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Enhancing Topology with Geometry

Deformations of geometric structure

Real projective structures

Representation varieties and character varieties

Hamiltonian flows of real projective structures



Geometry through symmetry
I In his 1872 Erlangen Program, Felix Klein proposed that a

geometry is the study of properties of an abstract space X

which are invariant under a transitive group G of
transformations of X .

I Klein was heavily influenced by Sophus Lie, who was trying to
develop a theory of continuous groups, to exploit infinitesimal

symmetry to study differential equations, similar to how
Galois exploited symmetry to study algebraic equations.
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Euclidean to affine to projective geometry

I Euclidean geometry: X = Rn Euclidean space and
G = Isom(X ) the group of rigid motions:

I A rigid motion is a map x 7→ Ax + b where A ∈ O(n) is
orthogonal and b ∈ Rn is a translation vector.

I Invariant notions: Distance, angle, parallel, area, lines, ...

I Euclidean geometry: special case of affine geometry
wheree X = Rn and G = Aff(X ), where A ∈ GL(n,R) is only
required to be linear .

I Only parallelism, lines preserved.

I Affine geometry: special case of projective geometry, when
parallelism abandoned. G = PGL(n + 1,R), X = RPn.

I But the space must be enlarged: Rn $ RPn
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Other subgeometries of projective geometry

I Hyperbolic geometry: X = Hn ⊂ RPn G = O(n, 1) the subset
of PGL(n + 1,R) stabilizing X ;

I (Beltrami – Hilbert) Define the hyperbolic metric on X

projectively in terms of cross-ratios:
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Distance d(x , y) = log[A, x , y ,B ]

I More generally, one obtains a projectively invariant distance
on any properly convex domain (Hilbert).
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Putting geometric structure on a topological space

I Topology: Smooth manifold Σ with coordinate patches Uα;

I Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

I For each component C ⊂ Uα ∩ Uβ, ∃g = g(C ) ∈ G such that

g ◦ ψα|C = ψβ |C .

I Local (G ,X )-geometry defined by ψα independent of patch.

I (Ehresmann 1936) Σ acquires geometric structure M modeled

on (G ,X ).
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Quotients of domains

I Suppose that Ω ⊂ X is an open subset invariant under a
subgroup Γ ⊂ G such that:

I Γ is discrete;
I Γ acts properly on Ω
I Γ acts freely on Ω.

I Then M = Ω/Γ is a (G ,X )-manifold

I The covering space Ω −→ M is a (G ,X )-morphism.

I Complete affine structures: Ω entire affine patch Rn ⊂ RPn.

I Convex RPn-structures: Ω ⊂ RPn convex domain containing
no affine line (properly convex).
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A projective (3, 3, 3) triangle tesselation

This tesselation of the open triangular region is equivalent to the
tiling of the Euclidean plane by equilateral triangles.



Examples of incomplete quotient affine structures



Hyperbolic structures as RP2-structures

I Using the Klein-Beltrami model of hyperbolic geometry, the
convex domain Ω bounded by a conic inherits a projectively
invariant hyperbolic geometry.

I The charts for the hyperbolic structure determine charts for
an RP2-structure.

I Every hyperbolic manifold is convex RP2-manifold.

I A tiling of Ω = H2 in the projective model by triangles with
angles π/3, π/3, π/4. The corresponding Coxeter group
contains a finite index subgroup Γ such that Ω/Γ is a closed
hyperbolic (and hence convex RP2-) surface.
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Convex RP2-structures

I χ(Σ) < 0: there will be other domains with fractal boundary
determining convex RP2-structures M on Σ.

I (Kuiper 1954) ∂Ω is a conic and M is hyperbolic.

I (Benzécri 1960) ∂Ω is a C 1 convex curve.

I (Vinberg-Kac 1968) A triangle tiling, arising from a
Kac-Moody Lie algebra. The corresponding discrete group lies
in SL(3,Z).
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Globalizing the coordinate atlas

I Coordinate changes g(C ), for C ⊂ Uα ∩ Uβ, define fibration

E
Π
−→ M, fiber X , structure group G ;

I Product fibration over Uα:

Eα := Uα × X
Πα−−→ Uα :

I Since C 7−→ g(C ) ∈ G is constant, the foliations of Eα
defined by projections Eα −→ X define foliation F of E ;

I Each leaf L of F is transverse to Π;

I The restriction Π|L is a covering space L −→ M.
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The tangent flat (G , X )-bundle

dev

M

X



The developing section

I Graph the coordinate charts Uα
ψα

−−→ X to obtain sections of
Eα := Π−1(Uα) = Uα × X :

Uα
devα−−−→ Uα × X

I The local sections devα extend to a global section dev
transverse both to Π and F.

I Such a structure is equivalent to a (G ,X )-atlas.
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The developing section of a (G , X )-structure

dev

M

X
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Development, holonomy

I Let M̃ −→ M be a universal covering with deck group π1(M).

I This structure (E ,F) is equivalent to a representation

π1(M)
ρ
−→ G :

I Ẽ = M̃ × X , with π1(M)-action defined by deck
transformations on M̃ and by ρ on G .

I E = Ẽ/π1(M)

I F̃ is the foliation defined by Ẽ −→ X .

I Sections of Π correspond to ρ-equivariant maps
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I Ẽ = M̃ × X , with π1(M)-action defined by deck
transformations on M̃ and by ρ on G .

I E = Ẽ/π1(M)
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I E = Ẽ/π1(M)

I F̃ is the foliation defined by Ẽ −→ X .
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The Ehresmann-Thurston Theorem

I Assume Σ compact. Two nearby structures with same
holonomy are isotopic: equivalent by a diffeo in Diff(M)0,

I The holonomy representation ρ of a (G ,X )-manifold M has
an open neighborhood in Hom(π1,G ) of holonomy
representations of nearby (G ,X )-manifolds.
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Modeling structures on representations of π1

I A marked (G ,X )-structure on Σ is a diffeomorphism Σ
f
−→ M

where M is a (G ,X )-manifold.

I Marked (G ,X )-structures (fi ,Mi ) are isotopic ⇐⇒ ∃

isomorphism M1
φ
−→ M2 with φ ◦ f1 ' f2.

I Holonomy defines a local homeomorphism

D(G ,X )(Σ) :=

{
Marked (G ,X )-structures on Σ

}
/Isotopy

hol
−−→ Hom(π1(Σ),G )/G
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Change the marking!

I Let Σ
f
−→ M be a marked (G ,X )-structure.

I η ∈ Diff(Σ) acts: (f ,M) 7−→ (f ◦ η,M).

I Mapping class group

Mod(Σ) := π0

(
Diff(Σ)

)

acts on D(G ,X )(Σ).

I hol equivariant respecting

Mod(Σ) −→ Out
(
π1(Σ)

)
:= Aut

(
π1(Σ)

)
/Inn

(
π1(Σ)

)

I When Σ is a closed surface (or a one-holed torus), then
π0Diff(Σ) ∼= Out

(
π1(Σ)

)
(Nielsen 1918).
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Marked Euclidean structures on the T 2

I Euclidean geometry: X = R2 and G = Isom(X )
D(G ,X )(Σ) identifies with the upper half-plane H2:

I Point τ ∈ H2 ←→ Euclidean manifold C/〈1, τ〉.
I The marking is the choice of basis 1, τ for π1(M).

I Changing the marking is the usual action of PGL(2,Z) on H2

by linear fractional transformations which is properly discrete!.
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Complete affine structures on the 2-torus

I Kuiper (1954) Every complete affine closed orientable
2-manifold is equivalent to either:

I Euclidean: R2/Λ, where Λ is a lattice of translations
(all are affinely equivalent);

I Polynomial deformation R2/(f ◦ Λ ◦ f −1), where

(x , y)
f
−→ (x + y 2, y).
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Chaotic dynamics on the deformation space

I Usually Mod(Σ) too dynamicly interesting to form a quotient.

I (Baues 2000) Deformation space homeomorphic R2, where
origin {(0, 0)} corresponds to Euclidean structure;

I Mapping class group action is linear GL(2,Z)-action on R2 —
chaotic!

I The orbit space — the moduli space of complete affine
compact orientable 2-manifolds is non-Hausdorff and
intractable. (Even though the corresponding representations
are discrete embeddings.)

I In contrast, Mod(Σ) can act properly discrete even for
non-discrete representations: hyperbolic structures on T 2 with
single cone point.
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Fricke spaces of hyperbolic structures

I Hyperbolic geometry: X = H2 and G = Isom(X )
D(G ,X )(Σ) is Fricke space F(Σ) of isotopy classes of marked
hyperbolic structures Σ −→ M.

I

F(Σ)
hol
↪→ Hom(π,G ))/G

embeds F(Σ) as a connected component.

I Image comprises discrete embeddings π
ρ
↪→ G .

I Equivalently, ρ(γ) is hyperbolic if γ 6= 1.

I (Fricke-Klein ?) F(Σ) diffeomorphic to R−3χ(Σ).

I Uniformization: F(Σ) corresponds to marked conformal

structures: Teichmüller space.

I Mod(Σ) acts properly on F(Σ) with quotient Riemann’s
moduli space of Riemann surfaces of fixed topology Σ.
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Recent developments

I (Hitchin 1990) G split R-semisimple Lie group:
Hom(π,G )/G always contains connected component

HG (Σ) ≈ R− dim(G)χ(Σ).

I (Labourie 2003) Every Hitchin representation is a
quasi-isometric discrete embedding π −→ G .

I Mod(Σ) acts properly on HG (Σ).

I ∀γ 6= 1, ρ(γ) is positive hyperbolic.

I (Labourie, Guichard, Fock-Goncharov) Hitchin representations
characterized by positivity condition. Limit set is a Hölder
continuous closed curve in RPn.

I (Benoist 2001) In all dimensions, geodesic flow of Hilbert
metric of strictly convex projective structures is Anosov.
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Representations and their symmetries
I Let π = 〈X1, . . . ,Xn〉 be finitely generated and G Lie group:.
I The set Hom(π,G ) of homomorphisms

π −→ G

admits an action of Aut(π)× Aut(G ):

π
φ
−→ π

ρ
−→ G

α
−→ G

where (φ, α) ∈ Aut(π)× Aut(G ), ρ ∈ Hom(π,G ).
I The quotient

Hom(π,G )/G := Hom(π,G )/
(
{1} × Inn(G )

)

under the subgroup

{1} × Inn(G ) ⊂ Aut(π)× Aut(G )

admits an action of

Out(π) := Aut(π)/Inn(π).
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Algebraic structure of representation spaces

I G : algebraic Lie group.

I ρ 7−→
(
ρ(X1) . . . ρ(Xn)

)
embeds Hom(π,G ) onto an algebraic

subset of G n.

I Algebraic structure is {X1, . . . ,Xn}-independent and
Aut(π)× Aut(G )-invariant.

I Geometric Invariant Theory quotient Hom(π,G )//G is
Out(π)-invariant.

I Coordinate ring is the invariant subring

C[Hom(π,G )//G ] = C[Hom(π,G )]G ⊂ C[Hom(π,G )].

I Examples are functions fα, associated to:
I A conjugacy class [α], where α ∈ π;

I An Inn(G )-invariant function G
f
−→ R.
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Character functions fα on representation varieties

I Invariant function G
f
−→ R =⇒ Function fα on Hom(π,G )/G

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(
ρ(α)

)

Conjugacy class of α ∈ π corresponds to free homotopy class
of closed oriented loop α ⊂ Σ.

I These functions generate the coordinate ring.

I Example: Trace GL(n,R)
tr
−→ R

I Another example: Displacement length on SL(2,R):

`(A) := min
x∈H2

d
(
x ,A(x)

)

I If A is hyperbolic, tr(A) = ±2 cosh
(
`(A)/2

)
.
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Invariant functions in PGL(3, R) ∼= SL(3, R)

I Restrict to the subset Hyp+ ⊂ SL(3,R) consisting of positive

hyperbolic elements (diagonalizable over R):

A ∼



λ1 0 0
0 λ2 0
0 0 λ3




where λ1 > λ2 > λ3 > 0 and λ1λ2λ3 = 1.

I The Hilbert displacement corresponds to the invariant
function

`(A) := log(λ1/λ3) = log(λ1)− log(λ3)

I The bulging parameter is the invariant function

β(A) := log(λ2)
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Marked length spectra in F(Σ) and C(Σ)

I On F(Σ), `α associates to a marked hyperbolic surface Σ ≈ M

length of the unique closed geodesic homotopic to α in M.

I On C(Σ), `α associates to a marked convex RP2-surface
Σ ≈ M the Hilbert length of the unique closed geodesic
homotopic to α in M.

I (Fricke-Klein ?) The marked length spectrum characterizes
hyperbolic structures in F(Σ).

I (Inkang Kim, 2001) The marked Hilbert length spectrum

characterizes RP2-structures in C(Σ).
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Fenchel-Nielsen coordinates on the Fricke space F(Σ)

I Cut Σ along N simple closed curves σi into 3-holed spheres
(pants). =⇒ Explicit parametrization F(Σ) −→ R6g−6.

l1 l32l

I 2g − 2 = χ(Σ)/χ(P) pants Pj and

N := 3/2(2g − 2) = 3g − 3.

I For a marked hyperbolic surface Σ ≈ M, can represent each
σi by a simple closed geodesic on M. All these σi are disjoint.
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Hyperbolic structures on three-holed spheres

I Let li be the length of the geodesic corresponding to σi . The
hyperbolic structure on Pj is completely determined by the
the three lengths of the components of ∂Pj .

I these length functions define a surjection

F(Σ)
`
−→ RN

+. (1)

which describes the hyperbolic structure on M|σ.

I The components of ∂(M|σ) are identified σ−

i ←→ σ+
i , one

pair for each component σi ⊂ σ.

I For each σi , choose τi ∈ R and reidentify M|σ σ−

i ←→ σ+
i ,

one pair for each σi , obtaining a new marked hyperbolic
surface

S ≈ Mτ1,...,τN

(Fenchel-Nielsen twists, Thurston earthquakes).
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Fenchel-Nielsen twists (earthquakes)

I Defines an RN -action which is simply transitive on the fibers

of F(Σ)
`
−→ RN

+.

I (Wolpert 1977) The symplectic form is

N∑

i=1

d`i ∧ dτi

I Completely integrable Hamiltonian system: ` is a Cartesian
projection for symplectomorphism.

F(Σ) −→ RN × RN
+

and ` is a moment map for a free, proper Hamiltonian
RN -action.
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Some earthquake deformations in the universal covering



Geometry of C(Σ)

I Hong Chan Kim (1999) generalized Wolpert’s theorem to
define a a symplectomorphism

C(Σ) −→ R16g−6

I ∃ natural completely integrable system in this case?

I (Labourie 1997, Loftin 1999) Mod(Σ)-invariant fibration of
C(Σ) as holomorphic vector bundle over Teichmüller space.

I The fiber over a marked Riemann surface Σ −→ X equals
H0(X ;κ3

X ) comprising holomorphic cubic differentials on X .

I The zero-section corresponds to F(Σ).
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Ingredients of symplectic structure

I Σ oriented closed surface and B Ad-invariant nondegeneate
symmetric pairing on g.

I For ρ ∈ Hom(π,G ), the composition

π
ρ
−→ G

Ad
−→ Aut(g)

defines a local coefficient system gAdρ over Σ,

I inheriting a symmetric nondegenerate pairing

gAdρ × gAdρ
B
−→ R

I [ρ] smooth point ⇒ T[ρ]Hom(π,G )/G = H1(Σ, gAdρ).

I Cup-product + coefficient pairing B + orientation =⇒
bilinear pairing

H1(Σ, gAdρ)×H1(Σ, gAdρ)
ωρ

−→ H2(Σ,R) ∼= R
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Construction of symplectic structure

I This pairing is skew-symmetric, and hence defines an exterior
2-form on the smooth part of Hom(π,G )/G .

I This 2-form is nondegenerate and closed.

I By Ehresmann-Thurston, this induces a symplectic structure
on D(G ,X )(Σ).

I On a symplectic manifold (W , ω), functions φ induce vector
fields Ham(φ).

I Both the function φ and the 2-form ω are Ham(φ)-invariant.
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Hamiltonian twist flows on Hom(π, G )

I The Hamiltonian vector field Ham(fα) associated to f and α
assigns to a representation ρ in Hom(π,G ) a tangent vector

Ham(fα)[ρ] ∈ T[ρ]Hom(π,G )/G = H1(Σ, gAdρ).

I It is represented by the (Poincaré dual) cycle-with-coefficient
supported on α and with coefficient

F (ρ(α)) ∈ gAdρ.
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The one-parameter subgroup associated to an invariant

function
I Invariant function

G
f
−→ R

and A ∈ G =⇒ one-parameter subgroup

ζ(t) = exp
(
tF (A)

)
∈ G ,

where F (A) ∈ g.
I Centralizes A:

ζ(t)Aζ−1 = A

I F (A) is defined by duality:

df (A) ∈ T ∗

AG ∼= g∗
B
∼= g

I Alternatively, (where X is an arbitrary element of g):

B(F (A),X ) =
d

dt

∣∣∣∣
t=0

f
(
A exp(tX )

)
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Generalized twist deformations

I When α is a simple closed curve, then a flow Φt on
Hom(π,G ) exists, which covers the (local) flow of the
Hamiltonian vector field Ham(fα).

I When α is, for example, the nonseparating curve A1 in the
standard presentation

π = 〈A1,B1, . . . ,Ag ,Bg | A1B1A
−1
1 B−1

1 . . . ,AgBgA−1
g B−1

g = 1〉

this flow has the following description in terms of generators:.

I Φt(γ) = ρ(γ) is constant if γ is either Ai for 1 ≤ i ≤ g or Bi

for 2 ≤ i ≤ g .

I Φt(B1) = ρ(B1)ζ(t).

I Similar construction when γ separates..
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Twist and bulging deformations for RP2-structures

I Apply the previous general construction to G = SL(3,R) and
the two invariant functions `, β defined earlier:



λ1 0 0
0 λ2 0
0 0 λ3


 (`,β)
−−−→

(
log(λ1)− log(λ3)

log(λ2)

)

I The corresponding one-parameter subgroups in PGL(3,R) are:

ζ`(t) :=




et 0 0
0 1 0
0 0 e−t


 , ζβ(t) := e−t/3




1 0 0
0 et 0
0 0 1



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
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0 0 1


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Bulging conics along a triangle in RP2

I When applied to a hyperbolic structure, the flow of Ham(`α)
is just the ordinary Fenchel-Nielsen earthquake deformation
and the developing image Ω is unchanged.

I However, the flow of Ham(βα) changes Ω by bulging it along
a triangle tangent to ∂Ω.



Bulging conics along a triangle in RP2

I When applied to a hyperbolic structure, the flow of Ham(`α)
is just the ordinary Fenchel-Nielsen earthquake deformation
and the developing image Ω is unchanged.

I However, the flow of Ham(βα) changes Ω by bulging it along
a triangle tangent to ∂Ω.



Bulging conics along a triangle in RP2

I When applied to a hyperbolic structure, the flow of Ham(`α)
is just the ordinary Fenchel-Nielsen earthquake deformation
and the developing image Ω is unchanged.

I However, the flow of Ham(βα) changes Ω by bulging it along
a triangle tangent to ∂Ω.



Bulging domains in RP2

I Start with a properly domain Ω whose boundary ∂Ω is strictly
convex and C 1. (For example, ∂Ω a conic.) Each geodesic
embeds in a triangle tangent to ∂Ω.

I Choose a collection Λ of disjoint lines in Ω, with instructions
how to deform along Λ (for each λ ∈ Λ, a one-parameter
subgroup of SL(3,R) preserving λ.

I Fixing a basepoint in the complement of Λ, bulge/earthquake
the curve inside the triangles tangent to ∂Ω.

I Obtain a sequence of piecewise conics converging to the limit
curve.
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A domain in RP2 covering a closed surface



Iterated bulging of convex domains in RP2: Speculation

I If Ω covers a closed convex RP2-surface with χ < 0, then ∂Ω
is obtained from a conic by iterated bulgings and earthquakes.

I Is every properly convex domain Ω ⊂ RP2 with strictly convex
C 1 boundary obtained by iterated bulging-earthquaking?

I Thurston proved that any two marked hyperbolic structures
on Σ can be related by (left)-earthquake along a unique
measured geodesic lamination. Generalize this to convex
RP2-structures.
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