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The Geometry L.
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illiam M

Algebraicizing
geometry

Library of Congress

Felix Klein's Erlangen Program: A geometry is the study of
objects invariant under some group of symmetries. (1872)
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m Locally has Euclidean geometry.
m Every point has a Euclidean coordinate neighborhood.
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Algebraicizi . .
et A sphere is not Euclidean

m No local Euclidean geometry structure on the sphere.
m No metrically accurate atlas of the world!

m For example a cube has the topology of a sphere, but its
geometry fails to be Euclidean at its 8 vertices.
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Algebraicizing
geometry

The geometry on the space of geometries

m Geometric objects and transformations represented by
scalars, vectors and matrices, all arising from symmetry.

m Example: Triangles in the plane are classified (up to
congruence) by the lengths of their sides:

0<a,b,c
a<b+c
b<c+a
c<a+b

m In general the space of equivalence classes of a geometry
has an interesting geometry of its own.
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m The space of structures «— with equivalence classes of
2 .

Algebraiczing T € H* by SL(2,Z) — natural hyperbolic geometry.

geometry m Changing basis «— action of the group SL(2,Z) of

integral 2x2 matrices by

b
ar + g where a, b, c,d € Z.

CcT +
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Euclidean geometry

m Euclidean geometry concerns properties of space invariant
under rigid motions.

Euclidean

geometry m For example: distance, parallelism, angle, area and volume.

m Points in Euclidean space are represented by vectors;
Euclidean distance is defined by:

d(d,b) := [|3 - bl
the size of the translation taking b to 3:

p|—>p+(B—5)
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Spherical geometry

m Points on the sphere S? are unit vectors in R3.

m Spherical distance between 3, b € 52 is the minimum
Spherical length of a curve on S? between joining them.

geometry -
m It is the angle 6 = Z(3, b):

cos(d) =3-b

m the size of the rotation taking b to 3.
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27w Rsin(0)

Spherical
geometry

TRH

in(0)

R

m Spherical circle of radius r has circumference

C(R) =2nRsin(r/R)

B As R — o0, the geometry approaches Euclidean:

C(r) — 2mr.
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Tilings by triangles

m Example: Take a triangle /A and try to tile the plane by
reflecting A\ repeatedly in its sides.

m If the angles «, 3, in A are 7w/n, where n > 0 is an
integer, then the triangles tile the plane.

TriEngle s m If the angles are w/p,m/q,7/r then the three reflections
Ri1, Ry, R3 generate a group with presentation with
defining relations

(R)? = (R2)* = (Rs)* =
(RiR)P = (RoR3)7 = (RsR1)" = |
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' m If o+ G+~ =, then a Euclidean triangle exists with
these angles.
m Such a triangle is unique up to similarity.
m If 7/, etc. are integers > 1, reflected images of A tile R2,
m If o+ 0+~ >, then a spherical triangle exists with
these angles.
These triangles tile S2.
The number of triangles equals

Triangle tilings

4
a+fB+y—7

the numerator equals area(S?). and the denominator
equals area(A).



The Geometry
of 2 x 2
Matrices

Angle-Angle-Angle implies Congruence

Triangle tilings



The Geometry
of 2 x 2
Matrices

Angle-Angle-Angle implies Congruence

m If o+ 0+~ <, then a hyperbolic triangle exists with
these angles.

Triangle tilings



The Geometry
of 2 x 2
Matrices

Angle-Angle-Angle implies Congruence

m If o+ 0+~ <, then a hyperbolic triangle exists with
these angles.
Triangle tilings These triangles tile H?.



The Geometry
of 2 x 2
Matrices

m M

Angle-Angle-Angle implies Congruence

m If o+ 0+~ <, then a hyperbolic triangle exists with
these angles.
Triangle tilings These triangles tile H?.

m In both spherical and hyperbolic geometry, the angles
(a, B8,7y) determine A up to congruence.
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projection

Stereographic projection maps z = x + iy € C to

1 2z
&)= e [—1 T |z|2]
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Stereographic models for inversive geometry

m Stereographic projection maps circles to circles
m — and preserves angles.

m Great circles are those which are symmetric about the
Stereographic origin (maximum radius).

projection
m Euclidean straight lines those which pass through oo (the
North Pole).
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m Here is a stereogrphic projection of this tiling:
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Here is a tiling of S2 by 24 triangles with angles 7/2, /2 and
/6.
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Stereographic
projection

Tiling the sphere by 24 triangles with angles 7/2, 7/3 and 7/3.
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Stereographic
projection

Stereographic projection of the tiling of a sphere by 48 triangles
of angles /2, 7/3, /4 corresponding to a regular octahedron
inscribed in the sphere.



The lIcosahedral Tiling

SEREK
Ve

Tiling the sphere by 120 triangles of angles 7/2,7/3,7/5
corresponding to an icosahedron.
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Bl (Poincaré:) Hyperbolic geometry arises on a disc bounded by a

Matri . i i
atrices circle C. Geodesics are circular arcs orthogonal to Cu.

m M

m Geodesic rays may be asymptotic if they remain a bounded
distance; they are represented by mutually tangent arcs.

m Otherwise they are ultraparallel, they diverge, and have a
common orthogonal.

Hyperbolic
Geometry

m Given «, 3,7 > 0 such that o + 3+ v < 7, a unique
triangle exists with these angles.
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el Tiling the hyperbolic plane by triangles with asymptotic sides
of 2 x 2
Matrices

Hyperbolic
Geometry

Finite area although sides have infinite length.
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Matrices as geometric objects

m The group SL(2,C) of 2 x 2 complex matrices of
determinant one:

a b
[c d],ad—bc—l

m acts by linear fractional transformations

¢ az+b
Z —
Matrices as cz + d

geometric
on CU {oo}.

objects
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e Subgroup corresponding to Euclidean geometry
Euclidean plane: complement of one point (00) in S2.
If ¢ =0, then ¢(c0) = 0.

For some A#0,B € C,

¢(z) = Az+ B

¢ is a Euclidean similarity transformation:

Matrices as m A composition of translations, rotations and dilations.
geometric A B:|

objects
m Represented by {O 1
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Matrices Subgroup corresponding to spherical geometry
\ m M

m Reflection in the origin in R3 corresponds to the antipodal

map of S
X —X
Yy 1|y
z —z

m Under stereographic projection, corresponds to:

z+7% —1/z

Matrices as

geometric

objects Where Z =X —|— Iy and 2 = X — Iy

m ¢ is a spherical isometry <= ¢pooc =00¢
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Subgroup corresponding to hyperbolic geometry

m A "hyperbolic geometry” arises by taking a circle C

(called the absolute) and a component of its complement
(call it H?).

m For example the real line R.

m Inversion in R is just complex conjugation:

LR — .
Z—Z=X—1y

Matrices as

geometric

objects m ¢ is an isometry of H?> <= ¢oir = tg 0 &,
that is, the matrix ¢ is real: a,b,c,d € R.
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Circles as matrices

Every circle is fixed under a unique inversion.
The inversion in the circle of radius R centered at O is:

g I’/R O

A straight line is a (degenerate) circle passing through co.
Its inversion is just Euclidean reflection.
Inversion in e/R is:

7 2103

e 0
corresponding to [ 0 e_,-g].
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m A single matrix

X = [i 2] € SL(2,C)

is determined up to equivalence by its trace:

tr(X):=a+d
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Matrices as
geometric
objects

The trace

m A single matrix

X = [j 2] € SL(2,C)

is determined up to equivalence by its trace:

tr(X):=a+d

m Every complex number a € C is the trace of some
A € SL(2,C), for example:
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Products of reflections

m Two distinct circles (7, C; may intersect in two points, be
tangent, or be disjoint.
m Let R; be inversion in C;, represented as matrices in
SL(2,C).
m (, G, are tangent <= tr(R1 Ry) = +2.
m G, G intersect in angle § <= tr(R1R,) = £2 cos(6).
m (i, G are disjoint § <= tr(R1Rp) > 2 or < —2.

m In the latter case, C; and C, are orthogonal to a unique

circle C.
Matrices as m Let H? be a disc bounded by C,..
tri . . , . .
Shjects (1, G, determine Poincaré geodesics at distance d:

tr(R1R2) = £2cosh(d).
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m If Ry, Ry, R3 satisfy (R;)?> = I, then

A= R1R2
B = R2R3
C:= R3R1

satisfy ABC = 1.
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of 2 X 2 Triangle representations

Matrices

m If Ry, Ry, R3 satisfy (R;)?> = I, then

A= R1R2
B = R2R3
C:= R3R1

satisfy ABC = 1.

m Thus the problem of finding circles intersecting at angles
«, 3,7 reduces to finding matrices A, B, C satisfying
ABC =/ and

seometric” tr(A) = 2cos(a)

e tr(B) = 2 cos(3)

tr(C) = 2cos(7).
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Matrices The L|e prOd uct

William M

m If A, B, C are found, then Ry, R, R3 can be reconstructed

by formulas:
R =CA-AC
R, =AB — BA
R3 =BC—-CB
Matrices as to ensure that A = R1R», etc.
G m The Lie product AB — BA is analogous to the cross

product A x B of vectors.
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Matfices The Vogt-Fricke-Klein Theorem (1889)

m Central to all this theory is the fundamental result
characterizing pairs of unimodular 2 x 2 complex matrices:

m Let A, B € SL(2,C), and define C = (AB)~!

a:=tr(A)

b= tr(B)

c:=tr(AB) =tr(C).

Matrices as Then if a° + b? + c® — abc # 4, then any other pair

geometric

s (A, B') with the same traces (a, b, ¢) is conjugate to
(A, B).
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Matrices m If a2+ b% + ¢2 — abc = 4, then 3P such that

William M

Goldman

m so that

Matrices as
geometric
objects

PAP~1 = [O‘ ) ]

0 1/a
1B =
PBPl_[O 1/5]'
a=a+1l/a
b=p+1/p

¢ = (af) +1/(ab)

parametrizing a4+ b? + ¢ — abc = 4 by rational functions.
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Matrices

m Conversely, given a, b, ¢ satisfying a®> + b + ¢ — abc # 4.
Choose v so that

M

c=v+1/7.
Then 3P such that

-1 _a -1
PAP~ = |] 0]
-1 _ [0 v
PBP™* = __1/7 b
A 1 [y —ay+b
PCP =10 14 ] :

objects
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Matrices

Building moduli spaces

m Vogt's theorem = traces of 2 x 2 matrices give
coordinates for spaces of geometries.

m C3 parametrizes equivalence classes in SL(2,C) x SL(2, C).
m Generalizes the Angle-Angle-Angle test for congruence in
non-Euclidean geometry.

m Triangles are the building blocks for surfaces.

m Geometry of matrices defines geometric structure on the
moduli space.

Conclusion
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Matrices

Other Geometries and Higher Dimensions

m Just the beginning of a more intricate picture.
m For example:

m Groups with > 2 generators;
m Manifolds of dimension 3,4,...;

m More complicated Lie groups (SL(n, C) when n > 2).

Conclusion



The Geometry
of 2 x 2

Matrices A (3,3,4)-triangle tiling in the real projective plane
Viiliam G =SL(3,R).

Conclusion
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