular differentiable structure.

In general the set of (G,X)-structures on Σ will not have such a nice
structure. The natural space will in general not be Hausdorff, so we
must expand our point of view. To this end, we introduce additional
structures, called markings, such that the marked (G,X)-structures
admit a more tractable classification. As before, the prototype for this
classification is the Riemann moduli space Mg, which can be under-
stood as the quotient of the Teichmüller space Tg (comprising equiva-
lence classes of marked Riemann surfaces of genus g) by the mapping
class group Modg.

Here is the classical context for Tg and Modg = Tg/Modg: The
fixed topology is a closed orientable surface Σ of genus g. A marked
Riemann surface of genus g is a pair (M, f) where M is a Riemann

surface and Σ
f−−→ M is a diffeomorphism. The Teichmüller space is

165
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defined as the set of equivalence classes of marked Riemann surfaces
of genus g, where two such marked Riemann surfaces (M, f), (M ′, f ′)

are equivalent if and only if there is a biholomorphism M
φ−−→M ′ such

that φ ◦ f is isotopic to φ′.

Exercise 7.1.1. Fix a Riemann surface M . The mapping class
group

Modg := π0

(
Diff(Σ)

)

acts simply transitively on the set of equivalence classes of marked Rie-
mann surfaces (M, f). Thus the Riemann moduli space Modg is the
quotient of the Teichmüller space Tg by the mapping class group Modg.

7.1.2. Moduli of flat tori. Another common classification prob-
lem concerns flat tori. Recall (§5.4.1 a flat torus is a Euclidean manifold
of the form Mn := Rn/Λ, where Λ ⊂ Rn is a lattice. A marking of M
is just a basis of Λ. Clearly the set of marked flat n-tori is the set of
bases of Rn, which is a torsor for the group GL(n,R).

(
The columns

(respectively rows) of invertible n × n matrices are precisely bases of
Rn.
)

Exercise 7.1.2. For M = Rn/Λ as above, compute the isometry
group (respectively affine automorphism group) of M . Show that two
invertible matrices A,A′ ∈ GL(n,R) define isometric marked flat tori
if and only if A′A−1 ∈ O(n). Show that all flat n-tori are affinely
isomorphic.

The deformation space of marked flat tori identifies with the ho-
mogeneous space GL(n,R)/O(n). The mapping class group Mod(T n

of the n-torus T n identifies with GL(n,Z), which acts properly on the
deformation space GL(n,R)/O(n). The moduli space of flat tori in
dimension n identifies with the biquotient GL(n,Z)\GL(n,R)/O(n).

7.1.3. Marked geometric manifolds. Now we define the anal-
ogous construction for Ehresmann structures. As usual, we choose
to work in the smooth category since (G,X)-manifolds carry natural
smooth (in fact real analytic) structures, and the tools of differential
topology are convenient. However, in general, there are many options,
it may be more natural to consider homeomorphisms, or even homotopy
equivalences, depending on the context. Since our primary interest in
dimension two, where these notions yield equivalent theories, we do not
discuss the alternative context.

Definition 7.1.3. Let Σ be a smooth manifold. A marking of an

(G,X)-manifold M (with respect to Σ) is a diffeomorphism Σ
f−−→M .
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A marked (G,X)-manifold is a pair (M, f) where f is a marking of
M . Say that two marked (G,X)-manifolds (f,M) and (f ′,M ′) are

equivalent if and only if a (G,X)-isomorphism M
φ−−→ M ′ exists such

that φ ◦ f ' φ′.

7.1.4. The infinitesimal approach. More useful for computa-
tions is another approach, where geometric structures are defined in-
finitesimally as structures on vector bundles assoicated to the tangent
bundle. For example, a Euclidean manifold M can be alternatively
described as a Riemannian metric on M with vanishing curvature ten-
sor. Another example is defining a Riemann surface as a 2-manifold
together with an almost complex structure, that is, a complex structure
on its tangent bundle. A third example is defining an affine structure
as a connection on the tangent bundle with vanishing curvature tensor.
Projective structures and conformal structures can be defined in terms
of projective connections and conformal connections, respectively.

In all of these cases, the underlying smooth structure is fixed, and
the geometric structure is replaced by an infinitesimal object as above.
The diffeomorphism group acts on this space, and the quotient by the
full diffeomorphism group would serve as the moduli space. However,
to avoid pathological quotient spaces, we prefer to quotient by the iden-
tity component of Diff(Σ). Alternatively define the deformation space
of marked structures as the quotient of the space of the infinitesimal ob-
jects by the subgroup of Diff(Σ) consisting of diffeomorphisms isotopic
to the identity.

The “infinitesimal objects” above are Cartan connections, to which
we refer to Sharpe [249].

7.2. Deformation spaces of geometric structures

Fundamental in the deformation theory of locally homogeneous (Ehres-
mann) structures is the following principle, first observed in this gen-
erality by Thurston [265]:

Theorem 7.2.1. Let X be a manifold upon which a Lie group G
acts transitively. Let M be a compact (G,X)-manifold with holonomy

representation π1(M)
ρ−−→ G.

(1) Suppose that ρ′ is sufficiently near ρ in the representation va-
riety Hom(π1(M), G). Then there exists a (nearby) (G,X)-
structure on M with holonomy representation ρ′.

(2) If M ′ is a (G,X)-manifold near M having the same holonomy
ρ, then M ′ is isomorphic to M by an isomorphism isotopic to
the identity.
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Here the topology on marked (G,X)-manifolds is defined in terms
of the atlases of coordinate charts, or equivalently in terms of devel-
oping maps, or developing sections. In particular one can define a
deformation space Def(G,X)(Σ) whose points correspond to equivalence
classes of marked (G,X)-structures on Σ. One might like to say the
holonomy map

Def(G,X)(Σ)
hol−−→ Hom

(
π1(Σ), G

)
/Inn(G)

is a local homeomorphism, with respect to the quotient topology on
Hom

(
π1(Σ), G

)
/Inn(G) induced from the classical topology on the R-

analytic set Hom
(
π1(Σ), G

)
. In many cases this is true (see below) but

misstated in [127]. However, Kapovich [166] and Baues [21] observed
that this is not quite true, because local isotropy groups acting on
Hom

(
π1(Σ), G

)
may not fix marked structures in the corresponding

fibers.
In any case, these ideas have an important consequence:

Corollary 7.2.2. Let M be a closed manifold. The set of holo-
nomy representations of (G,X)-structures on M is open in Hom(π1(M), G)
(with respect to the classical topology).

One can define a space of flat (G,X)-bundles (defined by a fiber
bundle EM having X as fiber and G as structure group) and the fo-
liation F transverse to the fibration EM −→ M . The foliation F is
equivalent to a reduction of the structure group of the bundle from G
with the classical topology to G with the discrete topology. This set of
flat (G,X)-bundles over Σ identifies with the quotient of the R-analytic
set Hom(π1(Σ), G) by the action of the group Inn(G) of inner automor-
phisms action by left-composition on homomorphisms π1(Σ)→ G.

Conversely, if two nearby structures on a compact manifold M have
the same holonomy, they are equivalent. The (G,X)-structures are
topologized as follows. Let Σ −→ M be a marked (G,X)-manifold,
that is, a diffeomorphism from a fixed model manifold Σ to a (G,X)-

manifold M . Fix a universal covering Σ̃ −→ Σ and let π = π1(Σ) be
its group of deck transformations. Choose a holonomy homomorphism

π
ρ−−→ G and a developing map Σ̃

dev−−−→ X.
In the nicest cases, this means that under the natural topology on

flat (G,X)-bundles (Xρ,Fρ) over M , the holonomy map hol is a local
homeomorphism. Indeed, for many important cases such as hyperbolic
geometry (or when the structures correspond to geodesically complete
affine connections), hol is actually an embedding.
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7.2.1. Historical remarks. Thurston’s holonomy principle has a
long and interesting history.

The first application is the theorem of Weil [281] that the set of
discrete embeddings of the fundamental group π = π1(Σ) of a closed
surface Σ in G = PSL(2,R) is open in the quotient space Hom(π,G)/G.
Indeed, a discrete embedding π ↪→ G is exactly a holonomy repre-
sentation of a hyperbolic structure on Σ. The corresponding subset
of Hom(π,G)/G is called the Fricke space F(Σ) of Σ. Weil’s results
are clearly and carefully expounded in Raghunathan [238], (see The-
orem 6.19), and extended in Bergeron-Gelander [41]. Fenchel and
Nielsen proved that F(Σ) ≈ R−χ(Σ); their approach is outlined in §7.4.

For CP1-structures, Theorem 7.2.1 is due to Hejhal [146, 145]; see
also Earle [95] and Hubbard [153]. This venerable subject originated
with conformal mapping and the work of Schwarz, and closely relates
to the theory of second order (Schwarzian) differential equations on
Riemann surfaces. In this case, where X = CP1 and G = PSL(2,C),
we denote the deformation space Def(G,X)(Σ) simply by CP1(Σ). See
Dumas [91] and §14 below.

Thurston sketches the intuitive ideas for Theorem 7.2.1 in his un-
published notes [265], which contains the first explicit statement of this
principle. The first detailed proofs of this fact are Lok [202], Canary-
Epstein-Green [55], and Goldman [121] (the proof in [121] was worked
out with M. Hirsch, and was independently found by A. Haefliger). The
ideas in these proofs may be traced to Ehresmann [97], although he
didn’t express them in terms of moduli of structures. Corollary 7.2.2
was noted by Koszul [185], Chapter IV, §3, Theorem 3; compare also
the discussion in Kapovich [167], Theorem 7.2.

7.3. Representation varieties

As this theorem concerns the topology of the space of holonomy
representations, we first discuss the space Hom(π,G) and its quotient
Rep(π,G). Good general references for this theory are Kapovich [167],
Lubotzky-Magid [204], Raghunathan [238] and Sikora [251].

We shall assume that G is a (real) Lie group and π is finitely gen-
erated. Let {γ1, . . . , γN} be a set of generators.

Exercise 7.3.1. Consider the map

Hom(π,G) −→ GN

ρ 7−→
(
ρ(γ1), . . . , ρ(γN)

)

• This map is injective.
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• Its image is an analytic subset of GN defined by

Rα(g1, . . . , gN) = 1,

where the Rα are the relations among the generators γ1, . . . , γN

of π, regarded as an an analytic map GN Rα−−−→ G.
• Furthermore the structure of this analytic variety is indepen-

dent of the choice of generating set.
• The natural action of Aut(π)×Aut(G) on Hom(π,G) preserves

the analytic structure.

In many cases, G may be an algebraic group, that is a Zariski-closed
subgroup of some GL(m,R). In that case Hom(π,G) has the structure
of a real algebraic subset of GL(m,R)N , and this algebraic structure
is preserved by the natural Aut(π) × Aut(G)-action. Thus the map of
Exercise 7.3.1 embeds Hom(π,G) an analytic or algebraic set.1 Unless
otherwise stated, we give this set the classical topology inherited from
the topology of G as a Lie group.

Exercise 7.3.2. Suppose that π is ann-generator free group. Let
G be a reductive Lie group.

• Identify Hom(π,G) with the Cartesian power Gn. How does
Aut(π) act on Gn?
• Let Hom(π,G)− denote the subset comprising ρ such that the

centralizer of ρ(π) equals the center Z(G) of G. Show that
Hom(π,G)− is Inn(G)-invariant, open and dense in Hom(π,G).
• Show that Inn(G) acts freely and properly on Hom(π,G)− and

the quotient map is a smooth principal Inn(G)-fibration. De-
duce that the quotient space is a real analytic manifold of di-
mension (n− 1)dim(G) + dim

(
Z(G)

)
.

As the holonomy homomorphism π1(M)
h−−→ G is only defined up to

conjugation, it is natural to form the quotient of Hom(π,G) by the
subgroup

{1} × Inn(G) < Aut(π)× Aut(G)

where Inn(G) < Aut(G) is the normal subgroup consisting of inner
automorphisms of G. With this quotient topology inherited from the
classical topology on Hom(π,G) as above, we denote this space by
Hom(π,G)/Inn(G) or simply Hom(π,G)/G. This quotient space is the
one arising in dffferential geometry/topology as the space of equivalence

1The Hilbert basis theorem implies that it is not necessary to assume that π
has a finite presentation. An interesting question is how the defining ideal varies if
π is finitely generated but not finitely presentable.
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classes of flat connections, and is the quotient space upon which we
concentrate.

Unfortunately this space is generally not well-behaved, and Mur-
phy’s law applies: Everything that possibly could go wrong does go
wrong. In particular:

• Although the action of G by conjugation is algebraic/analytic,
it is generally neither proper nor free. Thus Hom(π,G)/G is
generally not a Hausdorff space.

– Even if the Inn(G)-action is proper (for example if G is
compact), then the action may not be free, and the quo-
tient may not be a smooth manifold (although it underlies
an orbifold structure).

• Furthemore the analytic set Hom(π,G) is generally not smooth,
and forming the quotient by G can only make matters worse.
Sometimes this can be repaired by forming the algebro-geo-
metric quotient (in the sense of Geometric Invariant Theory,
although then points in this quotient generally do not corre-
spond to G-orbits themselves).

The infinitesimal theory, and its relation to cohomology, can be found
in Raghunathan [238]. Explicit formulas using the free differential
calculus of Fox [103] are described in Goldman [130]. See Sikora [167]
for a careful treatment of the infinitesimal theory as a scheme.

7.3.1. Example: SL(2)-characters of F2. (This material is taken
from [126], which includes proofs of the stated results.)

A classical theorem of Vogt [280] (and often attributed to Fricke-
Klein [104]) asserts that, when G = SL(2,C) the algebro-geometric
(GIT) quotient of Hom(F2, G) by Inn(G) is C3. This generalizes the
elementary fact that the quotient G//Inn(G) ∼= C, with coordinate
given by the trace function

G
tr−−→ C

[
a b
c d

]
7−→ a+ d.

Exercise 7.3.3. Compute the critical points and the critical values
of tr.

Recall that a function f on G is regular if f(x) is a polynomial function
of the matrix entries of x ∈ G.

Exercise 7.3.4. Show that for any Inn(G)-invariant regular func-

tion f on G there exists a function C F−−→ C such that f = tr ◦ F .
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Show that tr−1(t) consists of a single Inn(G)-orbit when t 6= ±2. De-
scribe tr−1(t) when t = ±2.

It follows that tr is the GIT quotient map for the action of Inn(G) on
G, and we write G//Inn(G) ∼= C.

Exercise 7.3.5. Show that if x ∈ G, then tr(x) = tr
(
x−1
)
. Deduce

that x and x−1 are conjugate in G. Is the same true when G is replaced
by SL(2,R) or GL(2,R)?

Writing F2 = 〈X, Y 〉 for a pair of free generators X, Y , the identi-
fication

Hom(F2, G)←→ G×G
ρ←→

(
ρ(X), ρ(Y )

)

is equivariant with respect to the action of G→ Inn(G) on Hom(F2, G)
and the diagonal action of G on G×G given by:

(26) g · (x, y) := (gxg−1, gyg−1).

This action prserves the mapping

G×G −→ C3(27)

(x, y) 7−→



ξ := tr(x)
η := tr(y)
ζ := tr(xy)




which is a GIT-quotient map:

Theorem 7.3.6 (Vogt [280], Fricke [104]). Let

SL(2,C)× SL(2,C)
f−−→ C

be a regular function which is invariant under the diagonal action
(26) of SL(2,C) by conjugation. There exists a polynomial function
F (ξ, η, ζ) ∈ C[ξ, η, ζ] such that

f(x, y) = F (tr(x), tr(y), tr(ξη)).

Furthermore, for all (ξ, η, ζ) ∈ C3, there exists x, y ∈ SL(2,C) such
that

ξ = tr(x), η = tr(y), ζ = tr(xy).

Conversely, suppose x, y, x′, y′ ∈ SL(2,C) satisfy



tr(x)
tr(y)

tr(xy)


 =



ξ
η
ζ


 =




tr(x′)
tr(y′)

tr(x′y′)



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where

(28) ξ2 + η2 + ζ2 − ξηζ 6= 4.

Then (x′, y′) = g · (x, y) for some g ∈ G.

Condtion (28) means that the matrix group 〈x, y〉 acts irreducibly on
C2. That is, 〈x, y〉 preserves no proper nonzero linear subspace of C2.
The irreducibility condition is crucial in several alternate descriptions
of SL(2,C)-representations of F2. In particular, it is equivalent to the
condition that the SL(2,C)-orbit is closed in Hom(F2, SL(2,C)). This
condition is in turn equivalent to the orbit being stable in the sense of
Geometric Invariant Theory. In terms of hyperbolic geometry, it means
that the representation fixes no point in CP1. 2

7.3.1.1. Coxeter Extension. A more geometric description involves
the action of the representation ρ with ρ(X) = x and ρ(Y ) = y
on hyperbolic 3-space H3. The group PSL(2,C) acts by orientation-
preserving isometries of H3. An involution, that is, an element g ∈
PSL(2,C) having order two, is reflection in a unique geodesic Fix(g) ⊂
H3. Denote the space of such involutions by Inv.

Theorem 7.3.7 (Coxeter extension). Suppose that x, y ∈ SL(2,C)
generate an irreducible representation and let z = y−1x−1 so that

xyz = I.

Then there exists a unique triple of involutions

ιxy, ιyz, ιzx ∈ Inv

such that the corresponding elements P(x),P(y),P(z) ∈ PSL(2,C) sat-
isfy:

P(x) = ιzxιxy

P(y) = ιxyιyz

P(z) = ιyzιzx.

For the proof see [126]

Exercise 7.3.8. Show that Inv identifies with the set of unoriented
geodesics in H3. Describe its topological type.

Exercise 7.3.9. Let Ĩnv denote the inverse image P−1(Inv). Show

that Ĩnv = sl(2,C) ∩ SL(2,C).

2This situation is remarkably clean; for a description of SL(3,C), see Law-
ton [199].
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We choose lifts ι̃xy, ι̃yz, ι̃zx ∈ Ĩnv such that

ι̃xy ι̃yz ι̃zx = I.
These lifts will be used to parametrize hyperbolic structures on surfaces
in terms of traces in SL(2,R).

7.3.1.2. Hyperbolic three-holed spheres. Theorem 7.3.7 implies the
Fricke space of hyperbolic structures on the three-holed sphere Σ (some-
times called a “pair of pants” or a “trinion”) identifies with

(
−∞,−2]3

using trace coordinates. Namely, the three trace parameters corre-
spond to the three boundary components of Σ. The Coxeter extension
identifies a hyperbolic structure on Σ with (perhaps mildly degener-
ate) right-angled hexagon in the hyperbolic plane H2. Right-angled
hexagons are allowed to degenerate when some of the alternate edges
covering boundary components degenerate to ideal points.

Suppose that ξ, η, ζ ≤ −2. Then the corresponding elements x, y, z ∈
SL(2,C) have real representatives and are represented by hyperbolic or
parabolic elements of SL(2,R). Furthermore if ξ, η, ζ < −2, they are
represented by hyperbolic elements of SL(2,R) whose axes do not inter-
sect. The involutions ιxy, ιyz, ιzx preserve H2 ⊂ H3 and their restrictions
to H2 act by (orientation-reversing) reflections in geodesics which we
denote by

Fix(ιxy),Fix(ιyz),Fix(ιzx) ⊂ H2

respectively. Theorem 7.3.7 implies that, for example, the invariant
axis of x is the common orthogonal to the lines Fix(ιxy),Fix(ιzx). Their
distance equals the distance between their closest points Fix(ιxy) ∩
Axis(x) and Fix(ιzx) ∩ Axis(x):

d
(
Fix(ιxy),Fix(ιzx)

)
= d

(
Fix(ιxy) ∩ Axis(x),Fix(ιzx) ∩ Axis(x)

)

Since x = ιzxιxy, the hyperbolic isometry x is a transvection of
displacement

`x := 2d(Fix(ιxy),Fix(ιzx)

and the trace of the matrix x equals

ξ = −2 cosh(`x/2).

For the detailed proof that ξ, η, ζ < 2 implies that the six lines

Axis(x), Fix(ιxy), Axis(y), Fix(ιyz), Axis(z), Fix(ιzx)

bound a convex right-angled hexagon, see §4.3 of [126]. This hexagon
is a fundamental domain for the Coxeter group 〈ιxy, ιyz, ιzx〉. This
Coxeter group contains 〈x, y, z〉 with index two. The union of two
adjacent hexagons in the resulting tesselation is then a fundamental
domain for 〈x, y〉. The quotient is a hyperbolic surface homeomorphic



7.3. REPRESENTATION VARIETIES 175

to a three-holed sphere, with three boundary components of length
`x, `y, `z.

7.3.2. Twist flows and Fenchel-Nielsen earthquakes. Given
a surface Σ and a simple closed curve C ⊂ Σ, we define deformations
of representations of π1(Σ) which are “supported” on C. To this end,
bordify the complement Σ \ C as a surface-with-boundary Σ|C with
boundary components Ci which are identified to form C in the quotient
(which is Σ).

Suppose first that C separates Σ into two components Σ1,Σ2 so that
Σ can be reconstructed from the disjoint union

Σ|C = Σ1

⊔
Σ2

by a quotient map

Σ1

⊔
Σ2

Q−−→ Σ.

Write Q−1(C) = C1 t C2 where Ci ∈ Σi, so that Q identifies C1 and C2

to form C.
Choose a basepoint x0 ∈ C ⊂ Σ) and let Q−1(x0) = {x1, x2} where

xi ∈ ci ⊂ Σi. Let c ∈ π1(Σ, x0) be the element corresponding to C. For
i = 1, 2, let ci ∈ π1(Σi, xi), be the respective elements corresponding
to ci. By the Van Kampen theorems, π1(Σ, x0) may be reconstructed
from π1(Σi, xi) as an amalgamated free product

π1(Σ, x0) ∼= π1(Σ1, x1)
∐

〈c〉

π1(Σ2, x2).

Suppose that π1(Σ)
ρ−−→ G is a representation and zt is a parametrized

family of elements of the centralizer of ρ(c) in G. Then we can construct
a parametrized family of representations ρt by the formula:

(29) ρt(A) :=

{
ρ(A) if A ∈ π1(Σ1, x1)

zt ρ(A) z−1
t if A ∈ π1(Σ2, x1)

Since π1(Σ1, x1) and π1(Σ2, x2) generate π1(Σ, x0) and the only relations
concern compatibility along c, that zt centralizes ρ(c) implies that (29)
defines a family of representations.

Exercise 7.3.10. Develop the analogous construction of a family
of representations when C does not separate Σ, that is, when Σ \ C is
connected.

When C is a simple closed geodesic on a complete hyperbolic sur-

face M , then dev(C̃) is a geodesic in H2 and the holonomy ρ(c) is a

hyperbolic isometry stabilizing dev(c̃). The stabilizer Stab
(
dev(C̃)

)
is a
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one-parameter subgroup of PSL(2,R) consisting of transvections. The
family of representations ρt correspond to the following geometric oper-
ation: After cutting along C, re-identify Σ from Σ|C along the isometries
corresponding to zt. Thurston generatlized this construction (originally
due to Fenchel-Nielsen) to earthquake flows on Fricke space F(Σ).

For a more general discussion of earthquakes and an important ap-
plication, compare Kerckhoff [169]. Thurston’s bending deformations
of embeddings in PSL(2,C) and the higher-dimensional generalizations
due to Johnson-Millson [164] are also special cases of this construction.
McMullen [218] and Kamishima-Tan [165] consider a 2-parameter fam-
ily of deformations in PSL(2,C) (quakebend deformations).

We describe a generalization to RP2-structures in §13.2.2.

Exercise 7.3.11. If C1, . . .CN ⊂ Σ are disjoint, with respective
centralizing one-parameter subgroups then the corresponding flows on
Hom(π,G) commute.

More generally, suppose C = C1 t · · · t CN is a multicurve, that
is, a disjoint union of simple closed curves. Then Exercise 7.3.11 im-
plies the above operation can be performed along each of the curves Ci
independently, obtaining an RN -action.

Furthermore every Inn(G)-invariant function G
f−−→ R defines an

Inn(G)-invariant function

Hom(π,G)
fC−−→ R(30)

ρ 7−→
N∑

i=1

f ◦ ρ(ci)

where ci ∈ π corresponds to Ci.

Exercise 7.3.12. Show that the formula (30) is well-defined, that
is, is independent of the elements ci in the fundamental group.

7.4. Fenchel-Nielsen coordinates on Fricke space

For a more detailed account, see Abikoff [2], Hubbard [154] or
Farb-Margalit [100].

The Fenchel-Nielsen parametrization of F(Σ) begins with the choice
of a pants decomposition, that is, a decomposition into three-holed
spheres along a multicurve C as above.

Exercise 7.4.1. Show that if Σ is a closed orientable surface of
genus g > 1, then N = 3g − 3.
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In a sequence of papers, Wolpert [287, 288, 289, 290] initiated
the study of the symplectic geometry of F(Σ). In particular he studied
the twist flows and showed they were Hamiltonian flows for geodesic
length functions. These were put into the more general context in
Goldman[118, 119]. When applied to the geodesic length function of
a pants decomposition P (as in (30), one obtains a map

(31) F(Σ)
`P−−→ R+N .

Exercise 7.4.2. This map is a principal RN -fibration, where the
fiber action is defined by the Fenchel-Nielsen earthquakes along the Ci.
Furthermore, giving F(Σ) the Weil-Petersson symplectic structure, this
RN -action is a Hamiltonian action and with momentum mapping (31).

It follows that the Fenchel-Nielsen earthquake flow defines a completely
integrable Hamiltonian system ([289].

More generally Wolpert [290] showed that the length functions
`1, . . . , `N are part of a global Darboux coordinate system

(`1, . . . , `N , τ1, . . . , τN) ∈ (R+)N × RN

on the symplectic manifold
(
F(Σ), ωWP

)
:

ωWP =
N∑

i=1

d`i ∧ dτi.

The choice of the twist coordinates τi is not as natural as the length
coordinates `P : they involve a choice of section s of the mapping `P .
This section corresponds to when all the τi = 0.

The Fenchel-Nielsen section arises from the decomposition corre-
sponding to P ] as follows. The hyperbolic surfaces M decomposies into
2g − 2 pairs-of-pants Pj (where j = 1, . . . , 2g − 2). Furthermore ∂Pj
consists of closed geodesics

∂Pj = ∂1Pj t ∂2Pj t ∂3Pj

where each boundary component is one of the Ci (for i = 1, . . . , 3g−3):

∂kPj = Ci(j,k)

for k = 1, 2, 3.
Each Pj decomposes into two right-angled hexagons 7+

j ∪7−j ; indeed
each pants Pj is the double of a right-angled hexagon 7j.

Now fix a collection of lengths

` = (`1, . . . , `3g−3) ∈ (R+)3g−3.
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The Fenchel-Nielsen section is a marked hyperbolic surface with the
given length parameters `. Specifically, choose right-angled hexagons
71, . . . ,73g−3 with alternate triples of edge-lengths

`
(1)
i

2
,
`

(2)
i

2
,
`

(3)
i

2
for i = 1, . . . , 3g − 3.

Exercise 7.4.3. Find other sections to `P .

Exercise 7.4.4. A Dehn twist about a simple closed curve c ⊂ Σ
is a homeomorphism Σ → Σ supported on a tubular neighborhood of
c. Define a group of homeomorphisms Z3g−3 preserving P genereated
by Dehn twists and describe its action on Fenchel-Niesen coordinates.
Describe the action of a Dehn twist about a curve not in P in Fenchel-
Nielsen coordinates.

The following exercises are taken from [119] and will be used in
§13.2.2. Choose an Ad-invariant nondegenerate symmetric bilinear
form 〈, 〉 on the Lie algebra g of G. Choose an orientation on Σ as
well.

Exercise 7.4.5. Suppose that G
f−−→ R is a smooth Inn(G)-invariant

function. Define a function G
F−−→ R by:

〈F (x), Y 〉 =
d

dt

∣∣∣
t=0
f
(
(x exp(tY )

)

for all Y ∈ g.

• Show that F is G-equivariant with respect to the action Inn of
inner automorphisms on G and the adjoint representation Ad
of G on g.
• If x ∈ G, show that F (x) lies in the infinitesimal centralizer of
x. In partciular the one-parameter subgroup exp

(
tF (x)

)
lies

in the centralizer Zx < G of x.

We call F the variation function associated to f .
Now let c ∈ π1(M) and define a function fc on Hom(π,G) as in (30)

with N = 1. Generalizing Wolpert’s theorem [288] that the Fenchel-
Nielsen earthquake flow is the Hamiltonian flow for the geodesic length
function is the following description of the Hamiltonian flow of fc:

Exercise 7.4.6. Suppose that C is a simple closed curve on M and
let c be an element of π1(M) corresponding to C. Let

zt := exp
(
tF
(
ρ(c)

)

be the corresponding path in the centralizer of ρ(c).
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• Suppose first that C separates Σ into subsurfaces Σ1,Σ2 as in
§7.3.2. Then (29) describes a flow on Hom(π,G) which leaves
the function fC invariant.
• Suppose that M |C is connected. Describe the corresponding

flow.

In the case of the Fricke component F(Σ) ⊂ Hom(π,G)/G), every rep-
resentation ρ with [ρ] ∈ F(Σ) has the property that ρ(c) is hyperbolic
∀c ∈ π \ {1}. Denote the open subset of hyperbolic elements of G by
Hyp and use the invariant function:

Hyp
`−→ R+(32)

±
[
el/2 0
0 e−l/2

]
7−→ l

Exercise 7.4.7. Using the trace form on sl(2,R) as the Ad-invariant
inner product, show that the corresponding variation function for ` is
the function

±
[
el/2 0
0 e−l/2

]
L7−−→
[
1/2 0
0 −l/2

]
.

The correspoding one-parameter subgroups zt consists of transvections
along Axis(A) diplacing points on Axis(A) by distance t. In particular
A itself equals z`(A).

When c corresponds to a simple closed curve C ⊂ Σ, then `c is the
function on F(Σ) mapping a marked hyperbolic structure on Σ to the
length of the unique closed geodesic homotopic to C. The corresponding
flow is the Fenchel-Nielsen earthquake flow along C.

7.5. Open manifolds

The classification of (G,X)-structures on open manifolds is quite
different than on closed manifolds. Indeed the classification is a rel-
atively elementary special case of Gromov’s h-principle [138], which
extends the Smale-Hirsch theory of immersions. In particular the ex-
istence reduces to homotopy theory, and the effective classification
uses a weaker equivalence relation. For a simple example, the (G,X)-
structures on a disc Dn (for n > 1) correspond to immersions D2 # X,
and the quotient by isotopy is still an infinite-dimensional space. A
more suggestive equivalence relation is modeled on regular homotopy
whereby regular homotopy classes are classified by homotopy classes
of sections of a natural fiber bundle. Without extra assumptions —
the most notable being completeness — the developing maps are in-
tractable and can by highly pathological.
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Constructing incomplete geometric structures on noncompact man-

ifolds M is easy. Take any immersion M
f−−→ X which is not bijective;

then f induces an (G,X)-structure on M . If M is parallelizable, then
such an immersion always exists (Hirsch [149]).

More generally, let π
h−−→ G be a representation. If the associated

flat (G,X)-bundle E −→ X possesses a section M
s−→ E whose normal

bundle is isomorphic to TM , then an (G,X)-structure exists having
holonomy h. This follows from the extremely general h-principle of
Gromov [138] (see Haefliger [144] or Eliashberg-Mishachev [98], for
example).

Here is how it plays out in dimension two. First of all, every ori-
entable noncompact surface admits an immersion into R2 and such an

 

Figure 7.1. Immersions of a one-holed torus into the
plane and the sphere.

 
Figure 7.2. Development of one-holed torus with ho-
lonomy generated by translation
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immersion determines an affine structure with trivial holonomy. Im-
mersions can be classified up to crude relation of regular homotopy, al-
though the isotopy classification of immersions of noncompact surfaces

seems forbiddingly complicated. Furthermore suppose π
h−−→ Aff(E) is

a homomorphism such that the character

π
det ◦ L ◦ h−−−−−−→ Z/2

equals the first Stiefel-Whitney class. That is, suppose its kernel is
the subgroup of π corresponding to the orientable double covering of
M . Then M admits an affine structure with holonomy h. Classifying
general geometric structures on noncompact manifolds without extra
geometric hypotheses seems hopeless under anything but the crudest
equivalence relations.

Constructing incomplete geometric structures on compact mani-
folds is much harder. Indeed for certain geometries (G,X), there exist
closed manifolds for which every (G,X)-structure on M is complete.
As a trivial example, if X is compact and M is a closed manifold with
finite fundamental group, then Theorem 5.2.2 implies every (G,X)-
structure is complete. As a less trivial example, if M is a closed man-
ifold whose fundamental group contains a nilpotent subgroup of finite
index and whose first Betti number equals one, then every affine struc-
ture on M is complete (see Fried-Goldman-Hirsch [111]). Compare the
discussion of Markus’s question about the relation of parallel volume
to completeness in §11.





CHAPTER 8

Completeness

In many important cases the developing map is a diffeomorphism

M̃ −→ X, or at least a covering map onto its image. In particular if
π1(X) = {e}, such structures are quotient structures:

M ∼= Γ\X
We also call such quotient structures tame. This chapter develops
criteria for taming the developing map.

Many important geometric structures are modeled on homogeneous
Riemannian manifolds. These structures determine Riemannian struc-
tures, which are locally homogeneous metric spaces. For these struc-
tures, completeness of the metric space will tame the developing map.

Although it is not completely necessary, this closely relates to geo-
desic completeness of the associated Levi-Civita connection. The key
tool is the Hopf-Rinow theorem: Geodesic completeness (of the Levi-
Civita connection ) is equivalent to completeness of the associated met-
ric space. In particular compact Riemannian manifolds are geodesically
complete. Many Ehresmann structures have natural Riemannian struc-
tures whose completeness tames of the developing map. In particular
such structures are quotient structures as above.

After giving some general remarks on the developing map, its rela-
tion to the exponential map (for affine connections), we describe all the
complete affine structures on T 2. The chapter ends with a discussion
of incomplete affine structures on T 2, and a general discussion of the
most important incomplete examples — Hopf manifolds, which were
introduced in §6.4 of Chapter 6.

8.1. Locally homogeneous Riemannian manifolds

Suppose (G,X) is a Riemannian homogeneous space, that is, X
possesses a G-invariant Riemannian metric gX . Equivalently, X =
G/H where the isotropy group H is compact. Precisely, the image of
the adjoint representation Ad(H) ⊂ GL(g) is compact.

Exercise 8.1.1. Prove that these two conditions on the homoge-
neous space (G,X)are equivalent.

183
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If (G,X) is a Riemannian homogeneous space, then every (G,X)-
manifold M inherits a Riemannian metric locally isometric to gX . We
say that M is complete if such a metric is geodesically complete.

Exercise 8.1.2. Prove that this notion of completeness is indepen-
dent of the G-invariant Riemannian structure gX on X.

8.1.1. Complete locally homogeneous Riemannian mani-
folds. We use the following consequence of the Hopf-Rinow theorem
from Riemannian geometry: Geodesic completeness of a Riemannian
structure (the complete extendability of geodesics) is equivalent to the
completeness of the corresponding metric space (convergence of Cauchy
sequences). (Compare do Carmo [87], Kobayashi-Nomizu [181],
Lee [200], Milnor [222], O’Neill [230], or Papadopoulos [232].) Our
application to geometric structures is that a local isometry from a com-
plete Riemannian manifold is a covering space.

Recall our standard notation from Chapter 5: M is a (G,X)-

manifold with universal covering space M̃
Π−→ M ; denote by π the

associated fundamental group, and (dev, hol) a development pair.

Proposition 8.1.3. Let (G,X) be a Riemannian homogeneous space.
Suppose that X is simply connected. Let M be a complete (G,X)-
manifold. Then:

• M̃ dev−−−→ X is a diffeomorphism;

• π hol−−−→ G is an isomorphism of π onto a cocompact discrete
subgroup Γ ⊂ G.

Corollary 8.1.4. Let (G,X)be a Riemannian homogeneous space,
where X is simply connected, and let M be a compact (G,X)-manifold.
Then the holonomy group Γ ⊂ G is a discrete subgroup which acts
properly and freely on X and M is isomorphic to the quotient X/Γ.

Proof of Corollary 8.1.4 assuming Proposition 8.1.3.
Since (G,X)is a Riemannian homogeneous, M inherits a Riemannian
structure locally isometric to X. Since M is compact, this Riemannian
structure is complete. Now apply Proposition 8.1.3. �

Proof of Proposition 8.1.3. The Riemannian metric

g̃ = dev∗gX

on M̃ is invariant under the group of deck transformations π1(M) of M̃
and hence there is a Riemannian metric gM on M such that Π∗gM = g̃.
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By assumption the metric gM on M is complete and so is the metric g̃

on M̃ . By construction,

(M̃, g̃)
dev−−−→ (X, gX)

is a local isometry. A local isometry from a complete Riemannian
manifold into a Riemannian manifold is necessarily a covering map

(Kobayashi-Nomizu [181]) so dev is a covering map of M̃ onto X.
Since X is simply connected, it follows that dev is a diffeomorphism.
Let Γ ⊂ G denote the image of h. Since dev is equivariant respecting
h, the action of π on X given by h is equivalent to the action of π by

deck transformations on M̃ . Thus h is faithful and its image Γ is a
discrete subgroup of G acting properly and freely on X. Furthermore
dev defines a diffeomorphism

M = M̃/π −→ X/Γ.

�

When M is compact, more is true: X/Γ is compact (and Hausdorff).
Since the fibration G −→ G/H = X is proper, the homogeneous space
Γ\G is compact, that is, Γ is cocompact in G.

One may paraphrase the above observation abstractly as follows.
Let (G,X) be a Riemannian homogeneous space. Then there is an
equivalence of categories:

{
Compact (G,X)-manifolds/maps

}
⇐⇒

{
Discrete cocompact subgroups of G acting freely on X

}

where the morphisms in the latter category are inclusions of subgroups
composed with inner automorphisms of G). (Equivalences of categories
are discussed in §A.3.)

8.1.2. Topological rigidity of complete structures. We say

that a (G,X)-manifold M is complete if M̃
dev−−−→ X is a diffeomor-

phism. 1 A (G,X)-manifold M is complete if and only if its universal

covering M̃ is (G,X)-isomorphic to X, that is, if M is isomorphic to
the quotient X/Γ (at least if X is simply connected). Note that if
(G,X)is contained in (G′, X ′)in the sense of §5.2.3 and X 6= X ′, then
a complete (G,X)-manifold is never complete as an (G′, X ′)-manifold.

Here is an interesting characterization of completeness using ele-
mentary properties of developing maps.

1or a covering map if we don’t insist that X be simply connected
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Exercise 8.1.5. Let (G,X)be a (not necessarily Riemannian) ho-
mogeneous space and X be simply connected. Let M be a closed (G,X)-
manifold with developing pair (dev, hol). Show that M is complete if

and only if the holonomy representation π
hol−−−→ G is an isomorphism

of π onto a discrete subgroup of G which acts properly and freely on X.
Find a counterexample when M is not assumed to be closed.

8.1.3. Euclidean manifolds. Euclidean structures on closed man-
ifolds provide an important example of this. Namely, En s a Riemann-
ian homogeneous space whose isometry group Isom(En) acts properly
with isotropy group the orthogonal group O(n). As above, Euclidean
structures on closed manifolds identify with lattices Γ ⊂ Isom(En).
This class of geometric structures forms the intersection of flat affine
structures and locally homogeneous Riemannian structures.

Exercise 8.1.6. Let E be a Euclidean space with underlying vector
space V = Trans(E). Then every closed

(
Trans(E),E

)
-manifold M is a

quotient Λ\V, where Λ < V is a lattice, that is, M is a flat torus in the
sense of §5.4.1.

Since Trans(E) < Isom(E), every such structure is a Euclidean struc-
ture. Remarkably, every closed Euclidean manifold is finitely covered
by a flat torus:

Theorem 8.1.7 ((Bieberbach). Let Mn be a closed Euclidean man-
ifold with affine holonomy group Γ < Isom(En). Then Mn ∼= Γ\En is
complete. Furthermore the translation subgroup Γ ∩ Rn is a lattice in
Rn and the quotient projection Λ\En �M is a finite covering space.

Euclidean structures identify with the more traditional notion of
flat Riemannian structures.

8.2. Affine structures and connections

We have seen that a G-invariant metric on X is a powerful tool in
classifying (G,X)-structures. However, without this extra structure,
many pathological developing maps may arise, even on closed mani-
folds. In this section we discuss the notion of completeness for affine
structures, for which the lack of an invariant metric leads to fascinat-
ing phenomena. The simplest example of a compact incomplete affine
structure is a Hopf manifold, for which the 1-dimensional case was
discussed in §5.4.2 and the general case in §6.4.

Just as Euclidean structures are flat Riemannian structures, general
Ehresmann structures can be characterized in terms of more general
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differential-geometric objects. Affine structures are then affine connec-
tions ∇ which are locally equivalent to the affine connection ∇A on a
model affine space A. This is equivalent to the vanishing of both the
curvature tensor and the torsion tensor of ∇. Thus affine structures are
flat torsionfree affine connections. Such a connection is the Levi-Civita
connection for a Euclidean structure, and the Euclidean structure can
be recast as an affine structure with parallel Riemannian structure, as
described in §1.4.1.

8.3. Completeness and convexity of affine connections

A more traditional proof of Proposition 8.1.3 uses the theory of
geodesics. Geodesics are curves with zero acceleration, where accelea-
ration of a smooth curve is defined in terms of an affine connection,
which is just a connection on the tangent bundle of a smooth manifold.
Connections appear twice in our applications: first, as Levi-Civita con-
nections for Riemannian homogeneous spaces, and second, for flat affine
structures. These contexts meet in the setting of Euclidean manifolds.

After we briefly review the standard theory of affine connections
and the geodesic flow, we discuss the theorem of Auslander-Markus
characterizing complete affine structures. Then we discuss the closely
related notion of geodesic convexity and prove Koszul’s theorem relat-
ing convexity to the developing map.

8.3.1. Review of affine connections. Suppose thatM is a smooth
manifold with an affine connection ∇. Let p ∈ M be a point and
v ∈ TpM a tangent vector. Then

∃a, b ∈ R ∪ {±∞}
such that

−∞ ≤ a < 0 < b ≤ ∞
and a geodesic γ(t), defined for a < t < b, with γ(0) = p and γ′(0) = v.
We call (p,v) the initial conditions. Furthermore γ is unique in the
sense that two such γ agree on their common interval of intersection.
We may choose the interval (a, b) to be maximal. When b = ∞ (re-
spectively a = −∞), the geodesic is forwards complete (respectively
backwards complete). A geodesic is complete if and only if it is both
forwards and backwards complete. In that case γ is defined on all of
R. We say (M,∇) is geodesically complete if and only if every geodesic
extends to a complete geodesic.

If γ is a geodesic with initial condition (p,v) ∈ TM , then we write

γ(t) = Exp(tv)



188 8. COMPLETENESS

in light of the uniqueness remarks above. For further clarification, we
make the following definition:

Definition 8.3.1. The exponential domain E ⊂ TM is the largest
open subset of TM upon which Exp is defined. For p ∈ M , write
Ep := E ∩ TpM and Expp := Exp|Ep.

• E contains the zero-section 0M of TM .
• Ep is star-shaped about 0p, that is, if v ∈ Ep and 0 ≤ t < 1,

then tv ∈ Ep.
• The set of all t ∈ R such that tv ∈ Ep is an open interval

(av, bv) ⊂ R
⊔
{−∞,+∞}

containing 0, and

(av, bv) −→M

t 7−→ Expp(tv)

is a maximal geodesic.
• This maximal geodesic is complete if and only if (av, bv) =

(−∞,+∞).

(M,∇) is geodesically complete if and only if E = TM . Then

(p,v)
Φt−−→

(
Expp(tv),

d

dt
Expp(tv)

)

defines a flow (that is, an additive R-action) on TM , called the geodesic
flow of (M,∇). The velocity vector

d

dt
Expp(tv)

is the image of v under parallel translation along the geodesic Expp|[0,t].

Exercise 8.3.2. Suppose that M is connected, and ∇ is an affine
connection on M . Let p ∈ M . Then (M,∇) is complete if and only
if Ep = Tp(M).

Definition 8.3.3. Let (M,∇) be a manifold with an affine connec-
tion, and let x, y ∈M . Then y is visible from x if and only if a geodesic
joins x to y. Equivalently, y lies in the image Expx(Ex). Evidently y
is visible from x if and only if x is visible from y. We say that y is
invisible from x if and only if y is not visible from x.

The following idea will be used later in §11.4 and §12.2.
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Exercise 8.3.4. Let M be an affine manifold and p ∈ M . Show
that the set M(p) of points in M visible from p is open in M . More
generally, let M be a projective manifold and p ∈ M . Show that the
union M(p) of geodesic segments beginning at p is open in M .

Exercise 8.3.5. Let M be a manifold with an affine connection.
For each p ∈M , show that the function

Tp(M) −→ R+ ∪ {∞}
Xp 7−→ sup

{
t ∈ R

∣∣ tXp ∈ Ep
}

is lower semicontinuous.

(For a discussion of semicontinuous functions, see §D.)
When the affine connection is flat, that is, arises from an affine

structure, the exponential map relates to the developing map as follows.

Proposition 8.3.6. Let M be an affine manifold with developing

map M
dev−−−→ A. Let p ∈M . Then the composition

Ep
Expp

//

dev ◦Expp

  
M

dev
// A

extends (uniquely) to an affine isomorphism TpM
Ap−−−→ A: that is, the

following diagram

(33) Ep
Expp

��

� � // TxM

Ap
��

M
dev

// A

commutes.

Exercise 8.3.7. Prove Proposition 8.3.6 .

Exercise 8.3.8. Relate the parallel transport along a path x
γ
 y

to the composition

TxM
A−1
y ◦Ax−−−−−−→ TyM.
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8.3.2. Geodesic completeness and the developing map. Re-
call from Chapter 1 that geodesics —- curves in A with zero acceleration
— are curves in Euclidean space travelling along straight lines at con-
stant speed. Of course, in affine geometry, the speed doesn’t make
sense, which is why we prefer to characterize geodesics by accelera-
tion. A fundamental result of Auslander-Markus [8] is that geodesic
completeness of affine manifolds is equivalent to the bijectivity of the
developing map.

Theorem 8.3.9 (Auslander-Markus [8]). Let M be an affine mani-

fold, with a developing map M̃
dev−−−→ A. Then dev is an isomorphism if

and only if M is geodesically complete. That is, the following two con-
ditions are equivalent:

• M is a quotient of affine space by a discrete subgroup Γ ⊂
Aff(A) acting properly on A;
• A particle on M moving at constant speed in a straight line

will continue indefinitely.

Clearly if M is geodesically complete, so is its universal covering M̃ .
Hence we may assume M is simply connected. Let p ∈ M . If M is
complete, then Expp is defined on all of TpM and

TpM
(Ddev)p−−−−−→ Tdev(p)A

Exp

y
yExp

M −−−→
dev

A

commutes. Since the vertical arrows and the top horizontal arrows are

bijective, M
dev−−−→ A is bijective.

The other direction is a corollary of the following basic result (see
also Kobayashi [179], Proposition 4.9, Shima [250], Thorem 8.1):

Theorem 8.3.10 (Koszul [186]). Let M be an affine manifold and
p ∈ M . Suppose that the domain Ep ⊂ TpM of the exponential map

Expp is convex. Then M̃
dev−−−→ A is a diffeomorphism of M̃ onto the

open subset

Ωp := Expp(Ep) ⊂ A

Proof of Theorem 8.3.10. Clearly we may assume that M is

simply connected, so that M̃
dev−−−→ A is defined.

Lemma 8.3.11. The image Expp(Ep) = M .
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Proof of Lemma 8.3.11. Ep ⊂ TpM is open and Expp is an open
map, so the image Expp(Ep) is open. Since M is assumed to be con-
nected, we show that Expp(Ep) is closed.

Let q ∈ Expp(Ep) ⊂ M . Since M is simply connected, Expp maps

Ep bijectively onto Expp(Ep). Since q ∈ Expp(Ep), there exists v ∈ TpM
such that

lim
t→1

Expp(tv) = q.

Since the star-shaped open subset Ep ⊂ TpM is convex, tv ∈ Ep for
0 ≤ t < 1. We want to show that v ∈ Ep and Expp(v) = q.

Let Wv 3 v be a convex open neighborhood of v in TpM , such that
its parallel translate

W ′ := Pp,q(W ) ⊂ TqM

lies in Eq. Then Eq ∩W ′ is nonempty. Furthermore, ∃t1 > 0 so that
Expq(Eq ∩W ′) contains Expp(tv) for t1 ≤ t < 1. Let p1 := Expp(t1v)
and v1 := Pp,p1(v). Then

Expp(tv) = Expp1

(
(t− t1)v1

)

for t1 ≤ t < 1 extends to t = 1, proving that v ∈ Ep and Expp(v) = q
as desired. �

Now we conclude the proof of Theorem 8.3.10: By the commutativity
of (33),

TpM
(Ddev)p

∼=
// Tdev(p)A

Ep
Expp

��

� ?

OO

(Ddev)p

∼=
// (Ddev)p(Ep)

� ?

OO

Ap
��

M
dev

// A

commutes, where the first vertical arrows are inclusions. By the pre-
vious argument (now applied to the subset Ep ⊂ TpM) the developing
map dev is injective. However, Lemma 8.3.11 implies that Expp(Ep) =
M and thus dev(M) = Ω. �

Exercise 8.3.12. Find an example of a closed affine manifold M
such that for every point x ∈ M , the restriction of dev to the closure
Expx(Ex) is not injective.

More properties of the exponential map, including criteria for in-
completenesss, are discussed in Chapter 12,§ 12.3.
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8.4. Unipotent holonomy

Theorem 8.4.1 (Fried-Goldman-Hirsch [111], Theorem 8.4(a)).
Let M be a closed affine manifold whose affine holonomy is unipotent.
Then M is complete.

Conversely, under the assumption that the affine holonomy group is
a nilpotent group, completeness is equivalent to unipotent holonomy.
See [111].

Proof. Choose a basepoint p0 ∈ M and let M̃
Π−−→ M be the

corresponding universal covering space; let p̃0 be a basepoint in M̃ with
Π(p̃0 = p0. Choose an origin 0 to identify An with the vector space

Rn, and choose a developing map M̃
dev−−−→ Rn such that dev(p̃0) = 0.

Let h be the correspondng affine holonomy representation and let Γ :=
h
(
π1(M)

)
the affine holonomy group.

Supppose the linear holonomy group L(Γ) < GL(n,R) is unipotent.
Then L(Γ) is upper-triangular with respect to some basis of Rn. That
is, L(Γ) preserves a complete linear flag

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Rn

where dim(Fk) = k. Furthermore the induced action on Fk/Fk−1 is triv-
ial. Thus the restriction L(Γ)|Fk preserves a nonzero linear functional

Fk
lk−−→ R with kernel Fk−1. (See, for example, Humphreys [155].)

This invariant flag determines a family of parallel fields Fk ⊂ TM of
k-planes on M , for each 0 ≤ k ≤ n. Evidently each Fk is integrable, and
the leaves are totally geodesic affine submanifolds of M . Furthermore
lk determines parallel 1-forms ωk on the leaves of Fk vanishing on Fk−1.
A partition of unity on M enables the construction of vector fields
φk ∈ Vec(M) such that:

• (φk)p ∈ Fk(p) for each p ∈M ,
• ωk(φk) = 1 on each leaf of Fk.

Since M is closed, each φk integrates to a smooth flow on M . Since
(φk)p ∈ Fk(p), the flow preserves each leaf of Fk.

Lift each vector field φk to a vector field φ̃ ∈ Vec(M̃). Then for

each p̃ ∈ M̃ ,

(Ddev)p̃
(
φk(p̃)

)
∈ Fk.
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Since φk integrates to a smooth flow on M , its lift φ̃ ∈ Vec(M̃) inte-

grates to a smooth flow Φ̃k on M̃ :

R× M̃ −→ M̃

(t, p̃) 7−→ Φ̃k(t)(p̃)

Furthermore, ∀t ∈ R, x ∈ M̃ ,

lk
(
dev ◦ Φ̃k(t)

)
(x) = lk

(
dev(x)

)
+ t.

We first show that dev is onto; for any v ∈ Rn ←→ An, we find

p̃n ∈ M̃ with dev(p̃n) = v. We proceed, inductively by finding a
sequence p̃0, . . . , p̃k (for k ≤ n), beginning at the basepoint p̃0, and by
flowing p̃k along Φn−k for time tn−k+1 to p̃k+1, eventually ending at p̃n.

To begin the induction (at k = 0), define tn := ln(v). Then the

restriction Φ̃n|[0,tn](p̃0) is a geodesic path

p̃0  p̃1 := Φ̃n(tn)(p̃0)

in M̃ . The vector dev(p̃1) ∈ Rn satisfies ln
(
dev(p̃1)

)
= tn = ln(v), and

thus lies in v + Fn−1.
Inductively suppose:

• p̃k ∈ M̃ ;
• The vector dev(p̃k) lies in v + Fn−k.

Join p̃k to p̃k+1 ∈ M̃ with dev(p̃k+1) ∈ v + Fn−k. To this end, define

tn−k := ln−k
(
v − dev(p̃k)

)
.

Then the restriction Φ̃n−k|[0,tn−k](p̃k) is a geodesic path

p̃k  p̃k+1 := Φ̃n−k(tn−k)(p̃k)

Since ln−k
(
dev(p̃k+1)− dev(p̃k)

)
= tn−k,

dev(p̃k+1) ∈ v + Fn−k−1.

Continue this induction until k = n− 1, when

dev(p̃n) ∈ v + F0 = {v}
so dev(p̃n) = v, as claimed.

Next we prove injectivity.

Suppose [a, b]
γ̃−−→ M̃ is a path such that dev

(
γ̃(a)

)
= dev

(
γ̃(b)

)
.

We may assume that γ̃ is a loop based at p̃0, that is, γ̃(a) = p̃0, and
we continue to assume dev(p̃0) = 0. We shall prove that γ̃(b) = p̃0 by
induction on k = 0, . . . , n− 1. We assume that γ̃k is a path

γ̃k(a) = p̃0  γ̃k(b) = γ̃(b)
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with velocity (γ̃k)
′(t) ∈ Fn−k.

Begin the induction (k = 0) with γ̃0 = γ̃. Suppose, inductively, for

k = 0, . . . , n − 1 that γ̃k is a path as above. Applying the flow Φ̃k(s)
to the path γ̃k(t),

lk ◦ dev
(
Φ̃k(s)

(
γ̃k(t)

)
= lk ◦ dev

(
γ̃k(t)

)
+ s

implies

γ̃k+1(t) := Φ̃k

(
σ(t)

)(
γ̃k(t)

)
,

where

σ(t) := −
∫ t

0

lk
(
(dev ◦ γ̃k)′(s)

)
ds,

is a path satisfying the desired properties. Thus γ̃ is relatively homo-
topic to γ̃k for k = 1, . . . , n. At the final stage (k = n),

(γ̃n)′(t) ∈ F0 = 0,

γ̃n is constant, proving that γ̃(b) = p̃0 as desired. The proof of Theo-
rem 8.4.1 is now complete. �

Fried [108] proves the following generalization of Theorem 8.4.1:

Theorem 8.4.2. Suppose that M is a closed affine manifold whose
linear holonomy preserves a flag

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = Rn

and acts orthogonally on each quotient Fs/Fs−1. Then M is complete.

Indeed, M is finitely covered by a complete affine nilmanifold. The
hypothesis is equivalent to the distality of the affine holonomy; see
[108] for further details.

8.5. Complete affine structures on the 2-torus

The compact complete affine 1-manifold R/Z is unique up to affine
isomorphism. Its Cartesian square R/Z×R/Z is a Euclidean structure
on the two-torus, unique up to affine isomorphism. In this section we
shall describe all other complete affine structures on the two-torus and
show that they are parametrized by the plane R2.

These structures were first discussed by Kuiper [191]; compare also
Baues [23, 22] and Baues-Goldman [191].

Theorem 8.5.1 (Baues [22]). The deformation space of marked
complete affine structures on T 2 is homeomorphic to R2.
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Indeed, changing the marking corresponds to the action of the map-
ping class group of T 2, which is naturally isomorphic to GL(2,Z), on
the deformation space. This action identifies with the usual linear ac-
tion of GL(2,Z) on the vector space R2. The dynamics of this action
is very complicated — it is ergodic with respect to Lebesgue measure
(which is invariant but infinite) — but the union of its discrete or-
bits is dense. Its quotient GL(2,Z)\R2 is an intractable non-Hausdorff
space. In contrast, GL(2,Z) acts properly on the deformation space
of marked Euclidean structures on the torus, which identifies with the
homogeneous space GL(2,R)/O(2). (Compare §7.1.2.)

We begin by considering the one-parameter family of (quadratic)
diffeomorphisms of the affine plane A2 defined by

φr(x, y) = (x+ ry2, y)

Since φr ◦ φs = φr+s, the maps φr and φ−r are mutually inverse. If

u = (s, t) ∈ R2 we denote translation by v as A
τv−−→ A. Conjugation

of the translation τu) by φr yields the affine transformation

αr(u) = φr ◦ τu ◦ φ−r =

[
1 2rt s+ rt2

0 1 t

]

and

R2 αr−−→ Aff(A)

defines a simply transitive affine action. (Compare [110], §1.19].) If
Λ ⊂ R2 is a lattice, then A/αr(Λ) is a compact complete affine 2-
manifold M = M(r; Λ) diffeomorphic to a 2-torus.

The parallel 1-form dy defines a parallel 1-form η on M and its
cohomology class

[η] ∈ H1(M ;R)

is a well-defined invariant of the affine structure up to scalar multipli-
cation. In general, M will have no closed geodesics. If γ ⊂ M is a
closed geodesic, then it must be a trajectory of the vector field on M
arising from the parallel vector field ∂/∂x on A; then γ is closed if and
only if the intersection of the lattice Λ ⊂ R2 with the line R⊕{0} ⊂ R2

is nonzero.
To classify these manifolds, note that the normalizer of Gr = αr(R2)

equals {[
µ2 a
0 µ

] ∣∣∣∣ µ ∈ R×, a ∈ R
}
·Gr

which acts on Gr conjugating

αr(s, t) 7→ αr(µ
2s+ at, µt)
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Let

N =

{[
µ2 a
0 µ

] ∣∣∣∣µ ∈ R×, a ∈ R
}

;

then the space of affine isomorphism classes of these tori may be iden-
tified with the homogeneous space GL(2,R)/N which is topologically
R2−{0}. The groupsGr are all conjugate and as r −→ 0, each represen-
tation αr|π converges to an embedding of π as a lattice of translations
R2 −→ R2. It follows that the deformation space of complete affine
structures on T 2 form a space which is the union of R2 \ {0} with a
point O (representing the Euclidean structure) which is in the closure
of every other structure.

These structures generalize to left-invariant affine structures on Lie
groups, which form a rich and interesting algebraic theory, which will be
discussed in §10. Many (but not all) closed affine 2-manifolds arise from
invariant affine structures on T 2 just as many (but not all) projective
1-manifolds arise from invariant projective structures on T 1 (see §5.4).

We briefly summarize this more general point of view, referring to
§10.2 for further details.

Exercise 8.5.2. Let a be a 2-dimensional commutative associative
R-algebra and let Λ < a be a lattice.

• Adjoin a (two-sided) identity element 1 to a to define a 3-
dimensional commutative associative R-algebra with unit:

a′ := a⊕ R1

Let G be the (commutative) group of invertible elements in the
multiplicatively closed affine plane A := a ⊕ 1. Then G acts
locally simply transitively (or étale) on A, and G inherits an
invariant affine structure.
• If a is nilpotent, then a3 = 0. Then every element of the affine

plane A is invertible and G = A.
• Continue to assume that a is nilpotent. The quotient Lie group
M := Λ\G inherits a complete affine structure, and every ori-
entable complete affine 2-manifold arises in this way.
• There are two isomorphism classes of nilpotent algebras a, de-

pending on whether a2 = 0 or a2 6= 0.

We call complete affine 2-tori M arising from a pair (a,Λ) Euclidean
if a2 = 0 (in which case M is a flat (Euclidean) torus; otherwise we call
M non-Riemannian.



8.5. STRUCTURES ON THE 2-TORUS 197

Figure 8.1. Tilings corresponding to some complete
affine structures on the 2-torus. The second picture
depicts a complete non-Riemannian deformation where
the affine holonomy contains no nontrivial horizontal
translation. The corresponding torus contains no closed
geodesics.
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Exercise 8.5.3. Let S3
Q be the rational homology 3-sphere con-

structed in Exercise 6.2.3.1. Prove that every affine structure on S3
Q is

complete.

8.6. Complete affine manifolds

This section describes the general theory of complete affine struc-
tures; compare §5.4.1 of Chapter 5 and § 8.5 of Chapter 8 for the spe-
cific cases of the circle and the two-torus, respectively. The model for
the classification is Bieberbach’s theorem that every closed Euclidean
manifold M is finitely covered by a flat torus: that is, M is a quotient
of An by a lattice of translations. (An excellent general reference for
this classification of Euclidean manifolds and the algebraic theory of
their fundaamental groups is Charlap [63]. )

For complete affine structures on closed manifolds, the conjectural
picture replaces the simply transitive group of translations by a more
general simply transitive group G of affine transformations, such as the
group

G = αr(R2) ⊂ Aff(A2)

of § 8.5. This statement had been claimed by Auslander [10] but the
his proof was flawed. The ideas were clarified in Milnor’s wonderful
paper [225] and Fried-Goldman [110], which classifies complete affine
structures on closed 3-manifolds. (Compare §15.2 of Chapter 15.) Mil-
nor observed that Auslander’s claim was equivalent to the amenability
of the fundamental group. He asked whether the fundamental group of
any complete manifold (possibly noncompact) must be amenable; this
is equivalent by Tits’s theorem [268] to whether a two-generator free
group can act properly and affinely.

In the late 1970’s, Margulis proved that such group actions do exist;
compare §15.3 of Chapter 15.

8.6.1. The Bieberbach theorems. In 1911-1912 Bieberbach found
a general group-theoretic criterion for such groups in arbitrary dimen-
sion. In modern parlance, Γ is a lattice in Isom(En), that is, a discrete
cocompact subgroup. Furthermore Isom(En) decomposes as a semidi-
rect product RnnO(n) where Rn is the vector space of translations. In
particular every isometry g is a composition of a translation x 7−→ x+b
by a vector b ∈ Rn, with an orthogonal linear map A ∈ O(n):

(34) x
g7−−→ Ax+ b

We call A the linear part of g and denote it L(g) and b the translational
part of g, and denote it u(g). When A is only required to be linear,
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then g is affine. An affine automorphism is a Euclidean isometry if and
only if its linear part lies in O(n).
Bieberbach showed:

• Γ ∩ Rn is a lattice Λ ⊂ Rn;
• The quotient Γ/Λ is a finite group, mapped isomorphically

into O(n).
• Any isomorphism Γ1 −→ Γ2 between Euclidean crystallographic

groups Γ1,Γ2 ⊂ Isom(En) is induced by an affine automor-
phism En −→ En.
• There are only finitely many isomorphism classes of crystallo-

graphic subgroups of Isom(En).

A Euclidean manifold is a flat Riemannian manifold, that is, a Rie-
mannian manifold of zero curvature. A Euclidean manifold is complete
if the underlying metric space is complete, which by the Hopf-Rinow
theorem, is equivalent to the condition of geodesic completeness.

A torsionfree Euclidean crystallographic group Γ ⊂ Isom(En) acts
freely on En and the quotient En/Γ is a complete Euclidean manifold.
Conversely every complete Euclidean manifold is a quotient of En by
a crystallographic group. The geometric version of Bieberbach’s theo-
rems is:

• Every compact complete Euclidean manifold is a quotient of
a flat torus En/Λ (where Λ ⊂ Rn is a lattice of translations by
a finite group of isometries acting freely on En/Λ.
• Any homotopy equivalence M1 −→ M2 of compact complete

Euclidean manifolds is homotopic to an affine diffeomorphism.
• There are only finitely many affine isomorphism classes of com-

pact complete Euclidean manifolds in each dimension n.

8.6.2. Complete affine solvmanifolds. This gives a very satis-
factory qualitative picture of compact Euclidean manifolds, or, (essen-
tially) equivalently Euclidean crystallographic groups. Does a similar
picture hold for affine crystallographic groups, that is, for discrete sub-
groups Γ ⊂ Aff(An) which act properly on An?

Auslander and Markus [9] constructed examples of flat Lorentzian
crystallographic groups Γ in dimension 3, for which all three Bieberbach
theorems directly fail. In their examples, the quotient M3 = A3/Γ is
a flat Lorentzian manifold. Topologically these are all 2-torus bundles
over S1; conversely every torus bundle over the circle admits such a
structure.
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These examples arise from a more general construction: namely, Γ
embeds as a lattice in a closed Lie subgroup G ⊂ Aff(A) whose identity
component G0 acts simply transitively on A.

Furthermore Γ0 := Γ ∩G0 has finite index in Γ, so the flat Lorentz
manifold M3 is finitely covered by the homogeneous space G0/Γ0. Nec-
essarily G0 is simply connected solvable. The group G0 plays the role
of the translation group Rn and G is called the crystallographic hull in
Fried-Goldman [110].

A weaker version of this construction is the syndetic hull, defined
in [110], but known to H. Zassenhaus, H. C. Wang and L. Auslander.
(A good general reference for this theory is Raghunathan [238]).

If Γ ⊂ GL(n) is a solvable group, then a syndetic hull for Γ is a
subgroup G such that:

• Γ ⊂ G ⊂ A(Γ), where A(Γ) ⊂ GL(n) is the Zariski closure
(algebraic hull) of Γ in GL(n);
• G is a closed subgroup having finitely many connected com-

ponents;
• G/Γ is compact (although not necessarily Hausdorff).

The last condition is somewhat called syndetic, since “cocompact”
sometimes refers to a subgroup whose coset is space is compact and
Hausdorff. (This terminology is due to Gottschalk and Hedlund [135].)
Equivalently, Γ ⊂ G is syndetic if and only if ∃K ⊂ G which is compact
and meets every left coset gΓ, for g ∈ G. (Compare §A.2.)

Exercise 8.6.1. Find an example of an affine crystallographic group
with infinitely many syndetic hulls.

If M = Γ\A is a complete affine manifold, then Γ ⊂ Aff(A) is a
discrete subgroup acting properly and freely on A. However, in the
example above, 〈A〉 is a discrete subgroup which doesn’t act prop-
erly. A proper action of a discrete group is the usual notion of a
properly discontinuous action. If the action is also free (that is, no
fixed points), then the quotient is a (Hausdorff) smooth manifold, and
the quotient map A −→ Γ\A is a covering space. A properly discon-
tinuous action whose quotient is compact as well as Hausdorff is said
to be crystallographic, in analogy with the classical notion of a crys-
tallographic group: A Euclidean crystallographic group is a discrete
cocompact group of Euclidean isometries. Its quotient space is a Eu-
clidean orbifold. Since such groups act isometrically on metric spaces,
discreteness here does imply properness; this dramatically fails for more
general discrete groups of affine transformations.

L. Auslander [10] claimed to prove that the Euler characteristic van-
ishes for a compact complete affine manifold, but his proof was flawed.
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It rested upon the following question, which in [110], was demoted to
a “conjecture,” and is now known as the “Auslander Conjecture”:

Conjecture 8.6.2. Let M be a compact complete affine manifold.
Then π1(M) is virtually polycyclic.

In that case the affine holonomy group Γ ∼= π1(M) embeds in a closed
Lie subgroup G ⊂ Aff(A) satisfying:

• G has finitely many connected components;
• The identity component G0 acts simply transitively on A.

Then M = Γ\A admits a finite covering space M0 := Γ0\A where

Γ0 := Γ ∩G0.

The simply transitive action of G0 define a complete left-invariant
affine structure on G0 and the developing map is just the evalua-
tion map of this action. Necessarily G0 is a 1-connected solvable Lie
group and M0 is affinely isomorphic to the complete affine solvmanifold
Γ0\G0. In particular χ(M0) = 0 and thus χ(M) = 0.

This theorem is the natural extension of Bieberbach’s theorems de-
scribing the structure of flat Riemannian (or Euclidean) manifolds; see
Milnor [224] for an exposition of this theory and its historical impor-
tance. Every flat Riemannian manifold is finitely covered by a flat
torus, the quotient of A by a lattice of translations. In the more gen-
eral case, G0 plays the role of the group of translations of an affine
space and the solvmanifold M0 plays the role of the flat torus. The
importance of Conjecture 8.6.2 is that it would provide a detailed and
computable structure theory for compact complete affine manifolds.

Fried-Goldman [110] established Conjecture 8.6.2 in dimension 3.
The proof involves classifying the possible Zariski closures A

(
L(Γ)

)
of

the linear holonomy group inside GL(A). Goldman-Kamishima prove
Conjecture 8.6.2 for flat Lorentz manifolds. Grunewald-Margulis Con-
jecture 8.6.2 when the Levi component of L(Γ) lies in a real rank-one
subgroup of GL(A). See Tomanov Abels-Margulis-Soifer for further
results. The conjecture is now known in all dimensions ≤ 6 (Abels-
Margulis-Soifer
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CHAPTER 9

Affine structures on surfaces and the Euler
characteristic

One of our first goals is to classify affine structures on closed 2-
manifolds. As noted in §7.5, classification of structures on noncompact
manifolds is much different, and reduces to a homotopy-theoretic prob-
lem since the equivalence relation is much bigger.

The classification of closed affine 2-manifolds splits into two steps:
first is the basic result of Benzécri that a closed surface admits an affine
structure if and only if its Euler characteristic vanishes. From this it
follows that the affine holonomy group of a closed affine 2-manifold is
abelian and the second step uses simple algebraic methods to classify
affine structures. The first step, and its generalizations, is the subject
of this chapter.

9.1. Benzécri’s theorem on affine 2-manifolds

The following result was first proved in [34]. Shortly afterwards,
Milnor [221] gave a more general proof, clarifying its homotopic-theoretic
nature. For generalizations of Milnor’s result, see Benzécri [36], Gro-
mov [137], Sullivan [261] and Smillie [252]. For an interpretation of
this inequality in terms of hyperbolic geometry, see [115]. More recent
developments are surveyed in [128].

Theorem 9.1.1 (Benzécri 1955). Let M be a closed 2-dimensional
affine manifold. Then χ(M) = 0.

Proof. Replace M by its orientable double covering to assume
that M is orientable. By the classification of surfaces, M is diffeomor-
phic to a closed surface of genus g ≥ 0. Since a simply connected closed
manifold admits no affine structure, (§5.2.4), M cannot be a 2-sphere
and hence g 6= 0. We assume that g > 1 and obtain a contradiction.

9.1.1. The surface as an identification space. Begin with the
topological model for M . There exists a decomposition of M along 2g
simple closed curves a1, b1, . . . , ag, bg which intersect in a single point

205
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x0 ∈M . (Compare Fig. 9.1.) The complement

M \
g⋃

i=1

(ai ∪ bi)

is the interior of a 4g-gon F with edges

a+
1 , a

−
1 , b

+
1 , b

−
1 , . . . , a

+
g , a

−
g , b

+
g , b

−
g .

(Compare Fig. 9.2.) There exist maps

A1, B1, . . . , Ag, Bg ∈ π
defining indentifications:

Ai(b
+
i ) = b−i ,

Bi(a
+
i ) = a−i

for a quotient map F −→M . A universal covering space is the quotient
space of the product π×F by identifications defined by the generators
A1, B1, . . . , Ag, Bg.

Fix a development pair (dev, h).
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�
�
�
�

a1b1

a2
b2

Figure 9.1. Decomposing a genus g = 2 surface along
2g curves into a 4g-gon. The single common intersection
of the curves is a single point which decomposes into the
4g vertices of the polygon.

 
a1

b1

a2

b2

Figure 9.2. Identifying the edges of a 4g-gon into a
closed surface of genus g. The sides are paired into 2g
curves, which meet at the single vertex.
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9.1.2. The turning number. Let [t0, t1] be a closed interval. If

[t0, t1]
f−→ R2 is a smooth immersion, then its turning number τ(f) is

defined as the total angular displacement of its tangent vector (nor-
malized by dividing by 2π). Explicitly, if f(t) = (x(t), y(t)), then

τ(f) =
1

2π

∫ t2

t1

d tan−1(y′(t)/x′(t)) =
1

2π

∫ t2

t1

x′(t)y′′(t)− x′′(t)y′(t)
x′(t)2 + y′(t)2

dt.

Extend τ to piecewise smooth immersions as follows. Suppose that

[t0, tN ]
f−→ R2 is an immersion which is smooth on subintervals [ai, ai+1]

where

t0 < t1 < · · · < tN−1 < tN .

Let f ′+(ti) = limt→ti+ f
′(t) and f ′−(ti) = limt→ti− f

′(t) be the two tan-
gent vectors to f at ti; define the total turning number of f by:

τ(f) := τ cont(f) + τ disc(f)

where the continuous contribution is:

τ cont(f) :=
N−1∑

i=0

(τ(f |[ti,ti+1])

and the discrete contribution is:

τ disc(f) :=
1

2π

N−1∑

i=0

∠(f ′−(ti+1), f ′+(ti+1))

where ∠(v1, v2) represents the positively measured angle between the
vectors v1, v2.

Here are some other elementary properties of τ :

• Denote −f the immersion obtained by reversing the orienta-
tion on t:

(−f)(t) := f(t0 + tN − t)
Then τ(−f) = −τ(f).
• If g ∈ Isom(E2) is an orientation-preserving Euclidean isome-

try, then τ(f) = τ(g ◦ f).
• If f is an immersion of S1, then τ(f) ∈ Z.

• Furthermore, if an immersion ∂D2 f−→ E2 extends to an orientation-
preserving immersion D2 −→ E2, then τ(f) = 1.

The Whitney-Graustein theorem asserts that immersions S1 fi−−→ R2

(i = 1, 2) are regularly homotopic if and only if τ(f1) = τ(f2), which
implies the last remark.
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Exercise 9.1.2. Suppose that S is a compact oriented surface with

boundary components ∂1S, . . . , ∂kS. Suppose that S
f−→ E2 is an orientation-

preserving immersion. Then

k∑

i=1

τ(f |∂iS) = χ(S).

An elementary property relating turning number to affine transfor-
mations is the following:

Lemma 9.1.3. Suppose that [a, b]
f−→ R2 is a smooth immersion and

φ ∈ Aff+(R2) is an orientation-preserving affine automorphism. Then

|τ(f)− τ(φ ◦ f)| < 1

2

Proof. If ψ is an orientation-preserving Euclidean isometry, then
τ(f) = τ(ψ◦f); by composing φ with an isometry we may assume that

f(a) = (φ ◦ f)(a)

f ′(a) = λ(φ ◦ f)′(a)

for λ > 0 That is,

(35) L(φ)(f ′(a)) = λf ′(a).

Suppose that |τ(f) − τ(φ ◦ f)| ≥ 1/2. Since for a ≤ t ≤ b, the
function

|τ(f |[a,t])− τ(φ ◦ f |[a,t])|
is a continuous function of t and equals 0 for t = a and is ≥ 1/2
for t = b. The intermediate value theorem implies that there exists
0 < t0 ≤ b such that

|τ(f |[a,t0])− τ(φ ◦ f |[a,t0])| = 1/2.

Then the tangent vectors f ′(t0) and (φ◦f)′(t0) have opposite direction,
that is, there exists µ < 0 such that

(36) L(φ)(f ′(t0)) = (φ ◦ f)′(t0) = µf ′(t0).

Combining (35) with (36), the linear part L(φ) has eigenvalues λ, µ
with λ > 0 > µ. However φ preserves orientation, contradicting
Det
(
L(φ)

)
= λµ < 0. �

We apply these ideas to the restriction of the developing map dev
to ∂F . Since f := dev|∂F is the restriction of the immersion dev|F of
the 2-disc,

1 = τ(f) = τ disc(f) + τ cont(f)



210 9. THE EULER CHARACTERISTIC

where

τ cont(f) = +

g∑

i=1

τ(dev|a+
i

) + τ(dev|a−i ) + τ(dev|b+i ) + τ(dev|b−i )

=

g∑

i=1

τ(dev|a+
i

)− τ(h(Bi) ◦ dev|a+
i

)

+ τ(dev|b+i )− τ(h(Ai) ◦ dev|b+i )

since h(Bi) identifies deva+
i

with −deva−i and h(Ai) identifies devb+i with

−devb−i . By Lemma 9.1.3, each

|τ(dev|a+
i

)− τ(h(Bi) ◦ dev|a+
i

)| < 1

2

|τ(dev|b+i )− τ(h(Ai) ◦ dev|b+i )| < 1

2
and thus

(37) |τ cont(f)| <
g∑

i=1

1

2
+

1

2
= g

Now we estimate the discrete contribution. The j-th vertex of ∂F
contributes 1/2π of the angle

∠
(
f ′−(tj), f

′
+(tj)

)
.

which is supplementary to the i-th interior angle αjof the polygon ∂F ,
as measured in the Euclidean metric dev∗gE2 .

Let m0 ∈M be the point corresponding to the 4g vertices of F . The
total angle around m0 (as measured in the metric dev∗gE2 restricted to
the lift of a coordinate patch equals 2π and we would like to identify
this as the sum

∑4g
j=1 αj = 2π. However, the interior angle of the side

of ∂F may not equal the corresponding angle in the tangent space of
m0, since they are related by an element of the holonomy group, which
is an affine transformation. Angles will generally not preserved by
affine transformations, unless they are multiples of a straight angles π
radians. Thus, we assume that the edges emanating from each vertex
meet at an angle αj, which is a multiple of π. (Benzécri considers the
case when all of the angles are 0 except one, which equals 2π, as in
Figure 9.4.)
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Figure 9.3. Cell-division of torus where all but one an-
gle at the vertex is 0.

Figure 9.4. Doubly periodic tiling of the Euclidean
plane with all but one angle at vertex 0.
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Then the total cone angle at m0 (as measured in this local Euclidean
metric) equals 2π, that is,

4g∑

j=1

αj = 2π

as desired, and

τ disc(f) =
1

2π

4g∑

j=1

∠
(
f ′−(tj), f

′
+(tj)

)

=
1

2π

4g∑

j=1

(π − αj) = 2g − 1.

Now
τ cont(f) = τ(f)− τ disc = 1− (2g − 1) = 2− 2g

but (37) implies 2g − 2 < g, that is, g < 2 as desired. �

Benzécri’s original proof uses a decomposition where all the sides of F
have the same tangent direction at x0; thus all the αj equal 0 except
for one which equals 2π (as in Figure 9.4).

9.1.3. The Milnor-Wood inequality.
Shortly after Benzécri proved the above theorem, Milnor observed that
this result follows from a more general theorem on flat vector bundles.
Let E be the 2-dimensional oriented vector bundle over M whose total
space is the quotient of M̃ × R2 by the diagonal action of π by deck

transformations on M̃ and via L◦h on R2, (that is, the flat vector bundle
over M associated to the linear holonomy representation.) This bundle
has a natural flat structure, since the coordinate changes for this bundle
are (locally) constant linear maps. Now an oriented R2-bundle ξ over
a space M is classified by its Euler class

Euler(ξ) ∈ H2(M ;Z).

For M a closed oriented surface, the orientation defines an isomorphism
H2(M ;Z) ∼= Z, and we henceforth identify these groups when the
context is clear. If ξ is an oriented R2-bundle over M which admits a
flat structure, Milnor [221] showed that

|Euler(ξ)| < g.

Furthermore every integer in this range is realized by a flat oriented
2-plane bundle. If M is an affine manifold, then the bundle E is iso-
morphic to the tangent bundle TM of M and hence has Euler number

Euler(TM) = 2− 2g.
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Thus the only closed orientable surface whose tangent bundle has a flat
structure is a torus. Furthermore Milnor showed that any R2-bundle
whose Euler number satisfies the above inequality has a flat connection.

Extensions of the Milnor-Wood inequality to higher dimensions
have been proved by Benzécri [36], Smillie [252], Sullivan [261], Burger-
Iozzi-Wienhard [52] and Bucher-Gelander [48].

9.2. Higher dimensions

The Euler Characteristic in higher dimensions In the early 1950’s
Chern suggested that in general the Euler characteristic of a compact
affine manifold must vanish. Based on the Chern-Weil theory of repre-
senting characteristic classes by curvature, several special cases of this
conjecture can be solved: if M is a compact complex affine manifold,
then the Euler characteristic is the top Chern number and hence can
be expressed in terms of curvature of the complex linear connection
(which is zero). However, in general, for a real vector bundle, only the
Pontrjagin classes are polynomials in the curvature — indeed Milnor’s
examples show that the Euler class cannot be expressed as a polynomial
in the curvature of a linear connection (although it can be expressed
as a polynomial in the curvature of an orthogonal connection).

This has been an extremely important impetus for research in this
subject.

Deligne-Sullivan [86] proved a strong vanishing theorem for flat
complex vector bundles. Namely, every flat complex vector bundle ξ
over a finite complex M is virtually trivial: that is, there exists a finite

covering space M̂
f−−→ M such that f ∗ξ is trivial. This immediately

implies that Euler(ξ) = 0. Hirsch and Thurston [150] gave a very
general criterion for vanishing of the Euler class of flat bundle with
amenable holonomy; compare Goldman-Hirsch [131] for an elementary
proof in the case of flat vector bundles.

For an ingenious argument proving the vanishing of the Euler char-
acteristic for integral holonomy, see Sullivan [260].

Recently the vanishing of the Euler characterisitc for closed affine
manifolds with parallel volume has been proved by Bruno Klingler [175].
He uses the natural geometric structure on the total space of the tan-
gent bundle TM of a compact affine manifold M which he calls a para-
hypercomplex structure. Such a structure is an integrable reduction of
the structure group to the split quaternions.

9.2.1. The Chern-Gauss-Bonnet Theorem. Most of the known
special cases of the Chern-Sullivan conjecture follow from the Chern’s
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intrinsic generalization of the Gauss-Bonnet theorem [65] and the Chern-
Weil theory of characteristic classes. This includes flat pseudo-Riemann-
ian manifolds, flat complex manifolds, and complete affine manifolds
(Kostant-Sullivan). Notable exceptions are Benzécri’s theorem for sur-
faces and the Kobayashi-Vey theorem for hyperbolic affine structures.

Chern’s theorem concerns an oriented orthogonal rank n vector
bundle ξ −→ M over an oriented closed n-dimensional manifold M .
That is, ξ is a smooth Rn-bundle over M with an orthogonal connection
∇ and an orientation on the fibers. Let

Euler(ξ) ∈ Hn(M,Z)

denote the Euler class of the oriented Rn-bundle ξ. (Compare Milnor-
Stasheff [226] and Steenrod [259].) The orthogonal connection ∇ de-
termines an exterior n-form Euler(∇), the Euler form of ∇ on M , such
that ∫

M

Euler(∇) = Euler(ξ) · [M ]

where [M ] ∈ Hn(M,Z) denotes the fundamental class of M arising
from the orientation. The Euler form is a polynomial expression in the
curvature of ∇ and vanishes if ∇ is flat. When ξ is the tangent bundle
of M , then

Euler(ξ) · [M ] = χ(M),

the Euler characteristic of M .
Milnor [221] showed that, over a closed oriented surface of genus

g > 1, every oriented R2-bundle E with |Euler(ξ)| < g admits a flat
structure. That is, ξ admits a flat linear connection ∇, but if Euler(ξ) 6=
0, then ∇ cannot be orthogonal.

We summarize some of the ideas in Chern’s theorem, referring to
Poor [237] (§3.56–3.73, pp. 138–49) for detailed proofs and discussion.
According to Poor, this geometric approach is due to Gromoll.

A key point in this proof is the use of the associated principal SO(n)-
bundle over M , which is the bundle of positively oriented orthonormal
frames. When n = 2, this is the unit tangent bundle of M and is
an S1-bundle over M . As discussed in Steenrod [259] and Milnor-
Stasheff [226], the Euler class is really an invariant of the associated
oriented Sn−1-bundle. The quotient of the total space by the antipodal
map on the fiber is an RPn−1-bundle, which when n = 2, identifies with
a sphere bundle itself. (Compare Exercise 9.2.1.)

Let ξ be a smooth oriented real vector bundle of even rank n = 2m
over an oriented smooth n-manifold M with an orthogonal connection
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∇. Let so(ξ) be the vector bundle to ξ associated to the adjoint repre-
sentation

SO(2m) −→ Aut
(
so(2m)

)
.

The curvature tensor R(∇) is an so(ξ)-valued exterior 2-form on M .

The Pfaffian is an Ad-invariant polynomial mapping so(2m,R)
Pfaff−−−−→

R such that

Det(A) = Pfaff(A)2

and Pfaff is a polynomial of degree m. For example, for m = 1, and

A =

[
0 −a
a 0

]
,

Det(A) = a2 and Pfaff(A) = a. Applying the Pfaffian to R(∇) yields
an exterior 2m-form Pfaff

(
R(∇)

)
on M2m.

The Euler number of ξ (relative to the orientations of ξ and A can
be computed by the Poincaré-Hopf theorem: Namely, let η be a section
of ξ with isolated zeroes p1, . . . , pk. Find an open ball Bi containing pi
and a trivalization

EBi
≈−−→ Bi × R2m.

With respect to this trivialization, the restriction of η to Bi is the graph

of a map Bi
fi−−→ R2m where fi(x) 6= 0 if x 6= pi. The degree of the

smooth map

S2m−1 ≈ ∂Bi −→ S2m−1

x 7−→ fi(x)

‖fi(x)‖
is independent of the trivialization, and is called the Poincaré-Hopf
index Ind(ξ, pi) of η at pi. The Euler number of E, defined as

Euler(ξ, η) :=
k∑

i=1

Ind(η, pi) ∈ Z

is independent of ξ and the local trivializations of ξ. Compare Bott-
Tu [46], Theorem 11.17, p.125.)

The intrinsic Gauss-Bonnet theorem, due to Chern [65], states that
there is a constant cm ∈ R such that

Euler(ξ) = cm

∫

M

Pfaff
(
R(∇)

)
.

In particular if ξ = TM , and R(∇) = 0, then

χ(M) = Euler(TM) = 0.
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Gromoll’s proof (Poor [237], §3.56–3.73, pp. 138–49) begins with a
smooth vector field η on M which is nonzero in the complement of a
finite subset Z ⊂M . From an orthogonal connection and η determine
a 2m − 1-form whose exterior derivative equals Pfaff

(
R(∇)

)
on M2m.

Applying Stokes’s theorem on the complement of a small neighborhood
of Z ⊂M implies Chern’s theorem.

9.2.2. Smillie’s examples of flat tangent bundles. Two ori-
ented 2-plane bundles over a space M are isomorphic if their Euler
classes in H2(M ;Z) are equal. (Compare Milnor-Stasheff [226].) Mil-
nor [221] showed that an oriented 2-plane bundle ξ over an oriented
surface of genus g ≥ 0 admits a flat structure if and only if

|Euler(ξ)| < g.

Suppose that ξ is such a bundle which is nontrivial, that is, Euler(ξ) 6=
0. Then ξ admits a connection ∇ with curvature zero.

Exercise 9.2.1. Show that the complexification of such a bundle is
trivial.

Exercise 9.2.2. Suppose that F −→ Σ is an oriented S1-bundle
which admits a free proper action of the cyclic group Z/mZ on the
fibers sos that F ′ := F/(Z/mZ) is an oriented S1-bundle over Σ. Show
that

m|Euler(F )

and

Euler(F ′) = Euler(F )/m.

Deduce that the Euler number of a flat R2-bundle over Σ is always even.

Exercise 9.2.3. Show that the 3-sphere S3 admits a flat affine con-
nection (that is, a connection on its tangent bundle TM with vanishing
curvature), but no flat affine connection with vanishing torsion.

Thus, in general, a manifold can have a flat tangent bundle even if
it fails to have a flat affine structure. In this direction, Smillie [254]
showed that Chern’s conjecture is false if one only requires that the
curvature vanishes. We outline his (elementary) argument below.

First, he considers the class of stably parallelizable manifolds mani-
folds, that is, manifolds with stably trivial tangent bundles. Recall that
a vector bundle E →M is stably trivial if the Whitney sum E⊕RM is
trivial, where RM →M denotes the trivial line bundle over M . (Smillie
uses the terminology “almost” instead of “stably” although we think
that “stable” is more standard.)
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Exercise 9.2.4. If ξ → M is a stably trivial vector bundle, then

ξ = f ∗TSn, for some map M
f−−→ Sn. Furthermore two stably trivial

vector bundles ξ, ξ′ are isomorphic if and only if

Euler(ξ) = Euler(ξ′) ∈ Hn(M ;Z).

An oriented 2-plane bundle ξ over a closed oriented surface is stably
trivial if and only its Euler number Euler(ξ) is even (equivalently, if its
second Stiefel-Whitney class w2(ξ) = 0).

Exercise 9.2.5. Let M be an orientable n-manifold. Show that the
following conditions are equivalent:

• M is stably parallelizable;
• M immerses in Rn+1;
• For any point, the complement M\{x} is parallelizable.

Deduce that the connected sum of two stably parallelizable manifolds is
parallelizable.

Smillie constructs a 4-manifold N4 with χ(N) = 4, and a 6-manifold
Q6 with χ(Q) = 8 such that both TN and TQ have flat structures.
He begins with a closed orientable surface Σ3 of genus 3 and the flat
SL(2,R)-bundle ξ over Σ3 with Euler(ξ) = 2. (This bundle arises by
lifting a Fuchsian representation

π1(Σ3) −→ PSL(2,R)

from PSL(2,R) to SL(2,R).) Then ξ is stably trivial and admits a flat
structure.

The product 4-plane bundle ξ× ξ over Σ3×Σ3 is also stably trivial
and admits a flat structure. Furthermore its Euler number

Euler(ξ × ξ) = 2 + 2 = 4.

Let P 4 be a parallelizable 4-manifold and let N be the connected sum
of six copies of P with Σ3 × Σ3.

Exercise 9.2.6. Prove that TN ∼= f ∗(ξ × ξ) for some degree one
map

N
f−−→ Σ3 × Σ3.

Deduce that TN admits a flat structure and that χ(N) = 4. Find a
similar construction for a 6-manifold Q6 with flat tangent bundle but
χ(Q) = 8. Find, for any even n ≥ 8, an n-dimensional manifold with
flat tangent bundle and positive Euler characteristic.
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9.2.3. The Kostant-Sullivan Theorem. In 1960, L. Auslander
published a false proof that the Euler characteristic of a closed com-
plete affine manifold is zero [10]. Of course, the difficulty is that the
Euler characteristic can only be computed as a curvature integral for
an orthogonal connection.

This difficulty was overcome by a clever trick by Kostant and Sulli-
van [182] who showed that the Euler characteristic of a compact com-
plete affine manifold vanishes.

Proposition 9.2.7 (Kostant-Sullivan [182]). Let M2n be a com-
pact affine manifold whose affine holonomy group acts freely on A2n.
Then χ(M) = 0.

Corollary 9.2.8 (Kostant-Sullivan [182]). The Euler character-
istic of a compact complete affine manifold vanishes.

The main lemma is the following elementary fact, which the authors
attribute to Hirsch:

Lemma 9.2.9. Let Γ ⊂ Aff(A) be a group of affine transformations
which acts freely on A. Let G denote the Zariski closure of the linear
part L(Γ) in GL(V). Then every element g ∈ G has 1 as an eigenvalue.

Proof. First we show that the linear part L(γ has 1 as an eigen-
value for every γ ∈ Γ. This condition is equivalent to the non-invertibility
of L(γ)− I. Suppose otherwise; then L(γ)− I is invertible. Writing

x
g7−−→ L(g)x+ u(g),

where the vector u(g) is the translational part (u(g) = g(0) of g. the
point

p := −
(
L(g)− I

)−1
u(g)

is fixed by γ, contradicting our hypothesis that g acts freely.
Non-invertibility of L(γ)− I is equivalent to

Det
(
L(γ)− I

)
= 0,

evidently a polynomial condition on γ. Thus L(g)− I is non-invertible
for every g ∈ G, as desired. �

Proof of Proposition 9.2.7. To show that χ(M) = 0, we find
an orthogonal connection ∇ for which the Gauss-Bonnet integrand
Pfaff

(
R(∇)

)
= 0. To this end, observe first that the tangent bun-

dle TM is associated to the linear holonomy L(Γ). representation of
M , and hence its structure group reduces from Aff(A) to the algebraic
hull G of L(Γ). Since M is complete, its affine holonomy group Γ acts
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freely and Lemma 9.2.9 implies that every element of G has 1 as an
eigenvalue.

Let K ⊂ G be a maximal compact subgroup of G. (One can take
K to be the intersection of G with a suitable conjugate of the or-
thogonal group O(2m) ⊂ GL(2m,R).) A section of the G/K-bundle
associated to the G-bundle corresponding to the tangent bundle always
exists (since G/K is contractible), and corresponds to a Riemannian
metric on M . Let ∇ be the corresponding Levi-Civita connection. Its
curvature R(∇) lies in the Lie algebra k ⊂ so(2m).

Since every element of G has 1 as an eigenvalue, every element of
K has 1 as an eigenvalue, and every element of k has 0 as eigenvalue.
That is, Det(k) = 0 for every k ∈ k. Since

Pfaff(k)2 = Det(k) = 0,

the Gauss-Bonnet integrand Pfaff
(
R(∇)

)
= 0. Applying Chern’s in-

trinsic Gauss-Bonnet theorem (§9.2.1), χ(M) = 0. �





CHAPTER 10

Affine structures on Lie groups and algebras

Many geometric structures on closed manifolds arise from homoge-
neous structures — structures invariant under a transitive Lie group
action. In particular, left-invariant structures on Lie groups themselves
furnish many examples, as we have already seen in dimensions 1 and 2.
A large class of affine structures on the 2-torus T 2 arise from invariant
affine structures on the Lie group T 2 — see Baues’s survey [23] for an
account of this. For example, the content of Auslander’s approach to
classifying affine crystallographic groups is that every compact com-
plete affine manifold arises from a left-invariant complete affine struc-
ture on a solvable Lie group G with finitely many connected compo-
nents and a lattice Γ < G. Similarly, Dupont’s classification [94] of
affine structures on 3-dimensional hyperbolic torus bundles reduces to
left-invariant affine structures on the solvable unimodular exponential
non-nilpotent Lie group Isom0(E1,1).

We emphasize the interplay between the coordinates on a Lie group
and the affine coordinates. In particular we find many important ad-
ditional geometric structures in these affine structures.

Left-invariant objects on a Lie group G of course reduce to algebraic
constructions on its Lie algebra g. Left-invariant affine structures on
G correspond to left-invariant structures on g, where the bi-invariant
structures correspond to compatible associative structures on g. Specif-
ically, covariant differentiation of vector fields preserves the Lie subal-
gebra of left-invariant vector fields, leading to a bilinear operation

g× g −→ g

(X, Y ) 7−→ XY := ∇X(Y )(38)

Conversely, any bilinear mapping g × g −→ g defines a left-invariant
connection onG. The connection is flat and torsionfree if and only if the
corresponding algebra is left-symmetric (In this chapter an algebra is a
finite-dimensional R-vector space a together with bilinear map a×a −→
a.) Denote the commutator operation by:

(39) [x, y] := xy − yx
221
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In general, however a left-invariant structure will not be right-
invariant, but instead will satisfy the left-symmetry condition, that
the associator operation

(40) [x, y, z] := (xy)z − x(yz)

is symmetric in its first two arguments:

(41) [x, y, z] = [y, x, z]

Such algebras arise in many mathematical contexts, and we call them
left-symmetric algebras. (They also go by other names : pre-Lie al-
gebras, Koszul algebras, Vinberg algebras, or Koszul-Vinberg algebras;
see Rothaus [241], Dorfmeister [88], Vinberg [278], Koszul [183], and
Matsushima [216].)

Their literature is vast. We particularly recommend Burde’s survey
article [50], as well as works by Vinberg [278], Helmstetter[147] and
Vey [275], Medina [219], Segal [247], Kim [171]. and the references
cited therein for more information.

We do not attempt to be comprehensive, but mainly give a glimpse
into this fascinating algebraic theory, which provides a rich class of
interesting geometric examples.

10.1. Étale representations and the developing map

If G is a Lie group and a ∈ G, then define the left- and right-
multiplication operations La,Ra, respectively:

La(b) := ab

Ra(b) := ba

Suppose that G is a Lie group with an affine structure. The affine
structure is left-invariant (respectively right-invariant) if and only if the

operations G
Ra−−−→ G (respectively G

La−−→ G) are affine. An affine
structure is bi-invariant if and only if it is both left-invariant and right-
invariant. In this section we describe the relationship between left-
invariant affine structures and étale (locally simply transitive) affine
representations.

10.1.1. Reduction to simply-connected groups. Suppose that
G is a Lie group with a left-invariant (respectively right-invariant, bi-

invariant) affine structure. Let G̃ be its universal covering group and

π1(G) ↪→ G̃ −→ G

the corresponding central extension. Then the induced affine structure

on G̃ is also left-invariant (respectively right-invariant, bi-invariant).
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Conversely, since π1(G) is central in G̃, every left-invariant (respec-

tively right-invariant, bi-invariant) affine structure on G̃ determines
a left-invariant (respectively right-invariant, bi-invariant) affine struc-
ture on G. Thus there is a bijection between left-invariant (respectively
right-invariant, bi-invariant) affine structures on a Lie group and left-
invariant (respectively right-invariant, bi-invariant) affine structures on
any covering group. For this reason we shall mainly only consider sim-
ply connected Lie groups.

10.1.2. The translational part of the étale representation.
Suppose that G is a simply connected Lie group with a left-invariant

affine structure. Let G
dev−−−→ A be a developing map. Corresponding to

the affine action of G on itself by left-multiplication is a homomorphism
G

α−−→ Aff(A) such that the diagram

(42)

G
dev−−−→ A

Lg

y
yα(g)

G −−−→
dev

A

commutes for each g ∈ G. We may assume that dev maps the iden-
tity element e ∈ G to an origin p0 ∈ A. Then (42) implies that the
developing map is the translational part of the affine representation:

dev(g) = (dev ◦ Lg)(e) =
(
α(g) ◦ dev

)
(e) = α(g)(p0)

Furthermore since dev is open, it follows that the orbit α(G)(p0) equals
the developing image and is open. Indeed the translational part, which
is the differential of the evaluation map

TeG = g −→ V = Tp0A

is a linear isomorphism. Such an action will be called locally simply
transitive or simply an étale representation.

Conversely suppose that G
α−−→ Aff(A) is an étale affine represen-

tation with an open orbit O ⊂ A. Then for any point x0 ∈ O, the
evaluation map

g 7→ α(g)(x0)

defines a developing map for an affine structure on G. Since

dev(Lgh) = α(gh)(x0)

= α(g)α(h)(x0)

= α(g) dev(h)
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for g, h ∈ G, this affine structure is left-invariant. Thus a left-invariant
affine structure on a Lie group G corresponds to correspond precisely
to an étale affine representation G −→ Aff(A) and a choice of open
orbit.

Pull back the connection on O ⊂ A by dev to obtain a flat torsion-
free affine connection ∇ on G.

Since the affine representation G
α−−→ Aff(A) corresponds to left-

multiplication, the associated Lie algebra representation, also denoted
g

α−−→ aff(A), maps g into affine vector fields which correspond to the in-
finitesimal generators of left-multiplications, that is, to right-invariant
vector fields.. Thus with respect to a left-invariant affine structure on
a Lie group G, the right-invariant vector fields are affine.

10.2. Two-dimensional commutative associative algebras

Commutative associative algebras provide many examples of affine
structures on closed 2-manifolds as follows.

Let a be such an algebra and adjoin a two-sided identity element
(denoted “1”) to form a new commutative associative algebra a ⊕ R1
with identity. The invertible elements in a ⊕ R1 form an open subset
closed under multiplication. The element e := 0⊕1 is two-sided identity
element. The universal covering group G of the group of invertible
elements of the form

a⊕ 1 ∈ a⊕ R1

acts locally simply transitively and affinely on the affine space

A = a⊕ {1}.
The Lie algebra of G naturally identifies with the algebra a and there

is an exponential map a
exp−−−→ G defined by the usual power series (in

a). The corresponding evaluation map at e defines a developing map
for an invariant affine structure on the vector group a

Now let Λ ⊂ a be a lattice. The quotient a/Λ is a torus with an
invariant affine structure. The complete structures were discussed in
§8.5. Now we discuss all the structures on R2, in terms of commutative
associative algebras. (Recall that for commutative algebras, associa-
tivity and left-symmetry are equivalent, see §10.3.1.)

The classification of 2-dimensional commutative associative alge-
bras is not difficult; here we summarize the classification, in terms of a
basis X, Y ∈ a:

• a2 = 0 (all products are zero). The corresponding affine rep-
resentation is the action of R2 on the plane by translation
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and the corresponding affine structures on the torus are the
Euclidean structures.
• dim(a2) = 1 and a is nilpotent. We may take X to be a genera-

tor of a2 and Y ∈ a to be an element with Y 2 = X. The corre-
sponding affine representation is the simply transitive action
discussed in §8.5, which we call the non-Riemannian (com-
plete) structures. These are the two isomorphism classes de-
scribed in §8.5. The corresponding affine structures are com-
plete but non-Riemannian. These structures deform to the
first one, where a = R[x, y] where x2 = ky. These are all
equivalent when k 6= 0, and deforms to the Euclidean struc-
ture as k → 0.

• a is a direct sum of 1-dimensional algebras, one with zero
multiplication (corresponding to the complete structure), and
one with nonzero multiplication (corresponding to the radiant
structure). We can choose X2 = X for the radiant summand
and this is the only nonzero basic product.

For various choices of Λ one obtains parallel suspensions of
Hopf circles. In these cases the developing image is a halfplane,
and we call these structures nonradiant halfplane structures.
• The next structure is a radiant suspension of the Euclidean 1-

dimensional strucutre. Take X to be the radiant vector field,
so that it is an identity element in a. For various choices of
Λ one obtains radiant suspensions of the complete affine 1-
manifold R/Z. The developing image is a halfplane.
• a is a direct sum of nonzero 1-dimensional algebras. Taking
X, Y to be the generators of these summands, we can assume
they are idempotent, that is, X2 = X, Y 2 = Y . This structure
is radiant since X+Y is an identity element, that is, a radiant
vector field. Products of Hopf circles, and, more generally,
tadiant suspensions of Hopf circles are examples of these affine
manifolds.

The developing image is a quadrant in R2.
• Finally a ∼= C is the field of complex structures, regarded as

an R-algebra. In this case we obtain the complex affine 1-
manifolds, in particular the (usual) 2-dimensional Hopf man-
ifolds are all obtained from this algebra. Clearly X ↔ 1 ∈ C
is the identity and these structures are all radiant. The devel-
oping image is the complement of a point in the plane.

Baues [23], surveys the theory of affine structures on the 2-torus. In
particular he describes how the homogeneous structures (which he calls
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“affine Lie groups”) deform one into another. Kuiper [191] classified
convex affine structures on T 2, including the complete case (see Chap-
ter 8,§8.5). Nagano-Yagi [228] and Arrowsmith-Furness [6],[7] com-
pleted the classification. The complex-affine structures can be under-
stood easily in terms of nonzero abelian differentials on the underlying
elliptic curve (see, for example, Gunning [142, 143] and the discussion
in §14. Projective structures on T 2 were classified by Goldman [114]
and in higher dimensions by Benoist [28].

Here are the multiplication tables for the 2-dimensional commuta-
tive associative algebras:

X Y
X 0 0
Y 0 0

X Y
X 0 0
Y 0 X

Table 1. Multiplication tables for complete (Euclidean
and non-Riemannian) structures

X Y
X X Y
Y Y 0

X Y
X X 0
Y 0 X

X Y
X X 0
Y 0 Y

Table 2. Multiplication tables for incomplete (radiant
halfplane, nonradiant halfplane and hyperbolic) struc-
tures

10.3. Left-invariant connections and left-symmetric algebras

Let G be a Lie group with Lie algebra g, which we realize as left-
invariant vector fields. Let ∇ be a left-invariant connection; that is,
each Lg preserves ∇. If X, Y ∈ g are such left-invariant vector fields,
then left-invariance of ∇ implies that the covariant derivative ∇XY is
also a left-invariant vector field. Thus the operation defined in (38)
turns g into an finite-dimensional algebra over R.

The condition that the torsion Tor∇ of ∇ vanishes is precisely the
commutator property (39). Using (39), the condition that ∇ has zero
curvature is:

(XY − Y X)Z = [X, Y ]Z = X(Y Z)− Y (XZ).
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This condition is equivalent to the left-symmetric property (41), that is,
the associator defined in (40) is is symmetric in its first two arguments:

[X, Y, Z] = [Y,X,Z].

An algebra satisfying this condition will be called left-symmetric.
Every left-symmetric algebra determines a Lie algebra. This gener-

alizes the well-known fact that underlying every associative algebra is
a LIe algebra. We shall sometimes call a left-symmetric algebra with
underlying Lie algebra g an affine structure on the Lie algebra g.

Exercise 10.3.1. Let a be an algebra with commutator operation
[X, Y ] := XY − Y X, and define a trilinear alternating map

a× a× a
Jacobi−−−−→ a.

(X, Y, Z) 7−→ [[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X]

Show that

Jacobi(X, Y, Z) = [X, Y, Z] + [Y, Z,X] + [Z,X, Y ]

− [Z, Y,X]− [X,Z, Y ]− [Y,X,Z]

where [X, Y, Z] denotes the associator defined in (40). Deduce that
underlying every left-symmetric algebra is a Lie algebra.

Exercise 10.3.2. Find an algebra a which is not left-symmetric
but its commutator nonetheless satisfies the Jacobi identity.

In terms of left-multiplication and the commutator operation de-
fined in (39), a condition equivalent to (41) is:

(43) L([X, Y ]) = [L(X),L(Y )]

that is, that g
L−−→ End(a) is a Lie algebra homomorphism. We denote

by aL the corresponding g-module. Furthermore the identity map g
I−−→

aL defines a cocycle of the Lie algebra g with coefficients in the g-module
aL:

(44) L(X)Y − L(Y )X = [X, Y ]

Let A denote an affine space with associated vector space a; then it
follows from (43) and (44) that the map g

α−−→ aff(A) defined by

(45) Y
α(X)7−−−−→ L(X)Y +X

is a Lie algebra homomorphism.
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Theorem 10.3.3. There is an isomorphism of categories between left-
symmetric algebras and simply connected Lie groups with left-invariant
affine structure. Under this isomorphism the associative algebras cor-
respond to bi-invariant affine structures.

We have proved the first assertion, and now prove the second assertion.

10.3.1. Bi-invariance and associativity. Under the correspon-
dence between left-invariant affine structures on G and left-symmetric
algebras a, bi-invariant affine structures corresponds to associative al-
gebras a.

Proposition 10.3.4. Let a be the left-symmetric algebra corre-
sponding to a left-invariant affine structure on G. Then a is asso-
ciative if and only if the left-invariant affine structure is bi-invariant.

Proof. Let ∇ be the affine connection corresponding to a left-
invariant affine structure on G. Then ∇ is left-invariant and defines
the structure of a left-symmetric algebra a on the Lie algebra of left-
invariant vector fields on G.

Suppose that the affine structure is bi-invariant; then ∇ is also
right-invariant. Therefore right-multiplications on G are affine maps
with respect to the affine structure on G. It follows that the infinitesi-
mal right-multiplications — the left-invariant vector fields — are affine
vector fields. For a flat torsionfree affine connection a vector field Z
is affine if and only if the second covariant differential ∇∇Z vanishes.
Now ∇∇Z is the tensor field which associates to a pair of vector fields
X, Y the vector field

∇∇Z(X, Y ) := ∇X

(
∇Z(Y )

)
−∇Z(∇XY )

= ∇X(∇YZ)−∇∇XY (Z).

If X, Y, Z are left-invariant vector fields, then

∇∇Z(X, Y ) = X(Y Z)− (XY )Z = [X, Y, Z]

in a, so a is an associative algebra, as desired.
Conversely, suppose a is an associative algebra, We construct from

a a Lie group G = G(a) with a bi-invariant structure, such that the
corresponding left-symmetric algebra equals a.

Denote by R1 a 1-dimensional algebra (isomorphic to R generated
by a two-sided identity element 1. The direct sum a ⊕ R1 admits an
associative algebra structure where 1 is a two-sided identity element:

(a⊕ a01)(b⊕ b01) := (ab+ a0b+ ab0)⊕ a0b01,
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that is, “adjoint to a a two-sided identity element.” The affine hyper-
plane a⊕ 1 is multiplicatively closed, with the Jacobson product

(a⊕ 1)(b⊕ 1) = (a+ b+ ab)⊕ 1.

In particular left-multiplications and right-multiplications are affine
maps.

Let G = G(a) be the set of all a⊕1 which have left-inverses (neces-
sarily also in a⊕{1}). Associativity implies a⊕1 is left-invertible if and
only if it is right-invertible as well. Evidently G is an open subset of
a⊕{1} and forms a group. Furthermore, associativity property implies
both the actions of G by left- and right- multiplication, respectively,
on A are affine. obtaining a bi-invariant affine structure on G.

The proof concludes with the following exercise. �

Exercise 10.3.5. Show that the corresponding left-symmetric alge-
bra on the Lie algebra of G is a.

When G is commutative, left-invariance and right-invariance co-
incide. Thus every left-invariant affine structure is bi-invariant. It
follows that every commutative left-symmetric algebra is associative.
This purely algebraic fact has a purely algebraic proof, using the fol-
lowing relationship between commutators and associators.

Exercise 10.3.6. Suppose that a is an R-algebra. If X, Y, Z ∈ a,
show that

[X, Y, Z]− [X,Z, Y ] + [Z,X, Y ] = [XY,Z] +X[Z, Y ] + [Z,X]Y

However, even in dimension two, commutativity alone does not im-
ply associativity (or, equivalently, left-symmetry):

Exercise 10.3.7. Show that the following table describes a commu-
tative algebra which is not associative:

X Y
X Y 0
X 0 Y

Table 3. A commutative non-associative 2-dimensional
algebra

The literature on left-symmetric algebras (under various names)
is vast. We recommend Burde’s survey article [50], as well as works
by Vinberg [278], Helmstetter[147] and Vey [275], Medina [219], Se-
gal [247], Kim [170], and the references cited therein for more infor-
mation.
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10.3.2. Completeness and right-nilpotence. One can trans-
late geometric properties of a left-invariant affine structure on a Lie
groupG into algebraic properties of the corresponding left-symmetric al-
gebra a. For example, the following theorem of Helmstetter [147] and
Segal [247].indicates a kind of infinitesimal version of Markus’s con-
jecture relating geodesic completeness to parallel volume. (See also
Goldman-Hirsch [133].)

Theorem 10.3.8. Let G be a simply connected Lie group with left-
invariant affine structure. Let G

α−−→ Aff(A) be the corresponding lo-
cally simply transitive affine action and a the corresponding left-symmetric al-
gebra. The following conditions are equivalent:

• G is a complete affine manifold;
• α is simply transitive;
• A volume form on G is parallel if and only if it is right-

invariant;
• For each g ∈ G,

det L
(
α(g)

)
= det Ad(g)−1,

that is, the distortion of parallel volume by α equals the mod-
ular function of G;
• a is right-nilpotent: The subalgebra of End(a) generated by

right-multiplications Ra : x 7→ xa is nilpotent.

The original equivalence of completeness and right-nilpotence is
due to Helmsteter [147] and was refined by Segal [247]. Goldman-
Hirsch [133] explain the characterization of completeness by right-
invariant parallel volume as an “infinitesimal version” of the Markus
conjecture (using the radiance obstruction). However, left-nilpotence
of a left-symmetric algebra is a much more restrictive condition; indeed
it implies right-nilpotence:

Theorem 10.3.9 (Kim [170]). The following conditions are equiv-
alent:

• The left-multiplications x
La7−−−→ xa generate a nilpotent subal-

gebra of End(a);
• G is nilpotent and the affine structure is complete;
• g is a nilpotent Lie algebra and a is right-nilpotent.

10.3.3. Radiant vector fields. In a different direction, we may
say that a left-invariant affine structure is radiant if and only if the
affine representation corresponding to left-multiplication has a fixed
point, that is, is conjugate to a representation G −→ GL(V). Equiv-
alently, α(G) preserves a radiant vector field R on A. A left-invariant
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affine structure on G is radiant if and only if the corresponding left-
symmetric algebra has a right-identity, that is, an element e ∈ a satis-
fying ae = a for all a ∈ a.

10.3.4. Volume forms and the characteristic polynomial.
Let X1, . . . , Xn be a basis for the right-invariant vector fields; it follows
that the exterior product

α(X1) ∧ · · · ∧ α(Xn) = f(x) dx1 ∧ · · · ∧ dxn

for a polynomial f ∈ R[x1, . . . , xn], called the characteristic polynomial
of the left-invariant affine structure. In terms of the algebra a, we have

f(X) = det(RX⊕1)

where RX⊕1 denotes right-multiplication by X ⊕ 1. By Helmstet-
ter [147] and Goldman-Hirsch [133],the developing map is a covering
space, mapping G onto a connected the component of complement of
f−1(0). In particular the nonvanishing of f is equivalent to complete-
ness of the affine structure.

The following is due to Goldman-Hirsch [133]:

Exercise 10.3.10 (Infinitesimal Markus conjecture). A left-invariant
affine structure on a Lie group is complete if and only if right-invariant
volumes forms are parallel. (Hint: first reduce to working over C. Then
the characteristic function f is a nonzero polynomial Cn → C. Unless
it is nonconstant, it vanishes somewhere, and the étale representation
is not transitive.)

10.4. Two-dimensional noncommutative associative algebras

Two-dimensional Lie algebras g fall into two isomorphism types:

• g ∼= R2 (abelian);
• g ∼= aff(1,R) the Lie algebra of affine vector fields on the affine

line A1.

As we have just treated the abelian case, we turn now to the non-
abelian case. The classification of affine structures on aff(1,R) is due
to Burde [49], Proposition 4.1.

If g is nonabelian, the corresponding 1-connected Lie group is the
group G0 = Aff+(1,R) of affine transformations of the line A1 with
positive linear part. Thus G0 is the open subset of A2 with coordinates
(x, y) where x ∈ R is the translational part and y ∈ R+ is the linear
part. Under this identification G0 ↔ R × R+ ⊂ A2, both left- and
right-multiplications extend to affine transformations of A2, and thus
define a bi-invariant affine structure on G0.
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An element of Aff+(1,R) is the transformation

A1

[
y x

]
−−−−−→ A1

ξ 7−→ yξ + x.

which is the restriction of the usual linear representation
[
ξ
1

]
7−→

[
y x
0 1

] [
ξ
1

]

on R2 to the affine line A1 ↔ R⊕ {1} ⊂ R2.
The identity element is

[
1 0

]
, inversion is:

[
y x

]
7−→

[
−y−1x y−1

]
,

and the group operation is:

(46)
[
y1 x1

] [
y2 x2

]
=
[
y1y2 x1 + y1x2

]
.

In particular left-multiplication by
[
η ξ

]
extends from G0 to the affine

transformation

A2 −→ A2

[
x
y

]
7−→

[
ηx+ ξ
ηy

]
=

[
η 0 ξ
0 η 0

] [
x
y

]

(
taking y1 = η, x1 = ξ, y2 = y, x2 = x in (46)

)

We will describe other left-invariant affine structures on G0 in terms
of this one, using an étale representation corresponding to left-multiplication.
Left-multiplication by one-parameter subgroups define flows whose in-
finitesimal generators are right-invariant vector fields. By describing
the developing maps in terms of one-parameter subgroups, we find the
left-invariant vector fields and compute the left-symmetric algebra.

Here is the procedure applied to this first example.
One-parameter groups of positive homotheties

[
et 0

]
and transla-

tions
[
1 s

]
generate G0:

[
et s

]
=
[
1 s

] [
et 0

]

and we use s, t ∈ R2 as coordinates on the group. Left multiplication
by
[
et s

]
then corresponds to the affine representation

[
et 0 s
0 et 0

]
.

The developing map requires a choice of basepoint which lies in an open
orbit of this affine representation of G0 on A2, so choose the basepoint
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to be

(47) p0 :=

[
0
1

]
∈ A2.

Now the developing map is given by the orbit map

G0 dev−−−→ A2

[
et s

]
7−→

[
et 0 s
0 et 0

]
p0 =

[
s
et

]

and gives the affine coordinates on G0, which we relate to the group
coordinates defined above. Writing

p =

[
x
y

]

we solve
[
et s

]
p0 = p to express (s, t) ∈ R in terms of (x, y) ∈ R×R+:

s = x

et = y

Thus the left-multiplication which maps p0 to p is the affine transfor-
mation [

et 0 s
0 et et

]
=

[
y 0 x
0 y y

]

The developing map takes the identity element e ∈ G0 to the basepoint
p0. Moreover dev maps G0 diffeomorphically onto the halfplane R ×
R+ ⊂ A2. A left-invariant vector field on G0 is determined by its value
on any point, for example e. Let g ∈ G0. For any tangent vector
v ∈ Te(G

0), the value at g of the left-invariant vector field on G0

extending v equals the image (DLg)e(v) of v under the differential of
left-multiplication

G0 Lg−−→ G0

e 7−→ g

Since the differential of an affine transformation (in affine coordinates)
is its linear part, the columns of the linear part form a basis for left-
invariant vector fields. In this example, the first column and second
column, respectively determine left-invariant vector fields which we de-
note X, Y :

(48)

[
y
0

]
↔ y∂x =: X,

[
0
y

]
↔ y∂y =: Y
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(That these left-invariant vector fields are affine indicates that this
affine structure is bi-invariant.) For future reference, the corresponding
flows (right-multiplications by one-parameter subgroups) are:

exp(sX) =

[
1 s
0 1

]
:

[
x
y

]
7−→

[
x+ sy
y

]

exp(tY ) =

[
1 0
0 et

]
:

[
x
y

]
7−→

[
x
ety

]

and

(49) exp(tY ) exp(sX) =

[
1 0
0 et

] [
1 s
0 1

]
=

[
1 s
0 et

]

We return to the algebra of left-invariant vector fields defined by co-
variant differentiation. Computing covariant derivatives yields the mul-
tiplication table for the corresponding left-symmetric structure, which
is evidently associative. In particular [Y,X] = X which defines the
Lie algebra g of G0 up to isomorphism, and we shall describe the left-
symmetric structures on g in terms of this basis and the defining rela-
tion [Y,X] = X for the Lie algebra.

X Y
X 0 0
Y X Y

Table 4. Left-invariant vector fields on Aff+(1,R) form
an associative algebra aL

Exercise 10.4.1. The rows of the matrix correspond to the dual
basis of left-invariant 1-forms:

y−1dx, y−1dy.

The sum of their squares is the left-invariant Poincaré metric on G0,
regarded as the upper half-plane:

y−2
(
dx2 + dy2

)

In terms of the framing (X, Y ) by left-invariant vector fields, the Levi-
Civita connection is given by the multiplication table, which does not
define a left-symmetric algebra:
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X Y
X Y −X
Y 0 0

Table 5. Covariant derivatives of left-invariant vector
fields with respect to the Levi-Civita connection of the
Poincaré metric.

10.4.0.1. Haar measures and the characteristic polynomial. Recall
that a Lie group is unimodular if and only if its left and right Haar mea-
sures agree. The group Aff+(1,R) is not not unimodular, and among
two-dimensional 1-connected Lie groups is characterized by this. Uni-
modularity is obstructed by the modular character, the homomorphism

G
∆−−→ R+

g 7−→ Det Ad(g)

which relate the left-invariant and right-invariant Haar measures:

µRight = ∆ · µLeft,

that is, if g ∈ G, then

(g∗ µRight) : S 7−→ µRight(g
−1S) = ∆(g) · µRight(S)

For the structure aL above,

µRight = y |∂x ∧ ∂y|
µLeft = y2 |∂x ∧ ∂y|
∆
( [
x y

] )
= y−1

The characteristic polynomial (defined in §10.3.4) is thus y.

10.4.1. The opposite structure. Since this affine structure is
also invariant under right-multiplications, the left-invariant vector fields
generate flows of right-multiplication by one-parameter subgroups, as
in (48).

Following (49), the corresponding étale affine representation is:

(50)

[
1 s
0 et

]

Taking the basepoint p0 as in (47), the developing map and étale rep-
resentation are:

(51)

[
1 s s
0 et et

]
=

[
1 x x
0 y y

]
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X ′ Y ′

X ′ 0 −X ′
Y ′ 0 −Y ′

Table 6. Right-invariant vector fields on Aff+(1,R)
form an associative algebra aR opposite to aL

The vector fields (where R denotes the radiant vector field)

(52) X ′ := ∂x, Y ′ = −R = −x∂x − y∂y
form a basis of right-invariant vector fields satisfying the commutation
relation [Y ′, X ′] = X ′, with covariant derivatives tabulated in Table 6.
(To preserve this commutation relation, we chose Y ′ = −R rather
than Y ′ = R — which is actually the second column of the linear part
above.) We denote this algebra by aR.

Here is the multiplication table:

Exercise 10.4.2. Let a be an R-algebra.
• Its opposite is the algebra with multiplication defined by

a× a −→ a

(A,B) 7−→ BA

Show that the opposite of an associative algebra is an associa-
tive algebra.
• Show aL and aR are opposite algebras but are not isomorphic

to each other.
• Show that an associative algebra whose underlying Lie algebra

equals g = aff(1,R) is isomorphic to either aL or aR.

10.4.2. A complete structure. The affine representation

[
et s

]
7−→

[
et 0 s
0 1 t

]

defines a simply transitive affine of Aff+(1,R) on A2, and hence a left-
invariant complete affine structure. The right-invariant vector fields
are:

S := ∂x, T := x∂x + ∂y

and the left-invariant vector fields are:

X := ey∂x, Y = ∂y

with multiplication table:
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X Y
X 0 0
Y X 0

Table 7. Left-invariant vector fields for the complete
left-invariant structures on Aff+(1,R)

The left-invariant area form is e−ydx ∧ dy and a right-invariant area
form is the parallel form dx ∧ dy. Note that in the basis X, Y , right-
multiplications are:

RX ↔
[
0 1
0 0

]
, RY ↔ 0

and generate an nilpotent algebra. However, left-multiplication

LY ↔
[
1 0
0 0

]

is not nilpotent.

10.4.3. The first halfspace family. We embed the algebra aL in
a family aβL as follows, where β ∈ R is a real parameter. The developing
images of the corresponding affine structures are again halfplanes when
β 6= 0, but for β = 0 the affine structure is complete.

To begin, assume that β 6= 0. The affine vector fields

∂x, x∂x + βy∂y

generate an affine action of G0 which agrees with the first action when
β = 1. The corresponding one-parameter subgroups are:

[
1 0 s
0 1 0

] [
et 0 0
0 eβt 0

]
=

[
et 0 s
0 eβt 0

]

which map p0 to

[
s
eβt

]
, where p0 is the basepoint defined in (47). Writ-

ing

p =

[
x
y

]
=

[
s
eβt

]
,

we see that the action is: [
y1/β 0 x

0 y y

]

and the columns of the linear part give left-invariant vector fields

y1/β∂x, y∂y.
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Although the second vector field is affine, the first vector field is affine if
and only if β = 1, that is, for the bi-invariant structure.

Their covariant derivatives form the multiplication table:

y1/β∂x y ∂y
y1/β ∂x 0 0

y∂y 1/β y1/β ∂x y ∂y

Table 8. Left-invariant vector fields of deformation of
bi-invariant structure

When β = 0, the original affine representation has no open orbits.
However, a simple modification extends this structure to β = 0, by
including a complete affine structure.

To this end, replace the second one-parameter subgroup by:[
et 0 0
0 eβt fβ(t)

]
= exp

[
t 0 0
0 βt t

]

where fβ denotes the continuous function R→ R defined by:

fβ(t) :=

{
eβt−1
β

if β 6= 0

t if β = 0

(Note that when β 6= 0, this new action is conjugate to the original
action by the translation Trans(0,−1/β).) The affine action of G0 is given
by [

1 0 s
0 1 0

] [
et 0 0
0 eβt fβ(t)

]
=

[
et 0 s
0 eβt fβ(t)

]

The orbit of p0 is the halfplane defined by y > −1/β if β 6= 0 and all
of A2 if β = 0. Evaluating at p0 yields the affine representation (taking
p0 to p) [

(1 + βy)1/β 0 x
0 (1 + βy) y

]

and taking the columns of the linear part yields a basis of left-invariant
vector fields:

X =

{
(1 + βy)1/β∂x if β 6= 0

ey∂x if β = 0

Y = (1 + βy)∂y

whose covariant derivatives are recorded in Table 9. Note that β =
1 corresponds to the bi-invariant (associative) structure and β = 0
corresponds to a complete structure discussed in §10.4.2:
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X Y
X 0 0
Y X βY

Table 9. Left-invariant vector fields on the halfspace
family structures define an algebra aβL depending on a
parameter β

10.4.3.1. Lorentzian structure. The case β = −1 is also interest-
ing. Then the affine structure arises from an invariant flat Lorentzian
structure. Explicitly, if X, Y base the left-invariant vector fields:

X = y−1 ∂x, Y = y ∂y

and X∗, Y ∗ is the dual basis of left-invariant 1-forms:

X∗ = y dx, Y ∗ = y−1 dy,

then the symmetric product X∗�Y ∗ = dx�dy is a parallel Lorentzian
structure, defining a flat Lorentzian structure on G invariant under
left-multiplications.

Again the developing image of the corresponding flat structure is a
halfplane so this structure is an incomplete flat Lorentzian structure,
which is homogeneous. This contrasts the theorem of Marsden [213]
that a compact homogeneous pseudo-Riemannian manifold is geodesi-
cally complete, indicating that the compactness hypothesis is necessary.

Conjecture 10.4.3. A compact locally homogeneous pseudo-Rie-
mannian manifold is geodesically complete.

This has been proved by Klingler [173] for constant curvature Lorentzian
manifolds.

10.4.4. Parabolic deformations. The case where β = 2 is also
interesting, for several reasons. Here there exist nonradiant deforma-
tions whose developing images are parabolic subdomains of A2, the com-
ponents of the complements of a parabola in A2. (Recall that the
complement of a parabola has two connected components, one which
is convex and the other concave.) To this end, consider a parameter
α ∈ R; when α = 0, these examples are just the a2

L as before, but when
α 6= 0, these examples are all affinely conjugate, but the halfplane
deforms to a parabolic subdoman.

After describing this structure as a deformation, we mention its
surprising role as the first simple (in the sense of Burde [49]) left-
symmetric algebra whose underlying Lie algebra is solvable. Then we
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describe it as a clan in the sense of Vinberg [278], and briefly describe
Vinberg’s theory of convex homogeneous domains, which was one of
the historical orgins of the theory of left-symmetric algebras.

10.4.4.1. Parabolic domains. Let

(53) fα(x, y) := y − α

2
x2;

the parabolic subdomain

Ωα := {(x, y) ∈ A2 | fα(x, y) > 0}
is a halfplane if α = 0, convex if α ≥ 0, and concave if if α ≤ 0. The
one-parameter subgroups

exp

[
0 0 s
αs 0 0

]
exp

[
t 0
0 2t

]
=

[
1 0 s
αs 1 α

2
s2

] [
et 0
0 e2t

]

=

[
et 0 s
αets e2t α

2
s2

]

generate its affine automorphism group. The image of the the basepoint

p0 :=

[
0
1

]

is

p :=

[
x
y

]
=

[
s

e2t + α
2
s2

]

so the group coordinates (s, t) relate to the affine coordinates (x, y) by

s = x

t =
1

2
log
(
y − α

2
x2
)

=
1

2
log fα(x, y)

where fα is defined in (53). The left-invariant vector fields are based
by the first two columns of the matrix
[ (

y − α
2
x2
)1/2

0 x

α
(
y − α

2
x2
)1/2

x
(
y − α

2
x2
)

y

]
=

[
fα(x, y)1/2 0 x
αfα(x, y)1/2x fα(x, y) y

]

which are:

X :=
√
fα(x, y)

(
∂x + αx ∂y

)
, Y := fα(x, y) ∂y

Table 10 describes the multiplication in the corresponding left-symmetric
algebra.
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Exercise 10.4.4. Show that, as α varies, these structures are re-
lated by the polynomial diffeomorphism:

A2 −→ A2

(x, y) 7−→
(
x, y − αx2/2

)
=
(
x, fα(x, y)

)

10.4.4.2. Simplicity. The algebra a2
L(α), where α 6= 0, also has spe-

cial algebraic significance. Define a left-symmetric algebra to be sim-
ple if and only if it contains no nonzero proper two-sided ideals. Some-
what surprisingly, the Lie algebra underlying a simple left-symmetric al-
gebra can even be solvable. Indeed, Burde [49] proved that, over
C, the complexification of the above example is the only simple left-
symmetric algebra of dimension two. Over R, this example, and the
field C itself (regarded as an R-algebra), are the only simple 2-di-
mensional left-symmetric algebras. The classification of simple left-
symmetric algebras in general is a difficult unsolved algebraic problem;
see [49, 50] for more details.

10.4.4.3. Clans and homogeneous cones. Vinberg [278] classifies
convex homgeneous domains in terms of special left-symmetric alge-
bras, which he calls clans. The example above is the first nontrivial
example of such a clan, and can be approached in several different ways.

Let Ω ⊂ Mat2(R) denote the convex cone comprising positive def-
inite symmetric 2 × 2 real matrices. It is an open subset of the 3-
dimensional linear subspace of Mat2(R) consisting of symmetric matri-
ces. Thus Ω ⊂ W is an open convex cone.

Ω ⊂ W is homogeneous: Namely Aut(R2) = GL(2,R) acts on W by
the induced action on symmetric bilinear forms:

GL(2,R)×W −→ W.

(A,w) 7−→ A†wA

X Y
X α/2 Y 0
Y X 2Y

Table 10. Left-invariant vector fields on the parabolic
deformation a2

L(α)
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where A† denotes the transpose of A. Under the linear correspondence

W −→ R3

[
x y
y z

]
7−→



x
y
z




defines an action of GL(2,R) on R3 preserving the open subset Ω ⊂ W
defined by the positivity of determinant of the matrix

∆(x, y, z) = xz − y2,

which appears as the characteristic polynomial of the corresponding
left-invariant structure (or left-symmetric algebra). Furthermore, by
the Gram-Schmidt orthonormalization process, GL(2,R) acts transi-
tively on Ω.

10.4.5. Deformations of the opposite structure. The other
associative structure aR has two kinds of deformations. The first one we
describe uses the left-invariant parallel vector field on aR to construct
a deformation, depending a real parameter η ∈ R as follows. It is
nonradiant. The second one is radiant, and replaces the diagonal one-
parameter sugroup with one eigenvalue 1 by one with two eigenvalues
of varying strength.

10.4.5.1. Nonadiant deformation. Consider the étale representation[
1 s ηt
0 et 0

]

which is a deformation of the representation (50). The action is:

p0 :=

[
0
1

]
7−→

[
s+ ηt
et

]
=

[
x
y

]

so the group coordinates relate to the affine coordinates by:

s := x− η log(y)

t := log(y)

and the étale affine representation is:[
1 x− η log(y) x
0 y y

]

The columns of the linear part (adjusted) determine left-invariant vec-
tor fields:

X ′ := ∂x, Y ′η =
(
η log(y)− x

)
∂x − y∂y

which specialize to the left-invariant vector fields on aR as in (52) with
multiplication table:
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X ′ Y ′η
X ′ 0 −X ′
Y ′η 0 −ηX ′ − Y ′η

Table 11. Nonradiant deformation of aR depending on
a parameter η ∈ R

10.4.5.2. Radiant deformation. Consider the étale affine represen-
tation [

eµt eµts 0
0 et 0

]

which is a deformation of the representation (50) when µ 6= 0. (When
µ = 0, the resulting group is abelian.) The developing map is:

p0 :=

[
0
1

]
7−→

[
eµts
et

]
=

[
x
y

]

so the group coordinates relate to the affine coordinates by:

s := y−1/µx

t := log(y)

and the étale affine representation is:
[
yµ x x
0 y y

]

The columns of the linear part (adjusted) determine left-invariant vec-
tor fields:

X ′µ := yµ∂x, Y ′ = −x∂x − y∂y
which specialize to the left-invariant vector fields on aR as in (52) with
multiplication table:

X ′µ Y ′

X ′µ 0 −X ′µ
Y ′ µX ′µ −Y ′

Table 12. Radiant deformation of aR depending on an
eigenvalue parameter µ ∈ R
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10.4.5.3. Radiance and parallel volume. When µ = −1, the struc-
ture has parallel volume — that is, area forms are parallel if and
only if they are left-invariant. In that case the vector fields x∂x +
y∂y, y

−1∂x base the space of left-invariant vector fields and the 1-forms
y−1dy, y dx − x dy base the space of left-invariant 1-forms. In con-
trast to affine structures on closed manifolds, this left-invariant afffine
structure is both radiant and has parallel volume.

10.4.5.4. Deforming to the complete structure. As above, we can
reparametrize this family to include the complete structure when µ = 0.
Namely, choose a new real parameter δ

(
which will be 1/(µ− 1)

)
.

For each δ ∈ R, the vector fields

(1 + δy)∂x, (1 + δ)x∂x + (1 + δy)∂y

generate étale affine representations (and thus left-invariant affine struc-
tures) on Aff+(1,R) such that the vector fields

X ←→ Xδ
R :=

(
1 + δy

) 1
δ

+1
∂x

Y ←→ Y δ
R := δx ∂x + (1 + δy) ∂y

base the left-invariant vector fields, and [Y,X] = X The multiplication
table is:

X Y
X 0 δX
Y (δ + 1)X δY

Table 13. Deformations of aR depending on an eigen-
value parameter δ ∈ R containing the complete structure
at δ = 0

10.5. Complete affine structures on closed 3-manifolds

The closed complete affine 3-manifolds were classified in Fried-
Goldman [110], based on the resolution of Auslander’s question in di-
mension 3. There are two isomorphism types of nilpotent 3-dimensional
Lie groups, namely R3 and the 3-dimensional Heisenberg group. In gen-
eral one must consider semidirect products of R2 by a one-parameter
group, but for the purpose of structures on closed 3-manifolds, only
one new isomorphism type is needed, that is, when the action of R on
R2 is:

(x, y)
t7−−→ (etx, e−ty)

In that case the group is realized as Isom0(E1,1).
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The classification in the nilpotent case involves computing the sub-
group of translations in the center. The solvable case reduces to the
nilpotent case by the useful fact that the unipotent radical of the Zariski
closure of a simply transitive subgroup itself acts simply transitively.
Thus, underlying every simply transitive affine action is a unipotent
simply transitive affine action. Every solvable group with complete
left-invariant affine structure has an underlying structure as a nilpo-
tent Lie group with complete left-invariant affine structure.

In the nilpotent case, simple transitivity is equivalent to unipotence
of the linear part:

Proposition 10.5.1 (Scheuneman [244]). Let G be a nilpotent

group with with left-invariant affine structure. Let G
ρ−−→ Aff(A) be

the étale representation corresponding to left-multiplication. Then the
affine structure is complete (that is, ρ is simply transitive) if and only
if L ◦ ρ is unipotent.

Proof. Suppose first that that L ◦ h is unipotent. Let O be an
open orbit corresponding to the developing image. By Rosenlicht [240]
(and independently, Kostant (unpublished)), every orbit of a connected
unipotent group is Zariski-closed. Thus O is both open and closed (in
the classical topology). Since A is connected, O = A, that is, G acts
transitively. Since dim(A) = dim(G), every isotropy group is discrete.
Since G is unipotent, every isotropy group is torsionfree and Zariski
closed, which implies thatG acts freely. ThusG acts simply transitively
as desired.

Conversely, suppose that G acts simply transitively. By the struc-
ture theorem for representations of nilpotent groups, there exists a max-
imal invariant affine subspace A0 (the Fitting subspace) upon which ρ
acts unipotently. Since G acts transitively, A0 = A and thus ρ is unipo-
tent. �

This includes a sort of an infinitesimal converse to Theorem 8.4.1,
that a closed affine manifold with unipotent holonomy is geodesically
complete.

10.5.1. Central translations. The key step of the classification
in dimension 3 is the existence of central translations in a simply
transitive group of unipotent affine transformations. This was conjec-
tured by Auslander [11] and erroneously claimed by Scheuneman [244].
Fried [108] produced a 4-dimensional counterexample; see Kim [170]
and Dekimpe [] for further developments in this basic question.

In terms of left-symmetric algebras, translations correspond to right-
invariant parallel vector fields. A translation is central if and only
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if the corresponding parallel vector field is also also left-invariant. Left-
invariant parallel vector fields correspond to elements P ∈ a of the
left-symmetric algebra a such that a · P = 0; being central means that
[a, P ] = 0. Thus the central translations correspond to elements P ∈ a
such that Pa = aP = 0. Such elements P clearly form a two-sided
ideal Z = Z(a) and the quotient a/Z is a left-symmetric algebra.

Exercise 10.5.2. If a corresponds to a complete affine structure,
then a/Z corresponds to a complete affine structure.

Now we discuss the 3-dimensional nilpotent left-symmetric alge-
bras, or equivalently unipotent simply transitive affine actions on A3,
which are in turn or equivalently, complete left-invariant affine struc-
tures on nilpotent Lie groups. If 1-connected 3-dimensional Lie group is
not abelian (in which case it’s isomorphic to R3), then it is isomorphic
to the Heisenberg group, consisting of 3× 3 upper-triangular unipotent
matrices: 


1 a b
0 1 c
0 0 1


 , a, b, c ∈ R
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Exercise 10.5.3. The 3-dimensional nilpotent associative algebras
are: (Compare [110])

dim(Z) ≥ 2:

X Y Z
X 0 0 0
Y 0 0 0
Z 0 0 0

X Y Z
X 0 0 0
Y 0 0 0
Z 0 0 Y

Table 14. Multiplication tables for dim(Z) = 3 and
dim(Z) = 2, respectively

dim(Z) = 1 and G/Z Euclidean :

X Y Z
X 0 0 0
Y 0 a11X a12X
Z 0 a21X a22X

Table 15. When dim(Z) = 1 and G/Z Euclidean, the

structure is defined by bilinear form G/Z×G/Z a−→ Z

dim(Z) = 1 and G/Z non-Riemannian:

X Y Z
X 0 0 0
Y 0 0 bX
Z 0 cX Y

Table 16. When dim(Z) = 1 and G/Z non-Riemann-
ian, the structure is defined by a pair (b, c) ∈ R2

G is abelian when dim(Z) ≥ 2, and in these cases G is a product of
a 1-dimensional structure and a 2-dimensional structure. These cases
appear as limits in the generic situation when dim(Z) = 1.

When dim(Z) = 1 and the structure on G/Z is Euclidean, then the
induced product

a/Z× a/Z −→ a

(A+ Z, B + Z) 7−→ AB
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defines a bilinear form R2 × R2 a−−→ Z ∼= R. Table 15 arises by taking
X to be a generator of Z. The structure is abelian if and only if a
is symmetric. In this case a is Euclidean if a = 0 and a product
(dim(Z) = 2) when a is nonzero and degenerate.

When dim(Z) = 1 and the structure on G/Z is non-Riemannian, let
X be generate Z, and extend to a basis {X, Y, Z} so that

(Z + Z)2 = Y

in the non-Riemannian quotient. The results are tabulated in Table 16.
The structure is abelian if and only if b = c, and corresponds to the
product structure (dim(Z) = 2) if and only if b = c = 0.

10.6. Fried’s counterexample to Auslander’s conjecture

Auslander’s conjecture [11] that a nilpotent simply transitive affine
group contains central translations was disproved by Fried [108] by the
following 4-dimensional example.

A nilpotent Lie algebra is said to be filiform if it is “maximally non-
abelian,” in the sense that its degree of nilpotence is one less than its
dimension. That is, a k-step nilpotent Lie algebra is filform if its dimes-
nion equals k + 1. Fried’s example lives on the unique 4-dimensional
filiform Lie algebra. (Curiously, Benoist’s example of an 11-dimensional
nilpotent Lie algebra admitting no faithful 12-dimensional linear rep-
resentation — and hence no simply transitive affine actions — is a
filiform Lie algebra.)

Let t, u, v, w ∈ R be real parameters. We parametrize the 4-
dimensional filiform algebra as a semidirect sum

g := V0 oJ3 RT,

where V0 is a 3-dimensional abelian ideal with coordinates u, v, w and
T acts by the 3-dimensional Jordan block

J3 :=




0 1 0
0 0 1
0 0 0.




That is, g admits a basis U, V,W, T subject to nonzero commutation
relations

[T, U ] = V, [T, V ] = W

and all other brackets between basic elements are zero.
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We start with a simply transitive affine action, where U, V,W act
by translations. The Lie algebra representation is:

A0(t, u, v, w) :=




0 0 0 0 t
0 t 0 u

0 t v
0 w


 ,

the group representation is:

A0(t, u, v, w) := expA0(t, u, v, w) :=




1 0 0 0 t
1 t t2/2 u+ tv/2 + t2w/6

1 t v + tw/2
1 w




and a basis of left-invariant vector fields is:

X0 := ∂x, Y0 := ∂y, Z0 := ∂z + x∂y, W0 := ∂w + x∂z +
x2

2
∂y

with multiplication table:

X0 Y0 Z0 W0

X0 0 0 Y0 Z0

Y0 0 0 0 0
Z0 0 0 0 0
W0 0 0 0 0

Table 17. Complete affine structure on 4-dimensional
filiform algebra

Then X0, Y0 are parallel vector fields and Z(g) is one-dimensional,
spanned by Y0.

Now we deform using a parameter λ ∈ R, in the direction of the
parallel vector field X0 = ∂x. Consider the affine representation A =
Aλ,

A(t, u, v) = Aλ :=




0 −λw λ v −λu t
0 t 0 u

0 t v
0 w




Since
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a2 :=




0 −λ tw λ tv λ(−2uw + v2)
0 t2 tv

0 tw
0


 ,

a3 :=




0 −λ t2w 0
0 t2w

0


 , A4 :=




0 −λt2w2

0


 ,

the general group element is:

exp(Aλ) :=



1 −λw λ v λ
(
− u+ tv/2− t2w/6

)
t+ λ

(
− uw + v2/2− t2w2/24

)

1 t t2/2 u+ tv/2 + t2w/6
1 t v + tw/2

1 w


 .

The last column of this matrix is the developing map, and we can relate
the group coordinates to the affine coordinates, by:

x = t+ λ
(
− uw + v2/2− t2w2/24

)

y = u+ tv/2 + t2w/6

z = v + tw/2

w = w

A basis for right-invariant vector fields is:

T := ∂x+z∂y+w∂z, U := ∂y−λw∂x, , V := ∂z+λz∂x, W̃ := ∂w−λy∂x
with U central.

I think the multiplication table for Fried’s example is:

X Y Z W
X 0 0 Y Z
Y 0 0 0 λX
Z 0 0 λX 0
W 0 λX 0 0

Table 18. Fried’s counterexample to Auslander’s con-
jecture on central translations
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10.7. Solvable 3-dimensional algebras

If M3 is a closed manifold with complete affine structure, then M
is affinely isomorphic to a finite quotient of a complete affine solv-
manifold, that is, a homogeneous space Γ\G, where G is a Lie group
with a complete affine structure and Γ < G is a lattice. Equiva-
lently, G admits a simply transitive affine action (corresponding to
left-multiplication). Necessarily G is solvable and we may assume that
G is simply-connected. Since G admits a lattice, it is unimodular.

We have already discussed the cases when G is nilpotent. There
are two isomorphism classes of simply connected solvable unimodular
non-nilpotent Lie groups:

• The universal covering ˜Isom0(E2) of orientation-preserving isome-
tries of of the group Isom0(E2) of orientation-preserving isome-
tries of the Euclidean plane E2;
• The identity component of the group Isom0(E1,1) of orientation-

preserving isometries of 2-dimensional Minkowski space.

Exercise 10.7.1. Prove that every lattice Γ < ˜Isom0(E2) contains
a free abelian subgroup of finite index. In particular, Γ is a finite ex-
tension of Z3 and is a 3-dimensional Bieberbach group.

Thus the only interesting remaining case for classifying complete
affine 3-manifolds occurs for the group Isom0(E1,1).

There are two isomorphism classes of complete left-invariant affine
structures on this group. One, which probably goes back to Auslander-
Markus [9] is a group of isometries of a parallel Lorentzian metric; the
other is due to Auslander [11] and corresponds to the simply transitive
action, where λ ∈ R is a parameter (compare Fried-Goldman [110],
Theorem 4.1):

(s, t, u)
ρλ7−−−→




1 λesu λe−st s+ λtu
0 es 0 t
0 0 e−s u




When λ 6= 0, these actions are all affinely conjugate. The case λ = 0
is the original flat Lorentzian structure.

Auslander notes that when λ 6= 0, the simply transitive action
contains no translations.



252 10. LIE GROUPS AND ALGEBRAS

The corresponding left-invariant vector fields are:

X := ∂x

Y := ex−λyz
(
λz ∂x + ∂y

)

Z := e−x+λyz
(
λy ∂x + ∂z

)

with multiplication table:

X Y Z
X 0 Y −Z
Y 0 0 λX
Z 0 λX 0

10.8. Incomplete affine 3-manifolds

10.8.1. Parabolic cylinders. We can extend this structure to
structures on a 3-dimensional solvable Lie group G, which admits com-
pact quotients. These provide examples of compact convex incom-
plete affine 3-manifolds which are not properly convex, and nonradiant.
Therefore Vey’s result that compact hyperbolic affine manifolds are
radiant is sharp.

Further examples from the same group action give concave affine
structures on these same 3-manifolds.

The function:

A3 f−−→ R
(x, y, z) 7−→ x− y2/2

is invariant under the affine R2-action defined by:

R2 U−−→ Aff(A3)

(t, u) 7−→ exp




0 t 0 0
0 0 0 t
0 0 0 u


 =




1 t 0 t2/2
0 1 0 t
0 0 1 u




Under the 1-parameter group of dilations

R δ−→ Aff(A3)

s 7−→ exp




2s 0 0
0 s 0
0 0 −s


 =



e2s 0 0
0 es 0
0 0 e−s






10.8. INCOMPLETE AFFINE 3-MANIFOLDS 253

the function f scales as:

f ◦ δ(s) = e2sf.

The group G ⊂ Aff(A3) generated by U(t, u)δ(s) (for s, t, u ∈ R) acts
simply transitively on the open convex parabolic cylinder defined by
f(x, y, z) > 0 as well as on the open concave parabolic cylinder defined
by f(x, y, z) < 0. The corresponding left-invariant affine structure on
the Lie group G has a basis of left-invariant vector fields

X := f(x, y, z)∂x

Y := f(x, y, z)1/2
(
y∂x + ∂y

)

Z := f(x, y, z)−1/2∂z

with multiplication recorded in Table 19. The dual basis of left-invariant
1-forms is:

X∗ := f(x, y, z)−1(dx− ydy) = −d log(f)

Y ∗ = f(x, y, z)−1/2dy

Z∗ = f(x, y, z)1/2dz

with bi-invariant volume form

X∗ ∧ Y ∗ ∧ Z∗ = f(x, y, z)−1dx ∧ dy ∧ dz.

This example is due to Goldman [116] providing examples of non-
conical convex domains covering compact affine manifolds.

X Y Z
X X Y/2 −Z/2
Y 0 X 0
Z 0 0 0

Table 19. Algebra corresponding to parabolic 3-
dimensional halfspaces

10.8.2. Nonradiant deformations of radiant halfspace quo-
tients. Another example arises from radiant suspensions. Namely,
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consider the radiant affine representation

Rn R2 ρα−−→ Aff(A3)

(s; t, u) 7−→ eαs exp



s 0 t
0 −s u
0 0 0




=



e(α+1)s 0 eαst

0 e(α−1)s eαsu
0 0 eαs




depending on a parameter α ∈ R. When α 6= 0, the action is locally
simply transitive; the open orbits are the two halfspaces defined by
z > 0 and z < 0 respectively. The vector fields

X := z(α+1)/α∂x

Y := z(α−1)/α∂y

Z := R = x∂x + y∂y + z∂z

correspond to a basis of left-invariant vector fields, with multiplication
recorded in Table 20.

X Y Z
X 0 0 X
Y 0 0 Y
Z

(
(α + 1)/α

)
X

(
(α− 1)/α

)
Y Z

Table 20. A radiant suspension

When α = ±1, then this action admits nonradiant deformations.
Namely let β ∈ R be another parameter, and consider the case when
α = 1. The affine representation

Rn R2 ρβ−−→ Aff(A3)

(s; t, u) 7−→ exp




2s 0 0 0
0 0 0 βs
0 0 s 0


 · exp




0 0 t
0 0 u
0 0 0




=



e2s 0 e2st 0
0 1 u βs
0 0 es 0



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maps 


0
0
1


 ρβ7−−−→




e2st
u+ βs
es


 =



x
y
z




so the group element with coordinates (s, t, u) corresponds to the point
with coordinates

x = e2st

y = u+ βs

z = es

with inverse transformation:

s = log(z)

t = z−2x

u = y − β log(z)

Then the linear part Lρβ(s, t, u) corresponds to the matrix


z2 0 x
0 1 y − β log(z)
0 0 z




whose columns base the left-invariant vector fields:

X := z2∂x

Y := ∂y

Z := x∂x +
(
y − β log(z)

)
∂y + z∂z

Table 21 records their covariant derivatives.

X Y Z
X 0 0 X
Y 0 0 Y
Z 2X 0 Z − βY

Table 21. Nonradiant Deformation





CHAPTER 11

Parallel volume and completeness

A particularly tantalizing open problem about closed affine man-
ifolds is whether geodesic completeness (a geometric one-dimensional
property) is equivalent to parallel volume (an algebraic n-dimensional
property). This question was raised in 1963 by L. Markus [209] as a
“Research Problem” in unpublished mimeographed lecture notes from
the University of Minnesota (Problem 8, §6, p.58):

Question. Let M be a closed affine manifold. Then M is geodesi-
cally complete if and only if M has parallel volume.

An affine manifold M has parallel volume if and only if it satisfies
any of the following equivalent conditions:

• The orientable double-covering of M admits a parallel volume
form (in the sense of §1.4.2 of Chapter 1);
• M admits a coordinate atlas where the coordinate changes are

volume-preserving;
• M admits a refined (SAff(A),A)-structure, where SAff(A) de-

notes the subgroup L−1
(
SL±(Rn)

)
of volume-preserving linear

transformations;
• For each φ ∈ π1(M), the linear holonomy L ◦ h(φ) has deter-

minant ±1.

11.1. The volume obstruction

Exercise 11.1.1. Prove the equivalence of the conditions stated in
the introduction to Chapter 11.

The last condition suggests a topological interpretation. The com-
position of the linear holonomy representation L ◦ h with the logarith
of the absolute value of the determinant

π1(M)
L◦h−−−→ GL(E)

|det |−−−−→ R+ log−−−→ R
defines an additive homomorphsm νM ∈ Hom

(
π1(M),R) ∼= H1(M ;R)

which we call the volume obstruction. M has parallel volume if and
only if νM = 0.

257
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Exercise 11.1.2. Suppose that M is a manifold with zero first Betti
number. Then every affine structure on M must have has parallel vol-
ume.

One amusing corollary of this is that the only projective structures
on the Q-homology 3-sphere S3

Q defined in §6.2.3.1 are complete affine
structures. Since S3

Q is covered by a 3-torus, the Markus conjecture for
abelian holonomy (Smillie [253], Fried-Goldman-Hirsch [111]) implies
that S3

Q must be complete, and must be covered by a complete affine
nilmanifold (compare §11.2).

Exercise 11.1.3. Classify all the projective structures on S3
Q.

Helmstetter’s theorem [147] that a left-invariant affine structure on
a Lie group is complete ⇐⇒ right-invariant volume forms are parallel
is an “infinitesimal version” of Markus’s conjecture. (Compare also
Goldman-Hirsch [132].)

The plausibility of Markus’s question seems to be one of the main
barriers in constructing examples of affine manifolds. A purely topolog-
ical consequence of this conjecture is that a compact affine manifold M
with zero first Betti number β1(M) is covered by Euclidean space: in
particular all of its higher homotopy groups vanish. Thus, if β1(M) = 0
there should be no such structure on a nontrivial connected sum in di-
mensions greater than two. (In fact no affine structure — or projective
structure — is presently known on a nontrivial connected sum.) Jo
and Kim [163] resolve this question for convex affine manifolds.

11.2. Nilpotent holonomy

One of the first results on Markus’s question is its resolution in the
case the affine holomomy group is nilpotent.

The structure theory of affine structures on closed manifolds with
nilpotent holonomy is relatively well understood, due to the work of
Smillie [253], Fried-Goldman-Hirsch [111] and Benoist [25, 28]. Smil-
lie’s thesis develops the basic theory for affine structures with abelian
holonomy, which Fried-Goldman-Hirsch extended to nilpotent holo-
nomy, and Benoist extended to projective structures with nilpotent
honomy. The transition from nilpotent to solvable is much larger than
the transition from abelian to nilpotent, and the next section discusses
the few results in the solvable non-nilpotent case, due to Serge Dupont.
Compare also Fried’s classification of closed similarity manifolds in §.

The key technique in the discussion of nilpotent holonomy is the
structure theory of linear representations of nilpotent groups. The
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guiding principle is that nilpotence ensures a nontrivial center, pro-
ducing lots of commuting transformations. Specifically, elements of
a nilpotent linear group have strongly compatible Jordan decomposi-
tions, which leads to invariant geometric geometric structures for geo-
metric manifolds with nilpotent holonomy. In another context whis
was used by Goldman [117] to give the first examples of 3-manifolds
without flat conformal structures — for a geometric approach to these
algebraic facts, see Thurston [266] and Ratcliffe [239].

The key to understanding nilpotent holonomy is the following alge-
braic fact:

Theorem 11.2.1. Let V be a vector space over C and Γ < GL(V)
a nilpotent group. Then ∃k ∈ N and Γ-invariant subspaces Vi < V for
i = 1, . . . k such that

V =
k⊕

i=1

Vi

and homomorphisms Γ
λi−−→ C∗ such that for each γ ∈ Γ and i =

1, . . . , k, the restriction γ − λiI to Vi is nilpotent. Furthermore there
exists a basis of Vi such that each restriction g|Vi is upper-triangular
with diagonal entry λi(g).

Corollary 11.2.2. Let A be an affine space over C and Γ <
Aff(A). Then there exists a unique maximal Γ-invariant affine sub-
space A1 < A such that the restriction of Γ to A1 is unipotent.

A1 is called the Fitting subspace in [111].
Since Γ preserves the affine subspace A1, it induces an affine action

on the quotient space A/A1. Denote by V the vector space underlying
A. Since the affine action on A/A1 is radiant (it preserves the coset
A1 < A), we may describe A as an affine direct sum:

A = A1 ⊕ V1

where V1 ⊂ V is an L(Γ)-invariant linear subspace.

Theorem 11.2.3 (Smillie [253], Fried-Goldman-Hirsch [111]). Let
M be a closed manifold with an affine structure whose affine holonomy
group Γ is nilpotent. Let A1 be its Fitting subspace and V1 its linear
complement as above. Then ∃γ ∈ Γ such that the restriction γ|V1 is a
linear expansion.

As in [253, 111], the Markus conjecture for nilpotent holnomy follows:

Corollary 11.2.4. Let M be a closed affine manifold whose affine
holonomy group is nilpotent. Then M is complete if and only if it has
parallel volume.
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Proof. Suppose M has parallel volume. Theorem 11.2.3 guaran-
tees an element γ ∈ Γ whose linear part L(γ) is an expansion on V1.
Thus V1 = 0, and A = A1, that is, Γ is unipotent. Apply Theorem 8.4.1
to deduce that M is complete.

Conversely suppose M is complete, that is, the developing map

M̃
dev−−−→ A is a diffeomorphism. Then

M1 :=
(
dev−1(A1)

)
/Γ ⊂ A/Γ ∼= M

is a closed affine submanifold and M1 ↪→M is a homotopy-equivalence.
Since both M1 and M are aspherical,

dim(A1) = dim(M1) = cd(Γ) = dim(M) = dim(A),

A1 = A and L(Γ) is unipotent, and hence volume-preserving. Thus M
has parallel volume. �

The geometric consequence of Theorem 11.2.3 is that the Γ-invariant
decomposition

A1 ↪→ A� V1

defines two transverse affine foliations of M . The affine subspaces par-
allel to A1 define the leaves of a foliation Fu of M . The leaves of Fu

are affine submanifolds of M with unipotent holonomy. The affine sub-
spaces parallel to V1 define the leaves of a foliation FR of M . The leaves
of FR are affine submanifolds of M with radiant affine structure.

Exercise 11.2.5. Suppose that M is closed. Show that each leaf of
Fu is complete.

11.3. Smillie’s nonexistence theorem

Theorem 11.3.1 (Smillie [255]). Let M be a closed affine manifold
with parallel volume. Then the affine holonomy homomorphism cannot
factor through a free group.

This theorem can be generalized much further — see Smillie [255] and
Goldman-Hirsch [132].

Corollary 11.3.2 (Smillie [255]). Let M be a closed manifold
whose fundamental group is a free product of finite groups (for example,
a connected sum of manifolds with finite fundamental group). Then M
admits no affine structure.

Proof of Corollary 11.3.2 assuming Theorem 11.3.1.
Suppose M has an affine structure. Since π1(M) is a free product of
finite groups, the first Betti number of M is zero. Thus M has parallel
volume. Furthermore if π1(M) is a free product of finite groups, there
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exists a free subgroup Γ ⊂ π1(M) of finite index. Let M̂ be the covering

space with π1(M̂) = Γ. Then the induced affine structure on M̂ also
has parallel volume contradicting Theorem. �

Proof of Theorem 11.3.1. Let M be a closed affine manifold
modeled on an affine space E, M̃

Π−→M a universal covering, and
(
M̃

dev−−→ E, π
hol−→ Aff(E)

)

a development pair. Suppose thatM has parallel volume and that there
is a free group Π through which the affine holonomy homomorphism h
factors:

π
φ−→ Π

h−−→ Aff(E)

Choose a graph G with fundamental group Π; then there exists a map
f : M −→ G inducing the homomorphism

π = π1(M)
φ−→ π1(G) = Π.

By general position, there exist points s1, . . . sk ∈ G such that f is
transverse to si and the complement G−{s1, . . . , sk} is connected and
simply connected. Let Hi denote the inverse image f−1(si) and let
H = ∪iHi denote their disjoint union. Then H is an oriented closed
smooth hypersurface such that the complement M −H ⊂M has triv-
ial holonomy. Let M |H denote the manifold with boundary obtained
by splitting M along H; that is, M |H has two boundary components

H+
i , H

−
i for each Hi and there exist diffeomorphisms H+

i

gi−→ H−i (gen-
erating Π) such that M is the quotient of M |H by the identifications
gi. There is a canonical diffeomorphism of M −H with the interior of
M |H.

Let ωE be a parallel volume form on E; then there exists a parallel
volume form ωM on M such that

Π∗ωM = dev∗ωE.

SinceHn(E) = 0, there exists an (n−1)-form η on E such that dη = ωE.

For any immersion S
f−→ E of an oriented closed (n − 1)-manifold S,

the integral ∫

S

f ∗η

is independent of the choice of η satisfying dη = ωE. Since Hn−1(E),
any other η′ must satisfy η′ = η + dθ and

∫

S

f ∗η′ −
∫

S

f ∗η =

∫

S

d(f ∗θ) = 0.
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Since M −H has trivial holonomy there is a developing map

M −H dev−−→ E

and its restriction to M −H extends to a developing map M |H dev−−→ E
such that

dev|H+
i

= h̄(gi) ◦ dev|H−i
and the normal orientations ofH+

i , H
−
i induced fromM |H are opposite.

Since h(gi) preserves the volume form ωE,

d(h(gi)
∗η) = d(η) = ω

and ∫

H+
i

dev∗η =

∫

H+
i

dev∗h(gi)
∗η = −

∫

H−i

dev∗η

since the normal orientations of H±i are opposite. We now compute
the ωM -volume of M :

vol(M) =

∫

M

ωM =

∫

M |H
dev∗ωE

=

∫

∂(M |H)

η =
k∑

i=1

(∫

H+
i

η +

∫

H−i

η

)
= 0,

a contradiction. �

One basic method of finding a primitive η for ωE involves a radiant
vector field ρ. Since ρ expands volume, specifically,

dιρωE = nωE,

and

η =
1

n
ιρωE

is a primitive for ωE. An affine manifold is radiant if and only if it
possesses a radiant vector field if and only if the affine structure comes
from an (E,GL(E))-structure if and only if its affine holonomy has a
fixed point in E. The following result generalizes the above theorem:

Theorem 11.3.3 (Smillie). Let M be a closed affine manifold with
a parallel exterior differential k-form which has nontrivial de Rham
cohomology class. Suppose U is an open covering of M such that for
each U ∈ U , the affine structure induced on U is radiant. Then dimU ≥
k; that is, there exist k + 1 distinct open sets

U1, . . . , Uk+1 ∈ U
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such that the intersection

U1 ∩ · · · ∩ Uk+1 6= ∅.
(Equivalently the nerve of U has dimension at least k.)

A published proof of this theorem can be found in Goldman-Hirsch [132].
Using these ideas, Carrière, dAl’bo and Meignez [57] have proved

that a nontrivial Seifert 3-manifold with hyperbolic base cannot have
an affine structure with parallel volume. This implies that the 3-
dimensional Brieskorn manifolds M(p, q, r) with

p−1 + q−1 + r−1 < 1

admit no affine structure whatsoever. (Compare Milnor [223].)
There is a large class of discrete groups Γ for which every affine

representation Γ −→ Aff(E) is conjugate to a representation factoring
through SL(E), that is,

Γ −→ SL(E) ⊂ Aff(E).

For example finite groups have this property, and the above theorem
gives an alternate proof that the holonomy of a compact affine manifold
must be infinite. Another class of groups having this property are the
Margulis-superrigid groups, that is, irreducible lattices Γ in semisimple
Lie groups G of R-rank greater than one (for example, SL(n,Z) for
n > 2). Margulis proved [207] that every unbounded finite-dimensional
linear representation of Γ extends to a representation of G. It then
follows that the affine holonomy of a compact affine manifold cannot
factor through a Margulis-superrigid group. However, since SL(n;R)

does admit a left-invariant RPn
2−1-structure, it follows that if Γ ⊂

SL(n;R) is a torsion-free cocompact lattice, then there exists a compact
affine manifold with holonomy group Γ×Z although Γ itself is not the
holonomy group of an affine structure.

11.4. Fried’s classification of closed similarity manifolds

Fried [106] gives a sharp classification of closed similarity mani-
folds; this was announced earlier by Kuiper [188], although the proof
contains a gap. Later Reischer and Vaisman [270] proved this, us-
ing a completely different set of ideas. Miner [227] extended Fried’s
theorem to manifolds modeled on the Heisenberg group and its group
of similarity transformations. Recently this has been exteneded to
the boundary geometry of any rank one symmetric space by Raphaël
Alexandre [4]. Later, in §??, the ideas in Fried’s proof are related to
Thurston’s parametrization of CP1-structures and the Kulkarni-Pinkall
theory of flat conformal structures [194, 195].
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11.4.1. Completeness versus radiance. Fried’s theorem is a
prototype of a theorem about geometric structures on closed manifolds.
Here X = En and G = Sim(En). Namely, Fried shows that a (G,X)-
structure on a closed manifold M must reduce to one of two special
types, corresponding to subgeometries (G′, X ′) (G,X). Specifically,
a closed similarity manifold must be one of the following two types:

• A Euclidean manifold where X ′ = X = En and

G′ = Isom(En) ↪→ Sim(En).

This is precisely the case when the underlying affine structure
on M is complete;
• A finite quotient of a Hopf manifold where X ′ = En\{0} and
G′ = Sim0(En) ↪→ Sim(En), the group of linear similarity (or
conformal) transformations of En. The is precisely the case
when the underlying affine structures is incomplete.

The complete case is easy to handle, since in that case Γ acts freely,
and any similarity transformation which is not isometric must fix a
point. When M is incomplete, very little can be said in general, and
the compactness hypothesis must be crucially used.

Exercise 11.4.1. Prove that a complete similarity manifold is a
Euclidean manifold, and diffeomorphic to a finite quotient of a product
Tr × En−r.

The other extreme — radiant similarity manifolds — were discussed
in §6.5.2.1 of Chapter 6.

The recurrence of an incomplete geodesic on a compact manifold
guarantees a divergent sequence in the affine holonomy group Γ. This
holonomy sequence converges to a singular projective transformation
φ as in §2.6. The condition that Γ ⊂ Sim(En) strongly restricts φ; in
particular it has rank one or its limits are proximal, in that most points
approach a single point, which Fried shows must lie in En. From this he
deduces radiance, and finds that the structure is modeled on En\{0}.
We closely follow Fried’s proof (which we highly recommend reading),
but insert more details and coordinate the notation with the rest of
this document.

11.4.2. Canonical metrics and incompleteness. Choose a Eu-
clidean metric gE on En; the pullback dev∗gE is a Euclidean metric on

M̃ . UnlessM is a Euclidean manifold, this metric is not invariant under

π. rather it transforms by the scale factor homomorphism: π
λ◦h−−−→ R+:

(54) γ∗
(
dev∗gE

)
= λ ◦ h(γ) dev∗gE.



11.4. SIMILARITY MANIFOLDS 265

defined in §1.4.1.

Exercise 11.4.2. Relate the scale factor λ ◦ h to the volume ob-
struction νM .

Unless M is Euclidean, then dev∗gE is incomplete. Thus we assume

that (M̃, dev∗gE) is an incomplete Euclidean manifold with distance

function M̃ × M̃ d̃E−−→ R, non-bijective developing map M̃
dev−−−→ E and

nontrivial scale factor homomorphism π1(M)
λ ◦ h−−−→ R+.

We begin with some general facts about an incomplete Euclidean
manifold N with trivial holonomy. We apply these facts to the case

when N is the universal covering M̃ of a compact incomplete similarity
manifold M .

Exercise 11.4.3. Let N be a Euclidean manifold with trivial holo-

nomy. Choose a developing map N
dev−−−→ E. Let B ⊂ N be an open

subset. The following conditions are equivalent:

• B is an open ball in N , that is, ∃c ∈ N, r > 0 such that
B = Br(c).
• B develops to an open ball in E, that is, ∃c ∈ E, r > 0 such that

the restriction dev|B is a diffeomorphism B −→ Br(c) ⊂ E;
• B is the exponential image of a metric ball in the tangent space

TcN , that is, ∃c ∈ N, r > 0 such that the restriction Exp|Br(0c)
is a diffeomorphism Br(0c) −→ B.

Under these conditions, the maps

Br(0c)
Expc−−−−→ B

dev−−−→ Br

(
dev(c)

)

are isometries with respect to the restrictions of the Euclidean metrics
on TcN , N and E, respectively.

Definition 11.4.4. A maximal ball in N is an open ball which is
maximal among open balls with respect to inclusion.

Exercise 11.4.5. A Euclidean manifold with trivial holonomy is
complete (that is, is isomorphic to Euclidean space) if and only if no
ball is maximal.

Exercise 11.4.6. Suppose N is an incomplete Euclidean manifold
with trivial holonomy.

• Let B ⊂ N be a maximal ball and let c be its center. Then B
is maximal among open balls centered at c.
• Every open ball lies in a maximal ball.
• Every x ∈ N is the center of a unique maximal ball B(x).
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• For each x, not every point on ∂B(x) is visible from x.

Definition 11.4.7. Let N be an incomplete Euclidean manifold
with trivial holonomy. For each x ∈ N , let R(x) <∞ be the radius of
the maximal ball B(x) ⊂ N centered at x.

Exercise 11.4.8. The maximal ball B(x) = BR(x)(x). Moreover
R(x) is the supremum of r such that Br(0x) ⊂ Ex, where Ex ⊂ TxN
denotes the domain of Expx defined in §8.3 of Chapter 8.

Lemma 11.4.9. The function R is Lipschitz:

(55) |R(x)−R(y)| ≤ d̃(x, y)

if x, y ∈ N are sufficiently close. In particular R is continuous.

Proof. Suppose that x ∈ N and ε such that

ε < sup
(
R(x), R(y)

)
.

Choose r < R(x) so that Br(0x) ⊂ Ex. First we show that if d̃(x, y) < ε,
then

(56) r < d̃(x, y) +R(y)

Choose u ∈ B(x) such that d̃(x, u) = r. Suppose that d̃(x, y) < ε.

Then closed ball Br(x) lies in the convex set B(x) which also contains
y. Thus u ∈ ∂Br(x) is visible from y, whence

d̃(y, u) < R(y).

Thus
r = d̃(x, u) ≤ d̃(x, y) + d̃(y, u) < d̃(x, y) +R(y),

proving (56). Taking the supremum over r yields:

R(x) < d̃(x, y) +R(y),

so R(x)−R(y) < d̃(x, y) if d̃(x, y) < ε. Similarly, symmetry of d̃ implies

that R(x)−R(y) < d̃(x, y) if d̃(x, y) < ε which implies (55). �

We return to the case that M is a compact incomplete similarity

manifold. Choose a universal covering N
Π−−→ M , a developing map

N
dev−−−→ E, and a holonomy representation π1(M)

h−−→ Sim(En). If

φ ∈ π1(M) is a deck transformation (also denoted N
φ−−→ N), then

φ
(
BR(p̃)

)
is a maximal ball at φ(p̃), so:

(57) R
(
φp̃) = λ ◦ h(φ)R(p̃)

This leads to a natural conformal Riemannian structure on N which
descends to a conformal Riemannian structure on M .
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This will be the canonical Riemannian structure on a radiant sim-
ilarity manifold. If M is closed and incomplete, then M is finitely
covered by a Hopf manifold M ′ homeomorphic to Sn−1 × S1. The
induced Riemannian structure on M ′ is the Cartesian product of a
spherical metric on Sn−1 with a Euclidean metric on S1. By (57), the

Riemannian metric g̃ on M̃ defined by:

(58) g̃(p̃) := R(p̃)−1dev∗gE

is π1(M)-invariant. Therefore g̃ passes down to a Riemannian metric
gM on M , that is, Π∗gM = g̃.

The Riemannian structure gM has the property that its unit ball is
maximal inside the domain E of the exponential map Exp. When M is
closed, even more is true:

Proposition 11.4.10. Let M be a compact incomplete similarity

manifold with universal covering N
Π−−→M . Then ∃ξ ∈ Vec(M) which

is Π-related to a vector field ξ̃ ∈ Vec(N) such that:

• ‖ξ‖gM = ‖ξ̃‖g̃ = 1;
• The halfspace

Hx := {v ∈ TxN | g̃(v, ξ) < 1}
lies in Ex for all x ∈ N .

In particular
Hx := Expx(Hx) ⊂ N

is a natural halfspace neighborhood of x.

By analyzing Hx, we shall prove that ξ is a radiant vector field and
M is (covered by) a Hopf manifold. A key ingredient is a holonomy
sequence h(φij) ∈ Sim(En), where φij ∈ π1(M), which contracts to 0
as j ↗∞ (Proposition 11.4.13). The proof of Proposition 11.4.10 will
be given in §11.4.4, following several preliminary lemmas needed in the
proof.

11.4.3. Incomplete geodesics recur. Fried makes a detailed

analysis of an incomplete geodesic [0, 1)
γ−−→ M . That is, γ(t) =

Exp(tv), where v ∈ TxM but tv ∈ Ex ⇐⇒ t < 1.
Since M is compact (and [0, 1) isn’t compact), the path γ(t), ac-

cumulates. That is, for some sequence tn ↗ 1 a sequence γ(tn) ∈ M
converges in M as n↗ +∞. Denote

(59) p := lim
n→+∞

γ(tn)

Next, we use the recurrence of γ(t) to obtain a holonomy sequence
converging to a singular projective transformation as in §2.6. To that
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end, we pass to a specific universal covering space and a developing
map. Employ p ∈ M as a basepoint to define a universal covering

space M̃
Π−−→ M . The total space M̃ comprises relative homotopy

classes of paths [0, T ]
γ−−→M with γ(0) = p and the projection is:

M̃
Π−−→M

[γ] −→ γ(T )

The constant path defines a basepoint p̃ ∈ M̃ with Π(p̃) = p. The group
of deck transformations is π1(M, p) consisting of relative homotopy
classes of loops in M based at p.

Lift the incomplete geodesic [0, 1)
γ−−→M to an incomplete geodesic

[0, 1)
γ̃−−→ N so that

lim
n→+∞

γ̃(tn) = p̃

and let x̃ := γ̃(0) be the initial endpoint of γ̃ and ṽ := γ̃′(0) ∈ Tx̃N
the initial velocity.

Choose a developing map M̃
dev−−−→ En. A Euclidean metric tensor

gE on E induces a Euclidean metric tensor dev∗g on N . By rescaling, we
may assume that dev∗g(ṽ, ṽ) = 1. Denote the corresponding distance

function by N ×N d−−→ R. Choose a coordinate patch U 3 p such that

the restriction dev|Ũ is injective, where Ũ ⊂ M̃ is the component of
Π−1(U) containing p̃. Choose ε > 0 such that:

• Bε := Bε(0p̃) ⊂ Ep̃;
• The ball B := Expp̃(Bε) lies in Ũ ;

• ε < 1
2
.

In particular, the restriction dev|B is injective.

Lemma 11.4.11. Let N
R−−→ R+ be the radius function (defined in

11.4.7). Then

R
(
γ̃(t)

)
= 1− t.

Exercise 11.4.12. Prove Lemma 11.4.11.

After possibly passing to a subsequence, (59) implies that γ(ti) ∈ B.
Let

si := d
(
γ(ti), p

)

and [0, si]
ηi−−→ M the unit-speed geodesic in B with ηi(0) = p and

ηi(si) = γ(ti). Lift ηi to

[0, si]
η̃i−−→ M̃
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with η̃i(si) = γ̃(ti). Let p̃i := η̃i(0). For i < j define

φij :=
[
η−1
j ? γ|[ti,tj ] ? ηi

]
∈ π1(M, p).

A crucial fact is that the scale factors decrease to 0 along the incomplete
geodesic γ(t). In particular the limit of the holonomy sequence is a
singular projective transformation whose image is a single point.

Proposition 11.4.13. Fix i ∈ N and δ > 0. Then ∃J(i) such that
the scale factor λ ◦ h(φij) < δ for j ≥ J(i).

Proof. Denote the g̃-length of η̃i by

li := d̃
(
p̃i, dev γ̃(ti)

)
.

First, we claim that:

(60) ε >
li

li +R
(
γ̃(ti)

) .

If 0 ≤ s ≤ si, then d̃
(
γ̃(ti), η̃i(s)

)
≤ li. Lemma 11.4.9 implies:

R
(
η̃i(s)

)
≤ R

(
γ̃(ti) + li

so the g̃-length of η̃i equals:

d̃
(
p̃i, γ̃(ti)

)
=

∫ si

0

(η̃i)
∗ds

R
(
η̃i(s)

)

≥ li

li +R
(
γ̃(ti)

)

Thus
li

li +R
(
γ̃(ti)

) ≤ d̃
(
p̃i, γ̃(ti)

)
= d
(
x, γi(ti)

)
< ε

as desired, proving (60). Next we prove:

(61) li < 2ε(1− ti).
In general, ε > l/(l + R) implies that l < Rε/(1 − ε). Furthermore
ε < 1/2 implies that ε/(1− ε)R < 2εR so

li < 2εR
(
γ̃(ti)

)
= 2εR

by Lemma 11.4.11, thereby establishing (61).

Lemma 11.4.14.

1− 2ε <
R(p̃i)

1− ti
< 1 + 2ε
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Proof. Lemma 11.4.9 implies

|R(p̃i)−R
(
γ̃(ti)

)
| ≤ d

(
dev(p̃i), dev

(
γ̃(ti)

)
= li.

Lemma 11.4.11 and (61) together imply

|R(p̃i)− (1− ti)| < 2ε(1− ti).
Now divide by 1− ti. �

Lemma 11.4.15. For i < j,

R(x̃j)

R(p̃i)
<

1 + 2ε

1− 2ε

1− tj
1− ti

Proof. Apply Lemma 11.4.14 to obtain:

(62) R(x̃j) < (1 + 2ε)(1− tj)
and

(1− 2ε)(1− ti) < R(p̃i)

that is,

(63)
1

R(p̃i)
<

1

(1− 2ε)(1− ti)
.

Multiplying (62) and (63) implies Lemma 11.4.15. �

Since tj ↗ 1, for any fixed i, there exists J(i) such that j > J(i) implies

1 + 2ε

1− 2ε

1− tj
1− ti

< δ.

Since x̃j = φij p̃i, (57) and (54) imply:

R(x̃j)

R(p̃i)
= λ ◦ h(φij).

Now apply Lemma 11.4.15 to complete the proof of Proposition 11.4.13.
�

Recall from Exercise 2.6.6 of Chapter 2, that a sequence of similarity
transformations accumulates to either:

• The zero affine transformation (undefined at the ideal hyper-
plane, otherwise constant;
• A singular projective transformation of rank one, taking values

at an ideal point.

The contraction of scale factors (Proposition 11.4.13) implies that the
second case cannot occur.
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11.4.4. Existence of halfspace neighborhood. The contrac-
tion of scale factors (Proposition 11.4.13) easily implies the existence
of halfspace neighborhoods (Proposition 11.4.10).

The proof uses the following elementary fact in Euclidean geometry:

Exercise 11.4.16. Let y ∈ En be a point and v ∈ TyEn ←→ Rn be a
tangent vector. Choosing coordinates, we may assume that Expy(v) = 0
is the origin. Let St be a one-parameter family of homotheties approach-
ing zero:

En
St−−→ En

p 7−→ e−tp

Let B be the ball centered at y of radius R = ‖v‖:
B := {x ∈ En | d(y, x) < R}

If tn ↗ ∞, then the union of Stn(B) is the halfspace H containing y

and orthogonal to the line segment
←→
y0:

H(y,0) := {y + w | w · v < R}.
Let Ap denote the extension of dev ◦ Expp to TpN −→ A described

in Proposition 8.3.6.

Conclusion of proof of Proposition 11.4.10. Let x ∈ M
and lift to x̃ ∈ N . Since M is incomplete, a maximal ball B(x̃) ⊂ Ex̃
exists, and denote its radius by R := R(x̃). Furthermore ∂B(x̃) con-
tains a vector ṽ of length R such that ṽ /∈ Ex̃ but tṽ ∈ Ex̃ for |t| < 1.
(Soon we shall see that ṽ is unique, and will be the value ξ(x̃).)

Apply this construction to go from the incomplete geodesic

γ(t) := Expx(tv), (0 ≤ t < R),

inM to a holonomy sequence γij ∈ π1(M, p) satisfying Proposition 11.4.13.
Define the halfspace

Hx̃ := {Y ∈ Tx̃N | dev∗gE(ṽ, Y ) < R}
= {Y ∈ Tx̃N | gN(ṽ, Y ) < 1}.

We show Hx̃ ⊂ Ex̃. Suppose that Y is a tangent vector at x̃ such that

dev∗gE(ṽ, Y ) < R.

By Proposition 11.4.13, for j � 1 and fixed i < j, the holonomy h(γij)
is a very sharp contraction with rotational component close to the
identity — that is, it’s very close to a strong homothety about 0. By
Exercise 11.4.16 above, (Dγij)x̃ maps Y to a vector in Bγij(x̃) ⊂ Eγij(x̃)
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for j � i. Thus (Dγij)x̃(Y ) Is visible from γij(x̃) so Y is visible from
x̃, as claimed.

In particular every point in ∂B(x̃)\{X} lies in H(x̃), and therefore
x̃ uniquely determines X, so we write X =: ξ(x̃).

�

11.4.5. Visible points on the boundary of the halfspace.
Bounding the halfspace Hx̃ is the affine hyperplane

∂Hx̃ := {Y ∈ Tx̃ | gN(ṽ, Y ) < 1},
which decomposes as the disjoint union of two subsets:

• The visible set ∂Hx̃ ∩ Ex̃;
• The invisible set ∂Hx̃ \ Ex̃.

The invisible set is nonempty, since it contains ξ(x̃).

Lemma 11.4.17. The visible set ∂Hx̃ ∩ Ex̃ is nonempty.

Proof. Suppose every point of ∂Hx̃ is invisible. Then Hx̃ is a
closed subset of Ex̃. By construction, Hx̃ is open and connected, so
Hx̃ = Ex̃.

Thus the corresponding subset Hx̃ = Exp(Htx) of N equals all of
N , so M is a quotient of a halfspace. The contradiction now follows
from the following exercise. �

Exercise 11.4.18. Let H ⊂ En be an open halfspace, and let Γ <
Sim(En) be a discrete subgroup stablizing H and acting properly on H.
Then the quotient Γ\H is not compact.

11.4.6. The invisible set is affine and locally constant. This
uses the variation of Hx̃ as x̃ varies. The key is Lemma 1 of Fried [106],
which says that if y = Expx̃(Y ), where Y ∈ ∂Hx̃∩Ex̃ is a visible vector,
then ξ(x̃) “is also invisible” from y. That is, the vector in TyN whose
parallel transport Py,x to x equals X ∈ Tx̃(N) is invisible from y.

Now apply the strong contraction γij to show that the halfplane
H(y) is moved closer and closer to 0. If it contains 0, then X = ξ(x)

is visible, a contradiction. If 0 /∈ H(y), then for j � i, the maxi-
mal ball B(y) is contained in a visible halfspace from x, contradicting
maximality. Thus ξ(x̃) is also invisible from y.

This shows that x̃ uniquely determines the vector X, and the map
x̃ 7−→ X is locally constant.

Exercise 11.4.19. Prove this map is affine and deduce that the
invisible subspace ∂Hx̃ \ Ex̃ is an affine subspace.
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Now we return to the case that M is a closed affine manifold with
holonomy covering space N .

Fried concludes th proof by observing now that the vector field cor-
responds to an affine projection from the ambient affine space to the
invisible subspace ∂Hx̃ \ Ex̃. Since it is invariant under deck transfor-
mations it descends to a vector field on the compact quotient M .

Recall the divergence of a vector field (see §1.7.2) which measures
the infinitesimal distortion of volume:

Exercise 11.4.20. The divergence of the vector field X equals dim∂Hx̃\
Ex̃. Since M is closed, the vector field has divergence zero.

Thus ∂Hx̃ ∩ Ex̃ is a single point, and M is radiant, as desired.





CHAPTER 12

Hyperbolicity

The opposite of geodesic completeness is hyperbolicity in the sense
of Vey [275, 274] and Kobayashi [179, 177], which is equivalent to
the following notion: An affine manifold M is completely incomplete if
and only if every affine map R −→M is constant, that is, M admits no
complete geodesic. As noted by the author (see Kobayashi [179]), the
combined results of Kobayashi [179], Wu [291], and Vey [277, 276]
imply:

Theorem. Let M be a closed affine manifold. Suppose that M is
completely incomplete. Then M is a quotient of a properly convex cone.

I find it very striking that the two extreme cases for closed affine man-
ifolds, the developing map is an embedding. That is, the developing
map for a complete affine manifold is a diffeomorphism, whereas the
develping map for a completely incomplete affine manifold embeds the
universal covering as a sharp convex cone.

In particular a completely incomplete affine manifold M is radiant.
Furthermore it fibers over S1 as a radiant suspension of an automor-
phism of a projective manifold of codimension one. Topological conse-
quences are that the Euler characteristic χ(M) = 0 and the first Betti
number b1(M) > 0.

Along the way we will also show that complete incompleteness is
equivalent to the nonexistence of nonconstant projective maps R −→
M .

This striking result uses intrinsic metrics for affine and projective
manifolds, developed by Vey [275, 277, 274, 276] and Kobayashi [179,
177]. Their constructions were in turn inspired by the intrinsic met-
rics of Carathéodory and Kobayashi for holomorphic mappings between
complex manifolds.

We begin by discussing Kobayashi’s pseudometric for domains in
projective space, and then extend this construction to projective man-
ifolds.

275
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12.1. The Kobayashi metric

To motivate Kobayashi’s construction, consider the basic case of
intervals in P1. (Compare the discussion in Exercise 2.5.7 on the cross-
ratio.)

There are several natural choices to take, for example, the interval of
positive real numbers R+ = (0,∞) or the open unit interval I = (−1, 1).

They relate via the projective transformation I
τ−−→ R+

x = τ(u) =
1 + u

1− u
mapping −1 < u < 1 to 0 < x <∞ with τ(0) = 1. The corresponding
Hilbert metrics are given by

dR+(x1, x2) = log

∣∣∣∣
x1

x2

∣∣∣∣(64)

dI(u1, u2) = 2

∣∣∣∣ tanh−1(u1)− tanh−1(u2)

∣∣∣∣.(65)

This follows from the fact that τ pulls back the parametrization corre-
sponding to Haar measure on R+:

|dx|
x

= |d log x|

to the Poincaré metric on I:

dsI =
2 |du|
1− u2

= 2 |d tanh−1 u|.

A slight generalization of this will be useful in §12.2 in the proof of
the projective Brody Lemma 12.2.18:

Exercise 12.1.1. Let r > 0 and denote by I(r) the open interval
(−r, r) ⊂ R. Show that the diffeomorphism

I −→ I(r)

u 7−→ v = ru

maps 0 7→ 0, takes
(
d
du

)
0

to r
(
d
dv

)
0
, and, dually,

r dsI =
2 r |du|
1− u2

←−p 2r2 |dv|
r2 − v2

.

Show that the infinitesimal form of the Hilbert metric on I(r) is:

dsI(r) =
2 r |dv|
r2 − v2

= 2 d tanh−1(v/r)

for v ∈ I(r) and v = r tanh(s/2).



12.1. THE KOBAYASHI METRIC 277

Exercise 12.1.2. Let x−, x+ ∈ R \ {0} be distinct. Show that the
projective map mapping

−1 7−→ x−

0 7−→ 0

1 7−→ x+

is given by:

t 7−→ 2(x−x+) t

(t+ 1)x− + (t− 1)x+

,

and a projective automorphism of I by

t 7−→ cosh(s)t+ sinh(s)

sinh(s)t+ cosh(s)
=

t+ tanh(s)

1 + tanh(s)t

for s ∈ R.

In terms of the Poincaré metric on I the Hilbert distance d(x, y) can
be characterized as an infimum over all projective maps I −→ Ω:

d(x, y) = inf

{
dI(a, b)

∣∣∣∣ f ∈ Proj(I,Ω), a, b ∈ I, f(a) = x, f(b) = y

}

We now define the Kobayashi pseudometric for any domain Ω and,
more generally, any manifold with a projective structure (§12.2). This
proceeds by a general universal construction forcing two properties:

• The triangle inequality : d(a, c) ≤ d(a, b) + d(b, c);
• The projective Schwarz lemma: Projective maps do not in-

crease distance.

However, the resulting pseudometric may not be positive; indeed for
many domains it is identically zero.

Let Ω ⊂ P be a domain and x, y ∈ Ω. A (projective) chain from
x to y is a sequence C of projective maps f1, . . . , fm ∈ Proj(I,Ω) and
pairs ai, bi ∈ I, for i = 1, . . . ,m such that:

f1(a1) = x, f1(b1) = f2(a2), . . . ,

fm−1(bm−1) = fm(am), fm(bm) = y.

Denote the set of all projective chains from x to y by Chain(x  y).
Define length of a projective chain by:

`(C) =
m∑

i=1

dI(ai, bi).

and the Kobayashi pseudodistance dKob(x, y):

dKob(x, y) = inf

{
`(C)

∣∣∣∣ C ∈ Chain(x y)

}
.
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The resulting function enjoys the following obvious properties:

• dKob(x, y) ≥ 0;
• dKob(x, x) = 0;
• dKob(x, y) = dKob(y, x);
• (Triangle inequality) dKob(x, y) ≤ dKob(y, z) + dKob(z, x).
• (Projective Schwarz lemma) If Ω,Ω′ are two domains in pro-

jective spaces with Kobayashi pseudometrics d, d′ respectively
and

Ω
f−−→ Ω′

is a projective map, then

d′(f(x), f(y)) ≤ d(x, y).

• The Kobayashi pseudometric on the interval I equals the Hilbert
metric on I.
• dKob is invariant under the group Aut(Ω) consisting of all collineations

of P preserving Ω.

Proposition 12.1.3 (Kobayashi [179]). Let Ω ⊂ P be properly
convex. If x, y ∈ Ω, then

dHilb(x, y) = dKob(x, y)

Corollary 12.1.4. The function dHilb : Ω×Ω −→ R is a complete
metric on Ω.

Proof of Proposition 12.1.3. Let x, y ∈ Ω be distinct points
and let l =←→xy be the line incident to them. Now

dHilb
Ω (x, y) = dHilb

l∩Ω(x, y) = dKob
l∩Ω(x, y) ≤ dKob

Ω (x, y)

by the Schwarz lemma applied to the projective map l ∩Ω ↪→ Ω. For
the opposite inequality, let S be the intersection of a supporting hyper-
plane to Ω at x∞ and a supporting hyperplane to Ω at y∞. Projection
from S to l defines a projective map

ΠS,lΩ −→ l ∩ Ω

which retracts Ω onto l ∩ Ω. Thus

dKob
Ω (x, y) ≤ dKob

l∩Ω(x, y) = dHilb
Ω (x, y)

(again using the Schwarz lemma) as desired. �

Corollary 12.1.5. Line segments in Ω are geodesics. If Ω ⊂
P is properly convex, x, y ∈ Ω, then the chain consisting of a single
projective isomorphism

I −→←→xy ∩ Ω

minimizes the length among all chains in Chain(x y).
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Exercise 12.1.6. Prove that the geodesics in Ω with respect to this
metric are straight lines.

An affine (respectively projective) manifold is hyperbolic if the Kobayashi
pseudometric dKob is a metric, that is, if dKob(x, y) > 0 for x 6= y. A
compact affine manifold M is hyperbolic if and only if if it is a quo-
tient of a properly convex cone; a compact projective manifold is hy-
perbolic if and only if it is a quotient of a properly convex domain
in projective space. The tameness of developing maps of hyperbolic
affine and projective structures suggests, when the pseudometric dKob

fails to be a metric, that dKob may provide a useful tool to understand
pathological developing maps.

12.2. Kobayashi hyperbolicity

Now we discuss intrinsic metrics on affine and projective manifolds.
The case of domains was discussed in §??.

Recall from §12.1 the open unit interval I = (−1, 1) with Poincaré
metric

gI :=
4 du2

(1− u2)2
=
(
dsI

)2

,

where

dsI =
√

gI :=
2 du

1− u2
= d

(
2 tanh−1(u)

)

defines the associated norm on the tangent spaces. As in §12.1, the nat-
ural parameter s for arc length on I relates to the Euclidean coordinate
u on I ⊂ R by:

u = tanh(s/2).

For projective manifolds M , one defines a “universal” pseudometric

M ×M dKob
M−−−→ R

such that affine (respectively projective) maps I→M are distance non-
increasing with respect to dsI. This generalizes the Kobayashi metric
for projective domains discussed in §12.1.

The definition of dKob
M for an arbitary RPn-manifold M enforces

the triangle inequality and Schwarz lemma by taking the infimum of
gI-distances over chains in M , as in §12.1. Recall that if x, y ∈ M ,
a (projective) chain from x to y is a sequence of projective maps
f1, . . . , fm ∈ Proj(I,M) and pairs ai, bi ∈ I, for i = 1, . . . ,m such
that:

f1(a1) = x, f1(b1) = f2(a2), . . . ,

fm−1(bm−1) = fm(am), fm(bm) = y.
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Denote the set of all chains from x to y by Chain(x  y) and define
length:

Chain(x y)
`−−−→ R≥0

((
(a1, b1), f1

)
, . . . ,

(
(am, bm), fm

))
7−→

m∑

i=1

dI(ai, bi),

where dI is the distance function on the Riemannian 1-manifold (I, gI).
Now define the Kobayashi pseudodistance dKob(x, y) as:

M ×M dKob

−−−→ R≥0

(x, y) 7−→ inf

{
`(C)

∣∣∣∣C ∈ Chain(x y)

}
.

just as in as in §12.1. Just as in the case of domains, dKob satisfies the
triangle inequality and the Projective Schwarz lemma:

Lemma 12.2.1 (Projective Schwarz Lemma). Projective maps do
not increase pseudodistances: If x, y ∈ N , and f ∈ Proj(N,M), then

dKob
M

(
f(x), f(y)

)
≤ dKob

N

(
x, y
)
.

Definition 12.2.2. Let M be an RPn-manifold. Then M is (pro-
jectively) hyperbolic if and only if dKob

M > 0, that is, if
(
M, dKob

M

)
is a

metric space. Say that M is complete hyperbolic if if the metric space(
M, dKob

M

)
is complete.

.

12.2.1. Complete hyperbolicity and convexity. The follow-
ing convexity theorem is due, independently, to Vey [274, 275], and
Kobayashi [179], from somewhat different viewpoints. We closely fol-
low Kobayashi [179]; see also [177, 178].

Proposition 12.2.3. Let M be a complete hyperbolic projective
manifold. Then M is properly convex, that is, M is isomorphic to a
quotient of a properly convex domain by a discrete group of collineations.

The proof will be based on the following fundamental compact-
ness property of projective maps (compare Vey [275], Proposition IV,
Chapitre II):

Lemma 12.2.4. Suppose that M,N are projective manifolds, where
M is complete hyperbolic. Let p ∈ N and K ⊂⊂M . Then

Projp,K(N,M) :=
{
f ∈ Proj(N,M)

∣∣ f(p) ∈ K
}

is compact.
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Proof. Apply the Projective Schwarz Lemma 12.2.1 to Lemma C.2.1
(Theorem 3.1 of Chapter V of Kobayashi [180]), discussed in Appen-
dix C. �

Proof of Proposition 12.2.3. We show that M is geodesically
convex, that is, if ∀p, q ∈M , every path p q is relatively homotopic
to a geodesic path from p to q. We may assume that M is simply
connected.

For p ∈ M , let M(p) ⊂ M be the union of geodesic segments in
M beginning at p. Exercise 8.3.4 implies M(p) is open. Since M is
connected, it suffices to show M(p) is closed.

Suppose that qn ∈ M(p) for n = 1, 2, . . . be a convergent sequence
in M with q = limn→∞ qn. We show that q ∈M(p).

Let 0 < a < 1 and fn ∈ Proj(I,M) with fn(0) = p and fn(a) = qn.
Lemma 12.2.4 guarantees a subsequence of fn converging to a projective
map f ∈ Proj(I,M) with f(0) = p. Then

q = lim
n→∞

qn = lim
n→∞

fn(a) = f(a) ∈M(p)

and M(p) is closed, as desired. �

12.2.2. The infinitesimal form. Kobayashi’s pseudometric dKob

has an infinitesimal form ΦKob defined by a function TM
ΦKob

−−−→ R.
That is, dKob(p, q) is the infimum of the pseudolengths

`(γ) :=

∫

γ

ΦKob(γ′)

over piecewise C1 paths p
γ
 q. For x ∈M and ξ ∈ TxM , define:

ΦKob(ξ) :=(66)

inf

{
|dsI(v)|

∣∣∣∣ f ∈ Proj(I,M), f(u) = x, (Df)u(v) = ξ

}

where u ∈ I and dsI(v) denotes the norm of v ∈ TuI with respect to
the Poincaré metric (dsI)

2 on I.

Exercise 12.2.5. For affine manifolds, completeness is equivalent
to ΦKob ≡ 0. For a Hopf manifold, dKob ≡ 0 but ΦKob 6= 0. Indeed
ΦKob(R) = 1 where R is the radiant vector field.

Exercise 12.2.6. Show that ΦKob is homogeneous of degree one,
that is,

ΦKob(rξ) = rΦKob(ξ)

for r ≥ 0. Deduce that `(γ) is independent of the parametrization of γ.
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Proposition 12.2.7. ΦKob is upper semicontinuous.

Recall that a function X
f−−→ R is upper semicontinuous at x ∈ X if

and only if ∀ε > 0,

f(y) < f(x) + ε

for y in an open neighborhood of x. That is, the values of f cannot
“jump down” in limits.

lim
n→∞

f(ξn) ≤ f
(

lim
n→∞

ξn
)

for convergent sequences ξn. Equivalently, f is a continuous mapping
from X to R, where R is given the topology whose open sets are in-
tervals (−∞, a) where a ∈ R. The indicator function of a closed set is
upper semicontinuous. Semicontinuous functions are further discussed
in Appendix D.

Proof of Proposition 12.2.7. Let x ∈ M and ξ ∈ TxM and
write

ΦKob(ξ) = k.

Let ε > 0. Then ∃f ∈ Proj(I,M) with f(u) = x, and v ∈ TuI with
(Df)u(v) = ξ and

‖v‖ < k + ε/2.

Lift f to f̃ ∈ Proj(I, M̃) and extend f̃ to F̃ ∈ Proj(B, M̃). Let ‖‖B
the corresponding norm for the intrinsic metric on B defined in §3.3.
We may assume that ‖ξ‖B = ‖ξ‖. Then an open neighborhood N of

ξ ∈ TM̃ exists so that if ξ′ ∈ N , then:

• ξ′ ∈ Tx′M̃ where x′ lies in the image F̃ (B) ⊂ M̃ ;

• ‖(DF̃ )−1(ξ′)‖B < k + ε.

Since projective maps do not increase distance, ‖ξ′‖M̃ < k + ε, as
desired. �

Corollary 12.2.8 (Proposition 5.16 of Kobayashi [179]). If M is

a complete hyperbolic projective manifold, then TM
ΦKob

−−−−→ R is con-
tinuous.

The proof uses the following lemma (Lemma 5.17 of Kobayashi [179]),
stating that the infimum in the definition of ΦKob is actually achieved.

Lemma 12.2.9. Suppose M is complete hyperbolic and ξ ∈ TpM .
Then ∃f ∈ Proj(I,M) and v ∈ T0I with f(0) = p and (Df)0(v) = ξ
such that ΦKob(ξ) = ‖v‖.
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Proof. Lemma 12.2.4 implies that the subset of Proj(I,M) com-

prising projective maps I
f−−→ M with f(0) = p is compact. Thus the

set of ‖(Df)−1(ξ)‖ is a compact subset of R+, so its infimum ΦKob(ξ)
is positive. �

Proof of Corollary 12.2.8. Suppose, for k = 1, 2, . . . , that
ξk ∈ TpkM , defines a sequence converging to ξ∞ ∈ Tp∞M . We show
that limk→∞ΦKob(ξk) = ΦKob(ξ∞).

Proposition 12.2.7 (semicontinuity of ΦKob) implies that

(67) ΦKob(ξ∞) ≥ lim
k→∞

ΦKob(ξk),

so it suffices to show that ΦKob(ξ∞) ≤ limk→∞ΦKob(ξk).
The above lemma guarantees fk ∈ Proj(I,M) with fk(0) = pk and

vk := (Dfk)
−1(ξk) ∈ T0I

such that ΦKob(ξk) = ‖vk‖. By (67), vk contains a convergent subse-
quence, and let v∞ := limk→∞ vk. Lemma 12.2.4 guarantees that by
passing to a further subsequence, we may assume that fk converges
to f∞ ∈ Proj(I,M) with f∞(0) = p∞ and Df∞(v∞) = ξ∞. By the
definition of ΦKob,

ΦKob(ξ∞) ≤ ‖v∞‖ = lim
k→∞
‖vk‖ = lim

k→∞
ΦKob(ξk)

as desired. �

Exercise 12.2.10. Find an example of a projectively hyperbolic do-
main for which ΦKob is not continuous.

Exercise 12.2.11. Find an example of a domain Ω for which:

• ΦKob(ξ) <∞ for all nonzero ξ ∈ TΩ;
• Ω contains no complete geodesic rays.

Theorem 12.2.12. ΦKob is the infinitesimal form of the Kobayashi
pseudometric dKob

M , that is,

dKob
M (x, y) = inf

{∫ b

a

ΦKob
(
γ′(t)

)
dt

∣∣∣∣ γ ∈ Path(x y)

}

where Path(x  y) denotes the set of piecewise C1 paths [a, b]
γ−−→ M

with γ(a) = x, γ(b) = y.

Since semicontinuous functions are bounded on compact sets (Ex-
ercise D.2.3) and measurable (Exercise D.1.2), the above integral is
well-defined.
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Proof of Theorem 12.2.12. Define

δKob(p, q) := inf

{∫ b

a

ΦKob
(
γ′(t)

)
dt

∣∣∣∣ γ ∈ Path(p q)

}

We must prove that δKob = dKob.
To prove δKob ≤ dKob, note that every chain C ∈ Chain(x  y)

determine a piecewise C1 path γC ∈ Path(p  q). Since gI is the
infinitesimal form of dI, the path γC has shorter length than the chain
C, that is, their lengths satisfy `(γC) ≤ `(C). Taking infima implies
δKob ≤ dKob as desired.

We prove δKob ≥ dKob. Suppose that γ ∈ Path(p  q) as above.
Suppose ε > 0. We seek a chain C ∈ Chain(p q) such that

(68) `(C) ≤ `(γ) + ε.

Proposition 12.2.7 implies that the function

[a, b]
φ−−→ R

u 7−→ ΦKob
(
γ′(t)

)

is upper semicontinuous. Exercise D.2.3 implies φ is bounded from
above. Apply Proposition D.2.4 to conclude that φ is the limit of
a monotonically decreasing sequence of nonnegative continuous func-
tions.

Apply Lebesgue’s monotone convergence theorem (Rudin [243],1.26)

to find a continuous function [a, b]
h−−→ R such that:

φ(t) < h(t) for a ≤ t ≤ b(69) ∫

[a,b]

h < `(γ) + ε.(70)

for a ≤ t ≤ b.
We claim that for each s ∈ [a, b],

(71)

∫ t

s

φ(u) du ≤ (1 + ε)h(s) |s− t|

for t in an interval Is centered at s.
To this end, first assume that γ is C1; We choose the open neigh-

borhood Is of s in three steps:
First, choose a convex ball Ws containing γ(s), so that γ(t) ∈ Ws

for t ∈ Is. Let ft ∈ Proj(I,M) extend the geodesic in Ws joining γ(s)
to γ(t). Then (69) implies that ‖(Dft)

−1
(
γ′(s)

)
‖ < h. Since γ is C1,

(72) ‖(Dft)
−1
(
γ′(t)

)
‖ < h

for t sufficiently near s.
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Next, choose Is so that (72) holds for t ∈ Is. This implies that

(73)

∫ t

s

h(u)du ≤ (1 + ε)h(s) |s− t|

for t sufficiently near s.
Finally, choose Is so that (73) holds for t ∈ Is.
Combining (73) with (69) implies

∫ t

s

φ(u)du <

∫ t

s

h(u)du ≤ (1 + ε)h(s) |s− t|,

establishing the claim when γ is C1. Extending (73) to the case that
γ is only piecewise C1 is a routine exercise.

Continuing to follow Wu [291]), we pick up the argument of Roy-
den [242]. Let η > 0 be a Lebesgue number for the open cover
{Is | s ∈ I} of I, that is, every closed interval of length < η lies in
some Is. (For the reader’s convenience, a proof of the existence of the
Lebesgue number is given in Appendix C.3.) Thus there exists a sub-
division a = t0 < t1 < · · · < tk = b exists with ti − ti−1 < η; let si be
such that [ti−1, ti] ⊂ Isi . Continuity of h and (70) imply

(74)
k∑

i=1

h(si)(ti − ti−1) <

∫ b

a

h(u) < `(γ) + ε.

By (71),

dKob
(
γ(si), γ(si−1)

)
≤ dKob

(
γ(si), γ(s−1)

)
+ dKob

(
γ(si), γ(s−1)

)

≤ (1 + ε)
(
h(si)(si − ti) + h(si−1)(ti − si−1)

)

Apply (73) and (74), obtaining:

dKob(p, q) ≤
k∑

i=1

dKob(γ(si), γ(si−1)
)

≤
k∑

i=1

h(si)(ti − ti−1)

< `(γ) + ε.

Now the chain C ∈ Chain(p q) defined by:

C :=
((

(s1, s2, f1

)
, . . . , (sk−1, sk), fk

))

has length

`(C) =
k−1∑

i=1

dKob
(
γ(si, si+1)

)
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and (68) follows. Since ε > 0 is arbitrary, dKob(p, q) ≤ `(γ) ≤ δ as
desired. �

Wu [291]) actually proves a much stronger statement, valid for
affine connections which are not necessarily flat. His proof is based on
the analog for the Kobayashi pseudometric for complex manifolds, due
to Royden [242].

Closely related is the universal property of ΦKob among infinitesimal
pseudometrics for which projective maps are infiniteimally nonincreas-
ing (Kobayashi [179], Proposition 5.5):

Exercise 12.2.13. Let M be an RPn-manifold and M
Φ−−→ R≥0 a

function such that ∀f ∈ Proj(I,M)

Φ
(
(Df)a(ξ)

)
≤ ‖ξ‖a,

where −1 < a < 1 and ξ ∈ TaI. Then Φ ≤ ΦKob.

12.2.3. Completely incomplete manifolds.

Exercise 12.2.14. Let M be a affine manifold. Suppose that every
geodesic ray is incomplete. Then M is noncompact.

Theorem 12.2.15. Suppose that M is an RPn-manifold. Then
dKob
M > 0 if and only if every projective map R −→M is constant.

More specifically, we prove (following Kobayashi [179]):

Proposition 12.2.16. Let M be a projective manifold, p ∈M and
ξ ∈ TpM . Suppose ΦKob(ξ) = 0. Then ∃f ∈ Proj(R,M) with f(0) = p
and f ′(0) = ξ.

Since ΦKob(p, ξ) = 0, there is a sequence jm ∈ Proj(I,M) with
jm(0) = p and a sequence am > 0 with am decreasing, am ↘ 0 such
that the differential (Djm)0 of jm at 0 ∈ I maps:

T0I
(Djm)0−−−−−→ TpM

am

(
d

du

)

0

7−→ ξ.

Let rm = 1/am so that

(75)

(
d

du

)

0

(Djm)07−−−−−→ rmξ

with rm ↗ +∞ monotonically.
As in Exercise 12.1.1, let I(r) denotes the open interval (−r, r) ⊂ R.

Then
I(r1) ⊂ I(r2) ⊂ · · · ⊂ I(rm) ⊂ · · · ⊂ R
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and
⋃∞
m=1 I(rm) = R.

The strategy of the proof is to reparametrize the maps jm to obtain
a subsequence of projective maps

hm ∈ Proj
(
I(rm),M

)
,

such that the restriction of hm to hl equals hl for l ≤ m.
First renormalize jm to a projective map fm ∈ Proj(I(rm),M):

I(rm)
fm−−−→M

u 7−→ jm(u/rm)

Lemma 12.2.17. The differential (Dfm)0 of fm at 0 maps the tan-
gent vector

(
d
du

)
0
∈ T0

(
I(rm)

)
to ξ.

Proof. fm equals the composition of I
f−−→ M with the contreac-

tion

I(rm) −→ I

u 7−→ u/rm

0 7−→ 0

whose differential at 0 is multiplication by (rm)−1. Now apply the chain
rule and (75). �

Next reparametrize the maps fm using the following analog of Brody’s
reparametrization lemma for holomorphic mappings (Brody [47]), whose
proof is given later.

As in Exercise 12.1.1, the infinitesimal norm for I(r) equals:

dsI(r) =
2r|du|
r2 − u2

,

a function on TI(r). As in Kobayashi [179] 1 choose a Riemannian
metric g on M such that g(ξ) = 1. The corresponding norm on TM
is
√

g and pulls back to a norm f ∗
√

g on TuI(r). Then there is a
continuous function

I(r)
Wf−−−→ R+

such that

(76) f ∗
√

g(u) = Wf (u) dsI(r)(u).

Lemma 12.2.18 (Reparametrization Lemma). Let M be an pro-
jective manifold, p ∈ M and ξ ∈ TpM nonzero. Suppose that f ∈
Proj(I(r),M) with f(0) = p and f ′(0) = ξ. Choose c such that Wf (0) >

1Remark 5.27 after Theorem 5.22, pp.145–146
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c > 0. Then ∃a, b with 0 < a < 1 and b ∈ Aut
(
I(r)

)
such that

h ∈ Proj(Ir,M) defined by:

h(u) := f
(
ab(u)

)

satisfies

• Wh(u) ≤ c;
• Wh(0) = c,

where Wh is defined in (76)

Conclusion of proof of Proposition 12.2.16 assuming Lemma 12.2.18.
Applying Lemma 12.2.18 to fm, ∃hm ∈ Proj(I(rm),M) and cm > 0 such
that

(77) Whm(u) ≤ cm and Whm(0) = c

and the image of fm contains the image of hm.
Denote the restriction of hm to Irl by hl,m. Equation (77) implies

that, for each l ∈ N, the family

Fl := {hl,m | m ≥ l}
is equicontinuous.

We construct the projective map h ∈ Proj(R,M) by consecutive
extensions hl ∈ Proj(Irl ,M) to Irl ⊃ Irl−1

as follows.
Begining with l = 1, the Arzelà-Ascoli theorem guarantees a con-

vergent subsequence h1,m in Proj(Ir1 ,M). Write

h1 = lim
m→∞

h1,m ∈ Proj(Ir1 ,M).

Suppose inductively that hl ∈ Proj(Irl ,M) has been defined such that
hl extends hk for all k ≤ l. Since Fl is equicontinuous, the Arzelà-Ascoli
theorem guarantees a convergent subsequence of hl,m. Define

hl := lim
m→∞

hl,m.

The value of h∗m
√

g at u = 0 equals 2c du 6= 0. Since this is the
value of h∗

√
g = h∗l

√
g at u = 0, the map h is nonconstant. This

concludes the proof of Proposition 12.2.16 assuming Lemma 12.2.18.
�

Proof of Lemma 12.2.18. For 0 ≤ t ≤ 1, consider the projec-
tive map

I(r)
ft−−→M

u 7−→ f(tu).
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Then the corresponding function Wt := Wft

(
defined as in (76)

)

I(r)
Wt−−−→ R+

satisfies the following elementary properties, whose proofs are left as
exercises:

(78) Wt(u) = Wf (tu)
t(r2 − u2)

r2 − t2u2

(79) Wt(u) ≥ 0 and Wt(u) = 0⇐⇒ t = 0.

(80) lim
u→±r

Wt(u) = 0.

The function
A(t) := sup

u∈I(r)

Wt(u)

of t ∈ [0, 1] satisfies the following elementary properties, whose proofs
are also left as exercises:

• A(t) ≤ ∞
• [0, 1]

A−−→ R+ is continuous.
• A is monotone-increasing.

Furthermore A(0) = 0 and A(1) = c, so the Intermediate Value Theo-
rem guarantees ∃a ∈ [0, 1] such that A(a) = c. Thus

c = sup
u∈I(r)

Wa(u).

By (80), Wa assumes its maximum on u0 ∈ I(r); let b ∈ Aut
(
I(r)

)
take

0 to u0. The proof of Lemma 12.2.18 is complete.
�

12.3. Hessian manifolds

When M is affine, then Corollary 4.3.2 implies that M is a quotient
of a properly convex cone Ω by a discrete group of collineations acting
properly on Ω. In addition to the Hilbert metric, Ω enjoys the natural
Riemannian metric introduced by Vinberg [278], Koszul [184, 183,
187, 186] and Vesentini [273]. (Compare §??.) In particular Koszul
and Vinberg observe that this Riemannian structure is the covariant
differential ∇ω of a closed 1-form ω. In particular ω is everywhere
nonzero, so by Tischler [267], M fibers over S1.

This implies Koszul’s beautiful theorem [187] that the holonomy
mapping hol (described in Chapter 7,§7.2) embeds the space of con-
vex structures onto an open subset of the representation variety. This
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has recently been extended to noncompact manifolds by Cooper-Long-
Tillmann [79].

Hyperbolic affine manifolds closely relate to Hessian manifolds. If
ω is a closed 1-form, then its covariant differential ∇ω is a symmetric
2-form. Since closed forms are locally exact, ω = df for some function;
in that case ∇ω equals the Hessian d2f . Koszul [187] showed that
hyperbolicity is equivalent to the existence of a closed 1-form ω whose
covariant differential ∇ω is positive definite, that is, a Riemannian
metric. More generally, Shima [250] considered Riemannian metrics on
an affine manifold which are locally Hessians of functions, and proved
that such a closed Hessian manifold is a quotient of a convex domain,
thus generalizing Koszul’s result.

We briefly sketch some of the ideas in Koszul’s paper. We rec-
ommend Shima’s book [250] for a very accessible and comprehensive
exposition of these and related ideas.

Let (M,∇) be an affine manifold with connection ∇. Let x ∈ M
and Ex ∈ TxM denote the domain of exponential map as in §8.3.1. For
ξ ∈ TxM , let

λ(ξ) := sup{t ∈ R | tξ ∈ Ex} ∈ (0,∞],

so that the intersection of the line Rξ with Ex equals
(
−λ(−ξ), λ(ξ)

)
ξ.

Suppose that ω is a closed 1-form as above, such that the covariant
differential ∇ω > 0. Koszul’s theory is based on the two lemmas below.
For notational simplicity, write

(
− λ(−ξ), λ(ξ)

) γ−−→M

t 7−→ Expx(tξ)

for the maximal geodesic with velocity ξ = γ′(0) at time t = 0. Observe
that for any −λ(−ξ) < t < λ(ξ), the velocity vector at time t is

γ′(t) = Pγt(ξ)

where x
γt γ(t) is the restriction of γ and

TxM
Pγt−−−→ Tγ(t)M

denotes parallel transport along γt. The two basic lemmas are:

Lemma 12.3.1. If ω(ξ) > 0, then λ(ξ) <∞.
Lemma 12.3.2. If λ(ξ) <∞, then

∫ λ(ξ)

0

ω
(
γ′(t)

)
dt = +∞.
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The role of positivity is apparent from the simple 1-dimensional
example when M = R+ ⊂ R. To develop intuition for these conditions,
we work out these lemmas in the basic example when M = R+ ⊂ R.

First we show (Lemma 12.3.1) that that ω(ξ) > 0 implies the the
geodesic ray γ is incomplete. The cone Ω∗ dual to M consists of all
ψ > 0 and the characteristic function is

M
f−−→ R

x 7−→
∫

Ω∗
e−ψxdψ =

∫ ∞

0

e−ψxdψ =
1

x

and the logarithmic differential equals

ω = d log f = −dx
x
.

If ξ = y0∂x ∈ Tx0M and ξ 6= 0, then γ(t) = x0 + ty0 and

λ(ξ) =

{
−x0/y0 if y0 < 0

∞ if y0 > 0

Similarly

ω
(
γ′(t)

)
=
(
− dx/(x0 + ty0)

)(
y0∂x

∣∣
x=x0+ty0

)
= −y0/(x0 + ty0)

so if ω
(
γ′(t)

)
> 0, then y0 < 0 and λ(ξ) <∞ as desired.

Now we verify (Lemma 12.3.2) that along an incomplete geodesic
ray, the integral of ω

(
γ′(t)

)
diverges. Suppose λ(ξ) <∞. Then y0 < 0

and ∫ λ(ξ)

0

ω
(
γ′(t)

)
dt = log

x0

x0 + ty0

∣∣∣∣
−x0/y0

t=0

=∞

as desired.





CHAPTER 13

Projective structures on surfaces

RP2-manifolds are relatively well understood, due to intense activ-
ity in recent years. Rather than give an detailed description of this the-
ory, we only summarize the results, and refer to the literature. In par-
ticular we recommend the recent book by Casella-Tate-Tillmann [58].

Aside from the two structures with finite fundamental group (RP2

itself, and its double cover S2), this class of geometric structures in-
cludes affine structures on surfaces, some new RP2-structures on tori
(first analyzed by Sullivan-Thurston [262], Smillie [253] and the au-
thor [114] in 1976–1977). as well as convex structures (which are hy-
perbolic in the sense of Kobayashi and Vey; see §12.2). Strikingly the
answer is much more satisfactory for surfaces with χ < 0, aside from
RP2-structures on tori and Klein bottles which are not affine, this chap-
ter concentrates on surfaces of χ < 0. For these, the convex structures
play a fundamental role.

13.1. Classification in higer genus

The deformation space RP2
convex(Σ) of convex RP2 structures was

calculated by the author [122] in 1985, using the analog of Fenchel-
Nielsen coordinates. Shortly thereafter, in his doctoral thesis, Suhy-
oung Choi proved his Convex Decomposition Theorem [66, 68, 68],
expressing that on a closed surface of χ < 0, every RP2 is obtained
from a convex surface by grafting annuli. We summarize their classifi-
cation as follows (compare Choi-Goldman [70]):

Theorem. Let Σ be a closed orientable surface of genus g > 1.

• The deformation space RP2
convex(Σ) of marked convex RP2-

structures on Σ is homeomorphic to R16g−16, upon which Mod(Σ)
acts properly.
• The holonomy map hol embeds RP2

convex(Σ) as a connected com-
ponent of Hom(π,G)/Inn(G) where G = PGL(3,R)).
• The deformation space of marked RP2-structures on Σ is home-

omorphic to R16g−16 × N., upon which Mod(Σ) acts properly.

293
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The first proof that RP2
convex(Σ) is a cell of dimension 16g − 16

(in [122]) involves a more general statement, valid when ∂Σ 6= ∅ but
with some boundary conditions. The proof introduces an extension of
the Fenchel-Nielsen coordinates on the Fricke space — the deformation
space of hyperbolic structures on Σ — as described in §4. A partic-
ularly tractable and suggestive set of coordinates is due to Fock and
Goncharov in [101, 102], and based on parametrizations of hyperbolic
structures due to Thurston (see Bonahon [42]) and Penner [234, 235].
Bonahon-Kim [45] describe the relationship between the author’s orig-
inal extended Fenchel-Nielsen coordinates and Fock-Goncharov’s ex-
tended Penner-Thurston coordinates. While the former uses decompo-
sitions of Σ into three-holed spheres (pants decompositions), the latter
uses ideal triangulations.

The symplectic geometry of RP2
convex(Σ) is described in Choi-Jung-

Kim [73] and another approach using affine connections is discussed in
Goldman [123].

Choi’s convex decomposition theorem uses a grafting construction,
which he extended to nonorientable surfaces [67]. Choi-Goldman [71]
extends the calculation to 2-dimensional orbifolds. Unfortunately for
lack of space, we do not describe the deep ideas in the convex decom-
position theorem.

Somewhat curiously, the diversity of affine structures on the torus
gives a much less clean classification for χ = 0 than the geometrically
and analytically more interesting case where χ < 0.

13.2. Convex RP2-structures

In general if Ω/Γ is a convex RP2-manifold which is a closed surface
S with χ(S) < 0, then either ∂Ω is a conic, or ∂Ω is a C1 convex curve
(Benzécri [34] which is not C2 (Kuiper [192]). The key general point
is that, if Σ is a closed surface of χ < 0, then the dynamics of the
holonomy group Γ ∼= π1(Σ) is standard: If 1 6= γ ∈ Γ < SL(3,R),
then γ has one repelling fixed point p+ on ∂Ω and one attracting fixed
point p− on ∂Ω. Furthermore, since ∂Ω is C1, the projective lines l±
tangent to ∂Ω at p± respectively are also γ-invariant. It follows that the
intersection p0 := l+ ∩ l− is a third fixed point for γ, which has saddle
point dynamics. This implies that γ is represented by a 3× 3 diagonal
matrix with real and distinct eigenvalues. (Compare Fig. 13.1.)

Such examples seem to be conjectured not to exist in the original
articles of Ehresmann [96] and Benzecri [34]. They are analogous to
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Figure 13.1. A projective transformation leaving in-
varint a closed convex curve.

quasi-Fuchsian surface groups in PSL(2,C), although ∂Ω is consider-
ably more regular than in the classical case, where the limit circle is
not even rectifiable.

In fact the derivative of ∂Ω is Hölder continuous with Hölder expo-
nent strictly between 1 and 2. The Hölder exponent of the limit circle
is a fascinating invariant, which for reasons of space, we do not discuss.
We refer to Guichard [140] for some of the first work on this subject.
Recently this invariant has been related to the entropy of the Hilbert
geodesic flow associated to the RP2-structure.

13.2.1. Triangle groups. Figure 3.3 is the first example of a
convex RP2-manifold Ω/Γ (actually an orbifold) which is not homo-
geneous (Kac-Vinberg [279]). It arises from a (3, 3, 4)-triangle tessela-
tion, and Γ is the Weyl group of a Kac-Moody Lie algebra of hiyperbolic
type as follows. Namely the Cartan matrix

C =




2 −1 −1
−2 2 −1
−1 −1 2




determines a Coxeter group, that is, a group generated by reflections.
For i = 1, 2, 3 let Eii denote the elementary matrix having entry 1

in the i-th diagonal slot. Then, for i = 1, 2, 3, the reflections

ρi = I − EiiC
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generate a discrete subgroup Γ < SL(3,Z) which acts properly on the
convex domain depicted in (and appears on the cover of the November
2002 Notices of the American Mathematical Society).

Recall that a reflection ρ in RP2 is determined by its fixed set Fix(ρ),
which is a disjoint union pt`. Write fi for the isolated fixed point of ρi
and `i for the fixed line of ρi. Exercise 2.5.8 imply the relations in the
Coxeter group imply conditions on cross ratios of lines passing through
fi.

Exercise 13.2.1. Let p, q, r ∈ N ∪ {∞} and define

Γ(p, q, r) := 〈R1, R2, R3 | R2
1 = R2

2 = R2
3 = I,

(R1R2)p = (R2R3)q = (R3R1)r = I〉.

Let 4 ⊂ RP2 with sides s1, s2, s3 respectively, and consider repre-
sentattions ρ ∈ Hom

(
Γ(p, q, r), SL(3,R)

)
such that ρ(Ri) is reflection

fixing the line containing si. Furthermore assume that that the differ-
ential

Dρ(R1, R2)s1∩s2 ∈ GL
(
Ts1∩s2RP2

)

is conjugate to a rotation of angle 2π/p, with similar statements for
ρ(R2R3) and ρ(R3R3), the respective vertices s2 ∩ s3 and s3 ∩ s1, and
exponents p, q, r. Denote by R(p, q, r) the set of equivalence classes of
such representations.

• Show that such a ρ determines a proper free action of Γ(p, q, r)
on an open domain Ω ⊂ RP2 with fundamental domian 4.
• Show that Γ(p, q, r) admits torsionfree finite index subgroups

Γf such that Ω/Γf is a convex RP2-manifold.
• Compute the dimension of R(p, q, r).
• If 1/p+ 1/q+ 1/r ≤ 1, then show R(p, q, r) is a cell of dimen-

sion 0 or 1 depending on the number of p, q, r equal to 2. In
particular if p, q, r ≥ 3, then R(p, q, r) is homeomorphic to R.

This is one of the first examples of a thin subgroup of a simple Lie
group. Compare also Long-Reid-Thistlethwaite [203], where this ex-
ample is embedded in a (discrete) one-parameter family of subgroups
of SL(3,Z). For the complete classification of convex RP2-orbifolds, see
Choi-Goldman [71]

For the deformation theory of convex structures on the three-holed
sphere P see [122], which is the first step in the construction of coor-
dinates on RP2

convex(Σ).
One notable new feature in the projective theory of pants not seen

for the classical case of hyperbolic structures is that the geometric
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structure on P is not determined by the structure ∂P . The struc-
ture at ∂P is determined by the conjugacy classes of the respective
holonomies around the boundary components. The conjugacy classes
range over a 2-dimensional space, giving 6 dimensions to the struc-
tures on ∂P . However the full deformation space has dimension 8, so
there are two more internal parameters involved in the deformations
of a pants. Finding geometric meaning to these internal parameters
has been an intriguing and tantalizing problem. Once the boundary
parameters (2 dimensions for each of the three boundary components)
are presribed, there are two internal parameters, and the relative defor-
mation space is a 2-cell. See also Zhang [292], Wienhard-Zhang [284],
Bonahon-Dreyer [44] and Bonahon-Kim [45] for a discussion of the
internal parameters.

In terms of the parameters for triangle groups, Guichard [140] es-
timates the Hölder exponent of the limit set in terms of ratios of
eigenvalues of elements, bounding from below. In his Master’s The-
sis, Lukyanenko [205] conjectures that this bound is obtained for the
Coxeter element ρ(R1R2R3) in the family described in Exercise 13.2.1.

Exercise 13.2.2. Formulate and prove Lukyanenko’s conjecture.

13.2.2. Generalized Fenchel-Nielsen earthquakes. One would
like to develop a theory of twist flows for RP2-manifolds analogous to
the earthquake flows described in §7.3.2.

As described in §7.3.2, deformations supported in a tubular neigh-
borhood of a curve C correspond to paths zt in the centralizer of the
holonomy ρ(c), where c is a based loop freely homotopic to C. For
example, suppose that ρ(γ) ∈ SL(3,R) is the diagonal matrix

(81) γ :=



λ1 0 0
0 λ2 0
0 0 λ3


 ∈ SL(3,R)

with λ1 > λ2 > λ3. The identity component of its centralizer consists
of diagonal matrices

A(s, t) :=



es 0 0
0 et 0
0 0 e−s−t




where s, t ∈ R.
Analogous to the Fenchel-Nielsen earthquake flows discussed in

§7.3.2 and the formula for the geodesic length function on F(Σ) in
terms of the invariant function ` discussed in Exercise 7.4.5 are func-
tions and flows on RP2

convex(Σ). If ρ ∈ Hom(π, SL(3,R)) is the holonomy
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representation of a marked convex RP2-structure on Σ, then for every
c ∈ π \ {1}, the the holonomy ρ(c) conjugate to a diagonal matrix

(82) ρ(c) ∼



λ1 0 0
0 λ2 0
0 0 λ3




with λ1 > λ2 > λ3. Denote the invariant open set comprising such
matrices by D+, and define an invariant function

D+ f−−→ Rplus

λ1 0 0
0 λ2 0
0 0 λ3


 7−→ log(λ1)− log(λ3)

Exercise 13.2.3. Let ρ ∈ Hom(π, SL(3,R)) be a holonomy repre-
sentation of a marked convex RP2-manifold M in RP2

convex(Σ).

• Show that the function fc(ρ) is length of the unique closed ge-
odesic homotopic to C computed with respect to the Hilbert
metric on M (the Hilbert geodesic length function.
• Compute the variation function F of f and identify the corre-

sponding flow on RP2
convex(Σ) in terms of the Hilbert metric on

the corresponding RP2-manifold, analogous to Exercise 7.4.6.

13.2.3. Bulging deformations. We describe here a general con-
struction of such convex domains as limits of piecewise conic curves.

If Ω/Γ is a convex RP2-manifold homeomorphic to a closed esurface
S with χ(S) < 0, then every element γ ∈ Γ is positive hyperbolic, that
is, conjugate in SL(3,R) to a diagonal matrix of the form

A(s, t) :=



es 0 0
0 et 0
0 0 e−s−t


 .

where s > t > −s − t. Its centralizer is the maximal R-split torus
A consisting of all diagonal matrices in SL(3,R). It is isomorphic to
a Cartesian product R× × R× and has four connected components.
Its identity component A+ consists of diagonal matrices with positive
entries.

The orbits of Ht are arcs of conics depicted in Figure 13.2.
Associated to any measured geodesic lamination λ on a hyperbolic

surface S is bulging deformation as an RP2-surface. Namely, one applies
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Figure 13.2. Conics tangent to a triangle

a one-parameter group of collineations


1 0 0
0 et 0
0 0 1




to the coordinates on either side of a leaf. This extends Thurston’s
earthquake deformations (the analog of Fenchel-Nielsen twist deforma-
tions along possibly infinite geodesic laminations), and the bending
deformations in PSL(2,C). See Bonahon-Dreyer [44]. This real 2-
parameter family is analogous to the quakebend deformations defined
by McMullen [218].

In general, if S is a convex RP2-manifold, then deformations are
determined by a geodesic lamination with a transverse measure taking
values in the Weyl chamber of sl(3,R). When S is itself a hyperbolic
surface, all the deformations in the singular directions become earth-
quakes and deform ∂S̃ trivially (just as in PSL(2,C).

Exercise 13.2.4. Let M be a marked convex RP2-manifold with
holonomy representation ρ ∈ Hom(π, SL(3,R)).

• If C is a simple closed curve, show that the generalized Fenchel-
Nielsen flow commutes with the bulging flow, generating an
R2-action associated to C.
• If C1,C2 are disjoing simple closed curves, show that the cor-

responding R2-actions commute. Therefore a pants decompo-
sition P of Σ determines an (R2)3g−3-action on RP2(Σ)
• Define a mapping

(`,β)P−−−−−→ (R+ × R)3g−3

which has the structure of a principal (R2)3g−3-bundle with this
action.
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• Identify the fibers with Cartesian products of the deformation
spaces of marked convex RP2-structures on the components
Pi, (i = 1, . . . , 2g− 2) of the complement Σ \P with prescribed
boundary structures.

This is the analog of Fenchel-Nielsen coordinates on RP2, once the
internal parameters of the Pi are identified.

Figure 13.3. Deforming a conic

Figure 13.4. A piecewise conic

13.3. Coordinates for convex structures

To describe generalized Fenchel-Nielsen coordinates on RP2
convex(Σ),

one needs coordinates in the case Σ is a 3-holed sphere (a pair of pants .
Various approaches exist; in
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Figure 13.5. Bulging data

Figure 13.6. The deformed conic

Figure 13.7. The conic with its deformation

13.3.1. Fock-Goncharov coordinates. In their paper [101], Fock
and Goncharov develop an ambitious program for studying surface
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group representations into split R-forms, and develop natural coordi-
nates on certain components discovered by Hitchin [151]. and studied
by Labourie [198].

A version when G = SL(3,R) is developed in Fock-Goncharov [102],
giving coordinates on the defomration space of convex RP2-structures.
Compare also Ovsienko-Tabachnikov [231].

A new object in their theory is the triple ratio, a projective invariant
of three flags in RP2 in general position. A flag in RP2 is an inclident
pair (p, `), where p ∈ RP2 and ` ∈ (RP2)∗. Incidence here simply means
that p ∈ `. Two flags (p1, `1) and (p2, `2) are in general position if and
only if pi /∈ `j for i 6= j.

Exercise 13.3.1. Show that the projective group acts tranisitively
on the set of general position pairs of flags.

Now suppose that Ψ is a polarity. A Ψ-flag is a flag of the form
(p, `),. where ` = Ψ(p).

Exercise 13.3.2. Show that the stabilizer of Ψ in the projective
group does not act transitively on the set of general position Ψ-flags,
and show that the quotient space is one-dimensional, with a coordinate
defined by a cross ratio

The triple ratio of three flags

(p1, `1), (p2, `2), (p3, `3)

in general position is defined as follows. Find vectors vi representing
pi for i = 1, 2, 3 and covectors ψj representing `j for j = 1, 2, 3.

Exercise 13.3.3. Show that the scalar quantity

ψ1(v2) ψ2(v3) ψ3(v1)

ψ1(v3) ψ2(v1) ψ3(v2)

is independent of the choices of ψi and vj, and describes a complete
projective invariant of triples of flags in general position.

Starting with an ideal triangulation τ of surface S, Fock and Gon-
charov attach parameters to the ideal simplices in τ : two for each
side of a simplex (corresponding the hyperbolic conjugacy classes in
SL(3,R)) and a triple ratio invariant for each simplex. This gives the
correct dimension and

13.3.2. Affine spheres and Labourie-Loftin parametrization.
Another more analytic approach is due independently to Labourie [197]
and Loftin [197], which we only briefly mention.
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We suppose here that Σ is a closed oriented surface of genus g > 1
with a marking Σ → M , where M is a convex RP2-manifold. Fix a
holonomy homomorphism

π1(M)
≈−−→ Γ < SL(3,R)

and developing map

M̃
dev−−−→ Ω ⊂ RP2.

Associated to a convex RP2-manifold is an Γ-equivariant lift of dev to
a convex surface in the convex cone Ω′ ⊂ A3 covering Ω. which is an
affine sphere.

In affine differential geometry (see, e.g. Nomizu-Sasaki [229]), an
affine normal at a point p in a convex surface S ⊂ A3 is the line
tangent to the curve γ through p formed by the centroids of sections
S ∩ Pt where Pt are planes parallel to the affine tangent plane TpS.

Exercise 13.3.4. Show that γ has a natural parametrization which
can be characterized in terms of the connection on A3 and the geometry
of S.

S is an affine sphere if all the affine normals to S concur in A3. (This
is the analog of an umbilic point in Euclidean differential geometry.)

Solving an projectively invariant Monge-Ampère equation, Loftin
and Labourie show that a Γ-equivariant affine sphere in A3 exists.
Furthermore they show that such an affine sphere is determined by
a conformal structure on M (making M a Riemann surface X) and a
holomorphic cubic differential on X. In this way RP2

convex(Σ) identi-
fies with the holomorphic vector bundle over Tg whose fibers comprise
holomorphic cubic differentials (Labourie [197], Loftin [197]). In par-
ticular this fibration over Tg is Modg-invariant.

The Vinberg metric constructed in §4 also determines a Riemann
surface (by taking the conformal structure underlying the Riemannian
metric) and also defines a Modg-equivariant mapping RP2

convex(Σ) −→
Tg. The relation between the Loftin-Labourie metric and the Vinberg
metric seems intriguing.

13.4. Pathological developing maps and grafting

The nonconvex (grafted) structures have pathological developing
maps, even on T 2. That is, the developing maps are generally not
covering spaces onto their images. The developing maps for such RP2-
structures in higher genus are onto RP2, and are not covering spaces. In
genus one, these Smillie-Thurston structures have non-covering devel-
oping maps onto the complement of three points in RP2. Their radiant
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suspensions are affine 3-manifolds whose developing maps surject to
R3 \ {0}, or the complements but are not covering spaces (indeed the
3-manifolds are mapping tori of periodic autormorphisms of surfaces
with χ < 0, and are thus aspherical).

We first describe RP2-manifolds with cyclic holonomy generated by
a positive diagonal matrix

(83) γ :=



a 0 0
0 b 0
0 0 c


 ∈ SL(3,R)

with a > b > c. The corresponding collineation fixes three points

p3 :=






0
0
1




 , p2 :=






0
1
0




 , p1 :=






1
0
0






and preserves the corresponding lines

l3 :=
[[
0 0 1

]]
, l2 :=

[[
0 1 0

]]
, l1 :=

[[
1 0 0

]]

The dynamics vary in the three corresponding affine patches.

(x, y)
A37−−−→





x
y
1




 ,

γ acts as the affine expansion fixing the origin (x, y) = (0, 0)←→ p3:

(x, y)
γ7−−→





a/c x
b/c y

1






with eigenvalues a/c > b/c > 1. Similarly, in the affine chart A1 with
ideal line l1,

(u, v)
A17−−−→






1
u
v




 ,

γ acts as the affine contraction fixing the origin (u, v) = (0, 0)←→ p1:
having eigenvalues 1 > c/a > b/a. Denote the corresponding affine
patches A3 := RP2 \ l3 and A1 := RP2 \ l1 respectively.

13.4.0.1. Smillie-Thurston example. Here is the first example of a
closed RP2-manifold whose developing map is not a covering space.
(See Sullivan-Thurston [262] and Smillie [253]; actually [253] describes
the radiant suspension.)

The Smillie-Thurston example arises as follows. The collineation
γ generates a discrete cyclic subgroup Γ := 〈γ〉 < PGL(3,R) which
acts properly on the complements A1 \ {p1} and A3 \ {p3} respectively.
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The quotients are Hopf tori modeled on the affine spaces A1 and A3

respectively, which we denote:

Ti :=
(
Ai \ {pi}

)
/Γ for i = 1, 3

and regard them as RP2-manifolds. We may choose developing maps

T̃i
devi−−−→ RP2.

The line l2 is invariant under Γ, and the fixed points p1, p3 of Γ separate
l2 into two open intervals. Choose one such interval I; then the image

ci = Πi

(
dev−1

i (I)
)

is a closed geodesic on Ti. There exist tubular neighborhoods Ni of

ci ⊂ Ti for i = 1, 3 such that a projective isomorphism N1
j−→ N3 of

RP2-manifolds exists.
Let M be the RP2-manifold obtained by grafting T1 to T3 along j:

M := T1|c1

⋃

j

T3|c3

Then M is an RP2 manifold homeomorphic to a 2-torus with holonomy
group Γ and whose developing map devM surjects onto the complement
RP2 \ {p1, p2, p3}.

Exercise 13.4.1. Prove that devM is not a covering space onto its
image.
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Figure 13.8. Pathological development for RP2-torus

This example gives a counterxample to the main technical lemma of
[120], (Theorem 2.2) where it is asserted that if M is a closed (G,X)-
manifold with holonomy Γ < G and Ω ⊂ X is a Γ-invariant open
subset of X with a Γ-invariant complete Riemannian metric gΩ, then
the regionMΩ ⊂M corresponding to Ω inherits a complete Riemannian
metric from gΩ.

Exercise 13.4.2. Find a counterexample to this assertion inside
the Smillie-Thurston example.

See §14.2 for a correct proof of the main theorem of [120].



CHAPTER 14

Complex-projective structures

From the general viewpoint of locally homogeneous geometric struc-
tures, CP1-manifolds occupy a central role. Historically these objects
arose from the applying the theory of second-order holomorphic linear
differential equations to conformal mapping of plane domains. Theo-
retically these objects seem to be fundamental in so many homogeneous
spaces extend the geometry of CP1. Furthermore CP1-manifolds play a
fundamental role in the theory of hyperbolic 3-manifolds and classical
Kleinian groups.

A CP1-manifold has the underlying structure as a Riemann sur-
face. Starting from a Riemann surface M , a compatible CP1-structure
is a (holomorphic) projective structure on the Riemann surface M . Re-
markably, projective structures on a Riemann surface M admit an ex-
traordinarily clean classification: the deformation space of projective
structures on a fixed Riemann surface M is a complex affine space
whose underlying vector space is the space H0(M ;κ2) of holomorphic
quadratic differentials on M . We describe this parametrization, follow-
ing Gunning [142, 143].

However, the geometry of the developing map can become extremely
complicated, despite this clean determination of the deformation space.

An alternate synthetic-geometry parametrization of CP1(Σ) is due
to Thurston, involves locally convex developments into hyperbolic 3-
manifolds. In this case CP1(Σ) identifies with the product of the space
F(Σ) of marked hyperbolic structures on Σ and the Thurston cone
ML(Σ) of measured geodesic laminations on Σ. Although Thurston’s
parametrization and Poincaré’s parametization have the same crude
topological consequence:

CP1(Σ) ≈ R12g−12,

they are extremely different, both in content and context. For an expo-
sition of Thurston’s parametrization, see Kamishima-Tan [165]. This
generalizes more directly to higher dimensions, and more closely relates
to topological constructions with the developing map, such as grafting.
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The grafting construction was first developed by Hejhal [146] and
Maskit [214] (Theorem 5) and Sullivan-Thurston [262]. As for RP2-
surfaces studied in the previous chapter, this construction yields patho-
logical developing maps, typically local homeomorphisms from the uni-
versal covering space onto all of CP1. Grafting is also responsible for
the non-injectivity of the holonomy mapping

CP1(Σ)
hol−−→ Hom

(
π1(Σ),PSL(2,C)

)
/PSL(2,C),

that is, when the holonomy representation does not determine the
structure. This consequence of grafting was already noted in §5.4.5 for
closd RP1-manifolds. (Compare also Goldman [120], Gallo-Kapovich-
Marden [112] and Baba [15, 14, 13, 12]) and Baba-Gupta [16].

We will only touch on the subject, which has a vast and ever-
expanding literature. We refer to the excellent survey article of Du-
mas [91] for more details. See also Kapovich [167], §7, Hubbard [154],
§6.3 and Marden [206], §6-8 for other perspectives on the subject.

These structures extend, in higher dimensions, to flat conformal
structures, upon which we only discuss briefly in §We refer to the ex-
cellent survey article of Matsumoto [215] for more details.

Another direction in which these structures generalize is to holo-
morphic projective structures on complex manifolds. We do not discuss
these strcutres here, referring instead to Klingler [174], Dumitrescu [92],
and McKay [217].

14.1. Schwarzian paametrization

For the remainder of this chapter, we denote by X the Riemann
surface underlying a CP1-manifold. Denote by P1 the complex pro-
jective line, with automorphism group PGL(2,C). Sincee P1 is the
Riemann sphere C∪{∞}), holomorphic mappings X → P1 are simply
meromorphic functions on X. Indeed, we choose a marked Riemann
surface

Σ
≈−−→ X

representing a point T(Σ) (which we absuively call X) and consider
the subset P(X) of CP1(Σ) with underlying marked Riemann surface
X. This is the fiber of the forgetful map CP1(Σ) −→ T(Σ) over X.

We show that P(X) is a (complex) affine space whose underlying
vector space identifies with the vector space H0(X, κ2) comprising holo-
morphic quadratic differentials on X. The key to this construction is
the Schwarzian differential S which assigns a holomorphic mapping f
defined on a subset Ω ⊂ P1 a quadratic differential Φ ∈ H0(Ω, κ2). In
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Figure 14.1. Octagonal fundamental domain for a
CP1-surface of genus two

terms of a local coordinate z, the quadratic differential is

Φ = φ(z)dz2

where Ω
φ−−→ C is holomorphic. We apply S to the developing map

to obtain the Schwarzian parameter Φ. This operator is PSL(2,C)-
invariant and satisfies a transformation law making it a cocycle from
the pseudogroup of local biholomoprhisms f defined on Ω, taking values
in the presheaf H0(Ω, κ2) of holomorphic quadratic differentials:

(84) S(f ◦ g) = g∗S(f) + S(f)

It defines the projective sub-pseudogroup in the sense that S(f) = 0 if
and only if f is locally projective.

14.1.1. Affine structures and the complex exponential map.
We begin with the easier case of the differential operator, the pre-
Schwarzian A, defining the afine sub-pseudogroup. Namely, let Ω ⊂ P1

and Ω
f−−→ P1 a holomorphic mapping which is a local biholomorphism

at every z ∈ Ω, that is,

f ′(z) 6= 0,
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for all z ∈ Ω. The differential operator A associates to f the Abelian
differential, that is, the holomorphic 1-form

(85) A(f) := d log f ′ =
f ′′(z)

f ′(z)
dz

If g is another local biholomorphism, the Chain Rule implies that wher-
ever the composition g ◦ f is defined,

(g ◦ f)′ = (g′ ◦ f) · f ′,
so

log(g ◦ f)′ = log(g′ ◦ f) + log f ′,

and differentiating

(86) A(f ◦ g) = g∗A(f) + A(f)

where g∗
(
φ(z)dz

)
denotes the natural action of g on the Abelian dif-

ferential φ(z)dz:

g∗
(
φ(z)dz

)
:= φ

(
g(z)

)
g′(z)dz

The transformation law (86) asserts that A is a cocycle from the pseu-
dogroup of biholomorphisms to the presheaf Ω 7→ H0(Ω, κ) of Abelian
differentials.

The cocycle condition (86) asserts Ker(A) is closed under composi-
tion (wherever defined) and defines a subpseudogroup. These are the
locally affine mappings defined by f ′′(z) = 0.

Furthermore, if X is a Riemann surface and X
f−−→ P1 is a local

biholomoprhism, (86) implies that the restrictions A(f |U) to coordinate
patches U ⊂ Ω extend to a globally defined Abelian differential A(f) ∈
H0(X;κ).

14.1.2. Projective structures and quadratic differentials.
Now we deduce the formn of the Schwarzian from its projective in-
varriance, using the cocycle property of the differential operator A and
the Bruhat decompoosition of the projective group G := PSL(2,C) by
reducing the calculation of A(g) for for general g ∈ G to that of A(J)
where J(z) := 1/z

Exercise 14.1.1. The projective group G is generated by the affine
group B := Aff(1,C) (its Borel subgroup) and the inversion

z
J7−−→ −1/z,

(the generator of the Weyl group).
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• Deduce the Bruhat decomposition

G = B
∐

B JB

explicitly from the following identity in SL(2,C):
[
a b
c d

]
=

[
1/c a
c 1

] [
0 −1
1 0

] [
1 d/c
0 1

]

when c 6= 0 and ad− bc = 1.
• Show that

A(J) =
−2

z
dz

• Suppose

g(z) =
az + b

cz + d
.

Then

A(g) =
−2

z + d/c
dz

• Define a differential operator:

H0(Ω, κ)
D−−→ H0(Ω, κ2)

φ(z)dz 7−→ φ′(z)dz2

Show that

(87) DA(g)− 1

2
A(g)2 = 0

The formula (87) is reminiscent of the expression of the curvature of a
connection in terms of a connection 1-form and the Fundamental Theo-
rem of Calculus for Lie group-valued differential forms (Sharpe [249]).

Now define the Schwarzian differential

Bihol(Ω,P1)
S−−→ H0(Ω, κ2)

g 7−→ DA(g)− 1

2
A(g)2 =

{(g′′
g′

)′
− 1

2

(g′′
g′

)2
}
dz2

where Bihol(Ω,P1) denotes the space of holomorphic maps Ω −→ P1

which are local biholomorphisms, that is meromorphic functions g on Ω
for which g′(z) 6= 0 everywhere on Ω. (The usual Schwarzian derivative,
denoted classically by {g, z}, is the coefficient

(g′′
g′

)′
− 1

2

(g′′
g′

)2

=
(g′′′
g′

)′
− 3

2

(g′′
g′

)2

of the Schwarzian derivative S(g).)

Exercise 14.1.2. Prove the cocycle proprty (84).
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Although (84) follows from a slightly messy but straihgtforward calcu-
lation (see Gunning [142] for example), a more conceptual treatment
is discussed in Hubbard [154]. If g ∈ Bihol(Ω,P1) is a local biholo-
morphism, and z0 ∈ Ω, denote the element of G which agrees with
g ∈ G to second order at z0 by O(g)z0 ∈ G, the osculating Möbius
transformation for g at z0.

Explicitly, write

g(z) = a0 + a1(z − z0) +
a2

2
(z − z0)2 +

a3

6
(z − z0)3

+ · · ·+ an
n!

(z − z0)n + . . .

with a0 = g(z0), a1 = g′(z0) 6= 0, a2 = g′′(z0) and a3 = g′′′(z0). The
Möbius transformation

z
O(g)z07−−−−−→ a1z

1 + (a2/a1)z

osculates g at z0 and

f(z) = O(g)z0(z) +

(
a3

6
− a2

2

4a1

)
z3 + . . .

The leading term equals 1/a1 times the coefficient of S(g) at z0, that is,
the Schwarzian derivative of g at z0. From this conceptual description
of S(g) follows the cocycle property (84).

14.1.3. Solving the Schwarzian equation. To show that P(X)
is an H0(X, κ2)-torsor, one must show that for any holomorphic qua-
dratic differntial Φ = φ(z)dz2, a meromorphic function f ∈ Bihol(X,P1)
exists with S(f) = Φ. Furthermore f is unique up to a Möbius trans-
formation. That is, given φ, find f solving the nonlinear third order
differential equation

(88)

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= φ.

The solution involves relating this nonlinear equation to the second
order linear differential equation

(89) u′′(z) +
1

2
φ(z)u(z) = 0

often called Hill’s equation or a Sturm-Liouville equation.

Exercise 14.1.3. Define the projective solution X̃
f−−→ P1 of (89)

as follows. Every x ∈ X has a neighborhood Ω such that the solutions
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of the linear equation (89) on Ω is a a 2-dimensional (complex) vector
space. Choose a basis u1(z), u2(z) of this vector space and define

Ω
f−−→ P1

z 7−→ u1(z)/u2(z)

• Define the monodromy representation

π1(X) −→ GL(2,C)

of (89) by analytically continuing the local solutions u1, u2 over
loops in X.
• f is well-defined up to composition with a projective automoor-

phism P1 → P1.
• The derivative f ′(z) 6= 0 for all z ∈ Ω.
• S(f) = φ(z)dz2.
• The projective solution f on Ω analytically continues to a local

biholomorphism

X̃
f̃−−→ P1

equivariant with respect to the projectivization π1(X) −→ PGL(2,C)
of the monodromy representation of (89).

14.2. Fuchsian holonomy

A related idea is the classification of projective structures with
Fuchsian holonomy [120]. This is the converse to the grafting con-
struction, whereby grafting is the only construction yielding geometric
structures with the same holonomy. Recall that a Fuchsian representa-
tion of a surface group π is an embedding of π as a discrete subgroup of
the group PGL(2,R) ∼= Isom(H2). Equvalently, ρ is the holonomy rep-
resentation of a hyperbolic structure on a surface Σ with π1(Σ) ∼= π.
The main result is:

Theorem 14.2.1 (Grafting Theorem). Let M be a closed CP1-

manifold whose holonomy representation π1(M)
ρ−−→ PSL(2,C) is a

composition

π1(M)
ρ0−−→ PGL(2,R) ↪→ PSL(2,C)

where ρ0 is Fuchsian representation. Let M0 be a hyperbolic structure
with holonomy representation ρ0, regarded as a CP1-manifold. Then
there is a unique multicurve S ⊂M0 such that M is obtained from M0

by grafting along S.

However the proof contained a gap, which I first learned from M.
Kapovich, who pointed me to the paper of Kuiper [189]. (The same
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gap can be found in papers of Goldman-Kamishima [113] and Falt-
ings [99].) This gap was later filled by Choi-Lee [75]. Here we give a
correct proof, based on Kulkarni-Pinkall [194] (Theorem 4.2), commu-
nicated to me by Daniele Alessandrini. See also Dupont [93].

The grafting theorem uses the setup of Exercise 5.2.8, which we
briefly recall. Let M be a connected smooth manifold with a universal

covering space M̃
Π−−→ M with covering group π = π1(M). Give M a

(G,X)-structure and let (dev, ρ) be a developing pair:

• M̃ dev−−−→ X denotes the developing map;

• π ρ−−−� Γ < G denotes the holonomy representation.

Suppose that Ω ⊂ X is a Γ-invariant open subset and

MΩ := Π(dev−1Ω) ⊂M

the subdomain of M corresponding to Ω as in Exercise 5.2.8.
The author is grateful to Daniele Alessandrini for patiently explain-

ing the details of the following basic result. Recall from §2.6.4 that the
normality domain Nor(Γ, X) consists of points having open neighbor-
hoods U such that

Γ|U := {γ|U | g ∈ Γ} ⊂⊂ Map(U,X).

Theorem 14.2.2 (Kulkarni-Pinkall [194], Theorem 4.2). Let M
be a closed (G,X)-manifold with holonomy group Γ < G. Let Ω ⊂
Nor(Γ, X) be a Γ-invariant subset of the normality domain, and MΩ ⊂
M the corresponding region of M . Then for each component W ⊂MΩ,

and each component W̃ of Π−1(W ), the restriction

W̃
dev|

W̃−−−−→ Ω

is a covering space. In particular dev|W̃ is onto.

The proof of Theorem 14.2.2 breaks into a sequence of lemmas. We
show that dev|W̃ satisfies the path-lifting criterion for covering spaces:

every path in Ω lifts to a path in W̃ . Specifically, let

[0, 1]
γ−−→ Ω

be a path in Ω and consider a point

w̃0 ∈ Π−1
(
γ(0)

)
∩ W̃

We seek a path

[0, 1]
c̃−→ W̃

satisfying:

• c̃(0) = w̃0;
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• dev ◦ c̃ = γ.

Since dev is a local homeomorphism, the set T of t ∈ [0, 1] such that

[0, t]
γ|[0,t]−−−−→ Ω lifts to

[0, t]
c̃|[0,t]−−−−→ W̃

is open. Since dev is a local homeomorphism, any extension c̃|[0,t] of
the lift to [0, t] is necessarily unique. Thus T is a connected open
neighborhood of 0 in [0, 1]. By reparametrizing c̃, we may assume that
c̃ is defined on [0, 1). It suffices to show that c̃ lifts to [0, 1].

Let c = Π ◦ c̃ be the curve in M . Since M is compact and

[0, 1)
c−→ Π(W̃ ) ⊂M,

the curve c accumulates in M . That is, a sequence tn ∈ [0, 1) with
tn ↗ 1 and z ∈M exists, such that

lim
n→∞

c(tn) = z.

Employ z as the basepoint in M . Fix the corresponding universal

covering space M̃
Π−−→ M , where M̃ comprises relative homotopy of

paths γ in M starting at z. Recall that the deck transformation of M̃
corresponding to the relative homotopy class [β] ∈ π1(M, z) of a loop
β based at z is:

[γ] 7−→ [γ ? β].

Choose a developing map M̃
dev−−−→ X.

Let U 3 z be an evenly covered coordinate patch in M such that
the restriction of dev to some (and hence every) component of Π−1(U)
is a homeomorphism. Passing to a subsequence if necessary, we may
assume that c(tn) ∈ U for all n. Choose paths z

αn c(tn) in U . Then
the concatenation

α1 ? c|[t1,tn] ? α−1
n

is a based loop βn in M having relative homotopy class [βn] ∈ π1(M, z).

Let Ũ be the component of Π−1(U) containing c̃(t1), and z̃ the unique

element of Ũ ∩Π−1(z). To simplify notation, denote the deck transfor-
mation [βn] by βn.

Lemma 14.2.3.

lim
n−→∞

ρ(βn)−1γ(tn) = dev(z̃).

Proof. For n � 1, each c(tn) ∈ U . The definition of the deck

transformation βn implies that c̃(tn) ∈ βnŨ . Hence

β−1
n c̃(tn) ∈ Ũ .
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Since c(tn) −→ z and Π|Ũ is bijective, limn→∞ β
−1
n c̃(tn) = z̃. Continuity

of dev implies:

lim
n→∞

ρ(β−1
n )γ(tn) = lim

n→∞
ρ(β−1

n )dev(c̃(tn)) = lim
n→∞

dev
(
β−1
n c̃(tn)

)

= dev
(

lim
n→∞

β−1
n c̃(tn)

)
= dev(z̃),

as claimed. �

Conclusion of the proof of Theorem 14.2.2. Apply the con-
dition of normality to the images

ρ(βn)−1 ◦ γ
of the curve [0, 1]

γ−−→ Ω. By the definition of Ω, each γ(s) has an open
neighborhood Us for which the set of restrictions ρ(βn)|Us is precompact
in Map(Us, X). Compactness of [0, 1] guarantees finitely many si exist
so that the Usi cover [0, 1]. It follows that the images ρ(βn)−1◦γ form a
precompact sequence in Map

(
[0, 1], X

)
. After passing to a subsequence,

we may assume that ρ(βn)−1 ◦ γ converges uniformly to a continuous

map [0, 1]
δ−→ X.

Now apply Lemma 14.2.3, using the uniform convergence

ρ(βn)−1 ◦ γ ⇒ δ,

obtaining

lim
t→1

dev
(
c̃(t)
)

= δ(1) ∈ dev(Ũ).

Since dev|Ũ is injective, defining

c̃(1) :=
(
dev|βN Ũ

)−1(
δ(1)

)

is the desired continuous extension of c̃. The proof of Theorem 14.2.2
is complete. �



CHAPTER 15

Geometric structures on 3-manifolds

This final chapter we collect a few results on geometric structures
on closed 3-manifolds.

However, the theory is very much in its infancy and certain innocent-
sounding questions seem (at least now) to be inaccessible.

Two exceptions are the theory of complete affine structures on 3-
manifolds, and the classification of projective structures on 3-manifolds
with solvable fundamental group.

We begin with a brief overview of flat conformal and spherical CR-
structures, where many examples exist in dimension three; flat con-
formal structures naturally extend the CP1-structures discussed in the
previous chapter. Then we survey the classification of complete affine
3-manifolds, and close with Dupont’s classification of affine structres
on 3-manifolds with solvable fundamental group.

15.1. Higher dimensions: flat conformal and spherical
CR-structures

These structures generalize to (G,X)-structures whereG is a semisim-
ple Lie group and X = G/P , where P ⊂ G is a parabolic subgroup.
The simplest generalization occurs when G = SO(n+1, 1) and X = Sn.
The conformal automorphisms of Sn are just Möbius transformations.
In this case X is the model space for conformal (Euclidean) geometry
and a (G,X)-structure is a flat conformal structure, that is, a conformal
equivalence class of conformally flat Riemannian metrics.

A key point in this identification is the famous result of Liouville,
that, in dimensions > 2, a conformal map from a nonempty connected
domain in Sn is the restriction of a unique Möbius transformation of
Sn.

Furthermore this is the boundary structure for hyperbolic struc-
tures in dimension n+1, since Sn = ∂Hn+1

R and the group of isometries
of Hn+1 restricts to the group of conformal automorphisms of Sn.
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A good general survey of this subject is Matsumoto [215]). Kami-
shima-Tan [165] andd Dumas [91]) describe the unpublished construc-
tion of Thurston (using hyperbolic geometry) which identifies a flat con-
formal structure with a hyperbolic structure with the extra structure
of a measured geodesic lamination; roughly speaking the CP1-structure
is identified with an equivariant map of the universal covering into H3

which is locally convex and pleated (piecewise totally geodesic). This
has been extended to higher dimensional flat conformal structures by
Kulkarni and Pinkall [194, 195].

Some of the most interesting examples are due to Gromov-Lawson-
Thurston [136] and Kuiper [193]. While products Σ × S1 (where
Σ is a closed hyperbolic surface) admit flat conformal structures, 3-
dimensional nilmanifolds and hyperbolic torus bundles do not admit
such structures (Goldman [117]). However, [136, 193] produce exam-
ples of flat conformal structures on twisted oriented S1-bundles over
closed hyperbolic surfaces.

Another interesting example is spherical CR-geometry, the bound-
ary structure for complex hyperbolic geometry is a spherical CR-structure,
where G = PU(n, 1) and X = ∂Hn

C ≈ S2n−1.
One of the first papers on this subject is Burns-Shnider [53] which

computed the homogenous domains. This geometry is extensively dis-
cussed in Goldman [124]. For more information on this very active field
of research see the papers of Schwartz [245], Parker, Falbel, Deraux,
Paupert, Will and others.

While [117]) shows that T 3 and hyperbolic torus bundles do not
admit spherical CR-structures, some twisted S1-bundes over closed sur-
faces do. Ananin, Grossi and Gusevskii [5] produce surprising examples
of spherical CR-structures on products S × S1.

Exercise 15.1.1. Find examples of closed 3-manifolds with flat
conformal (respectively spherical CR-manifolds) whose developing maps
are surjective but not covering spaces.

The classification of complete affine structures on closed 3-manifolds
has been understood since the early 1980’s, see Fried-Goldman [121,
110]. The considerably more interesting case of noncompact complete
3-manifolds has only been understood recently. The big breakthrough
came in the early 1980’s with Margulis’s resolution [208] of Milnor’s
question [225]; see Abels [1] and Goldman [127, 128] for expositions.
For a summary of this theory, starting with its historical origins and
leading to current research, see the article for the Feitschrift honoring
the seventieth birthday of G. Margulis by Danciger-Drumm-Goldman-
Smilga [83]. We only give a brief summary of these developments here.
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Drumm’s thesis introduced a more geometric approach to these
questions involving hypersurfaces called crooked planes. He constructed
Schottky groups with fundamental domains bounded by crooked planes
to give many examples of Margulis spacetimes. Now through the the
remarkable work of Danciger-Guéritaud-Kassel [84, 85] (based on an
analysis two-generator groups in [60, 61, 51, 62]. (Compare also
Guéritaud’s survey [139].) Many of these results extend to the broader
(and quite fascinating) study of constant curvature Lorentzian mani-
folds. In particular the study of 3-dimensional anti-de Sitter manifolds,
and its extension to flat conformal Lorentzian 3-manifolds is quite fas-
cinating. Anti-de Sitter 3-space is the Lorentzian analog of hyperbolic
3-space. A suggestive model arises from the universal covering space

X := ˜SL(2,R) and

G :=
( ˜SL(2,R)× ˜SL(2,R)

)/
Z,

where Z ⊂ ˜SL(2,R) × ˜SL(2,R) is the diagonally embedding of the
infinite cyclic group

center
( ˜SL(2,R)

) ∼= π1

(
SL(2,R)

) ∼= Z.

For this geometry, G is the group SO(2, 2) acting on but for reasons
of space, we do not discuss these structures, instead we refer to articles
by Schlenker, Tholozan, and Danciger-Guéritaud and Kassel. This
geometry also lies in in the flat conformal Lorentzian geometry, where
G is the Einstein Universe, consisting of null lines in a Lorentzian
vector space; compare Barbot-Charette-Drumm-Goldman [20].

For possibly incomplete structures, much less is known. We then
describe a few cases where one has definitive information, including
the case of closed affine 3-manifolds with nilpotent holonomy and the
beautiful classification of Serge Dupont [94] of affine structures on hy-
perbolic torus bundles.

Finally we discuss a few results concerning geometric structures on
closed 3-manifolds, in particular RP3-structures, flat conformal struc-
tures, and spherical CR-structures.

Cooper-Goldman [77] show that the connected sum RP3#RP3 fails
to admit an RP3-structure. To the author’s knowledge, this is the only
closed 3-manifold known not to admit a projective structure.

15.2. Complete affine 3-manifolds

A more extensive recent survey of this subject is Danciger-Drumm-
Goldman-Smilga [83].
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Complete affine structures on 3-manifolds were classified by Fried-
Goldman [110]. They are finitely covered by complete affine solvman-
ifolds (see §8.6.2 of Chapter 8) and thus relate to left-invariant affine
structures on 3-dimensional Lie groups (see Chapter 10).

The first step in the classification is the Milnor-Auslander question:
Namely, if M3 = A3/Γ, show that Γ is solvable. Let A(Γ) denote the
Zariski closure of Γ in Aff(A3); clearly it suffices to show that A(Γ) is
solvable. This is equivalent to showing that the Zariski closure A(L(Γ))
in GL(R3) of the linear holonomy group L(Γ) ⊂ GL(R3) is solvable. The
proof is a case-by-case analysis of the possible Levi factors of A(L(Γ)).

Complete affine structures on Euclidean 3-manifolds are classified
using 3-dimensional commutative associative algebras; see Chapter 10,
Exercise 10.5.3.

In his 1977 paper [225], Milnor set the record straight caused by
the confusion surrounding Auslander’s flawed proof of Conjecture 8.6.2.
Influenced by Tits’s work [269] on free subgroups of linear groups and
amenability, Milnor observed, that for an affine space A of given di-
mension, the following conditions are all equivalent:

• Every discrete subgroup of Aff(A) which acts properly on A is
amenable.
• Every discrete subgroup of Aff(A) which acts properly on A is

virtually solvable.
• Every discrete subgroup of Aff(A) which acts properly on A is

virtually polycyclic.
• A nonabelian free subgroup of Aff(A) admits no proper action

on A.
• The Euler characteristic χ(Γ\A) (when defined) of a complete

affine manifold Γ\A must vanish (unless Γ = {1} of course).
• A complete affine manifold Γ\A has finitely generated funda-

mental group Γ.

(If these conditions were met, one would have a satisfying structure
theory, similar to, but somewhat more involved, than the Bieberbach
structure theory for flat Riemannian manifolds.)

In [225], Milnor provides abundant “evidence” for this “conjec-
ture”. For example, the infinitesimal version: Namely, let G ⊂ Aff(A)
be a connected Lie group which acts properly on A. Then G must
be an amenable Lie group, which simply means that it is a compact
extension of a solvable Lie group. (Equivalently, its Levi subgroup is
compact.) Furthermore, he provides a converse: Milnor shows that
every virtually polycyclic group admits a proper affine action. (How-
ever, Milnor’s actions do not have compact quotient. Benoist [24, 26]
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found finitely generated nilpotent groups which admit no affine crys-
tallographic action. Benoist’s examples are 11-dimensional.)

However convincing as his “evidence” is, Milnor still proposes a
possible way of constructing counterexamples:

“Start with a free discrete subgroup of O(2, 1) and
add translation components to obtain a group of affine
transformations which acts freely. However it seems
difficult to decide whether the resulting group action
is properly discontinuous.”

This is clearly a geometric problem: As Schottky showed in 1907, free
groups act properly by isometries on hyperbolic 3-space, and hence by
diffeomorphisms of A3. These actions are not affine.

One might try to construct a proper affine action of a free group by
a construction like Schottky’s. Recall that a Schottky group of rank g
is defined by a system of g open half-spaces H1, . . . , Hg and isometries
A1, . . . , Ag such that the 2g half-spaces

H1, . . . , Hg, A1(Hc
1), . . . Ag(H

c
g)

are all disjoint (where Hc denotes the complement of the closure H̄ of
H). The slab

Slabi := Hc
i ∩ Ai(Hi)

is a fundamental domain for the action of the cyclic group 〈Ai〉. The
ping-pong lemma then asserts that the intersection of all the slabs

∆ := Slab1 ∩ · · · ∩ Slabg

is a fundamental domain for the group Γ := 〈A1, . . . , Ag〉. Furthermore
Γ is freely generated by A1, . . . , Ag. The basic idea is the following. Let
B+
i := Ai(H

c
i ) (respectively B−i := Hi) denote the attracting basin for

Ai (respectively A−1
i ). That is, Ai maps all of Hc

i to B+
i and A−1

i maps
all of Ai(Hi) to B−i . Let w(a1, . . . , ag) be a reduced word in abstract
generators a1, . . . , ag, with initial letter a±i . Then

w(A1, . . . , Ag)(∆) ⊂ B±i .

Since all the basins B±i are disjoint, w(A1, . . . , Ag) maps ∆ off itself.
Therefore w(A1, . . . , Ag) 6= 1.

Freely acting discrete cyclic groups of affine transformations have
fundamental domains which are parallel slabs, that is, regions bounded
by two parallel affine hyperplanes. One might try to combine such
slabs to form “affine Schottky groups”, but immediately one sees this
idea is doomed, if one uses parallel slabs for Schottky’s construction:
parallel slabs have disjoint complements only if they are parallel to
each other, in which case the group is necessarily cyclic anyway. From
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this viewpoint, a discrete group of affine transformations seems very
unlikely to act properly.

15.3. Margulis spacetimes

In the early 1980’s Margulis, while trying to prove that a nonabelian
free group can’t act properly by affine transformations, discovered that
discrete free groups of affine transformations can indeed act properly!

Around the same time, David Fried and I were also working on these
questions, and reduced Milnor’s question in dimension three to what
seemed at the time to be one annoying case which we could not handle.
Namely, we showed the following: Let A be a three-dimensional affine
space and Γ ⊂ Aff(A). Suppose that Γ acts properly on A. Then either
Γ is polycyclic or the restriction of the linear holonomy homomorphism

Γ
L−→ GL(A)

discretely embeds Γ onto a subgroup of GL(A) conjugate to the orthog-
onal group O(2, 1).

In particular the complete affine manifold M3 = Γ\A is a complete
flat Lorentz 3-manifold after one passes to a finite-index torsion-free
subgroup of Γ to ensure that Γ acts freely. In particular the restriction
L|Γ defines a free properly discrete isometric action of Γ on the hyper-
bolic plane H2 and the quotient Σ2 := H2/L(Γ) is a complete hyperbolic
surface with a homotopy equivalence

M3 := Γ\A ' H2/L(Γ) =: Σ2.

Already this excludes the case when M3 is compact, since Γ is the
fundamental group of a closed aspherical 3-manifold (and has cohomo-
logical dimension 3) and the fundamental group of a hyperbolic surface
(and has cohomological dimension ≤ 2). This is a crucial step in the
proof of Conjecture 8.6.2 in dimension 3.

That the hyperbolic surface Σ2 is noncompact is a much deeper re-
sult due to Geoffrey Mess [220]. Later proofs and a generalization have
been found by Goldman-Margulis [134] and Labourie [196]. (Compare
the discussion in §15.3.3.) Since the fundamental group of a noncom-
pact surface is free, Γ is a free group. Furthermore L|Γ embeds Γ as
a free discrete group of isometries of hyperbolic space. Thus Milnor’s
suggestion is the only way to construct nonsolvable examples in dimen-
sion three.

15.3.1. Affine boosts and crooked planes. Since L embeds Γ0

as the fundamental group of a hyperbolic surface, L(γ) is elliptic only
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if γ = 1. Thus, if γ 6= 1, then L(γ) is either hyperbolic or parabolic.
Furthermore L(γ) is hyperbolic for most γ ∈ Γ0.

When L(γ) is hyperbolic, γ is an affine boost, that is, it has the
form

(90) γ =



e`(γ) 0 0

0 1 0
0 0 e−`(γ)






0
α(γ)

0




in a suitable coordinate system. (Here the 3× 3 matrix represents the
linear part, and the column 3-vector represents the translational part.)
γ leaves invariant a unique (spacelike) line Cγ (the second coordinate
line in (90). Its image in E2,1/Γ is a closed geodesic Cγ/〈γ〉. Just as
for hyperbolic surfaces, most loops in M3 are freely homotopic to such
closed geodesics. (For a more direct relationship between the dynamics
of the geodesic flows on Σ2 and M3, compare Goldman-Labourie

Margulis observed that Cγ inherits a natural orientation and metric,
arising from an orientation on A, as follows. Choose repelling and
attracting eigenvectors L(γ)± for L(γ) respectively; choose them so they
lie in the same component of the nullcone. Then the orientation and
metric on Cγ is determined by a choice of nonzero vector L(γ)0 spanning
Fix
(
L(γ)

)
. this vector is uniquely specified by requiring that:

• L(γ)0 · L(γ)0 = 1;
•
(
L(γ)0, L(γ)−, L(γ)+

)
is a positively oriented basis.

The restriction of γ to Cγ is a translation by displacement α(γ) with
respect to this natural orientation and metric.

Compare this to the more familiar geodesic length function `(γ)
associated to a class γ of closed curves on the hyperbolic surface Σ.
The linear part L(γ) acts by transvection along a geodesic cL(γ) ⊂ H2.
The quantity `(γ) > 0 measures how far L(γ) moves points of cL(γ).

This pair of quantities
(
`(γ), α(γ)

)
∈ R+ × R

is a complete invariant of the isometry type of the flat Lorentz cylinder
A/〈γ〉. The absolute value |α(γ)| is the length of the unique primitive
closed geodesic in A/〈γ〉.

A fundamental domain is the parallel slab

(ΠCγ )
−1
(
p0 + [0, α(γ)] γ0

)

where

A
ΠCγ−−→ Cγ
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denotes orthogonal projection onto

Cγ = p0 + Rγ0.

As noted above, however, parallel slabs can’t be combined to form
fundamental domains for Schottky groups, since their complementary
half-spaces are rarely disjoint.

In retrospect this is believable, since these fundamental domains
are fashioned from the dynamics of the translational part (using the
projection ΠCγ ). While the effect of the translational part is properness,
the dynamical behavior affecting most points is influenced by the linear
part: While points on Cγ are displaced by γ at a polynomial rate, all
other points move at an exponential rate.

Furthermore, parallel slabs are less robust than slabs in H2: while
small perturbations of one boundary component extend to fundamental
domains, this is no longer true for parallel slabs. Thus one might
look for other types of fundamental domains better adapted to the
exponential growth dynamics given by the linear holonomy L(γ).

Todd Drumm, in his 1990 Maryland thesis [89, 90], defined more
flexible polyhedral surfaces, which can be combined to form funda-
mental domains for Schottky groups of 3-dimensional affine transfor-
mations. A crooked plane is a PL surface in A, separating A into two
crooked halfspaces. The complement of two disjoint crooked halfspace
is a crooked slab, which forms a fundamental domain for a cyclic group
generated by an affine boost. Drumm proved the remarkable theorem
that if S1, . . . , Sg are crooked slabs whose complements have disjoint
interiors, then given any collection of affine boosts γi with Si as fun-
damental domain, then the intersection S1 ∩ · · · ∩ Sg is a fundamental
domain for 〈γ1, . . . , γg〉 acting on all of A.

Modeling a crooked fundamental domain for Γ acting on A on a
fundamental polygon for Γ0 acting on H2, Drumm proved the following
sharp result:

Theorem (Drumm ). Every noncocompact torsion-free Fuchsian
group Γ0 admits a proper affine deformation Γ whose quotient is a solid
handlebody.

15.3.2. Marked length spectra. We now combine the geodesic
length function `(γ) describing the geometry of the hyperbolic surface
Σ with the Margulis invariant α(γ) describing the Lorentzian geometry
of the flat affine 3-manifold M .

As noted by Margulis, α(γ) = α(γ−1), and more generally

α(γn) = |n|α(γ).
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The invariant ` satisfies the same homogeneity condition, and therefore

α(γn)

`(γn)
=

α(γ)

`(γ)

is constant along hyperbolic cyclic subgroups. Hyperbolic cyclic sub-
groups correspond to periodic orbits of the geodesic flow φ on the unit
tangent bundle UΣ. Periodic orbits, in turn, define φ-invariant prob-
ability measures on UΣ. Goldman-Labourie-Margulis prove that, for
any affine deformation, this function extends to a continuous function
ΥΓ on the space C(Σ) of φ-invariant probability measures on UΣ. Fur-
thermore when Γ0 is convex cocompact (that is, contains no parabolic
elements), then the affine deformation Γ acts properly if and only if ΥΓ

never vanishes. Since C(Σ) is connected, nonvanishing implies either
all ΥΓ(µ) > 0 or all ΥΓ(µ) < 0. From this follows Margulis’s Opposite
Sign Lemma, first proved in to groups with parabolics by Charette and
Drumm [59]:

Theorem (Margulis). If Γ acts properly, then all of the numbers
α(γ) have the same sign.

For an excellent treatment of the original proof of this fact, see the
survey article of Abels [1].

15.3.3. Deformations of hyperbolic surfaces. The Margulis
invariant may be interpreted in terms of deformations of hyperbolic
structures as follows

Suppose Γ0 is a Fuchsian group with quotient hyperbolic surface
Σ0 = Γ0\H2. Let gAd be the Γ0-module defined by the adjoint rep-
resentation applied to the embedding Γ0 ↪→ O(2, 1). The coefficient
module gAd corresponds to the Lie algebra of right-invariant vector
fields on O(2, 1) with the action of O(2, 1) by left-multiplication. Geo-
metrically these vector fields correspond to the infinitesimal isometries
of H2.

A family of hyperbolic surfaces Σt smoothly varying with respect
to a parameter t determines an infinitesimal deformation, which is a
cohomology class [u] ∈ H1(Γ0, gAd), The cohomology group H1(Γ0, gAd)
corresponds to infinitesimal deformations of the hyperbolic surface Σ0.
In particular the tangent vector to the path Σt of marked hyperbolic
structures smoothly varying with respect to a parameter t defines a
cohomology class

[u] ∈ H1(Γ0, gAd).

The same cohomology group parametrizes affine deformations. The
translational part u of a linear representations of Γ0 is a cocycle of the
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group Γ0 taking values in the corresponding Γ0-module V. Moreover
two cocycles define affine deformations which are conjugate by a trans-
lation if and only if their translational parts are cohomologous cocycles.
Therefore translational conjugacy classes of affine deformations form
the cohomology group H1(Γ0,V). Inside H1(Γ0,V) is the subset Proper
corresponding to proper affine deformations.

The adjoint representation Ad of O(2, 1) identifies with the orthog-
onal representation of O(2, 1) on V. Therefore the cohomology group
H1(Γ0,V) consisting of translational conjugacy classes of affine defor-
mations of Γ0 can be identified with the cohomology group H1(Γ0, gAd)
corresponding to infinitesimal deformations of Σ0.

Theorem. Suppose u ∈ Z1(Γ0, gAd) defines an infinitesimal defor-
mation tangent to a smooth deformation Σt of Σ.

• The marked length spectrum `t of Σt varies smoothly with t.
• Margulis’s invariant αu(γ) represents the derivative

d

dt

∣∣∣∣
t=0

`t(γ)

• (Opposite Sign Lemma) If [u] ∈ Proper, then all closed geodesics
lengthen (or shorten) under the deformation Σt.

Since closed hyperbolic surfaces do not support deformations in which
every closed geodesic shortens, such deformations only exist when Σ0

is noncompact. This leads to a new proof [134] of Mess’s theorem
that Σ0 is not compact. (For another, somewhat similar proof, which
generalizes to higher dimensions, see Labourie [196].)

The tangent bundle TG of any Lie group G has a natural structure

as a Lie group, where the fibration TG
Π−→ G is a homomorphism of Lie

groups, and the tangent spaces

TxG = Π−1(x) ⊂ TG

are vector groups. The deformations of a representation Γ0
ρ0−→ G

correspond to representations Γ0
ρ−→ TG such that Π ◦ ρ = ρ0. In our

case, affine deformations of Γ0 ↪→ O(2, 1) correspond to representations
in the tangent bundle TO(2, 1). When G is the group G(R) of R-points
of an algebraic group G defined over R, then

TG ∼= G(R[ε])

where ε is an indeterminate with ε2 = 0. (Compare [125].) This is
reminiscent of the classical theory of quasi-Fuchsian deformations of
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Fuchsian groups, where one deforms a Fuchsian subgroup of SL(2,R)
in

SL(2,C) = SL(2,R[i])

where i2 = −1.

15.3.4. Classification. In light of Drumm’s theorem, classifying
Margulis spacetimes M3 begins with the classification of hyperbolic
structures Σ2. Thus the deformation space of Margulis spacetimes
maps to the Fricke space F(Σ) of marked hyperbolic structures on the
underlying topology of Σ.

The main result of is that the positivity (or negativity) of ΥΓ on on
C(Σ) is necessary and sufficient for properness of Γ. (For simplicity we
restrict ourselves to the case when L(Γ) contains no parabolics — that
is, when Γ0 is convex cocompact.) Thus the proper affine deformation
space Proper identifies with the open convex cone in H1(Γ0,V) defined
by the linear functionals Υµ, for µ in the compact space C(Σ). These
give uncountably many linear conditions on H1(Γ0,V), one for each µ ∈
C(Σ). Since the invariant probability measures arising from periodic
orbits are dense in C(Σ), the cone Proper is the interior of half-spaces
defined by the countable set of functional Υγ, where γ ∈ Γ0.

The zero level sets Υ−1
γ (0) correspond to affine deformations where

γ does not act freely. Therefore Proper defines a component of the
subset of H1(Γ0,V) corresponding to affine deformations which are free
actions.

Actually, one may go further. An argument inspired by Using an
argument due to Thurston [264], one reduces the consideration to only
those measures arising from multicurves, that is, unions of disjoint
simple closed curves. These measures (after scaling) are dense in the
Thurston cone ML(Σ) of measured geodesic laminations on Σ. One
sees the combinatorial structure of the Thurston cone replicated on
the boundary of Proper ⊂ H1(Γ0,V).

Two particular cases are notable. When Σ is a 3-holed sphere or
a 2-holed cross-surface (real projective plane), then the Thurston cone
degenerates to a finite-sided polyhedral cone. In particular properness
is characterized by 3 Margulis functionals for the 3-holed sphere, and 4
for the 2-holed cross-surface. Thus the deformation space of equivalence
classes of proper affine deformations is either a cone on a triangle or a
convex quadrilateral, respectively.

When Σ is a 3-holed sphere, these functionals correspond to the
three components of ∂Σ. The halfspaces defined by the correponding
three Margulis functionals cut off the deformation space (which is a
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polyhedral cone with 3 faces). The Margulis functionals for the other
curves define halfspaces which strictly contain this cone.

When Σ is a 2-holed cross-surface these functionals correspond to
the two components of ∂Σ and the two orientation-reversing simple
closed curves in the interior of Σ. The four Margulis functionals de-
scribe a polyhedral cone with 4 faces. All other closed curves on Σ
define halfspace strictly containing this cone.

In both cases, an ideal triangulation for Σ models a crooked funda-
mental domain for M , and Γ is an affine Schottky group, and M is an
open solid handlebody of genus 2 (Charette-Drumm-Goldman depicts
these finite-sided deformation spaces.

For the other surfaces where π1(Σ) is free of rank two (equivalently
χ(Σ) = −1), infinitely many functionals Υµ are needed to define the
deformation space, which necessarily has infinitely many sides. In these
cases M3 admits crooked fundamental domains corresponding to ideal
triangulations of Σ, although unlike the preceding cases there is no
single ideal triangulation which works for all proper affine deformations.
Once again M3 is a genus two handlebody.

15.4. Dupont’s classification of hyperbolic torus bundles

Theorem 15.4.1 (Dupont[94]). Let M3 be an hyperbolic torus bun-
dle with an affine structure.Then M3 is a quotient Γ\G where G is an
affine Lie group isomorphic to R2 nR+ where R+ ∼= SO(1, 1). Further-
more the developing image Ω ≈ G is one of the following:

• All of A3 (M is complete);
• A halfspace in A3;
• The product with A1 with a convex parabolic domain (such as
{y > x2});
• The product with A1 with a concave parabolic domain (such as
{y < x2}).

In particular, a developing map embeds M̃ as one of these domains and

the holonomy homomorphism is an isomorphism π1(M)
∼=−−→ Γ < G.

This builds on Dupont’s classification [93] of affine actions of the two-
dimensional group Aff(R) on A3.

Although the class of affine structures on closed 3-manifolds with
nilpotent holonomy are understood, the general case of solvable ho-
lonomy remains mysterious. However, Serge Dupont [94] completely
classifies affine structures on 3-manifolds with solvable fundamental
group. (Compare also Dupont [93], in the volume [156].) In terms
of the Thurston geometrization, these are the geometric 3-manifolds
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modeled on Sol, that is, 3-manifolds finitely covered by hyperbolic torus
bundles: mapping tori (suspensions) of hyperbolic elements of GL(2,Z).
Dupont shows that all such structures arise from left-invariant affine
structures on the corresponding Lie group G, which is the semidirect
product of R2 by R, where R acts on R2 as a unimodular hyperbolic
one-parameter subgroup (explicitly, G is isomorphic to the identity
component in the group of Lorentz isometries of the Minkowski plane).

Two structures are particularly interesting for the behavior of geo-
desics in light of the results of Vey [277]. Recall that a properly convex
domain Ω ∈ An is divisible if it admits a discrete group Γ < Aut(Ω)
acting properly such that Ω/Γ is compact. (Equivalently, the quotient
space Ω/Γ by a discrete subgroup Γ ⊂ Aut(Ω) is compact and Haus-
dorff.) Vey proved that a divisible domain is a cone. However, drop-
ping the properness of the action of Γ on Ω allows counterexamples:
the parabolic cylinder

Ω := {(x, y) ∈ A2 | y > x2}
is a properly convex domain which is not a cone, but admits a group Γ
of automorphisms such that Ω/Γ is compact but not Hausdorff. (See
§ 10.4.4 for Lie algebraic properties of Ω.)

Now take the product Ω×R ⊂ A3. Let G < Aff(A3) be the subgroup
acting simply transitively (isomorphic to the 3-dimensional unimodular
exponential non-nilpotent solvable Lie group) discussed in §10.8.1), and
let Γ < G be a lattice. Then Γ acts properly on Ω× R and:

• The quotient M = (Ω × R)/Γ is a hyperbolic torus bundle
(and in particular compact and Hausdorff);
• Ω× R is not a cone.

Clearly Ω × R is not properly convex, showing that Vey’s result is
sharp [116].

The Kobayashi pseudometric degenerates along a 1-dimensional fo-
liation of M , and defines the hyperbolic structure transverse to this
foliation discussed by Thurston [265], Chapter 4.





APPENDIX A

Transformation groups

A.1. Group actions

We shall consider left-actions of a group on a set, unless otherwise
noted. Suppose that G is a group acting on a set X, with the (left-)
action denoted by:

G×X α−−→ X

(g, x) 7−→ g · x
We refer to X as a (left-) G-set.

The kernel of the action α consists of all g such that α(g, ·) = I,
that is, g · x = x,∀x ∈ X. Equivalently, this is the kernel of the
homomorphism of G into the group of automorphisms of the set X.
The action is effective (or faithful) if its kernel is trivial.

If x ∈ X, its stabiliizer: is the subgroup:

Stab(x) := {g ∈ G | g · x = x}.
If g ∈ G, then its fixed-point set (or stationary set is the subset:

Fix(g) := {x ∈ X | g · x = x}.
The action is free if and only if Stab(x) = {1},∀x ∈ X, or equivalently
Fix(g) = ∅,∀g ∈ G, g 6= 1.

The orbit of a point x is the image

G · x := α(G× {x}) = {g · x | g ∈ G}.
The orbits partition X, so that the group action defines an equiva-

lence relation on X. The action is transitive if some (and hence every)
orbit equals X.

The action is simply transitive if it is transitive and free. In terms
of the orbit map (or evaluation map)

G
αx−−→ X

g 7−→ α(g, x) = g · x,
• α is free x ⇐⇒ αx is injective ∀x ∈ X;
• α is transitive ⇐⇒ αx is injective (for any x);
• α is simply transitive ⇐⇒ αx is bijective.

331



332 A. TRANSFORMATION GROUPS

A simply transitive action α makes X into a G-torsor.

Exercise A.1.1. Let X be a left G-set and x ∈ X. Let H =
Stab(x).

• The orbit map αx defines a G-equivariant isomorphism G/H −→
G · x. where G acts by left-multiplicataion on the set G/H of
left cosets gH for g ∈ G.
• Suppose that N < H is a nontrivial normal subgroup of G.

Then G does not act effectively on G/H.

A.2. Proper and syndetic actions

A convenient context in which to work is that of locally compact
Hausdorff topologyical spaces and topoological groups. Recall that a

continuous mapX
f−−→ Y is proper if ∀K ⊂⊂ Y , the preimage f−1(K) ⊂⊂

X. Recall the following facts from general topology:

• A closed subset of a compact space is compact.
• The continuous image of a compact space is compact.
• Compact subsets of a Hausdorff space are closed,

It follows that a proper map is closed.

Exercise A.2.1. Suppose that X, Y are manifolds and f is a smooth
map. Furthermore suppose that f is a local homeomoprhism. Then f
is a covering space.

Let G be a locally compact Hausdorff topological group and

G×X α−−→ X

(g, x) 7−→ g · x
is a (left) action. We say that the group action α is proper if and only
if the continuous map

G×X fα−−→ X ×X
(g, x) 7−→ (g · x, x)

is a proper map.

Exercise A.2.2. Show that properness is equivalent to the either
of the two following conditions: (for the last condition assume that G
is second countable)

• ∀K1, K2 ⊂⊂ X, the set

G(K1, K2) := {g ∈ G | gK1 ∩K2 6= ∅} ⊂⊂ G.

• ∀K ⊂⊂ X, G(K,K) ⊂⊂ G.
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• For all sequences gn ∈ G, xn ∈ X, such that gnxn converges,
the sequence gn has a convergent subsequence.

For the last condition, we can say that if xn stays bounded, but gn →∞,
then gnxn →∞.

Exercise A.2.3. Suppose that α is a proper action of a locally com-
pact group on a locally compact Hausdorff space X. Then the quotient
space G\X is Hausdorff. Is the converse true?

Exercise A.2.4. Suppose that Γ is a discrete group and G×X α−−→
X is a proper free action. Then the quotient map X −→ G\X is a
covering space.

A group action α is syndetic if the quotient G\X is compact.

A.3. Topological transformation groupoids

We must relate the actions of Aff(A) on C(A) and G on C(P). Recall
that a topological transformation groupoid consists of a small category
G whose objects form a topological space X upon which a topological
group G acts such that the morphisms a→ b consist of all g ∈ G such
that g(a) = b. We write G = (G,X). A homomorphism of topological
transformation groupoids is a functor

(X,G)
(f,F )−−−−→ (X ′, G′)

arising from a continuous map X
f−−→ X ′ which is equivariant with

respect to a contin uous homomorphism G
F−−→ G′.

The space of isomorphism classes of objects in a category G will be
denoted Iso(G). We shall say that G is proper (respectively syndetic)
if the corresponding action of G on X is proper (respectively synde-

tic). If G and G′ are topological categories, a functor G
F−−→ G′ is an

equivalence of topological categories if the induced map

Iso(G)
Iso(F )−−−−→ Iso(G′)

is a homeomorphism and F is fully faithful, that is, for each pair of
objects a, b of G, the induced map

Hom(a, b)
F∗−−→ Hom(F (a), F (b))

is a homeomorphism. If F is fully faithful it is enough to prove that
Iso(F ) is surjective. (Compare Jacobson [157].) We have the following
general proposition:
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Lemma A.3.1. Suppose that

(X,G)
(f,F )−−−−→ (X ′, G′)

is a homomorphism of topological transformation groupoids which is an
equivalence of groupoids and such that f is an open map.

• If (X,G) is proper, so is (X ′, G′).
• If (X,G) is syndetic, so is (X ′, G′).

Proof. An equivalence of topological groupoids induces a homeo-
morphism of quotient spaces

X/G −→ X ′/G′

so if X ′/G′ is compact (respectively Hausdorff) so is X/G. Since (X,G)
is syndetic if and only if X/G is compact, this proves the assertion
about syndeticity. By Koszul [185], p.3, Remark 2, (X,G) is proper if
and only if X/G is Hausdorff and the action (X,G) is wandering (or
locally proper): each point x ∈ X has a neighborhood U such that

G(U,U) = {g ∈ G | g(U) ∩ U 6= ∅}
is precompact. Since (f, F ) is fully faithful, F maps G(U,U) isomor-
phically onto G′(f(U), f(U)). Suppose that (X,G) is proper. Then
X/G is Hausdorff and so is X ′/G′. We claim that G′ acts locally
properly on X ′. Let x′ ∈ X ′. Then there exists g′ ∈ G′ and x ∈ X
such that g′f(x) = x′. Since G acts locally properly on X, there ex-
ists a neighborhood U of x ∈ X such that G(U,U) is precompact.
It follows that U ′ = g′f(U) is a neighborhood of x′ ∈ X ′ such that
G′(U ′, U ′) ∼= G(U,U) is precompact, as claimed. Thus G′ acts prop-
erly on X ′. �



APPENDIX B

Affine connections in local coordinates

We summarize some ot the basic facts about (not necessarily flat)
affine connections on a smooth manifold M . After discussing the ex-
pression of general affine connections in local coordinates is a review
of the Levi-Civita (or Riemannian) connection. As this general the-
ory only uses the nondegeneracy of the metric connection, it applies
equally to pseudo-Riemannian, structures defined by a (possibly indef-
inite) metric tensor. Due to its fundamental importance, this appendix
ends with a detailed discussion of the Riemannian connection for the
hyperbolic plane H2.

B.1. Affine connections in local coordinates

Recall that an affine connection on M is a (linear connection) on
the tangent bundle TM , which can be defined in several different ways.
One of the most familiar ways is that of a Koszul connection, that is, a
covariant differentiation operation on a vector bundle V over M , which
happens to be isomorphic to the tangent bundle TM . Explicitly we
consider an isomorphism of vector bundles over M :

TM
S−−→ V

together with a covariant differentiation operation

TpM × Γ(V) −→ Vp

(Xp, v) 7−→ ∇Xp(v)

which satisfies tensorial conditions

∇fXp(v) = f(p)∇Xp(v), ∇Xp(fv) = Xp(f)v + f(p)∇Xpv

for f ∈ C∞(M).
In local coordinates (x1, . . . , xn), the connection is defined by Christof-

fel symbols
∇∂i(∂j) := Γkij(x)∂k.

whereby the general covariant derivative of vector fields is:

∇ai∂ibj∂j = ai
∂bj
∂xi

Γkij(x)∂k.

335



336 B. AFFINE CONNECTIONS

From an affine connection, define the torsion and curvature tensors
as follows.

Exercise B.1.1. Show that the operations on vector fields X, Y ∈
Vec(M)

Tor∇(X, Y ) := ∇XY −∇YX − [X, Y ]

Riem∇(X, Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ]

are tensorial (that is, multilinear over C∞(M)), and define smooth
sections of the vector bundles Λ2(TM)⊗TM and Λ2(TM)⊗End(TM),
respectively.

In local coordinates on TM , where (x1, . . . , xn) are local coordi-
nates on M and (v1, . . . vn) are local coordinates on TpM , the geodesic
equations are:

d

dt
xk(t) = vk(t)

d

dt
vi(t) = −Γkij(x)vi(t)vj(t)

(for k = 1, . . . , n) and Γkij(x) are the Christoffel symbols defined by:

∇∂i(∂j) = Γkij(x)∂k.

In particular the geodesic flow corresponds to the vector field (called
the geodesic spray):

φΓ := vk
∂

∂xk
− Γkij(x)vivj

∂

∂vk

on TM . See Kobayashi-Nomizu [181], do Carmo [87] or O’Neill [230]
for further details.

That φΓ is vertically homogeneous of degree one: That is, it trans-
forms under the one-parameter group of homotheties

(p,v)
ht7−−→ (p, esv)

by

(91) (ht)∗(φΓ) = etφΓ

Furthermore its trajectories are the velocity vector fields of the geodesics
on M . Namely, let p = (x1, . . . , xn) ∈ M and v = (v1, . . . vn) ∈ TpM
be an initial condition. Let γp,v(t) ∈ TM denote the trajectory of φM ,
defined for t in an open interval containing 0 ∈ R, defined by:

∂

∂t

∣∣∣
t=0
γp,v(t) = v, γp,v(0) = (p,v)
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Then the local flow Φt of φΓ on TM satisfies

Φt(p,v) =
(
γp,v(t), γ′p,v(t)

)
,

where
γp,v(t) := (Π ◦ Φt)(p,v)

and TM
Π−−→ M denoting the bundle projection. The homogeneity

condition (91) implies that

γp,sv(t) = γp,v(st).

We write:

(92) Expp(tv) := γp,v(t)

for t ∈ R sufficiently near 0. Then, whenever s, t are sufficiently near
0,

Expp
(
(s+ t)v

)
= Expγ(t)

(
sP(tv)

)

where, for clarity, we denote γ(t) := Expp(tv) and parallel transport

Π
γ(t)
p by:

TpM
Π−−→ Tγ(t).

Observe that Π(v) = γ′(t).
Compare §8.3 and standard references.

B.2. Projective Equivalence

Projective structures can be defined in terms of affine connections.
First we remark that the geodesics of an affine connection ∇ are inde-
pendent of the torsion. Namely a curve γ(t) is a geodesic if and only
if

d2

dt2
γj(t) + Γkij

dγi

dt

dγj

dt
= 0

where the second term is symmetric in i, j. By subtracting 1
2
Tor∇, we

may assume that Tor∇ = 0, that is, Γkij is symmetric in i, j.

Exercise B.2.1. Show that two torsionfree affine connections have
the same set of parametrized geodesics if and only if they are equal.

Weyl found an elementary criteria for when two torsionfree affine
connections ∇ and ∇̃ have the same unparametrized geodesics. In that
case, we say the connections are projectively equivalent.

Exercise B.2.2. (Weyl) ∇ and ∇̃ are projectively equivalent if and
only if the difference ∇̃ −∇ is the symmetrization of a 1-form ω, that
is,

∇̃X(Y )−∇XY = ω(X)Y + ω(Y )X,
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∀X, Y ∈ Vec(M). In terms of local coordinates ω = ωldx
l, this means

∇̃k
ij −∇k

ij = ωiδ
k
j + ωjδ

k
i .

For more discussion, see Spivak [258], Addendum 1, Proposition18 and
Ovsienko-Tabachnikov [231], Proposition A.3.2.

Exercise B.2.3. In the projective models for affine space and hy-
perbolic space, the geodesics are segments of projective lines. This gives
several examples of projective equivalences. For the invariant affine
connection on an affine patches, and the Levi-Civta connection for hy-
perbolic space in the Beltrami-Klein model, find the 1-forms ω effecting
these projective equivalences.

A torsionfree affine connection is projectively flat if locally it is
projectively equivalent to the standard connection on an affine patch.
Projective flatness is detected by a contraction of the curvature ten-
sor. The deformation space RP2(Σ) can be obtained as a the space
of projective equivalence classes of projectively flat affine connections.
The symplectic structure can be obtained as a double symplectic quo-
tient of the affine space of affine connections on Σ. The first sympectic
reduction arises from the action of Ω1(Σ) generating projective equiv-
alence, and the moment map is Tor. The corresponding symplectic
quotient is the space A of projective equivalence classes of torsionfree
affine connecttions. The second symplectic reduction arises from the
Hamiltonian action of the group Diff0(Σ) on A; here the moment map
is the projective curvature tensor. See Goldman [123] for details.

B.3. The (pseudo-) Riemannian connection

The fundamental theorem of Riemannian geometry asserts a pseudo-
Riemannian manifold (M, g) admits a unique affine connection ∇ with
natural properties:

• (Orthogonality) ∇g = 0;
• (Symmetry) Tor(∇) = 0.

Orthogonality is equivalent to the condition that the parallel transport
operator

TxM
Pγ−−→ TyM

along a path x
γ
y maps (Tx, gx) isometrically to (Ty, gy). When com-

puted with respect to an orthonormal frame, this implies that the
Christoffel symbols satisfy:

Γkij = −Γjik,

that is, the n× n-matrix of 1-forms
[
Γkijdx

1
]

is skew-symmetric.
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Exercise B.3.1. The Koszul formula is an remarkable explicit for-
mula for the Levi-Civita connection in terms of the metric tensor g and
the Lie bracket on Vec(M). Namely, if X, Y, Z ∈ Vec(M), then

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ])

defines the unique affine ∇-ortogonal symmetric connection. In local
coordinates (x1, . . . , xn),

Γkij =
1

2
gkm
(
∂gjm
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)

B.4. The Levi-Civita connection for the Poincaré metric

We denote complex numbers z = x+ yi ∈ C where x, y ∈ R.
Let H2 denote the upper half-plane

{x+ iy|x, y ∈ R, y > 0}

with the Poincaré metric:

g =
|dz|2
y2

We compute the Levi-Civita connection ∇ with respect to several dif-
ferent frames.

B.4.1. The usual coordinate system on H2. Let ∂x, ∂y be the
coordinate vector fields, so that:

g(∂x, ∂x) = g(∂y, ∂y) = y−2(93)

g(∂x, ∂y) = g(∂y, ∂x) = 0.(94)

The vector fields

ξ := y∂x

η := y∂y

define an orthonormal frame field. Therefore, for any vector field φ,

φ = g(φ, ξ)ξ + g(φ, η)η

= y2
(

g(φ, ∂x)∂x + g(φ, ∂y)∂y

)
(95)
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Theorem. In terms of the coordinate frame, the Levi-Civita con-
nection is given by:

∇x∂x = y−1∂y(96)

∇x∂y = −y−1∂x(97)

∇y∂x = −y−1∂x(98)

∇y∂y = −y−1∂y(99)

In terms of the orthonormal frame, the Levi-Civita connection is given
by:

∇ξξ = η

∇ξη = −ξ
∇ηξ = 0

∇ηη = 0

Proof. Symmetry of ∇ and [∂x, ∂y] = 0 implies:

(100) ∇x∂y = ∇y∂x

which implies the equivalence (97) ⇐⇒ (98).
Differentiate (93) with respect to ∂x:

g(∇x∂x, ∂x) = 0(101)

g(∇x∂y, ∂y) = 0.(102)

Combine (102) with (100):

(103) g(∇y∂x, ∂y) = 0

Differentiate (93) with respect to ∂y:

2g
(
∇y∂x, ∂x

)
= 2g

(
∇y∂y, ∂y

)
= −2y−3,

whence

(104) g
(
∇y∂x, ∂x

)
= −y−3

and

(105) g
(
∇y∂y, ∂y

)
= −y−3..

Now:

g
(
∇x∂x, ∂y

)
= ∂xg(∂x, ∂y)︸ ︷︷ ︸

0 by (94)

−g(∂x,∇x∂y)(106)

= −g
(
∂x,∇y∂x) by (100)

= −g(∇y∂x, ∂x) = y−3 by (103),
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and:

g(∇y∂y, ∂x) = ∂yg(∂y, ∂x)︸ ︷︷ ︸
0 by (94)

− g(∂y,∇y∂x)︸ ︷︷ ︸
0 by (103)

(107)

= 0

Now we compute the covariant derivatives ∇x∂x,∇x∂y,∇y∂x,∇y∂y
in terms of their inner products:

(98) follows by applying (95) to (103) and (104).

(97) follows by applying (100) to (98), as mentioned above.

(96) follows by applying (95) to (101) and (106).

(99) follows by applying (95) to (107) and (105).
�

B.4.2. Connection 1-form for orthonormal frame. Denote
the coframe field dual to the orthonormal frame by:

ξ∗ := y−1 dx

η∗ := y−1 dy.

The covariant differentials of the orthonormal frame are:

∇ξ = dx⊗ ∂y = ξ∗ ⊗ η

∇η = −dx⊗ ∂

∂x=
− ξ∗ ⊗ ξ,

which we may write as:

∇
[
ξ
η

]
=

[
0 ξ∗

−ξ∗ 0

]
⊗
[
ξ
η

]
= −ξ∗ J⊗

[
ξ
η

]

where

J =

[
0 −1
1 0

]

is the infinitesimal generator of SO(2). Thus the connection 1-form is

f := −y−1dx J

and its derivative is the curvature 2-form

F := df = −dA J

where dA := y−2dx ∧ dy is the Poincaré area form.
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B.4.3. Geodesic curvature of a hypercycle. We use these to
calculate the geodesic curvature of a hypercycle. The positive imagi-
nary axis iR+ is a geodesic with endpoints 0,∞. Let −π/2 < θ < π/2.
The ray eiθR+ is a hypercycle hρ at distance ρ ∈ R from the geodesic
iR+, where

eiθ = cos(θ) + i sin(θ) = tanh(ρ) + i sech(ρ)

parametrizes the geodesic perpendicular to iR+ through i with unit
speed.

γ(s) := es
(

tanh(ρ) + i sech(ρ)
)

parametrizes hρ with unit speed. Its velocity equals

γ′(s) = es
(

tanh(ρ)∂x + sech(ρ)∂y
)
.

Since ‖γ′(s)‖ = 1 the acceleration of γ
(
the vector D

ds
γ′(s)

)
is orthogo-

nal to γ and the geodesic curvature of γ equals:

kg =
∥∥∥D
ds
γ(s)

∥∥∥ = tanh(ρ)

Similarly the geodesic curvature of a metric circle of radius ρ equals
coth(ρ). To see this, use the Poincare unit disc model: for |z| < 1, the
metric tensor is:

g :=
4|dz|2

(1− |z|2)2

and writing (hyperbolic polar coordinates)

z = eiθ tanh(ρ/2)

the metric tensor is g = dρ2 + sinh2(ρ)dθ2, with area form dA =
sinh2(ρ)dρ ∧ dθ. Consider a disc Dρ with (hyperbolic) radius ρ. Then
its circumference equals 2π sinh(ρ) and its area 2π

(
cosh(ρ) − 1

)
. Let

kg be the geodesic curvature of the metric circle ∂Dρ. Applying the
Gauss-Bonnet theorem

2πχ(Σ) =

∫

Σ

KdA+

∮

∂Σ

kgds

to σ = Dρ obtaining:

2π = −2π
(

cosh(ρ)− 1) + kg

(
2π sinh(ρ)

)
,

that is,
kg = coth(ρ)

as desired.



APPENDIX C

Facts about metric spaces

This appendix discusses several well-known general facts about met-
ric spaces and pseudometric spaces, which are used in §12 and else-
where.

C.1. Nonincreasing homeomorphisms are isometries

Here we give the proof of Lemma 4.3.3, which states that a distance
non-increasing homeomorphism of a compact metric space (X, d) is
an isometry. This fact is used in the proof of Vey’s Semisimplicity
(Theorem 4.3.1.

The proof given here was found on Stack Exchange, submitted by
Dap on 1 March 2018.

Lemma C.1.1. Suppose (X, d) is a compact metric space and let

X
f−−� X be a surjective continuous map such that d

(
f(x), f(y)) ≤

d(x, y) for all x, y ∈ X. Then f is an isometry.

Proof. Let ε > 0. Since X is compact, it admits an ε/4-cover,
that is, a set S := {s1, . . . , sm} ⊂ X such that ∀x ∈ X, ∃sj ∈ S with
d(sj, x) < ε/4. We may assume that S minimizes the number N(S) of
pairs (si, sj) ∈ S × S with

d(s1, s2) ≥ D := d(x, y)− ε/2.
Since f is surjective and distance non-increasing, f(S) is also an ε/4-
cover, and d(s1, s2) < D implies d

(
f(s1), f(s2)

)
< D. Thus

d
(
f(s1), f(s2)

)
≥ D

whenever d(s1, s2) ≥ D and s1, s2 ∈ S.
Picking s1, s2 ∈ S with d(s1, x), d(s2, y) ≤ ε/4 gives d(s1, s2) ≥

d(x, y)− ε/2. As above, d
(
f(s1), f(s2)

)
≥ d(x, y)− ε/2, whence

d
(
f(x), f(y)

)
≥ d(x, y)− ε.

�
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C.2. Compactness of distance nonincreasing maps

Recall that a topological space is separable if it has a countable
dense subset.

Lemma C.2.1 (Kobayashi [180], Chapter V, Theorem 3.1). Let
(N, dN) and (M, dM) be connected locally compact pseudometric spaces.
Suppose that (N, dN) is separable and (M, dM) is a complete metric
space. Then the subset of Map(N,M) comprising distance-nonincreasing
maps

N
f−−→M

is locally compact. In particular, if p ∈ N and K ⊂⊂M , the subset of
all such maps with f(p) ∈ K is compact.

We briefly sketch the proof; see Kobayashi [180]for further details.
Let fn be a sequence of distance-nonincreasing projective maps tak-

ing p ∈ N to K ⊂⊂ M . Choose a countable dense subset {p1, . . . } ⊂
N ; then

Ki := BdM (K,pi)(K) ⊂⊂M.

Since the fn are distance-nonincreasing,

fn(pi) ∈ Ki.

Passing to a subsequence, assume thatt the sequence fn(pi) converges,
for each i. Then for each q ∈ N , the sequence fn(q) is Cauchy. Since
N is complete, fn(q) converges. Finally, this convergence is uniform on
compact subsets of N .

C.3. The Lebesgue number of an open covering

Lemma C.3.1. Let (X, d) be a compact metric space and U an open
covering of X. Then ∃δ > 0 such that every subset Y ⊂ X with
diam(Y ) < δ lies in some U ∈ U .

Proof. Because X is compact, U contains a finite subcovering
U1, . . . , Un. If some Ui = X, then any δ > 0 suffices. Therefore we
assume that U = {U1, . . . , Un} and every Ui ⊂

6=
X.

Since each X \ Ui is closed and nonempty, the map

X
di−−→ R

x 7−→ d(x,X \ Ui)
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continuous and positive. If x ∈ Ui and j 6= i, then di(x) > 0 and
dj(x) ≥ 0, so

X −→ R

x 7−→ 1

n

n∑

i=1

di

is continuous and positive, and has a positive lower bound δ.
Suppose diam(Y ) < δ. The ∃x0 ∈ X (for example, take any x0 ∈ Y )

so that Y ⊂ Bδ(x0). Then

δ >
1

n

n∑

i=1

di(x0)

so ∃i such that d(x0, X \Ui) = di(x0) > δ. Thus Bδ(x0) is disjoint from
X \ Ui and

Y ⊂ Bδ(x0) ⊂ Ui
as desired. �





APPENDIX D

Semicontinuous functions

D.1. Definitions and elementary properties

Let X be a topological space and X
f−−→ R a function. Then f

is upper semicontinuous if it satisfies any of the following equivalent
conditions:

• For each x ∈ X, f is upper semicontinuous at x, that is, for
all ε > 0,

f(y) < f(x) + ε

for y in some neighborhood of x.
• f is a continuous mapping from X to R, where R is given

the topology whose nonempty open sets are intervals (−∞, a)
where a ∈ R.

Examples of upper semicontinuous functions include the indicator
function of a closed set, or the greatest integer (or floor) function. A
function f is lower semicontinuous if and only if −f is upper semincon-
tinuous.

Exercise D.1.1. Show that the following conditions are equivalent:

• f is lower semicontinuous.
• ∀x ∈ X and ε > 0,

f(y) > f(x)− ε

for y in an open neighborhood of x.

• X f−−→ R is continuous where R is given the topology generated
by infinite open intervals (a,∞), for a ∈ R.

Exercise D.1.2. A semicontinuous function on a smooth manifold
is Borel.

(
Hint: see Rudin [243], Theorem 1.12(c)

)

D.2. Approximation by continuous functions

Let (X, d) be a metric space, n > 0 and X
f−−→ R any function.
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Proposition D.2.1. Let n ≥ 0. The function

X
hn−−→ R

x 7−→ sup
{
f(p)− n d(p, x) | p ∈ X

}

is n-Lipschitz.

Proof. For any p, y ∈ X,

f(p)− n d(p, y) ≤ sup
{
f(q)− n d(q, y) | q ∈ X

}
= hn(y)

so

f(p) ≤ hn(y) + n d(p, y) ≤ hn(y) + n
(
d(p, x) + d(x, y)

)

whence

f(p)− n d(p, x) ≤ hn(y) + n d(x, y).

Taking the supremum over p,

hn(x) ≤ hn(y) + n d(x, y)

and

hn(x)− hn(y) ≤ n d(x, y).

Symmetrizing, the result follows. �

Lemma D.2.2. If m < n, then hm(x) ≥ hn(x).

Proof. Taking the supremum over p of

f(p) − m d(p, x) ≤ f(p) − n d(p, x),

the result follows. �

Taking p = x in the definition of hn yields hn(x) ≥ f(x). We now
prove that a bounded upper semicontinuous function is the pointwise
limit of a monotonically nonincreasing sequence of continuous (in fact
Lipschitz) functions:

hn(x)↘ f(x).

Exercise D.2.3. Let f be an upper semicontinuous function on a
compact space X. Then f is bounded above, that is, ∃M < ∞ such
that f(x) ≤M for all x ∈ X.

Proposition D.2.4. Suppose that f is an upper semicontinuous
function which is bounded above. Let x ∈ X. Then

lim
n→∞

hn(x) = f(x).
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Proof. Suppose that M < ∞ and f(y) < M for all y ∈ X. Let
ε > 0. Then it suffices to prove:

(108) hn(x) ≤ f(x) + ε

for sufficiently large n (depending on x, ε and M).
Since f is upper semicontinuous, ∃δ > 0 such that

(109) f(y) < f(x) + ε

whenever d(x, y) < δ. We claim:

(110) f(y)− n d(y, x) < f(x) + ε

whenever

(111) n >
M − f(x)

δ
.

If d(x, y) < δ, then (109) implies:

f(y)− n d(y, x) < f(y) < f(x) + ε.

Otherwise d(x, y) ≥ δ and (111) implies:

f(y)− n d(y, x) < M − nδ ≤ f(x) < f(x) + ε,

as claimed, proving (110). Taking supremum yields (108), completing
the proof of Proposition D.2.4. �

Exercise D.2.5. Let X = R and f be the indicator function at
0 ∈ R, that is,

f(x) :=

{
1 if x = 0

0 if x 6= 0

Then
hn(x) = max(1− nx, 0)

which is supported on the interval [−1/n, 1/n].
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APPENDIX E

SL(2,C) and O(3, 1)

We prove the local isomorphism

SL(2,C) −→ O(3, 1)

mentioned in §3.3.2. I am grateful to D. Sullivan for raising this ques-
tion and motivating this material.

Let V be a two-dimensional vector space over C, and let V×V
Ω−−→ C

be a nonzero (and hence nondegenerate) symplectic structure (that is,
a skew-symmetric C-blinear form). Then SL(2,C) equals the automor-
phism group Aut(V,Ω).

Let VR be the underlying real vector space. Then V corresponds to

the pair (VR,J) where VR
J−−→ VR is the complex structure.

In terms of (VR,J), the C-symplectic structure Ω on V is equivalent
to a pair (ω, ψ) of symplectic structures VR × VR −→ R on VR which
are the real and imaginary parts of Ω:

Ω(x, y) = ω(x, y) + iψ(x, y)

Both ω and ψ are compatible with J in the following sense:

(112) ω(Jx,Jy) = −ω(x, y)

and
ψ(Jx,Jy) = −ψ(x, y).

Furthermore J and ω determine ψ by:

(113) ψ(x, y) = −ω(Jx, y).

Thus the pair (V,Ω) is equivalent to the pair (VR,J, ω) satisfying (112).
Furthermore SL(2,C) equals the automorphism group Aut(V,J, ω).

Choose a nonzero element µ ∈ Λ4(VR) of VR. The second exterior
power W := Λ2(VR) of VR has dimension 6 and admits a nondegenerate
symmetric bilinear form

Λ2(VR)× Λ2(VR) −→ R
(x, y) 7−→ x · y

defined by:
x ∧ y = (x · y)µ.
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If g ∈ GL(VR), then

g(x) · g(y) = det(g)x · y
applied to an orientation-reversing element of GL(VR) implies this form
is equivalent to its negative and therefore has signature (3, 3). This
defines a local isomorphism SL(4,R) −→ O(3, 3).

Now introduce the first symplectic structure ω ∈ Λ2(V∗R). If g ∈
Aut(VR) stabilizes ω, it stabilizes the dual bivector ω∗ ∈ Λ2(VR) = W.
Choosing µ so that (ω ∧ ω)(µ) < 0 implies that ω∗ · ω∗ < 0. It follows
that the orthogonal complement

W1 := (ω∗)⊥ ⊂ W

is a nondegenerate subspace having signature (3, 2). In particular the
stabilizer Aut(VR, ω) ∼= Sp(4,R) preserves W1, defining a local isomor-
phism Sp(4,R) −→ O(3, 2).

Similarly, the second symplectic structure ψ ∈ Λ2(V∗R) admits a dual
bivector ψ∗ ∈ Λ2(VR) = W orthogonal to ω∗ also satisfying ψ∗ ·ψ∗ < 0.
The orthogonal complement W2 := (ω∗, ψ∗)⊥ ⊂ W has signature (3, 1).

By (113), the complex structure J and the symplectic structure ω
determine the symplectic structure ψ, so

Aut(VR, ω, ψ) = Aut(V.Ω) ∼= SL(2,C).

The stabilizer Aut(VR, ω, ψ) preserves W2, defining a local isomorphism
SL(2,C) −→ O(3, 1).

Explicitly, choose a basis e1, e2 of V with Ω(e1, e2) = 1. Extend to
a basis e1, f1, e2, f2 of VR by fj := Jej. Evaluate ω, ψ on this basis:

ω(e1, e2) = −ω(f1, f2) = 1 ψ(f1, e2) = −ψ(f2, e1) = 1

(with other values 0) so that 1

ω∗ =
1

4
e1 ∧ e2 − f1 ∧ f2, ψ∗ =

1

4
f1 ∧ e2 − f2 ∧ e1.

Let µ := e1 ∧ e2 ∧ f1 ∧ f2. Then ω∗ · ω∗ = ψ∗ · ψ∗ = −1/8, ω∗ · ψ∗ = 0.
Then e1 ∧ f1, e2 ∧ f2, e1 ∧ e2 + f1 ∧ f2, e1 ∧ f2 − f1 ∧ e2 bases W2 with
Gram matrix (evidently of signature (3, 1)):




0 −1 0 0
−1 0 0 0
0 0 2 0
0 0 0 2


 .

1Convention: (α∧β)(X1, . . . , Xp+q) = 1
p!q!

∑
σ∈Sp+q

α(Xσ(1), . . . , Xσ(p))β(Xσ(p+1), . . . , Xσ(p+q))
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229. MR 2436232 15.1

21. Oliver Baues, Varieties of discontinuous groups, in Igodt et al.
[156], pp. 147–158. MR 1796130 (2001i:58013) 7.2

22. , Deformation spaces for affine crystallographic groups,
Cohomology of groups and algebraic K-theory, Adv. Lect. Math.
(ALM), vol. 12, Int. Press, Somerville, MA, 2010, pp. 55–129.
MR 2655175 (2011f:57066) 8.5, 8.5.1

23. , The deformations of flat affine structures on the two-
torus, Handbook of Teichmüller theory Vol. IV, European Math-
ematical Society, 2014, pp. 461–537. 5.4, 5.4.4, 8.5, 10, 10.2
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Eur. Math. Soc., Zürich, 2009, pp. 455–508. MR 2497780 7.2.1,
14, 15.1



360 BIBLIOGRAPHY

92. Sorin Dumitrescu, Structures géométriques sur les courbes et les
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Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1857–1880.
MR 2183298 13.2, 13.2.1

141. Olivier Guichard and Anna Wienhard, Convex foliated projective
structures and the Hitchin component for PSL4(R), Duke Math.
J. 144 (2008), no. 3, 381–445. MR 2444302 6.4.3

142. R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathe-
matical Notes, Princeton University Press, Princeton, N.J., 1966.
MR 0207977 10.2, 14, 14.1.2



364 BIBLIOGRAPHY

143. , Special coordinate coverings of Riemann surfaces, Math.
Ann. 170 (1967), 67–86. MR 0207978 10.2, 14

144. Andre Haefliger, Lectures on the theorem of Gromov, Proceedings
of Liverpool Singularities Symposium II, Springer, 1971, pp. 128–
141. 7.5

145. Dennis A. Hejhal, Monodromy groups and linearly polymorphic
functions, Discontinuous groups and Riemann surfaces (Proc.
Conf., Univ. Maryland, College Park, Md., 1973), Princeton Univ.
Press, Princeton, N.J., 1974, pp. 247–261. Ann. of Math. Studies,
No. 79. MR 0355035 7.2.1

146. , Monodromy groups and linearly polymorphic functions,
Acta Math. 135 (1975), no. 1, 1–55. MR 0463429 7.2.1, 14

147. Jacques Helmstetter, Radical d’une algèbre symétrique à gauche,
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